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Polarity and chirality control of an active 
fluid by passive nematic defects

Alfredo Sciortino    1,2, Lukas J. Neumann    1,2, Timo Krüger3, Ivan Maryshev    3, 
Tetsuhiko F. Teshima    4,5, Bernhard Wolfrum4,5, Erwin Frey    3,6 & 
Andreas R. Bausch    1,2,6,7 

Much like passive materials, active systems can be affected by the presence 
of imperfections in their microscopic order, called defects, that influence 
macroscopic properties. This suggests the possibility to steer collective 
patterns by introducing and controlling defects in an active system. Here 
we show that a self-assembled, passive nematic is ideally suited to control 
the pattern formation process of an active fluid. To this end, we force 
microtubules to glide inside a passive nematic material made from actin 
filaments. The actin nematic features self-assembled half-integer defects 
that steer the active microtubules and lead to the formation of macroscopic 
polar patterns. Moreover, by confining the nematic in circular geometries, 
chiral loops form. We find that the exact positioning of nematic defects 
in the passive material deterministically controls the formation and the 
polarity of the active flow, opening the possibility of efficiently shaping an 
active material using passive defects.

The macroscopic characteristics of materials can depend on  
microscopic impurities they contain. For instance, defects in the  
crystalline order of materials strongly affect their mechanical or trans-
port properties1. Controlling defects, a fundamental way to manipulate 
materials, is also starting to find applications in the field of soft matter2.  
Active materials, composed of microscopic components able to turn 
energy into motion, are similarly often characterized in terms of the 
presence of defects and their dynamics3,4. Defects in the alignment  
of active elongated particles have been identified in a plethora of  
different contexts5 and for instance play a role in cytoskeletal 
self-organization6–9, cell motion10–12 and biological development13,14. 
Hence, one promising way to control active matter is controlling  
the system’s boundary condition or topology to control defects7,15–19.  
In these cases, however, defects are themselves part of the active  
system and thereby move or spontaneously form and annihilate, so  
that only limited control of their position, number and dynamics  
is possible.

A different strategy is to embed active systems into a passive 
medium, taking advantage of our ability to control traditional mate-
rials. Passive material properties and their defects have indeed been 
shown to influence the emergence of collective structures8,20–24. For 
instance, nematic defects can induce distortions in a passive material 
that will shape the behaviour of the active system they contain in a 
non-trivial way25,26. Confining swimming bacteria in a liquid crystal has 
indeed shed light on the interplay between active matter and passive 
defects, showing these latter can be used to shape pattern forma-
tion27–30. However, most of these results lack microscopic resolution 
and are affected by long-range hydrodynamic interactions that might 
overshadow local microscopic behaviours. To understand the potential 
of passive nematic materials to control active systems, microscopic 
resolution of the interactions between the two is needed.

Here we steer the pattern formation process of an active system 
by the presence of a passive liquid crystal. This is achieved by coupling 
a two-dimensional microtubule (MT) gliding assay to a self-assembled 
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of short (~0.8 µm), fluorescent actin filaments together with a depletant 
are also present (Fig. 1a, Methods and Supplementary Information). 
Under these conditions, the actin filaments quickly assemble into a 
two-dimensional nematic31,32, featuring both +1/2 and −1/2 nematic 
defects (Fig. 1b, Supplementary Figs. 1 and 2 and Supplementary Video 1).  
Defects spontaneously form due to the deposition of the filaments 
on the SLB, which acts as a cushion for the sedimentation of actin fila-
ments; hence, their specific shape is due both to mechanical properties 
of the filaments and to the friction between the membrane and the 
actin. Additionally, since in this system motors are bound on a diffusive 
substrate, steric interactions are enforced between gliding filaments 
and passive ones, as previously shown9,33,34. Additional steric interac-
tions between actin filaments are due to the presence of a depletant. 
MTs are therefore forced to glide inside the nematic material and to 
locally align with actin filaments (Fig. 1b and Supplementary Video 2). 
After stabilization of the actin nematic, we observe that the MTs, which 
are initially isotropic in space, start to aggregate and form long streams 
that span the entire sample (Fig. 1c,d). Strikingly, in these MT streams, 
all filaments move in the same direction (Fig. 1d and Supplementary 
Video 3) following the local orientation of the actin nematic (Fig. 1e). 
The same behaviour is observed even when varying the mechanical 

passive actin nematic featuring half-integer nematic defects. We 
observe that under these conditions, gliding filaments form ordered, 
polar structures. We image with high resolution their emergence and 
pinpoint nematic distortions originating from defects as their source. 
Specifically, −1/2 defects induce long-range distortions in the material 
that affect the active flow. More strikingly, the conformation of +1/2 
defects is instead found to be a funnelling and polarity-sorting ele-
ment9. Overall, this leads to the emergence of polar active flow, despite 
the nematic symmetry of the passive material. In addition, controlling 
the total nematic charge by confining the system turns polar streams 
into chiral loops. The formation of patterns and their shape are solely 
consequences of the shape of the passive nematic. It is indeed the 
precise positioning in space of point defects that steers the active fluid 
flow on a larger scale, an observation we can rationalize by simulations, 
fully recapturing experimental results.

Microtubules inside a nematic assemble into 
polar streams
Our experimental set-up consists of short (~2 µm) fluorescent MTs, 
processively propelled by streptavidin-tagged kinesin motors bound to 
a fluid, supported lipid bilayer (SLB) containing biotin. Moreover, 1 µM 
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Fig. 1 | Description of the system and formation of polar streams. a, Schematic 
of the system. Kinesin motors are bound to a SLB and propel short, stabilized 
MTs. A passive actin nematic is sedimented on top, and MTs glide inside it.  
b, Microscopy image of the assembled nematic (coloured in grey) containing 
MTs (cyan). The nematic quickly assembles and features topological defects of 
half-integer charge, marked in the image in red and enlarged in the insets. MTs 
align and glide within the nematic. MT density is σ = 0.003 MTs µm–2. Scale bars, 
10 µm. c, Over time, the MTs assemble into dense polar streams (cyan) with a size 
much bigger than that of individual filaments. MT density is σ = 0.08 MTs µm–2. 
Scale bar, 100 µm. d, Detail of a stream (left) and mean flow of the MTs (right). 

MT streams are found to be locally polar, with MTs mostly gliding in the same 
direction as shown by the mean optical flow colour-coded by the local orientation 
(Methods). Orange arrows display the flow direction. The orientation colour 
scale is shown in the inset coloured wheel. Scale bar, 50 µm. e, An initial isotropic 
distribution of MTs (white) evolves into streams as the nematic sediments. The 
last picture on the right shows a maximum intensity time projection (between 20 
and 30 minutes) with an overlay of the final actin nematic director field (yellow), 
showing how formed streams move along the nematic director field. Scale bar, 
100 µm.
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properties of the nematic material or the motors’ concentration, as 
long as filaments can move in the nematic. In the absence of an actin 
nematic, instead, MTs at a similar surface concentration do not form 
stable patterns (Supplementary Video 4) and only transiently align 
(Supplementary Fig. 3).

Motion of individual filaments
To understand the microscopic behaviour leading to the formation 
of MT streams, we observe the system at a low MT surface density 
(σ = 0.003 MTs µm–2) using total internal reflection fluorescence 
microscopy; thus, we are able both to follow the trajectory of individual 
MTs inside the nematic (Fig. 2a) and to extract the local orientation 
n(r) of the actin filaments at any point r of the image (Methods). MTs 
are found to glide with a velocity v at a mean speed <v> ~ 100 nm s–1.

From the velocity, we compute the order parameter 
Sv = 2 (n ⋅ v/v)2 − 1, which measures the alignment between MTs and 
the actin nematic surrounding them. The Sv is expected to be 1 if MTs 
are aligned with the nematic field and –1 if orthogonal. Figure 2a reports 
an example of a MT’s trajectory, showing periods of high and low speed, 
dependent on the local alignment. As the MT enters an area in which it 
is misaligned with the nematic, it slows down and eventually realigns, 
demonstrating that MTs can reorient to resolve local misalignments 
and escape obstacles. In general, however, MTs align with the nematic 
director and follow its local distortions. The distribution of Sv is indeed 
strongly peaked at Sv ~ 1 (Fig. 2b), indicating that gliding filaments 
strongly align with the nematic. The speed of MTs depends on their 
local alignment with the nematic, with poorly aligned filaments moving 

more slowly (Fig. 2c). Strikingly, over time, individual MTs end up being 
funnelled by the nematic on the same path and in the same direction 
(Fig. 2d). This suggests that the nematic alignment field selects the 
trajectories onto which the MTs are directed due to defect-induced 
distortions. We then set out to determine the microscopic effect of 
nematic distortions on the active system by monitoring the behaviour 
of MTs in the presence of different distortions in the nematic, focusing 
on splay (high values of (∇·n)2, where ∇ is the nabla operator) and bend 
(|nx∇∇∇xn|2) and on nematic defects themselves.

Positive defects control pattern formation
We observe the system at several densities (σ = 0.003 to 0.08 MTs µm–2) 
to extract information about both the individual and the collective 
behaviour of MTs. Since MTs are forced to follow the nematic orien-
tation, splay is the source for convergence (divergence) of MT flows 
coming from different directions, resulting in an increase (decrease) of 
the density (Fig. 3a,b). In the case of pure bend instead, filaments just 
glide along the deformation without any change in density (Fig. 3a,b).

We next turn to the behaviour close to defects (Supplementary 
Video 5). Close to −1/2 defects (Fig. 3c), individual filaments simply 
follow the actin orientation and turn around the defect’s core before 
reaching it, only rarely crossing it (Supplementary Fig. 7). Hence, 
negative-charge defects only modify the MTs’ flow by bending its 
direction due to the deformations they induce. Conversely, and more 
strikingly, when gliding filaments enter a +1/2 nematic defect, MTs are 
funnelled directly to the defect’s core by the local splay, eventually 
escaping from the defect and realigning with the neighbouring nematic 
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Fig. 2 | Microscopic behaviour of MTs gliding in a passive actin nematic.  
a, Example of a MT trajectory and relevant extracted parameters. Microscopy 
image of the nematic (grey) with the trajectory of a MT moving in it (blue) 
overlayed (i). Bottom left image (ii) shows the extracted nematic field (Methods) 
and again the trajectory, now in red. The trajectory of this MT shows how it 
crosses regions of different local order and that misalignment with the nematic 
leads to a reorientation and a drop in speed. Both the alignment with the nematic 
(determined by the order parameter Sv = 2 (n ⋅ v/v)2 − 1) (iii) and the speed v (iv) 
can be monitored for this trajectory over time, showing that the filament 
crossing defects can find itself misaligned with the nematic and thus slow down 
before eventually realigning. Speed is normalized by the maximum speed vMAX 
during the trajectory. Dashed lines in iii and iv correspond to the positions 
marked by blue arrows in ii. Scale bar, 5 µm. b, Histogram of the probability P(Sv) 

of observing a MT with a given value of Sv during its trajectory. On average, MTs 
are mostly aligned with the passive nematic, with Sv ~1. The inset illustrates the 
definition of v (in blue) and n (in yellow). c, Plot of the speed as a function of Sv for 
several MTs, sampled over the course of a video (30 minutes). The speed of the 
MTs depends slightly on the local alignment with the nematic Sv, resulting in 
slower speed at low alignment. Purple dots are individual data points and red 
lines indicate the mean with standard deviation. For b and c, we tracked 400 
trajectories of at least 3 minutes from three independent experiments and 
divided them into ten bins depending on the value of Sv. Data are presented as 
mean value +/− standard deviation for each bin. d, Different MTs (three in this 
case, in cyan) end up gliding along the same trajectories. One filament (the same 
in all time frames) is indicated by the red arrow as a reference. Scale bar, 5 µm.
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(Fig. 3c, bottom). This behaviour is the same for all observed densities 
(Fig. 3d), with +1/2 defects first converging and then deflecting the MTs’ 
flow. The actin nematic, instead, while transiently deforming when 
MTs glide through it, gradually recovers its initial conformation due 
to steric interactions with neighbouring filaments (Supplementary 
Fig. 4). Thus, in this system, defects are stable both in time and space 
yet directly affect the active flow.

Passive defects shape the active flow
We find that the funnelling of MTs at defects with a positive topological  
charge (from now on, positive defects) is the main mechanism of  
pattern formation. As soon as the nematic assembles, +1/2 defects 
funnel initially disordered filaments into ordered structures (Fig. 4a 
and Supplementary Video 6).

The splay-dominated part of the defect accumulates the  
MTs towards its core. Furthermore, due to their conformation, posi-
tive defects can only be accessed by MTs on one side, so that they  
always exert a converging effect on the MTs’ density. Thus +1/2  
defects break the spatial symmetry rectifying the flow35 (Fig. 4b). Addi-
tionally, if the nematic field right after the defect’s core is oriented  
at a skewed angle with the defect’s axis, most of the ejected MTs  
will preferentially turn in one direction, choosing the one that mini-
mizes their rotation (Fig. 4c,d and Supplementary Video 7). We 
find that roughly (90 ± 10)% of the MTs independently choose the  
direction set by distortions in the nematic (Methods), regard-
less of the way they entered the +1/2 defect (Fig. 4e). Positive +1/2 
defects therefore are the source of net polarity in the system, as they  

select a main direction, resulting in highly polar streams (Fig. 4f and 
Supplementary Fig. 10).

After streams have formed, the shape of the patterns is closely 
tied to the distribution of defects in space, as the MTs still follow the 
defect-induced distortions. Plotting the position and orientation of 
nematic defects on top of the MTs’ flow reveals how they shape the 
trajectories (Fig. 4g,h). After forming, streams rarely cross +1/2 defects 
but are surrounded by them, indicating that +1/2 defects have previ-
ously played a role in channelling the MTs into the final trajectories  
(Fig. 4g). Also, multiple defects arranged in specific conformations 
further steer the polar flow (Fig. 4h, insets). We often observe the for-
mation of closed, chiral loops in the MTs’ trajectories (Fig. 4h, bottom 
inset and Fig. 4i). All observed loops have in common that they contain 
N negative defects and N + 2 positive ones (Supplementary Video 8). 
Indeed, since loops correspond to MTs ending up in the original posi-
tion after a full 2π rotation, they are possible only if they enclose a total 
topological charge of +1, so multiple half-integer defects must play a 
role in forming them (Fig. 4i, left). Whether a loop will form around a 
total charge of +1, its precise shape and its chirality depend, on the other 
hand, on the shape of the nematic field in its proximity (Fig. 4i, right).

Together, these results indicate that defects play a dual role in 
shaping MT flow: Locally, +1/2 defects and their surroundings play a 
direct role by both funnelling the MTs, due to their shape, and selecting 
their direction, due to asymmetries in the nematic field. Globally, all 
defects produce deformations of the nematic material that affect the 
MTs’ flow even at a distance and can act in unison to create complex 
patterns, such as loops.
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Fig. 3 | Effect of distortions in the nematic on the MT flow. a, In the presence of 
splay and bend distortions in the nematic (grey), the MT flow (blue) is affected. 
Insets schematize the process depicting the nematic in red and MT flow in blue.  
b, Splay (top) changes the concentration of MT streams, as shown by the intensity 
profile along the stream at different positions marked by different colours. The 
MTs’ density increases from the yellow to the red line. By contrast, bend (bottom) 
affects only the MTs’ orientation but not their density, and all positions show 
roughly the same density. In both a and b, MT density is σ = 0.08 MTs µm–2.  

c, At −1/2 defects (top), MTs are simply redirected and usually do not reach the 
core. At +1/2 defects (bottom), where no director is defined, MTs get directed 
towards the defect’s core and then are ejected out of it into the bulk of the 
nematic, where they realign with the local nematic director. MT density is 
σ = 0.03 MTs µm–2. d, At higher densities (MT density is σ = 0.08 MTs µm–2), the 
filament flow at defects behaves like individual filaments, bending at negative 1/2 
defects and converging at positive ones. All scale bars, 5 µm. Insets schematize 
the process, depicting the nematic in red and MT flow in blue.
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Simulations and stream prediction
The data reported so far suggest that the formation and morphology 
of polar streams are only due to the presence of defects in the nematic 
field and its resulting shape, combined with the fact that MTs are 
self-propelled. To explain this observation, we extract the field n(r) 
from images (Methods) and use agent-based simulations that emulate 
the behaviour of MTs interacting with a nematic field to predict the path 
the MTs will follow. We use non-interacting point-like particles that 
move persistently in direction u = (cos(θ), sin(θ)), where θ is the par-
ticle orientation, with a constant speed v = 0.1 μm s–1. Particles receive 
an aligning torque by the extracted nematic field n = (cos(ϕ), sin(ϕ)), 
where φ is the orientation of the nematic director. The equations of 
motion for a given particle at position r and orientation θ are

dr
dt

= vu, (1)

dθ
dt

= A sin [2 (ϕ (r) − θ)] +
√

2v
Lp

ξ, (2)

where t is time and ξ is a Gaussian white noise with zero mean and 
unit variance, and its prefactor ensures a path persistence length 
Lp = 100 μm (Supplementary Information), guaranteeing that faster 
particles (higher v) decorrelate sooner (higher noise). The parameters 
v and Lp summarize all factors contributing to the MTs’ motion, such as 
the SLB diffusivity or the motors’ density33. The parameter A, measured 
in radians per second, is instead an alignment rate representing the 
strength of the coupling between particles and the nematic field and 
hence summarizes all factors contributing to the alignment of MTs to 
the actin nematic. To test the influence of alignment, we conduct param-
eter sweeps over the coupling strength A. Remarkably, as A is increased, 
we find that the simulated particles assemble into streams that closely 
resemble those observed in experiments (Fig. 5a–c). Simulated streams 
are polar and show the same orientation as experiments (Fig. 5d and 
Supplementary Fig. 10). Moreover, in simulations performed using 
randomly generated nematic fields, we observe polar streams and loops 
enclosing a total charge of +1 as in experiments (Supplementary Fig. 9), 
confirming they are general properties of defect-containing nematics. 
Locally apolar streams can also be observed, but they are extremely rare 
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Fig. 4 | Formation of polar streams and role of defects. a, Positive defects (red) 
funnel the initially isotropic MTs into streams. The nematic is shown at the top 
(grey), and the MTs at the bottom (cyan). Scale bar, 5 µm. b, Schematic of defect-
based rectification of the flow. MTs (in blue) can cross +1/2 defects (red) only 
from one side, thus breaking the spatial symmetry. c, Due to local asymmetries 
in the nematics, +1/2 defects break the orientational symmetry by ejecting MTs 
preferentially in one direction. Scale bar, 5 µm. d, The MT flow, extracted from 
videos, proves that there is a preference for MTs to move in one direction after 
leaving the defect. The defect’s position is marked in red. Filaments’ orientation is 
colour-coded according to the coloured wheel. e, Time projection showing MTs 
crossing a defect. Regardless of the way they enter, they are mostly ejected in the 
same direction. Over 30 minutes, 14 MTs independently go left (cyan) and only one 
goes right (red). Tracks of MTs not crossing the defect have been deleted for clarity 

(Supplementary Fig. 11). Scale bar, 5 µm. f, MT flow inside streams shows that they 
are polar. Filaments’ orientation is colour-coded according to the coloured wheel. 
Total time, 10 minutes. Scale bar, 50 µm. g, Maximum intensity time projections 
showing streams. They are surrounded by +1/2 defects (marked in red) that have 
previously funnelled MTs. h, Streams follow defect-induced deformations of the 
nematic field. Defects’ position and orientation are marked in red. Insets show close-
ups of the same image (right) and schematics (far right; red, defects; blue, flow). 
Configurations of multiple defects shape the MT flow, for example, channelling the 
flow in specific directions (top) or giving rise to closed loops (bottom). Nematic field 
in yellow. Scale bar, 50 µm. i, Loops are polar and thus must enclose a total charge of 
+1 (N negative and N + 2 positive defects). The specific shape of the loop is due to the 
shape of the nematic field (yellow, on the right), which is influenced by defects inside 
and outside the loop. All experiments are at σ = 0.08 MTs µm–2. Scale bar, 50 µm.
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unless the nematic is particularly symmetric (Supplementary Figs. 8 
and 11) or two oppositely polar patterns locally merge.

This numerical model agrees very well with the experimental 
results. Despite its simplicity, the model can also be used to quantify 
the streams’ polarity (Supplementary Fig. 10) and test the effect of 
local interparticle interactions (Supplementary Fig. 12), of mechanical 
properties of the nematic (Supplementary Figs. 13 and 14) including 
the shape and asymmetry of defects (Supplementary Fig. 11) and of 
persistent self-propulsion (Supplementary Fig. 15). Hence, we conclude 
that polar streams are an extremely general feature of self-propelled 
agents moving inside defect-containing nematic fields and do not 
depend on the microscopic details of MT motion. The only necessary 
assumptions for the emergence of polar streams are that particles 
move persistently enough, that they escape defects and that they align 
with the nematic field.

Thus, emerging patterns are simply a consequence of the con-
formation of the nematic director field n(r). Specifically, since the 
only points at which MTs are funnelled and deviate are +1/2 defects, 
they and the distortions they induce must be the fundamental ele-
ments underlying the polar pattern formation process (Fig. 4c,d and 

Supplementary Fig. 11). To investigate the extent to which this is the 
case, we also develop a polar streamline prediction approach based 
only on the characteristics of the nematic field in the vicinity of positive 
defects. The approach consists of identifying starting points for trajec-
tories right after defects and then predicting their preferred direction 
depending on local distortions. These distortions are described in 
terms of the nematic tensor Q and its spatial derivatives (Supplemen-
tary Information and Fig. 5e).

First, we identify the positions r+1/2 of positive defects as local  
maxima of the topological charge density36. Due to the continuous 
self-propulsion of the MTs, we expect that the position of the starting 
points of the streamlines will be shifted with respect to the core of the 
defects along their axis and end in position rseed = r+1/2 + d · p+1/2. Here p+1/2 
signifies the axis of the defect37, computed from the divergence of Q, and 
d ~ 2 µm is a phenomenological parameter summarizing the mean dis-
tance travelled by a MT before realigning. Hence d is the only 
model-dependent parameter, being equivalent to a mixture of the 
parameters v and A of the numerical simulations. The position rseed  
will then act as a seed for the streamlines. Finally, to choose the direction 
of the streamlines, we define a polarity field p = ∇∇∇ ⋅Q/|∇∇∇ ⋅Q|.  
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results well. a, The experimental trajectories (top left) can be faithfully 
reproduced by different approaches that start from a knowledge of the nematic 
field only. We extract the nematic field n(r) from microscopy images and 
then use it as input for agent-based simulations (top centre) and a Q-tensor-
based heuristic approach to predict the streams (top right). Insets on the 
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indicated in the Figure by the vector T, acting on self-propelled particles to align 
them with the field. Varying its strength, the systems can either be isotropic 
(A ~ 0) or assemble into streams. Scale bar, 50 µm. c, As the alignment rate is 
increased to A ~ 0.01, simulations start showing very good agreement with 
experimental trajectories, as quantified by the Pearson correlation coefficient 

between experimental and simulated images (Methods). Each colour depicts 
a different experiment with different surface concentrations of MTs. The 
correlation decreases at high A as simulated streams become too thin.  
d, Simulations also precisely recover the polar flow of experiments (compare 
with Fig. 4f). The particles’ orientation is shown according to the coloured wheel, 
indicating that the information about the polarity is encoded in the field. e, To 
further confirm the result, the Q-tensor approach focuses on the role of +1/2 
defects. Defects are identified in the nematic field and the morphology of their 
surroundings is used to identify the streamlines they generate by converging the 
MT flow. Each defect’s core corresponds to a colour-coded, oriented streamline 
(left) to be compared with experimental data (right). Only selected defects are 
shown. This shows that +1/2 defects directly play a role in shaping the flow.  
Scale bar, 50 µm.
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The divergence of Q is indeed closely related to the mechanical  
properties of the passive nematic25,32,38, as it contains information  
about both splay and bend distortions and encodes the main direction 
along which they are amplified. MTs leaving a defect perceive  
this distortion and orient themselves accordingly. Specifically, we 
impose that the streamlines are perfectly aligned with the nematic field 
at position rseed and define the preferred direction of motion 
asn (rseed) sign (−n (rseed) ⋅ (pseed)), that is, the direction that minimizes 
the scalar product between n and p in the seeding position. This corre-
sponds to the fact that self-propelled particles will preferentially follow 
the direction that minimizes the change in their orientation. Streamlines 
are then evolved in the chosen direction along the nematic field from 
the seeding position until they reach another +1/2 defect or the edge of 
the image. This defect-based approach again reproduces experimental 
trajectories, starting uniquely from the experimentally observed 
nematic field n (Fig. 5a,e). However, it uses information only about the 
position and conformation of +1/2 defects, underlining their central role.

Confined nematics lead to chiral loops
Since the formation of polar streams is a consequence of the pres-
ence of +1/2 nematic defects, a straightforward strategy to tune active 
patterns is confining the nematic into a circular geometry15,39. Then, 
the Poincaré–Hopf theorem40,41 dictates that the total nematic charge 
inside a disc must equal +1. Since self-assembled actin nematics feature 
only half-integer defects, at least two +1/2 defects must be present. 
Thus, because of confinement, we expect resulting polar streams to 

eventually form loops. The condition that the total charge equals +1 
guarantees that at least one possible edge loop exists. We then perform 
experiments inside circular microwells carved out of a positive photore-
sist (Methods) with radius Rc = 20 to 130 µm (Fig. 6a) and confirm that 
a nematic layer with half-integer defects and a total charge of +1 assem-
bles (Fig. 6b). We often observe the expected formation of an edge 
loop with a definite chirality, either clockwise or counterclockwise, but 
loops inside the patterns are also possible (Fig. 6c,d and Supplemen-
tary Video 9). These experiments confirm that confinement leads to  
the formation of loops with a clear chirality, which again is accurately  
captured by simulations performed using the experimental nematic field  
(Fig. 6e,f). Simulations also allow one to visualize trajectories close to 
the edges, hidden by the pattern’s autofluorescence.

Chiral edge currents arise since only one handedness leads to a 
stable trajectory. Defect-induced distortions indeed expel MTs gliding 
with the wrong handedness from the edge towards the centre; these 
MTs can then join an internal loop or re-enter the edge one with the 
right chirality. We further demonstrate this by performing simulations 
in which particles start at the edge with opposite directions and show 
that only one set of them stays along the edge (Fig. 6g,h,i). The chiral-
ity of the edge is thus determined by distortions caused by nematic 
defects, which this time are enclosed in the loop itself.

Outlook
In summary, the information about the morphology and direction of 
polar streams is fully encoded in the orientational order of the passive 
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Fig. 6 | Confinement of actin nematic in a circular microwell leads to chiral 
loops. a, Schematics of the confinement (top) and top view (bottom) of a 20-µm-
radius structure. b, Inside microwells, actin assembles into a nematic layer with 
multiple half-integer defects but with a total charge of +1. In this case, four +1/2 
defects and two –1/2 defects are present, marked in red. c, Time projection of MT 
trajectories (cyan) in the same nematic as b (grey) showing a central loop with 
counterclockwise chirality and a clockwise edge loop. The chirality of each loop 
is shown by arrows. d, If the radius of the confining structure Rc is increased (here 
Rc = 50 µm), more defects are present and larger internal loops form—in this case, 
a smaller clockwise loop inside a larger counterclockwise loop. In both cases, an 
edge current is also present. The chirality of each loop is shown by arrows.  
e,f, Simulations reproduce the experimental patterns in c and d and also reveal 
the presence of an edge current. Here the time-averaged orientation of self-
propelled particles is shown, colour-coded by orientation. g, Even if particles 

start at the same initial position (black arrows on the bottom), the edge current is 
only stable with a given chirality (blue). Particles moving in the opposite direction 
(orange) are ejected from the edge by distortions in the nematic and, by different 
paths, eventually reach a different loop inside the pattern. h, The chirality of 
particles, computed as the number of particles moving clockwise (CW) minus 
the number moving counterclockwise (CCW) close to the edge, quickly settles 
to clockwise as particles moving counterclockwise leave the edge. The time axis, 
shared with i, indicates the time in arbitrary simulation units. i, Depending on the 
initial orientation (CCW in blue, CW in orange), the distance from the centre of 
the pattern over time is affected. Particles initially moving counterclockwise stay 
at a mean distance <r> close to Rc, whereas clockwise particles over time join the 
smaller inside loop (r < Rc). Data are presented as mean +/− standard deviation 
among particles. Simulations were run for 50 particles with A = 0.03 rad s–1 and 
time is in arbitrary simulation units. All scale bars, 20 µm.
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nematic and its half-integer defects, and thus represents a general 
property of such materials that does not depend on fine details of the 
active system. These results are extremely general and also encompass 
the formation of local patterns induced by the presence of a nematic 
material previously observed in bacterial systems27–30, showing not only 
how patterns can result from nematic distortions, but also how global 
flow with a defined polarity can emerge thanks to asymmetries close to 
+1/2 defects. These defects indeed not only accumulate particles and 
rectify the flow thanks to their shape9,29, but also, due to local distor-
tions, break the orientational symmetry and give rise to a globally polar 
flow. Moreover, multiple defects’ conformations and confinement can 
be used to control the system.

This system also falls into the dry active matter category42,43. 
Hence, thanks to the absence of hydrodynamic interactions, nematic 
defects can be fixed in space, increasing the stability of the resulting 
patterns and improving our ability to predict them. This suggests 
general strategies to drive the flow of dry active matter that do not 
require patterning of the whole surface28, as only the position and 
orientation of individual defects need to be controlled30. Moreover, 
in contrast with previous systems of gliding filaments9,34,44–46, here the 
emergence of global order is not a consequence of the microscopic 
dynamic or of filament–filament interaction, but rather of general 
properties of the nematic environment. Given our ability to control 
passive and active liquid crystals we can envision the formation of 
systems in which the shape of a nematic material is tuned in order to 
direct active patterns19,32,47. Additionally, in this case, the fluidity of the 
SLB might allow for an efficient reorientation of the MTs as the nematic 
is rearranged or to control the motors’ distribution in space34. Control 
of defects using confinement is also a promising approach to steer 
active flow. Loops around patterned +1 defects30 and chirality breaking 
in edge currents under confinement have been observed in a number of 
active nematic systems15,16,48,49. Here however, these effects arise from 
the positions of a few, passive, half-integer defects controlled by con-
finement. Altogether, these results might lead to a more targeted and 
energetically efficient manipulation of individual defects in nematic 
materials to steer active flow.
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Methods
Buffers
The buffer used to polymerize actin (named FB25) is 2 mM Tris buffer 
(pH 7.5), 2 mM MgCl2, 0.5 mM ATP, 0.2 mM CaCl2 and 25 mM KCl; 1 mM 
DTT redox reagent was added before use.

Experiments are carried out in so-called M2B buffer: 80 mM PIPES 
buffer (pH 6.8), 2 mM MgCl2 and 1 mM egtazic acid (EGTA).

Proteins and reagents
Biotin–kinesin and MTs stabilized with GMP-CPP (Guanosine-5'-
[(α,β)-methyleno]triphosphate) were obtained from Brandeis  
University’s National Science Foundation Materials Research Science  
and Engineering Center and stored at –80 °C. Kinesin, once thawed, 
was kept on ice, while MTs were kept at room temperature. Actin 
was purified from rabbit skeletal muscle as described previously9. 
No rabbits were directly involved in the study. Monomeric actin 
was stored at 4 °C in the so-called G-Buffer (2 mM Tris, 0.2 mM ATP, 
0.2 mM CaCl2, 0.2 mM DTT and 0.005% NaN3 at pH 8.0). Gelsolin was  
purified from adult bovine serum (Sigma-Aldrich). Alexa Fluor 488 
phalloidin, streptavidin and Texas Red DHPE dye were purchased from 
Thermo Fisher. The remaining lipids (l-α-phosphatidylcholine (egg 
PC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(bioti
nyl(polyethylene glycol)-2000]) (DSPE–PEG(2000)–biotin, where 
2,000 is the PEG molecular weight)) were purchased from Avanti and 
stored in chloroform. Methylcellulose, creatine phosphate, creatine 
phosphokinase, catalase and pyranose oxidase were purchased from 
Sigma.

Preparation of glass slides
Glass slides and coverslips (Roth) were sonicated for 20 min in a 3 M 
NaOH solution and then rinsed five times with double-distilled water. 
Afterward, they were incubated for 2 min in Piranha solution (2:1 
sulfuric acid/30% hydrogen peroxide) to clean them and make them 
hydrophilic. Finally, they were rinsed in distilled water, in which they 
were stored for no more than one week. We stress that Piranha solu-
tion should be handled with care. Right before the formation of the 
membrane, the slides and coverslips were dried with nitrogen, and an 
~50 µl observation chamber was made using a double layer of parafilm 
stripes as a spacer.

Fabrication of microwells for confined nematics
To confine actin nematics, we fabricated circular microwells on the 
surface of glass slides. The GDS-II files of circular microwells with 
diameters ranging from 20 µm to 130 µm were designed using a 
two-dimensional CAD software (LayoutEditor). After being cleaned 
in the Piranha solution, the glass slides were baked at 150 °C for 30 min 
and spin-coated with positive photoresist (Microposit S1813G2,  
Kayaku Advanced Materials) at 4,000 r.p.m. Then, the photoresist 
was soft-baked at 90 °C, exposed at a wavelength of 365 nm using a 
maskless aligner (µMLA, Heidelberg Instruments) and developed by 
an alkaline developer (Microposit 351, Rohm and Haas). The final depth 
of the microwell was approximately 1.3 µm.

Preparation of short actin filaments
A stock solution of filaments was obtained by incubating 5 µM G-actin 
in FB25 buffer together with 2.5 µM Alexa Fluor 488 phalloidin and 
50 nM gelsolin. Filaments were polymerized for 30 minutes at room 
temperature and then stored on ice protected from light and used 
within the week. Variation of the gelsolin concentration can be used 
to polymerize longer or shorter filaments.

Preparation of the SLB
SLBs were produced as in previous work9. Briefly, a lipid solution con-
taining 1.25% (molar/molar, M/M) PEG(2000)–biotin, 98.75% M/M 
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 0.05% M/M 

Texas Red DHPE was dried in a glass vial by keeping it in a vacuum 
chamber for at least 2 hours. The film was then hydrated in PBS buffer 
to a final concentration of 1 mM and then gently vortexed to dissolve 
lipids, sonicated for 30 minutes and extruded 20 times using Avanti’s 
MiniExtruder and 100 nm filers to obtain small unilamellar vesicles. The 
small unilamellar vesicles were protected from light and then stored 
on ice and used within a week. To form a bilayer, the small unilamellar 
vesicles are diluted to 0.33 mM, incubated for 10 minutes inside the 
observation chamber and then washed with at least ×10 the volume 
with PBS. The SLB has a diffusion coefficient of 3.4 μm2 s–1 as previ-
ously reported9.

Experimental set-up
Prior to starting the experiment, a SLB was prepared and the buffer was 
exchanged to M2B. Biotin–kinesin was incubated 1:1 with streptavidin 
for 5 minutes on ice. Then, 100 nM of streptavidin–biotin–kinesin 
(in M2B) was incubated on the SLB for 3 minutes and then washed  
with M2B. This resulted in motors being bound on the SLB via  
the biotin–streptavidin interaction. By labelling 1 in every 10,000 
streptavidin molecules with fluorescent streptavidin and count-
ing the bright, diffusing spots on the SLB with total internal reflec-
tion fluorescence, we estimated the motors’ concentration to  
be 1,800 ± 500 motors μm–2. Kinesin on solid substrates is known  
to propel MTs at a speed of ~ 600 nm s–1 and is highly processive.  
Short, GMP-CPP-stabilized, Alexa-647-labelled MTs (in M2B) were  
then incubated for 3 minutes in the chamber at a concentration 
(roughly 15 µg ml–1) so as to obtain the desired surface density, and  
then washed with M2B. Finally, a mixture containing 1 µM actin  
filaments, 0.25% methylcellulose, 2 mM ATP and an ATP regene
ration system (9 mM creatine phosphate and 18.2 units ml–1 creatine  
phosphokinase in M2B buffer) and a scavenging system (10 units ml–1 
pyranose oxidase, 1,000 units ml–1 catalase and 0.66% w/w glucose) 
were added to the chamber, which was immediately observed using 
a Leica DMi8 total internal reflection fluorescence microscope with 
infinity scanner using a ×100, 1.47 numerical aperture, oil objective 
and the software LAS-X (v.3.7.4.23463). The field of view was roughly 
130 µm, and images for the videos were acquired every 5 seconds. 
Experiments were carried out at room temperature. The MT density 
was estimated by counting the number of MTs inside regions of known 
area. The duration of each experiment was roughly 3 hours and, once 
formed, the actin nematic did not change visibly over the course of an 
experiment. Acquired data was then analysed using Fiji50 or custom 
Python3 scripts.

Statistics and reproducibility
All experiments were performed three times per condition (low and 
high surface density). From each experiment, four different positions 
were recorded. At each position and for each experiment, the nematic 
field was different, but polar streams were observed in all cases. For 
all representative experiments shown, at least five more, different 
experiments exhibited the same result. Data are shown as the mean 
+/− standard deviation.

Extraction of the nematic fields from images
We extracted the nematic field from the actin fluorescence channel 
using the method from ref. 51, encoded in a custom Python3 script. 
Briefly, the method assumes that the intensity gradient is perpendicular  
to the mean orientation of filaments. The gradient of the intensity  
∇I(x, y) = (Ix, Iy) of the image is computed and the tangent vector to 
it t = (Iy, −Ix) := (tx, ty) is extracted and normalized. The image is then 
divided in boxes of length L × L = 1.3 µm × 1.3 µm spaced by 1 pixel 
(~0.065 µm), and inside each box the tensor T, analogous to the nematic 
tensor, is computed, with components T11 = <tx tx>, T12 = <tx ty>, T21 = T12 
and T22 = <ty ty>. The eigenvector of this tensor corresponds to the local 
nematic director at the point at the centre of the box.
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Tracking of MTs and MTs’ optical flow
Tracking was carried out using a custom Python script. Images con-
taining active filaments are binarized with a threshold so that only 
MTs are selected. Their contours are identified using Python’s library 
OpenCV. From the contours, the position of the centre of mass (xi, yi), 
the alignment Ɵi and the length Li of each filament i can be extracted. Li 
and Ɵi are extracted by fitting the contour with an ellipse. Only contours 
with an aspect ratio greater than two are analysed. Trajectories are 
reconstructed by joining together the centres of two MTs i and j in two 
consecutive frames if (1) i and j are closer than 5 µm; (2) i is the closest 
contour to j and j is the closest contour to i; and (3) the change in area 
and length of the two contours is smaller than 20%. Contours that are 
matched are removed from further matching. From the trajectories 
and the contours, both the speed (computed as the distance travelled 
in consecutive time frames) and the alignment of contours with the 
nematic over time can be easily extracted, as described in the following.

The MT flow was computed from microscopy videos using 
Python’s cv2 library and the optical flow function. Briefly, the intensity 
at each pixel is correlated with that of all pixels at the following frame 
in a box of size 3.6 µm to find the best match and hence the flow. The 
local velocity is then averaged over time. The normalized velocity is 
then used to colour code the MT orientation. The maximum intensity 
time projection of the images is used to create a mask so that the flow is 
computed only where enough MTs are present in the image over time.

Counting filaments leaving defects
We selected individual +1/2 defects and counted the number n1 and 
n2 of particles going in either of the two directions with respect to the 
defect’s axis. We considered only MT densities low enough that we 
could count individual filaments and such that MTs rarely hit each 
other. We selected videos with at least ten filament counts. Only fila-
ments that independently choose their direction were considered; 
filaments undergoing collisions were ignored. From this, we computed 
the percentage of motors going in one direction as max(n1, n2)/(n2 + n1), 
obtaining ~(0.9 ± 0.1) as the mean +/– standard deviation (nine defects, 
for a total of 125 filaments counted).

Computing the order parameters
The Sv was computed from the (normalized) vectors n of the  
nematic field and the velocity v obtained from the tracking data, thus 
computing the scalar product Sv = 2 (n ⋅ v/|v|)2 − 1.

Computing the Pearson coefficient
Simulated images were produced by creating 2,048 × 2,048 images, 
sized the same as the experimental images, with each pixel value count-
ing the number of times a MT crossed that pixel during a simulation. 
Both the experimental time projections and the simulated images were 
then smoothed, averaged down to 256 × 256 to reduce noise and com-
pared using the Pearson correlation coefficient. The coefficient is 

computed as r = ∑(x, y) (I1(x, y)−I
m
1 )(I2(x, y)−I

m
2 )

σ1σ2
 where Ii(x, y) is the intensity of 

image i at position (x, y), Imi  the mean intensity and σi the standard  
deviation of the intensity over the whole image i.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data generated or analysed during this study are included in the  
Supplementary Information. Raw data necessary to reproduce the 

results, including the source files of videos and images, are available 
on a Zenodo repository (https://doi.org/10.5281/zenodo.7071792). 
Further data are available from the corresponding author upon request. 
Source data are provided with this paper.

Code availability
A minimal script to extract the nematic field from images and fur-
ther example code are available on Zenodo (https://doi.org/10.5281/
zenodo.7071792), together with scripts to reproduce the analysis 
performed.
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