

1 **Combining Raloxifene and Mechanical Loading Improves Bone Composition and Mechanical**
2 **Properties in a Murine Model of Chronic Kidney Disease (CKD)**

3 ^{1,2,3} Rachel K. Surowiec, PhD; ³ Olivia N. Reul; ³ Nusaiba N. Chowdhury, MS; ⁴ Ratan K. Rai, PhD; ³ Dyann
4 Segvich; ³ Andrew A. Tomaschke, PhD; ¹ John Damrath, PhD; ³ Andrea M. Jacobson; ^{5,6} Matthew R. Allen,
5 PhD; ³ Joseph M. Wallace, PhD

6 ¹ Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN; ² Department of
7 Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN; ³ Department of
8 Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN; ⁴
9 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis,
10 IN; ⁵ Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine,
11 Indianapolis, IN; ⁶ Roudebush Veterans Administration Medical Center, Indianapolis, IN

12 • Matthew R. Allen, PhD, matallen@iu.edu
13 • Nusaiba N. Chowdhury, MS, nnchowdh@iu.edu
14 • John Damrath, PhD, jdamrath@iu.edu
15 • Andrea M. Jacobson, jacoband@iu.edu
16 • Ratan K. Rai, PhD, rkrain@iu.edu
17 • Olivia N. Reul, oreul@iu.edu
18 • Dyann Segvich, dsegvich@iu.edu
19 • Rachel K. Surowiec, PhD; rsurowie@purdue.edu
20 • Andrew A. Tomaschke, PhD, atomasch@iu.edu
21 • Joseph M. Wallace, PhD, jmwalla@iupui.edu

22

23

24 **Corresponding Author:**

25 Rachel K. Surowiec, PhD
26 Assistant Professor, Weldon School of Biomedical Engineering (primary)
27 Assistant Professor, Radiology and Imaging Sciences (adjunct)
28 Purdue University
29 723 W. Michigan St. SL 220N
30 Indianapolis, IN 46202
31 317.278.3506 rsurowie@purdue.edu

33 **Abstract**

34 **Introduction**

35 Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-
36 matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced
37 skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus,
38 strategies are needed to address these concerns to improve mechanical properties and ultimately lower
39 fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and
40 pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in
41 CKD.

42 **Methods**

43 Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2% adenine-
44 laced casein-based diet (n=48) or remained as non-CKD littermate controls (Con, n=48). Following disease
45 induction (26 weeks of age), n=7 CKD and n=7 Con were sacrificed (baseline cohort) to confirm a steady-
46 state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice
47 underwent right tibial loading to a maximum tensile strain of 2050 $\mu\epsilon$ 3x a week for five weeks with the
48 contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received
49 subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5x a week, and the other half remained untreated
50 (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae
51 were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition
52 including bone hydration.

53 **Results**

54 Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the
55 combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical,
56 material, and compositional properties, including higher matrix-bound water. Loading was generally
57 responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL
58 treatment improved some trabecular outcomes and material-level mechanical properties and was
59 responsible for improvements in several compositional parameters. While control animals responded
60 positively to loading, their bones were less impacted by the RAL treatment, showing no deformation,
61 toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were
62 negatively correlated with matrix-bound water.

63 **Discussion**

64 An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and
65 considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical
66 improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity.
67 This study highlights that RAL treatment superimposed on active bone formation may be ideal for
68 reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.

69 **Key Words:** Bone hydration; material properties; mechanical properties; chronic kidney disease; cortical
70 porosity; Raloxifene

71

72 **Introduction**

73 Individuals with chronic kidney disease (CKD) have up to a 17-fold higher risk of fragility fracture
74 than aged-matched non-CKD populations, leading to morbidity, a downward spiral in quality of life, and
75 elevated mortality^{1,2}. There is rigorous scientific evidence that CKD predominantly affects cortical bone
76 – in contrast to osteoporosis, which is typically associated with trabecular bone loss^{3,4}. The cortical bone
77 phenotype in CKD occurs primarily in the formation/expansion of cortical pores (holes within the cortex).
78 Clinical and preclinical data highlight that cortical porosity is correlated with compromised bone
79 mechanical properties and fracture⁵. While methods to prevent new cortical pore formation have been
80 well studied⁶, less is known about approaches to infill existing cortical pores and the mechanical
81 implications of this pathological pore infilling on fracture mechanics. We have demonstrated that cortical
82 pores are dynamic⁷, and infilling through active bone formation can be stimulated preclinically through
83 PTH suppression in an animal model of CKD⁸. It is well accepted that mechanical loading is a potent
84 anabolic stimulus for bone^{9,10}. In the context of CKD, Avin et al. demonstrated that exercise had multiple
85 beneficial systemic effects in a rat model, including reduced cortical porosity, suggesting repetitive loading
86 may be a non-pharmaceutical technique to minimize porosity¹¹. Even though resolving cortical porosity
87 in CKD is essential, improving porosity alone is likely not enough to mitigate mechanical deficits.

88 We¹² and others¹³ have described impaired bone matrix properties in CKD which are also linked
89 to bone brittleness, including modifications in collagen cross-linking and alterations in matrix-bound
90 water. These tissue-level alterations can significantly and independently affect whole bone fracture
91 resistance^{14,15}. Bound water decreases with age resulting in compromised mechanical and estimated
92 material-level properties, including toughness¹⁶. Conversely, higher water within the Haversian canals
93 and pathological pores (free water) is indicative of stiffer and more porous tissue¹⁷. Our laboratory has
94 shown that animals with CKD have reduced matrix-bound water, and this reduction is associated with
95 reduced mechanical properties^{12,18}. Accordingly, increasing matrix-bound water may be a promising
96 therapeutic option for improving fracture resistance in CKD.

97 Raloxifene, an FDA-approved selective estrogen receptor modulator, has been shown to increase
98 bound water at the collagen-mineral interface in a non-bone cell and non-estrogen mediated manner^{19,}
99 ²⁰. We have shown that non-viable CKD bone exposed to raloxifene had higher bound water and improved
100 toughness and post-yield mechanical properties compared to vehicle control¹⁸. When administered in
101 vivo, raloxifene can increase bound water under non-CKD conditions^{21,22}. In rats with polycystic
102 progressive CKD, raloxifene beneficially impacted tissue-level and whole bone mechanical properties, and
103 CKD animals given raloxifene had significantly lower cortical porosity compared to the untreated CKD
104 animals. However, hydration, neither bound or free/pore water was not a measured outcome, and
105 whether raloxifene can modulate water when administered under CKD conditions in vivo remains
106 unknown²³. Together, results support further exploration of raloxifene on matrix-bound water and tissue-
107 level mechanical properties under CKD conditions.

108 Together, treatment to enhance matrix-bound water during a bone-building regime that targets
109 cortical porosity infilling may be an ideal scenario for reducing skeletal complications in CKD by forming
110 new bone with enhanced matrix properties. As such, we sought to determine the singular and combined
111 effects of mechanical and pharmacological interventions on pore infilling, matrix hydration, and
112 mechanical properties in CKD. We hypothesized that mechanical stimuli would initiate cortical porosity
113 infilling, and raloxifene would improve the hydration of new bone through increased matrix-bound water

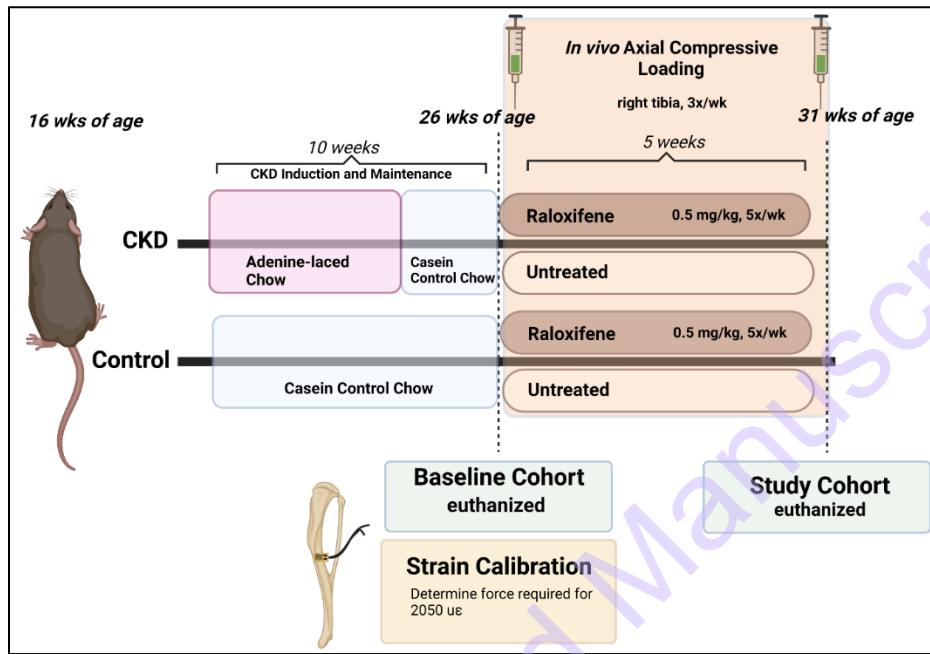
114 and together, would improve mechanical and material level outcomes. Key outcomes included cortical
115 porosity, matrix hydration, tissue composition, and whole bone and regional mechanical properties.

116

Author Accepted Manuscript

117 **Materials and Methods**

118 **2.1. Animals and Study Design**


119 All animal procedures received Institutional Animal Care and Use Committee approval from the
120 Science Animal Resource Center through the Indiana University Purdue University Indianapolis School of
121 Science prior to initiating studies. Fifteen-week-old male C57BL/6J mice (B6; JAX #000664; n = 96) were
122 ordered from Jackson Laboratories (Bar Harbor, ME, USA). Animals were housed three to five per cage at
123 an institutionally approved animal facility with 12-hour light/dark cycles, an average temperature of 70°
124 F, and access to food and water ad libitum. At 16 weeks of age, half of the mice were given an 0.2%
125 adenine-laced casein-based diet (0.9% phosphorous, 0.6% calcium) to induce CKD (n=48 CKD). The
126 remaining control littermates (n=48) were given the purified casein-based diet (0.9% phosphorous, 0.6%
127 calcium) (Envigo Teklad Diets, Madison, WI, USA). After six weeks on the adenine-laced chow, the CKD
128 cohort was switched to the control casein-based diet for four weeks as previously described to complete
129 the CKD induction ²⁴. Mice were monitored daily during CKD induction, and body weights were measured
130 weekly throughout the course of the study. Following induction (26 weeks of age), a subset of animals
131 (n=7 CKD and n=7 control) were euthanized as the baseline cohort to confirm a steady CKD disease state
132 was reached at the time of treatment initiation.

133 An additional five mice per group (n=5 CKD, n=5 control) were utilized in a strain calibration study
134 to determine the average force necessary to induce a tensile strain of 2050 microstrain ($\mu\epsilon$) on the tibia's
135 anteromedial surface during compressive loading ⁹. With the sacrificed mouse intact, an incision was
136 made on the right tibiae, strain gauges were placed on the antero-medial surface proximal to the point of
137 tibia and fibular articulation using cyanoacrylate glue followed by a polyurethane coating. Tibia were
138 loaded using a mechanical testing machine and a 45 N load cell. The tibiae were loaded using a 4 Hz
139 haversine waveform while the load was increased in 1 N increments from 1-15 N. The strain values
140 recorded for each animal at various load levels were averaged within their respective groups. Strain was
141 plotted as a function of load, and a linear regression analysis was conducted to determine the force
142 necessary in each group to produce a strain of 2050 $\mu\epsilon$.

143 Starting at 26 weeks of age, half of the remaining CKD and control mice received subcutaneous
144 injections of 0.5 mg/kg raloxifene hydrochloride (RAL, Sigma-Aldrich, R1402) in a 10% 2-hydroxypropyl- β -
145 cyclodextrin (Sigma-Aldrich, 332607) solution five times a week for five weeks (n=18 CKD RAL, n=18
146 control RAL). The remaining CKD and control mice remained untreated (UN; n=18 CKD UN, n=18 control
147 UN). All mice (n=72) underwent *in vivo* axial compressive cyclic loading three times a week for five weeks
148 using a Bose ElectroForce 3220 test instrument. Mice were anesthetized with 2% isoflurane and the right
149 tibia underwent compressive cyclic loading, which consisted of 2 cycles at 4 Hz to the determined
150 maximum load from the strain calibration study detailed above, followed by 1 second rest at 2N, repeated
151 110 times for a total of 220 compressive cycles per loading day and 3,300 compressive cycles throughout
152 the study. The contralateral tibia (left) served as an internal non-loaded control. All mice received
153 intraperitoneal injections of the fluorochrome calcein (30 mg/kg body mass) on days 3 and 33 relative to
154 the start of loading/treatment to delineate areas of new bone formation during the five-week
155 intervention.

156 At 31 weeks of age (following five weeks of treatment and loading), animals were anesthetized
157 via vaporized inhaled isoflurane and euthanized via cardiac exsanguination followed by cervical
158 dislocation. Blood was collected and serum was isolated and stored at -20° for serum biochemistries.

159 Kidneys were removed, weighed, fixed in 10% neutral buffered formalin for 24 hours, and stored in 70%
160 ethanol. Bi-lateral tibiae were wrapped in phosphate buffered saline (PBS)-soaked gauze and stored at -
161 20° C until analysis. A detailed graphical overview of the study can be found in **Figure 1**.

162
163 **Figure 1. Detailed Study Schematic.** Beginning at 16 wks of age, male C57BL/6 mice were randomly
164 assigned to the chronic kidney disease (CKD) cohort which underwent a 10-week CKD induction and
165 maintenance protocol or remained as non-CKD controls. At 26 weeks of age, the baseline cohort was
166 euthanized, and an additional pilot cohort was euthanized to determine the optimal load necessary to
167 induce 2050 $\mu\epsilon$ of strain on the tibia during cyclic axial compressive loading. All mice underwent in vivo
168 axial compressive loading of the right tibia 3x week for 5 weeks. Half the mice in each group (CKD, Control)
169 received 0.5 mg/kg of raloxifene 5x week for 5 weeks. Calcein fluorochrome injections were given at the
170 start and end of treatment to denote bone formed during the intervention period. Mice were euthanized
171 at 31 wks of age for analyses detailed in the methods section.

172 **2.2. Serum Biochemistries**

173 Blood collected at euthanasia was used to measure serum blood urea nitrogen (BUN) via
174 colorimetric assay to assess the presence of kidney disease (BioAssay Systems, Hayward, CA, USA). Serum
175 1-84 parathyroid hormone (PTH) was measured via ELISA (Immnotopics Quidel, San Diego, CA, USA).

176 **2.3. Microcomputed Tomography (μ CT) and Analysis**

177 Bi-lateral tibiae were scanned while hydrated using a nominal isotropic voxel size of 7.9 μm
178 through a 0.5 mm aluminum filter ($V=59$ kV, $I=167$ μA) with a 0.7-degree angle increment and two frames
179 averaged (SkyScan 1172, Bruker, Billerica, MA, USA). Two manufacturer-supplied cylindrical
180 hydroxyapatite phantoms (0.25 and 0.75 g/cm^3 Ca-HA) were scanned daily using the same parameters.
181 Scans were reconstructed (NRecon, Bruker), rotated to the same orientation (DataViewer, Bruker), and
182 calibrated (CTAn, Bruker) to the hydroxyapatite-mimicking phantoms prior to analysis. Following
183 scanning, tibiae were immediately wrapped in PBS-soaked gauze and stored at -20°C until further testing.

184 A 1 mm trabecular region of interest (ROI) was selected, beginning at the distal end of the
185 proximal growth plate and extended distally. Trabecular bone was automatically segmented from the
186 cortex and analyzed for bone volume fraction (BV/TV), trabecular thickness (Tb.Th), number (Tb.N),
187 separation (Tb.Sp), and tissue mineral density (TMD) using CT Analyzer (CTAn, Bruker). Intracortical
188 analysis was conducted using a 0.1 mm ROI at 20% of the bone's total length (proximal to distal) to capture
189 a region with high cortical porosity that is just proximal to the maximum tensile strain region (located at
190 37% of the bone's total length). The cortical bone was automatically segmented by first applying a global
191 threshold with a lower grey threshold: upper grey threshold of 70:255 followed by an ROI shrink wrap
192 which stretched over holes on the surface of 4 pixels in diameter, and analyzed for cortical thickness
193 (Ct.Th), total area (T.Ar), cortical area (Ct.Ar), marrow area (Ma.Ar), bone area fraction (BA/TA), and bone
194 mineral density (BMD). Cortical porosity (Ct.Po) was calculated as the void area between the periosteal
195 and endosteal surfaces and presented as a percentage of the overall cortical volume.

196 **2.4. Four-point Bending Test to Failure**

197 Bi-lateral tibiae from 12 mice per group (control UN, control RAL, CKD UN, CKD RAL) were
198 randomly selected to undergo four-point bends test to failure with the medial surface in tension with
199 lower support span at 9 mm and upper loading span at 3 mm (TA Instruments ElectroForce 3200). Tibiae
200 samples were thawed immediately prior to testing, hydration was maintained throughout the test with
201 PBS, and bones were loaded at a displacement control rate of 0.025 mm/s. Cross-sectional cortical
202 properties, described in detail above, were obtained from 10 transverse μ CT slices at the failure location
203 (location was measured using calipers). These cortical slices were used as cortical ROIs to be analyzed for
204 geometric properties needed to convert the force displacement data into stress and strain (in order to
205 estimate tissue level properties) using standard engineering equations ²⁵. To define the yield point, a line
206 parallel to the linear portion of the stress strain curve but offset by 0.2% strain was computed and the
207 position this line intercepted the stress-strain curve defined the yield point. Three left tibiae from control
208 UN, one left tibia from CKD RAL, and one right tibia from CKD UN group were omitted from analysis due
209 to rotation of the bone during the testing procedure, resulting in abnormal mechanical curves. In these
210 cases, the contralateral limb was also removed from analysis.

211 **2.5. Solid State Nuclear Magnetic Resonance (ssNMR) Spectroscopy with Magic Angle Spin (MAS)**

212 Solid state nuclear magnetic resonance (ssNMR) spectroscopy was acquired on a subset of the
213 loaded right tibiae (control UN=6, control RAL=5, CKD UN=7, CKD RAL=8) that had undergone four-point
214 bending. ssNMR was utilized to quantify free and bound water fractions, inorganic material status, and
215 structural changes associated with matrix collagen ²⁶. Tibiae were prepared by removing the proximal and
216 distal ends, flushing marrow, and then finely cutting into solid cortical <1 mm³ fragments and loaded into
217 a 3.2 mm zirconium rotor with empty spaces covered with Teflon tape for stable spinning. All ssNMR
218 spectra were recorded on a 400 MHz NMR spectrometer (Avance HD, Bruker Biospin, Switzerland) with a
219 Bruker 3.2mm DVT probe. The magic angle spin (MAS) frequency was 10.0 kHz for all experiments. The
220 MAS speed was controlled using Bruker's MAS pneumatic unit with an accuracy of ± 2 Hz.

221 A 1D one pulse ¹H NMR was recorded with 1k data points for a total acquisition time of 12 ms was
222 used to measure total water²⁶. Bound water was assessed by a 2D ¹H-³¹P Heteronuclear Correlation
223 (HetCor) experiment²⁶. The total contact time was 1.0 ms and the maximum t_1 evolution time was 2.6 ms.
224 The effective field during ¹H homonuclear decoupling period Phase Modulated Lee – Goldburg (PMLG)
225 was 110 kHz and high power ¹H decoupling (100 kHz) was applied during t_2 period^{27 28, 29}. A total of 32

226 transients per increment and a recycle delay of 4 seconds was utilized. The spectra were zero-filled, and
227 sine bell apodization was used in both dimensions prior to Fourier transformation. Phosphorous (^{31}P)
228 relaxation is an excellent tool to study bone inorganic components. ^{31}P T₁ of inorganic apatite depends
229 on structural OH-, which in turn influences mineral crystallinity^{26, 30, 31}. To assess inorganic matrix integrity,
230 we measured the T₁ relaxation of ^{31}P by utilizing an inversion recovery protocol with a relaxation delay of
231 1000 seconds. ^{13}C Cross Polarization (CP) spectra were recorded to assess structural changes associated
232 with organic matrix content³². The CP spectra were recorded with a ramp cross polarization sequence,
233 1.0 ms contact time, and Small Phase Incremental Alteration (SPINAL-64) decoupling (100 kHz ^1H RF field)
234²⁸.

235 All spectra were processed using Bruker Topspin (V. 4.1.1., Bruker). All peaks were externally
236 referenced to the spectra of water²⁶ or ratio of total water with respect to OH through peak integration²⁶
237 as previously described. The OH resonance was chosen as our internal reference because previous studies
238 have demonstrated that the 1.4 ppm peak shows very little variance following dehydration of intact
239 bone³³. To determine the relative bound water content in relation to OH content from the HetCor
240 experiments, a rectangular method of integration centered at the ^1H chemical shift at 0.4 ppm (OH) and
241 4.8 ppm (bound water) respectively. Finally, T₁ relaxation time of ^{31}P was calculated.

242 **2.6. Colocalized Raman Spectroscopy and Dynamic Indentation Testing**

243 Colocalized Raman spectroscopy (Renishaw inVia, Wotton-under-Edge, United Kingdom) and
244 nano dynamic mechanical analysis (nanoDMA) (Bruker TI-980, Eden Prairie, MN, United States) were
245 acquired using a custom hybrid system that allows for co-localization of measures. The right tibiae were
246 prepared in a manner that maintained the hydrated state as previously described³⁴. A 2 mm thick section
247 was cut starting at 37% of the bone length, sanded, polished, and rinsed in deionized water to remove
248 residual debris. Fluorescent imaging was performed (Leica EL6000, Leica Microsystems, Buffalo Grove, IL)
249 with a Basler MED Ace camera (Basler AG, Arensburg, Germany) integrated into the Raman
250 spectrophotometer to visualize regions of bone formed during treatment denoted by a double calcein
251 label. Eight points were chosen within the calcein labeling to assess newly formed matrix, and eight
252 intracortical points beyond the initial label were used to analyze pre-existing matrix (formed before the
253 commencement of treatment), resulting in a total of 16 points per sample.

254 Spectra was acquired using a 785 nm laser. Eight accumulations were averaged at each point using
255 a 10-second exposure at 50% laser power with a grating resolution of 1200 l/mm (633/780). Spectra were
256 baseline corrected using an 11th-order polynomial, cosmic rays were removed, followed by smoothing
257 with a modified Savitzky-Golay function. The following compositional parameters were calculated: type B
258 carbonate substitution ($\text{v1-CO}_3^{2-}/\text{v1-PO}_4^{3-}$ band area), mineral crystallinity (inverse of the full width at half
259 maximum of v1-PO_4^{3-}), mineral-to-matrix ratios for Amide I band ($\text{v1-PO}_4^{3-}/\text{Amide I band area}$), CH_2
260 wagging ($\text{v1-PO}_4^{3-}/\text{CH}_2$ wagging intensity), and Amide III band ($\text{v1-PO}_4^{3-}/\text{Amide III band area}$). Parameters
261 were averaged over 8 points per region yielding one value per parameter per region per specimen.

262 Indentation testing was performed using a $R_i = 1\mu\text{m}$ cono-spherical fluid cell probe. Samples were
263 submerged in 1X PBS and remained submerged throughout indentation testing. Each indentation test
264 used a constant strain rate CMX load function (TriboScan Software 10.2.0.12), oscillating the probe at 100
265 Hz and 5 μN dynamic load as the indenter was pushed into the material until a 1000 μN peak static load
266 was achieved. The peak load was then held for 30 seconds before unloading. A lift segment was included
267 at the start of each indentation test to ensure the probe was out of contact and the point of contact was

268 identified using the displacement at which load monotonically increased. Thermal drift was minimized
269 during testing by including a 30-minute delay between test setup and indentation testing.

270 To assess the viscoelastic mechanical behavior as a function of indentation depth (h), a mean
271 storage modulus (E'), loss modulus (E'') and tan delta ($\tan \delta$) were calculated for every 50 nm up to a depth
272 of 200 nm, an indentation strain of 20% (h/R_i). E' is in phase with applied dynamic load and describes the
273 material's elastic behavior, whereas E'' is 90° out of phase and describes the material's viscous behavior.
274 Tan δ , is the ratio of E' to E'' and a measure of a material's ability to dissipate energy.

275 E' and E'' are both calculated using:

276

$$E = \frac{k \times \sqrt{\pi}}{2 \times \sqrt{A_c}}$$

277 Where A_c is the indenter projected contact area, where k is the storage stiffness, k' , when determining
278 the storage modulus, or loss stiffness, k'' , when determining the loss modulus.

279 k' is calculated from the applied dynamic load and resulting dynamic displacement as:

280

$$k' = \frac{\text{DynamicLoad} \times \cos(\delta)}{\text{DynamicDisplacement}} + m_T \times \bar{\omega}^2 - k_T$$

281 Where δ is the phase lag between the dynamic load and dynamic displacement, m_T is the indentation
282 transducer mass, $\bar{\omega}$ is the radial frequency, and k_T is the stiffness of the transducer.

283 k_{loss} is similarly calculated as:

284

$$k'' = \bar{\omega} \times \left(\frac{\text{DynamicLoad} \times \sin(\delta)}{\text{DynamicDisplacement} \times \bar{\omega}} - C_s \right)$$

285 It is noted that the moduli here are reduced moduli, related to the sample moduli by:

286

$$E'_s = (1 - \nu_s^2) \left(\frac{1}{E'} - \frac{1 - \nu_i^2}{E_i} \right)^{-1} \text{ for the storage modulus, and}$$

287

$$E''_s = (1 - \nu_s^2) E'' \text{ for the loss modulus}$$

288 Where ν_s is the Poisson's Ratio of the sample, and ν_i and E_i are the Poisson's ratio and modulus of the
289 indenter probe, respectively. The advantage of this approach is that there is no need to assume a Poisson's
290 ratio for the material.

291 Indents were excluded from analysis if the dynamic displacement amplitude fell outside of the
292 manufacturer recommended 1-3 nm, the load vs. displacement curve showed discontinuities, the static
293 indentation load never achieved 700 μN , or if contact was never made with the sample.

294 Finally, indentation modulus was calculated from the unloaded portion of the load-indentation
295 curve using the Oliver-Pharr method ³⁵ which is better suited to capture viscoelastic rather than purely
296 elastic response. Hardness (H) was calculated as the maximum load divided by the contact area of the
297 indent.

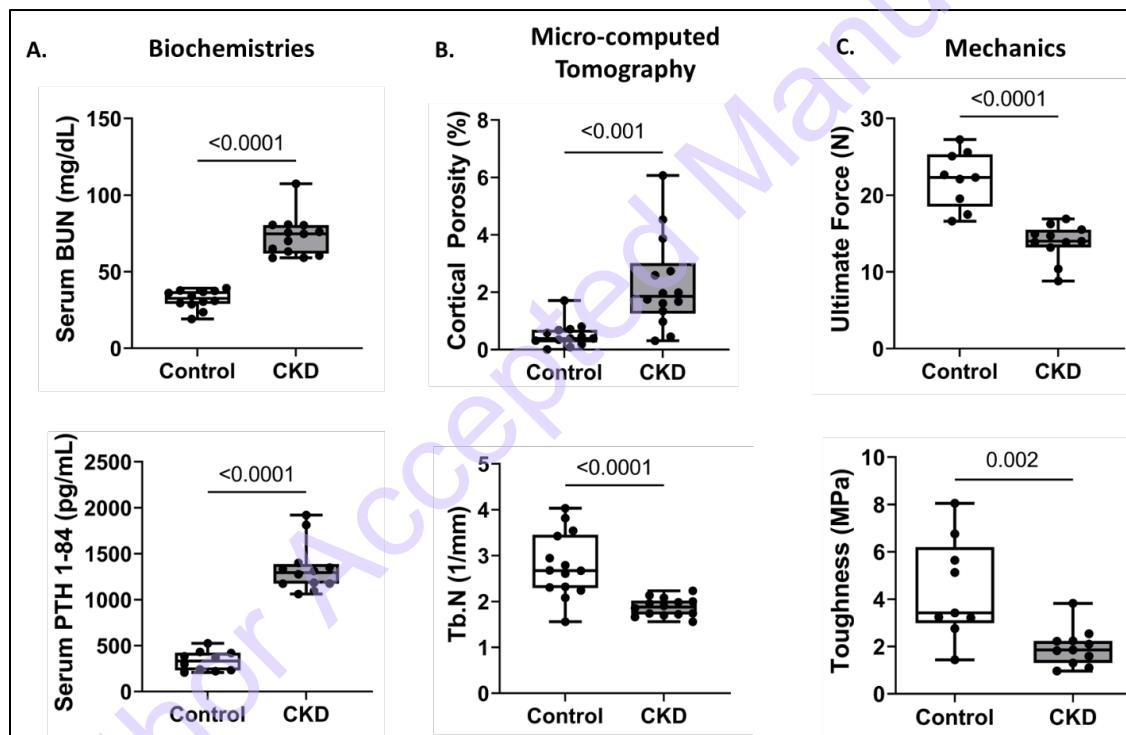
298 **2.7. Statistical Analysis**

299 All statistical analyses were performed using GraphPad Prism (v.9), and significance was
300 determined at $p \leq 0.05$. Data presented as mean +/- standard deviation unless otherwise denoted.
301 Unpaired t-tests were utilized to determine differences between control and CKD in the baseline cohort
302 for all outcomes. Body mass was analyzed via a 2x2 factorial ANOVA (disease-by-treatment) at week 1,
303 week 6, week 10, and week 15 (endpoint) of the study. Endpoint serum biochemistries and kidney weights
304 were analyzed via a 2x2 factorial ANOVA (disease-by-treatment). Cortical and trabecular μ CT outcomes
305 and whole bone mechanical testing outcomes of the bilateral tibiae were analyzed using repeated
306 measures (RM) 2x2 factorial ANOVA (treatment-by-loading) within the disease state (control or CKD).

307 Only right tibiae were used for Raman, nanoindentation, and ssNMR. Raman and nanoindentation
308 outcomes were assessed via a 2x2 factorial RM ANOVA (treatment-by-matrix age) within disease states
309 (control or CKD) allowing us to evaluate whether RAL preferentially improved bone composition and
310 tissue-level mechanical properties in newly formed bone vs. pre-existing bone. Total water, bound water,
311 and ^{31}P T_1 relaxation by ssNMR were analyzed by a regular 2x2 factorial ANOVA (treatment-by-disease).
312 Pearson correlation coefficients were used to evaluate presence of correlations between bound water vs.
313 PTH and bound water vs. mechanical outcomes. Main and interaction effects are reported when the
314 model ANOVA $p < 0.05$ and significant interaction terms were followed by a Sidak post hoc analysis.

315

316


317

318 **Results**

319 Two UN adenine-fed mice died of unknown causes at week 10 and week 11; one UN control
 320 mouse died of unknown causes prior to the start of the study. This resulted in group sizes of baseline
 321 control (n=7), baseline CKD (n=7), UN control (n=17), RAL control (n=18), UN CKD (n=16), and RAL CKD
 322 (n=18).

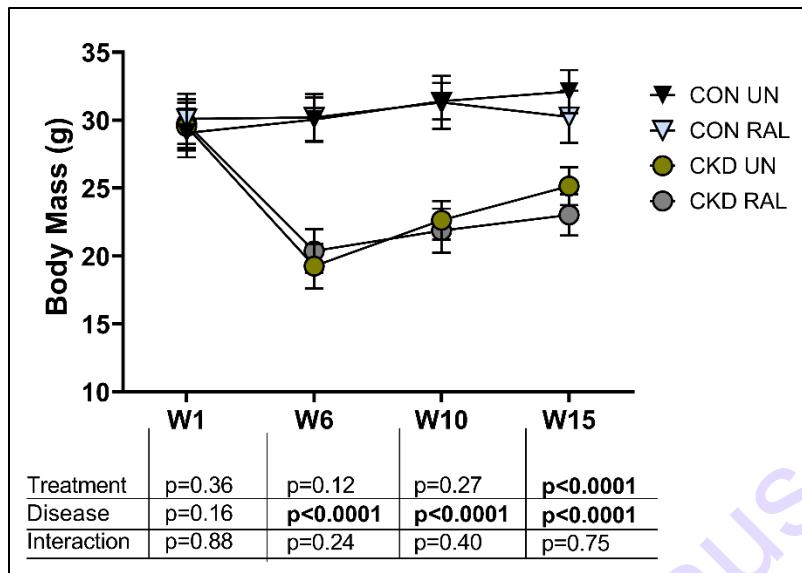
323 **Baseline Cohort**

324 Baseline CKD mice had significantly lower body mass than control (CKD 22.86 ± 1.87 vs. control
 325 30.17 ± 1.85 g, $p<0.0001$). Serum PTH I-84 and BUN were significantly higher in baseline CKD vs. control
 326 (both $p<0.0001$) (**Supplemental Fig. 1A**). Cortical bone geometry and microarchitecture and trabecular
 327 microarchitecture were significantly compromised with CKD (**Supplemental Table 1**). **Supplemental Fig.**
 328 **1B-C.** shows significantly higher cortical porosity, significantly lower trabecular number, and impaired
 329 structural and tissue-level mechanical properties in CKD vs. control.

330
 331 **Supplementary Figure 1. Baseline cohort.** N=7 CKD and control animals were sacrificed following the 10-
 332 week CKD induction period at 26 weeks of age to confirm a CKD disease state. A) Baseline CKD animals
 333 had significantly higher serum blood urea nitrogen (BUN) and serum parathyroid (PTH) levels compared
 334 to control littermates. B) Baseline CKD tibiae had significantly higher cortical porosity and altered cortical
 335 geometry and trabecular microarchitecture than baseline controls measured via micro-computed
 336 tomography (7.9 μ m). C) Tibia from baseline CKD animals had lower ultimate force and toughness
 337 compared to baseline controls measured via four-point bending test to failure. Figure depicts box and
 338 whisker plot; whiskers denote min. and max.

Supplementary Table 1. Trabecular and cortical properties of tibia (R) from baseline control and CKD mice via μ CT.

	Baseline Control (Con)	Baseline Chronic Kidney Disease (CKD)	<i>p</i> -value
Trabecular Microarchitecture			
Bone volume fraction, BV/TV (%)	17.35 ± 2.4	8.72 ± 1.14	<0.0001
Trabecular thickness, Tb.Th (μ m)	60.97 ± 4.86	46.55 ± 1.64	<0.0001
Trabecular spacing, Tb.Sp (μ m)	200.2 ± 17.84	275.2 ± 13.4	<0.0001
Trabecular number, Tb.N (1/ μ m)	2.88 ± 0.57	1.87 ± 0.23	0.001
Tissue mineral density, TMD (g/cm ³)	0.76 ± 0.03	0.67 ± 0.01	<0.0001
Cortical Properties at 20% ROI			
Total area, T.Ar (mm ²)	1.85 ± 0.19	1.9 ± 0.08	0.61
Marrow area, Ma.Ar (mm ²)	0.92 ± 0.18	1.1 ± 0.1	0.04
Cortical area, Ct.Ar (mm ²)	0.93 ± 0.11	0.8 ± 0.04	0.01
Bone area fraction, BA/TA (%)	50.4 ± 5.84	42.05 ± 3.1	0.007
Cortical thickness, Ct.Th (mm)	0.15 ± 0.02	0.13 ± 0.02	0.006
Bone mineral density, BMD (g/cm ³)	1.13 ± 0.04	1.07 ± 0.03	0.008
Cortical porosity, Ct.Po (%)	1.34 ± 0.48	3.91 ± 1.46	0.001

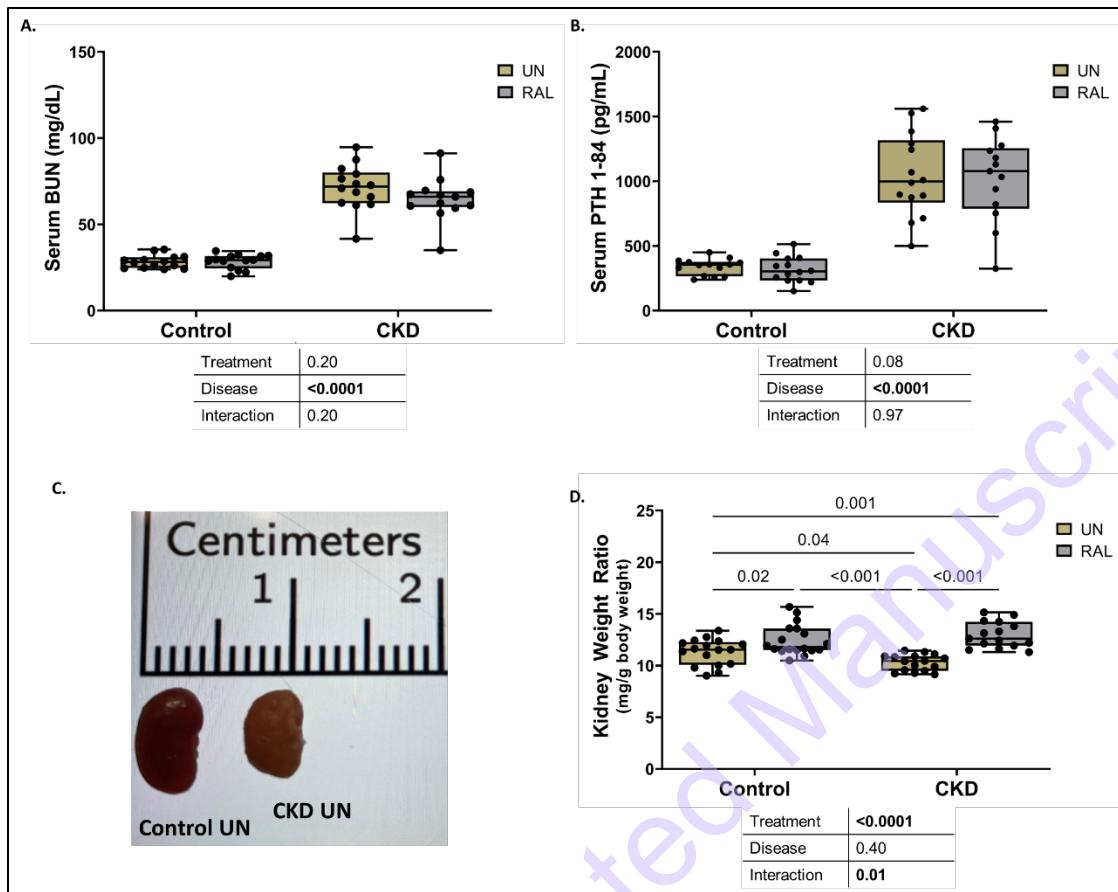

Data provided as mean \pm standard deviation. *p*-values from non-repeated measures t-tests are displayed and bolded when significance was reached at *p* \leq 0.05.

339

340 **Body Mass**

341 There were no differences in body mass of C57BL/6 mice prior to CKD induction. By week 6 of the
342 induction, a significant main effect of disease (*p* <0.0001) was observed, with CKD mice having lower body
343 mass vs. control (**Figure 2**). Following the resumption of the casein control diet, body mass in the CKD
344 cohorts increased by 18% (CKD UN) and 7% (CKD RAL) but remained significantly lower than control mice
345 (week 10, main effect of disease, *p* <0.0001). At study completion (week 15), there was a significant main
346 effect of disease (*p* <0.0001) and treatment (*p* <0.0001) but no interaction (*p*=0.75). At this timepoint, CKD
347 mice had lower body mass vs. control and mice treated with RAL had lower body mass than their UN
348 counterparts within groups (CKD, control).

349



350 **Figure 2. Body mass.** There were no significant differences in body mass among groups at the start of the
 351 study (week 1). At weeks 6 and 10, there was a significant main effect of disease where CKD animals had
 352 significantly reduced body mass due to CKD induction. By the study endpoint, we observed a significant
 353 main effect of disease and treatment where CKD animals had lower body mass and animals treated with
 354 raloxifene also had lower body mass vs. the untreated groups.

355

356 **Biochemistries and indices of kidney disease**

357 Two-way ANOVA results indicated a significant main effect of disease for serum BUN ($p<0.0001$)
 358 where all CKD mice had significantly higher levels, indicative of kidney disease, compared to control
 359 irrespective of treatment (Fig.3A). We observed a significant main effect of disease for serum PTH 1-84
 360 ($p<0.0001$) with CKD mice having significantly higher levels (regardless of treatment) compared to the
 361 control cohort (Fig.3B). Kidney weight ratio (mg kidney weight/g body weight) demonstrated an
 362 interaction term ($p=0.01$) (Fig.3C-D). Post-hoc analysis showed that CKD UN had lower kidney weights vs.
 363 control UN ($p=0.04$). Kidneys from animals treated with RAL had higher kidney weight ratios compared to
 364 their untreated counterparts regardless of disease (Control UN vs RAL: $p=0.02$; CKD UN vs RAL: $p<0.0001$).

365

366 **Figure 3. Serum biochemistries and indices of kidney disease.** At the study endpoint, animals induced
 367 with CKD had significantly higher serum blood urea nitrogen (BUN, A) and higher serum parathyroid
 368 hormone 1-84 (PTH 1-84, B) compared to control. There was no significant difference in either serum
 369 biomarker due to raloxifene (RAL) treatment. C) Animals induced with CKD had kidneys that were smaller
 370 and discolored compared to controls. D) Analysis of kidney weight ratios demonstrated a significant effect
 371 of treatment and a significant interaction term. Post-hoc testing showed that RAL treatment significantly
 372 increased kidney weight ratio within the control cohort and the CKD cohort. Figure depicts box and
 373 whisker plot; whiskers denote min. and max.

374

375 **Cortical and trabecular bone geometry and microarchitecture**

376 Detailed results from μ CT analysis of cortical bone geometry and microarchitecture and trabecular
 377 microarchitecture, including RM two-way ANOVA results, can be found in **Table 1** and **Table 2**,
 378 respectively.

379 **Control Cohort**

380 Loading was more impactful than RAL treatment for cortical outcomes in the control cohort (**Table**
 381 **1**). However, a main effect of RAL treatment resulted in higher Ct.Ar ($p<0.0001$) and Ct.Po ($p=0.05$)
 382 irrespective of loading (**Figure 4A-B**). There were no significant interaction terms for any cortical outcome
 383 in the control cohort.

384 A main effect of loading was observed for Tb.N (p=0.02), and a main effect of treatment, loading,
 385 and interaction term was shown for BV/TV and Tb.Th (**Table 2**). Untreated loaded tibia had higher BV/TV
 386 and Tb.Th vs. UN non-loaded tibia and RAL non-loaded tibia had higher BV/TV and Tb.Th vs. UN non-
 387 loaded (**Table 2**).

388 *CKD Cohort*

389 Overall, the impact of loading and RAL was more robust in the CKD cohort. We observed a main
 390 effect of loading, which improved BA/TA (p=0.01) and Ct.Po (p<0.001). Loaded tibia had lower Ct.Po
 391 compared to the contralateral non-loaded tibia regardless of treatment (CKD UN non-loaded vs. loaded:
 392 5.16 ± 2.66 vs. 3.27 ± 1.64%; CKD RAL non-loaded vs. loaded: 5.97 ± 1.93 vs. 3.62 ± 1.76 %) (**Figure 4A-B**). Both loading and treatment significantly impacted Ct.Ar (p<0.0001 and p<0.01, respectively) and Ct.Th
 393 (p=0.01 and p<0.001, respectively); loaded RAL tibia had the highest Ct.Ar and Ct.Th compared to UN
 394 (**Table 1**). T.Ar had a significant interaction term (p<0.01). Post-hoc analysis showed non-loaded RAL tibia
 395 had higher T.Ar vs. non-loaded UN (p<0.01, 1.92 ± 0.14 vs. 1.78 ± 0.09, respectively) and loaded UN had
 396 higher T.Ar vs. non-loaded UN (p=0.01, 1.85 ± 0.001 vs. 1.78 ± 0.09, respectively). Post-hoc analysis
 397 following a significant interaction term for Ma.Ar (p=0.01) showed loaded RAL tibia had a smaller M.Ar vs.
 398 non-loaded RAL (**Table 1**).

400 For the trabecular ROI, RAL improved BV/TV (p<0.001), Tb.Sp (p<0.0001), and Tb.N (p<0.0001).
 401 Loading improved Tb.Th (p=0.01) and TMD (p=0.01) (**Table 2**).

402

Table 1. Control and CKD cortical micro-computed tomography (μ CT) outcomes.

Cortical Geometry and Microarchitecture

	Untreated (UN)		Raloxifene		Repeated Measures Two-Way Mixed Effects Model ANOVA		
	Non-Loaded	Loaded	Non-Loaded	Loaded	Loading	Treatment	Loading x Treatment
CONTROL Cortical Properties at 20% ROI							
Total area, T.Ar (mm^2)	1.98 ± 0.15	2.06 ± 0.12	2.05 ± 0.16	2.08 ± 0.16	<0.001	0.41	0.07
Marrow area, Ma.Ar (mm^2)	0.97 ± 0.11	0.98 ± 0.09	0.99 ± 0.10	0.97 ± 0.11	0.70	0.83	0.09
Cortical area, Ct.Ar (mm^2)	1.02 ± 0.08	1.08 ± 0.05	1.06 ± 0.08	1.11 ± 0.08	0.15	<0.0001	0.54
Bone area fraction, BA/TA (%)	51.29 ± 2.89	52.47 ± 2.10	51.56 ± 2.20	53.50 ± 2.55	<0.001	0.38	0.33
Cortical thickness, Ct.Th (mm)	0.16 ± 0.01	0.17 ± 0.01	0.17 ± 0.01	0.18 ± 0.01	<0.0001	0.06	0.74
Cortical porosity, Ct.Po (%)	0.82 ± 0.90	0.62 ± 0.39	0.98 ± 0.50	1.07 ± 0.53	0.71	0.05	0.32
CKD Cortical Properties at 20% ROI							
Total area, T.Ar (mm^2)	1.78 ± 0.09 \$%	1.85 ± 0.00%	1.92 ± 0.14 \$	1.89 ± 0.12	0.30	0.02	<0.01
Marrow area, Ma.Ar (mm^2)	1.03 ± 0.10	1.05 ± 0.13	1.10 ± 0.12 \$	1.04 ± 0.11 \$	0.33	0.53	0.01
Cortical area, Ct.Ar (mm^2)	0.75 ± 0.05	0.79 ± 0.04	0.82 ± 0.05	0.85 ± 0.04	<0.0001	<0.01	0.57
Bone area fraction, BA/TA (%)	42.00 ± 3.46	43.20 ± 3.69	42.94 ± 2.65	45.11 ± 2.59	0.01	0.11	0.36
Cortical thickness, Ct.Th (mm)	0.12 ± 0.01	0.13 ± 0.01	0.13 ± 0.01	0.14 ± 0.01	0.01	<0.001	1.00
Cortical porosity, Ct.Po (%)	5.16 ± 2.66	3.27 ± 1.64	5.97 ± 1.93	3.62 ± 1.76	<0.001	0.24	0.65

Data provided as mean ± standard deviation. Repeated measures Two-way mixed effects ANOVA p-values are displayed and bolded when significant. Significant interactions were followed by post-hoc analyses and shared symbols indicate significant difference from one another.

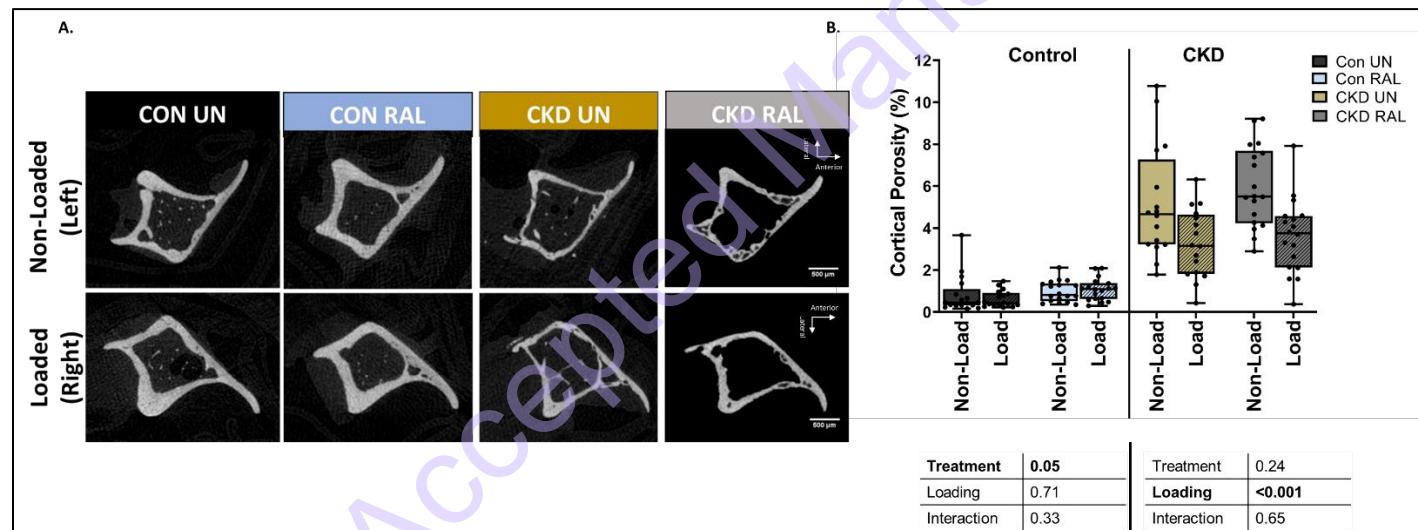

403

Table 2. Control and CKD trabecular micro-computed tomography (μ CT) outcomes.

Trabecular Microarchitecture		Untreated (UN)		Raloxifene		Repeated Measures Two-Way Mixed Effects Model ANOVA		
		Non-Loaded	Loaded	Non-Loaded	Loaded	Loading	Treatment	Loading x Treatment
CONTROL Trabecular Microarchitecture								
Bone volume fraction, BV/TV (%)	15.21 \pm 3.33 \$&	17.62 \pm 2.96 \$	18.65 \pm 2.83 &	18.80 \pm 2.05		<0.0001	0.01	0.02
Trabecular thickness, Tb.Th (μ m)	59.78 \pm 5.39 \$&	66.27 \pm 4.31 \$	65.80 \pm 0.65 &	68.53 \pm 5.35		<0.0001	0.02	0.03
Trabecular spacing, Tb.Sp (μ m)	220.39 \pm 16.36	216.18 \pm 13.90	214.49 \pm 18.22	220.42 \pm 16.71		0.38	0.62	0.09
Trabecular number, Tb.N (1/ μ m)	2.53 \pm 0.48	2.66 \pm 0.44	2.85 \pm 0.50	2.75 \pm 0.32		0.02	0.08	0.09
Tissue mineral density, TMD (g/cm 3)	0.77 \pm 0.04	0.79 \pm 0.03	0.78 \pm 0.04	0.77 \pm 0.03		0.19	0.51	0.07
CKD Trabecular Microarchitecture								
Bone volume fraction, BV/TV (%)	7.72 \pm 1.04	7.85 \pm 1.70	9.41 \pm 1.17	9.46 \pm 1.18		0.62	<0.001	1.00
Trabecular thickness, Tb.Th (μ m)	52.17 \pm 3.07	53.91 \pm 4.41	51.03 \pm 2.60	52.53 \pm 3.39		0.01	0.25	0.90
Trabecular spacing, Tb.Sp (μ m)	312.88 \pm 19.12	311.03 \pm 20.53	291.87 \pm 16.04	291.67 \pm 11.71		0.81	<0.0001	0.85
Trabecular number, Tb.N (1/ μ m)	1.48 \pm 0.20	1.46 \pm 0.30	1.85 \pm 0.25	1.81 \pm 0.23		0.49	<0.0001	0.91
Tissue mineral density, TMD (g/cm 3)	0.69 \pm 0.02	0.71 \pm 0.04	0.69 \pm 0.03	0.70 \pm 0.02		0.01	0.24	0.91

Data provided as mean \pm standard deviation. Repeated measures Two-way mixed effects ANOVA p-values are displayed and bolded when significant. Significant interactions were followed by post-hoc analyses and shared symbols indicate significant difference from one another.

404
405
406

407
408
409
410
411
412
413
414
415
416
417
418
419

Figure 4. Cortical cross sections and cortical porosity. A) Representative microcomputed tomography (7.9 μ m) cross-sectional images of bi-lateral tibia at 20% of the bone's total length from the proximal end in each group. This region was chosen for analysis because it captured an area with high cortical porosity in the CKD cohort and was located just proximal to the maximum tensile strain region (located at 37% of the bone's total length). B) For the CKD cohort, there was an effect of loading, which appeared to decrease porosity compared to the non-loaded tibia regardless of treatment. There was no significant impact of treatment on porosity in the CKD cohort. In the control animals, we observed an effect of treatment where RAL treated control tibia had higher cortical porosity than UN control, regardless of whether the limb was loaded or unloaded. Figure depicts box and whisker plot; whiskers denote min. and max. Con = control; UN = untreated; RAL= raloxifene, CKD = chronic kidney disease.

Whole bone and estimated tissue-level mechanical properties

420 Results from the four-point bending test to failure of control and CKD bi-lateral tibiae, including
 421 RM two-way ANOVA results, are detailed in **Table 3** and **Table 4**, respectively. Average force-displacement
 422 and stress-strain curves from the control and CKD tibiae can be found in **Supplementary Figure 2**.

423 *Control Cohort*

424 A main effect of loading was observed for the structural mechanical properties of ultimate force
 425 ($p<0.001$) and yield force ($p<0.0001$), which were both improved with loading. Work to yield had a
 426 significant interaction term ($p=0.04$). Post-hoc analysis showed loaded tibia had higher work to yield
 427 compared to non-loaded in UN controls. For estimated tissue-level properties, both loading and RAL
 428 significantly impacted yield stress ($p<0.001$ and $p=0.04$, respectively). Loading alone increased ultimate
 429 stress ($p<0.01$) regardless of treatment status. For resilience, the interaction term was significant ($p=0.04$).
 430 Post-hoc analysis showed that non-loaded UN and loaded RAL tibia had significantly lower resilience than
 431 loaded UN tibia (**Table 3**).

432 *CKD Cohort*

433 Loading and RAL treatment were more impactful in CKD (**Supplementary Figure 2 and Table 4**).
 434 Loading improved ultimate force ($p<0.0001$), yield force ($p<0.01$), stiffness ($p=0.01$), work to yield
 435 ($p<0.01$), yield stress ($p=0.01$), ultimate stress ($p<0.01$), and resilience ($p=0.03$). RAL was responsible for
 436 improvements in post-yield displacement ($p=0.01$) and total strain ($p=0.01$). A significant main effect of
 437 loading and treatment was observed for total displacement ($p=0.09$ and $p=0.01$, respectively), post-yield
 438 work ($p=0.04$ and $p<0.01$, respectively), total work (both $p<0.01$), and toughness ($p<0.01$ and $p=0.01$),
 439 which was defined as the total area under the stress-strain curve.

Table 3. Control four-point bending test structural and estimated tissue-level mechanical properties.

Control (CON)

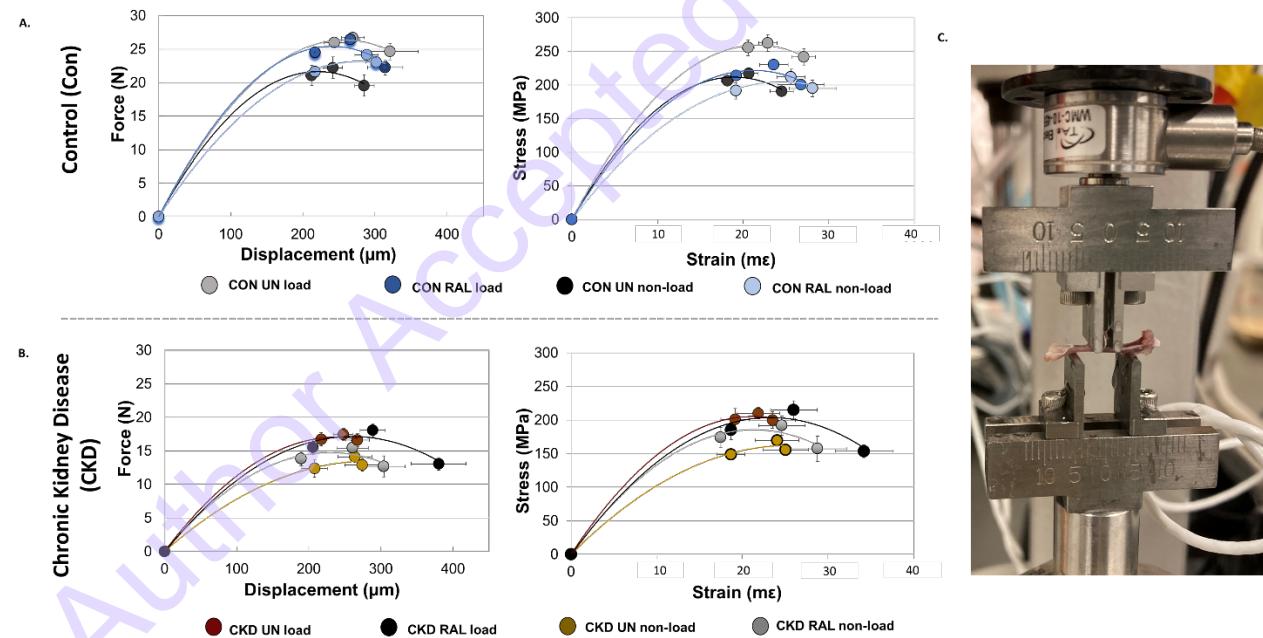
	Untreated (UN)		Raloxifene		Repeated Measures Two-Way Mixed Effects Model ANOVA		
	Non-Loaded	Loaded	Non-Loaded	Loaded	Loading	Treatment	Loading x Treatment
Structural mechanical properties from 4-point bending							
Ultimate force (N)	22.21 \pm 5.12	26.72 \pm 2.57	24.12 \pm 2.79	26.40 \pm 2.00	<0.001	0.44	0.20
Yield force (N)	21.09 \pm 4.71	25.96 \pm 2.52	21.66 \pm 2.52	24.50 \pm 2.33	<0.0001	0.68	0.20
Displ. to yield (μm)	212.24 \pm 26.72	243.70 \pm 53.05	216.93 \pm 24.49	217.11 \pm 21.94	0.12	0.28	0.13
Postyield displ. (μm)	72.67 \pm 46.43	77.17 \pm 131.60	97.25 \pm 98.99	84.67 \pm 54.15	0.89	0.58	0.74
Total displ. (μm)	284.90 \pm 44.23	320.87 \pm 142.03	314.18 \pm 89.19	301.78 \pm 51.79	0.67	0.87	0.38
Stiffness (N/mm)	113.43 \pm 33.03	123.54 \pm 33.19	113.01 \pm 17.13	126.78 \pm 12.02	0.07	0.81	0.86
Work to yield (mJ)	2.43 \pm 0.54 \$	3.39 \pm 0.56 \$	2.57 \pm 0.45	2.91 \pm 0.47	<0.001	0.28	0.04
Postyield work (mJ)	1.59 \pm 1.18	1.84 \pm 2.84	2.20 \pm 2.16	2.13 \pm 1.40	0.87	0.48	0.79
Total work (mJ)	4.01 \pm 1.49	5.23 \pm 2.77	4.77 \pm 1.98	5.04 \pm 1.24	0.22	0.63	0.44

Estimated tissue-level mechanical properties from 4-point bending

Yield stress (MPa)	206.33 \pm 36.77	255.70 \pm 35.44	191.56 \pm 43.75	213.96 \pm 26.60	<0.001	0.04	0.12
Ultimate stress (MPa)	217.25 \pm 39.25	262.60 \pm 32.22	212.00 \pm 41.99	230.17 \pm 21.37	<0.01	0.13	0.12
Strain to yield ($\text{m}\epsilon$)	18.18 \pm 2.19	20.59 \pm 4.67	19.16 \pm 2.25	19.18 \pm 1.41	0.11	0.76	0.12
Total strain ($\text{m}\epsilon$)	24.51 \pm 4.29	24.18 \pm 6.49	28.11 \pm 9.92	26.76 \pm 4.79	0.58	0.20	0.86
Modulus (GPa)	12.82 \pm 2.84	14.68 \pm 5.43	11.44 \pm 3.28	12.49 \pm 1.53	0.10	0.18	0.59
Resilience (MPa)	2.05 \pm 0.42 \$	2.80 \pm 0.49 \$&	1.99 \pm 0.45	2.25 \pm 0.36 &	<0.001	0.05	0.04
Toughness (MPa)	3.39 \pm 1.22	4.45 \pm 2.92	3.65 \pm 1.56	3.90 \pm 0.99	0.25	0.80	0.48

Data provided as mean \pm standard deviation. Repeated measures Two-way mixed effects ANOVA p-values are displayed and bolded when significant. Significant interactions were followed by post-hoc analyses and shared symbols indicate significant difference from one another.

Table 4. Chronic kidney disease (CKD) four-point bending test structural and estimated tissue-level mechanical properties.


Chronic Kidney Disease (CKD)

	Untreated (UN)				Raloxifene			Repeated Measures Two-Way Mixed Effects Model ANOVA			
	Non-Loaded		Loaded		Non-Loaded		Loaded		Loading	Treatment	Loading x Treatment
Structural mechanical properties from 4-point bending											
Ultimate force (N)	14.09 ± 2.53		17.43 ± 3.29		15.40 ± 3.99		18.07 ± 3.53		<0.0001	0.44	0.57
Yield force (N)	12.35 ± 4.64		16.72 ± 3.55		13.78 ± 3.63		15.53 ± 3.99		<0.01	0.94	0.16
Displ. to yield (μm)	208.10 ± 64.49		217.31 ± 26.71		189.73 ± 22.34		206.00 ± 26.37		0.18	0.26	0.68
Postyield displ. (μm)	66.25 ± 91.60		50.08 ± 46.49		114.45 ± 118.94		232.00 ± 220.46		0.21	0.01	0.10
Total displ. (μm)	274.35 ± 88.35		267.39 ± 59.68		304.18 ± 101.55		442.68 ± 210.27		0.09	0.01	0.06
Stiffness (N/mm)	66.46 ± 16.64		86.00 ± 17.18		81.72 ± 18.19		85.23 ± 22.65		0.01	0.26	0.06
Work to yield (mJ)	1.50 ± 0.78		2.00 ± 0.53		1.44 ± 0.47		1.76 ± 0.50		<0.01	0.45	0.52
Postyield work (mJ)	0.76 ± 0.86		0.85 ± 0.79		1.55 ± 1.48		3.43 ± 2.52		0.04	<0.01	0.06
Total work (mJ)	2.26 ± 0.98		2.85 ± 1.01		3.00 ± 1.45		5.20 ± 2.44		<0.01	<0.01	0.07
Estimated tissue-level mechanical properties from 4-point bending											
Yield stress (MPa)	148.74 ± 58.13		201.05 ± 45.22		173.86 ± 52.55		185.20 ± 53.58		0.01	0.83	0.12
Ultimate stress (MPa)	169.53 ± 31.94		209.96 ± 44.84		191.58 ± 50.44		214.89 ± 48.78		<0.01	0.46	0.40
Strain to yield (mε)	18.67 ± 6.01		19.18 ± 2.63		17.48 ± 1.58		18.73 ± 2.80		0.38	0.48	0.70
Total strain (mε)	25.08 ± 9.68		23.53 ± 4.91		28.78 ± 11.69		39.77 ± 17.67		0.18	0.01	0.08
Modulus (GPa)	8.97 ± 2.37 \$		11.80 ± 2.86 \$		11.01 ± 2.50		11.06 ± 2.56		0.03	0.46	0.04
Resilience (MPa)	1.62 ± 0.85		2.12 ± 0.60		1.70 ± 0.66		1.93 ± 0.70		0.03	0.79	0.46
Toughness (MPa)	2.47 ± 1.15		3.04 ± 1.14		3.44 ± 1.65		5.55 ± 2.39		<0.01	0.01	0.05

Data provided as mean ± standard deviation. Repeated measures Two-way mixed effects ANOVA p-values are displayed and bolded when significant. Significant interactions were followed by post-hoc analyses and shared symbols indicate significant difference from one another.

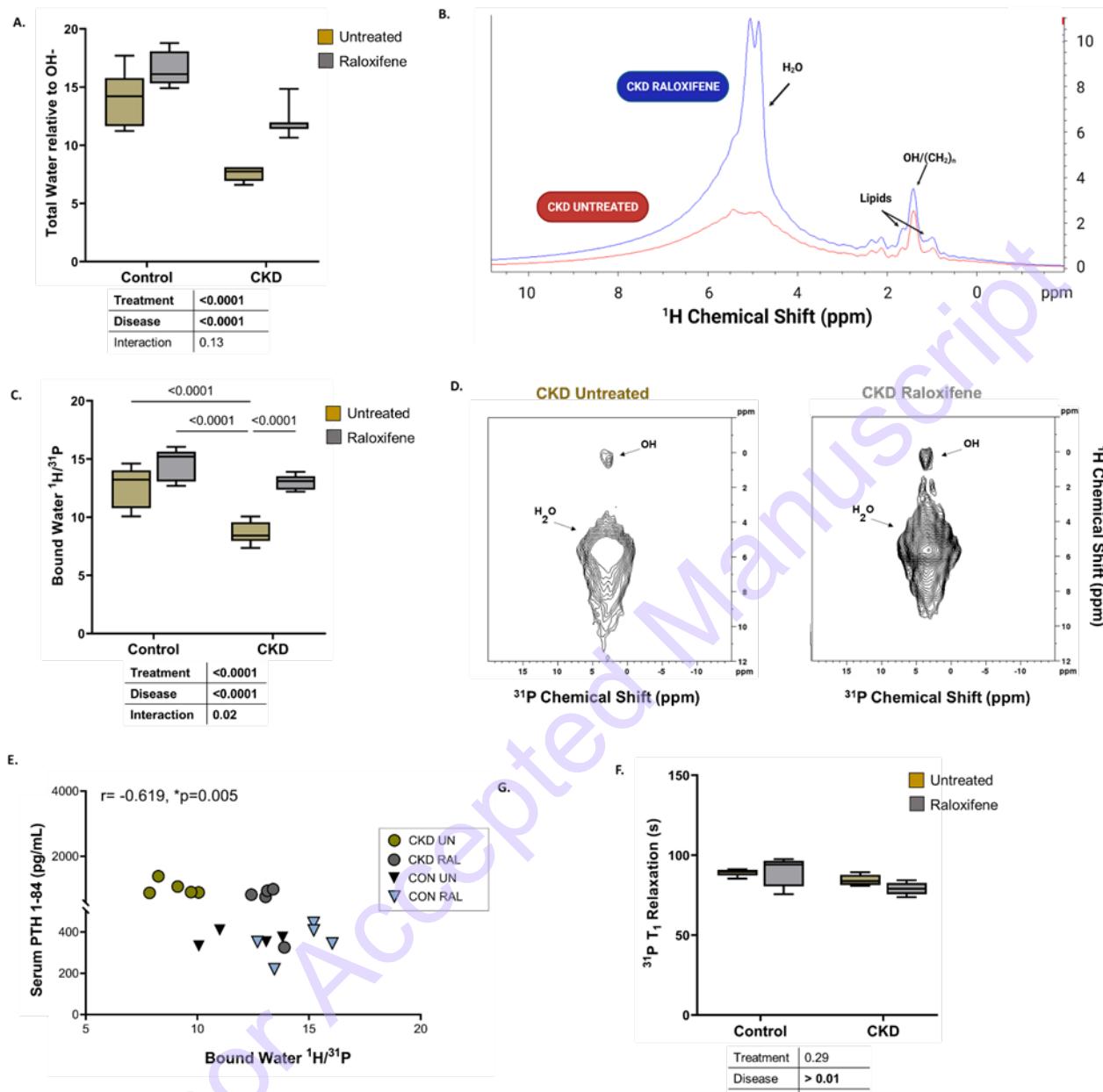
441

442

443

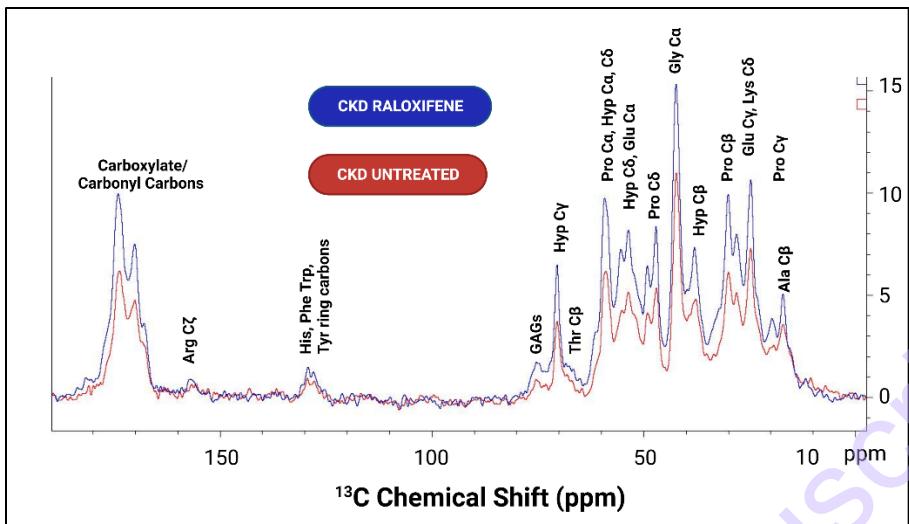
444 **Supplemental Figure 2.** Average force-displacement and average stress-strain plots from four-point bending mechanical testing of control (A) and chronic kidney disease (CKD) (B) bi-lateral tibia. Average force-displacement shows that CKD bones are weaker than control bones regardless of loading or RAL. For CKD, loaded bones had higher structural properties such as ultimate and yield force while RAL treated bones had improved post-yield displacement and total strain. For controls, loading also improved ultimate and yield force but RAL effects were much less pronounced. Data points in A and B are mean values ±

450 standard error of the mean and lines were created using a second-order polynomial function. UN =
451 untreated; RAL = raloxifene. The four-point bending test setup is shown in C.


452

453 **Solid State Nuclear Magnetic Resonance (ssNMR) spectroscopy**

454 Total water was higher in controls vs. CKD, and treatment with RAL had higher total water vs. UN
455 (main effect of disease $p<0.0001$ and treatment $p<0.0001$, **Fig.5A-B**). We observed a significant interaction
456 term for bound water ($p=0.02$, **Fig.5C-D**). Control UN tibia had higher bound water vs. CKD UN. In the CKD
457 cohort, treatment with RAL resulted in significantly higher bound water, bringing the mean to near control
458 UN levels (**Fig.5C**). Further examination of bound water revealed a significant negative correlation with
459 serum PTH levels, indicating that higher PTH levels were associated with lower bound water content ($r=-$
460 0.62, $p=0.005$; **Fig. 5E**). Pearson's correlations revealed a significant positive relationship between bound
461 water and post-yield displacement ($r=0.64$, $p=0.027$) and bound water and total strain ($r=0.64$, $p=0.019$).

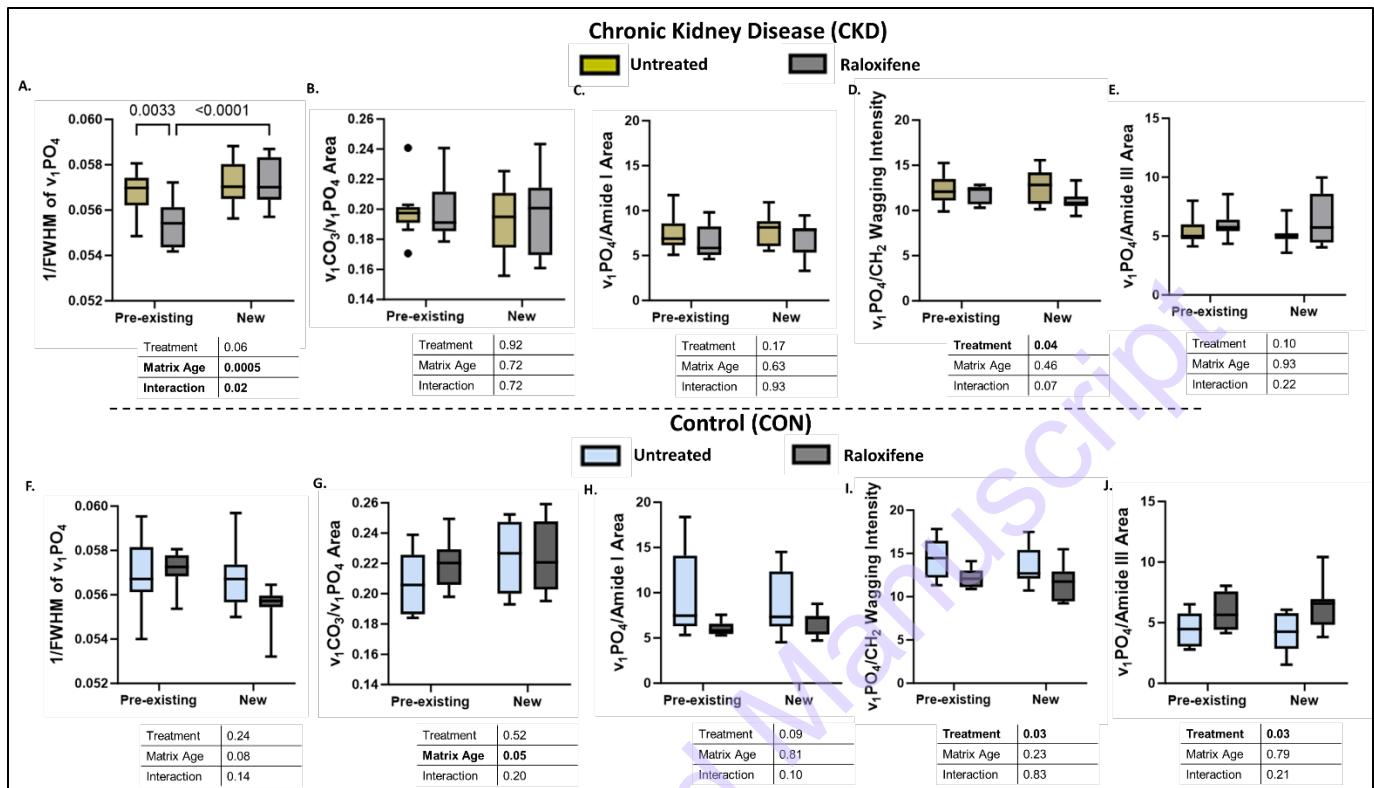

462 Regarding ^{31}P T_1 , there was a significant main effect of disease ($p < 0.01$, **Fig. 5F**), with CKD animals
463 exhibiting lower T_1 relaxation times compared to the control group. However, there was no significant
464 impact of treatment. The natural abundance ^{13}C spectra of one CKD untreated and one CKD RAL spectra
465 are shown in **Supplemental Figure 3**. Most of the resonances corresponded to Type 1 collagen residues.
466 We did not observe a considerable difference between CKD and CKD-RAL. The carbonyl resonances still
467 show 3 peaks, and the line width of aliphatic peaks did not show any considerable changes.

468

469

470 **Figure 5. Solid-state nuclear magnetic resonance spectroscopy.** A) Total water assessed by 1D one-pulse
 471 ¹H ssNMR revealed that control bone had higher total water than CKD, and treatment with raloxifene
 472 resulted in higher total water than untreated samples. B) Representative chemical shift spectra illustrated
 473 the elevated total water in CKD raloxifene-treated (blue) versus CKD untreated (red) samples. C) 2D
 474 HeTCor experiments for bound water determination showed that in CKD, raloxifene-treated animals had
 475 tibiae with higher bound water approaching control levels. D) Representative 2D HETCor spectra from one
 476 CKD untreated and one CKD raloxifene-treated sample, highlighting water and OH peaks. E) Serum
 477 parathyroid hormone (PTH) levels negatively correlated with bound water content measured by ssNMR.
 478 F) ³¹P T₁ relaxation time revealed a significant main effect of disease but not treatment. A, C, and H depict
 479 box and whisker plot; whiskers denote min. and max.

480

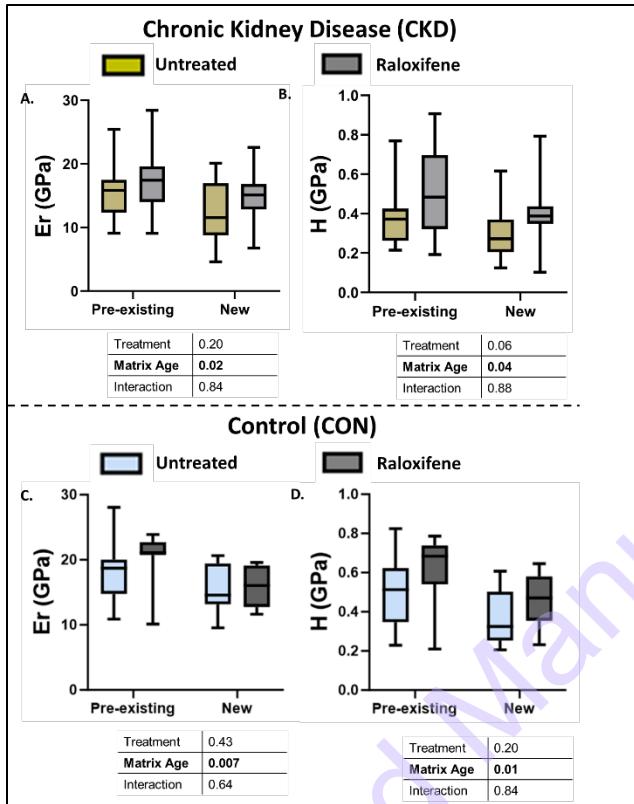

481 **Supplemental Figure 3. Carbon 13 spectra from solid state nuclear magnetic resonance spectroscopy.** A
 482 representative example ^{13}C chemical shift spectra from one CKD untreated (red) and one CKD raloxifene-
 483 treated tibia with peaks identified on the plot.

484 **Co-localized Raman Spectroscopy and nanoindentation**

485 *Raman Spectroscopy*

486 In CKD tibiae, we observed a significant interaction ($p=0.02$) for mineral crystallinity/maturity
 487 (Fig.6A). Raloxifene-treated pre-existing bone exhibited lower crystallinity than UN pre-existing bone
 488 ($p=0.003$), while new bone receiving RAL displayed higher crystallinity than pre-existing bone from RAL-
 489 treated animals ($p<0.0001$). A significant main effect of treatment emerged for relative mineralization
 490 using CH_2 wagging intensity ($p=0.04$, Fig.6D), with both pre-existing and new bone that had received RAL
 491 showing a lower mineral-to-matrix ratio compared to UN bone. In the control group, here was a significant
 492 main effect of matrix age for relative type B carbonate substitution ($p=0.05$, Fig.6G), with new bone
 493 displaying higher values than pre-existing bone. Raloxifene treatment resulted in a lower mineral-to-
 494 matrix ratio measuring CH_2 wagging ($p=0.03$, Fig.6I) and higher Amide III area ($p=0.03$, Fig.6J) compared
 495 to untreated samples.

496

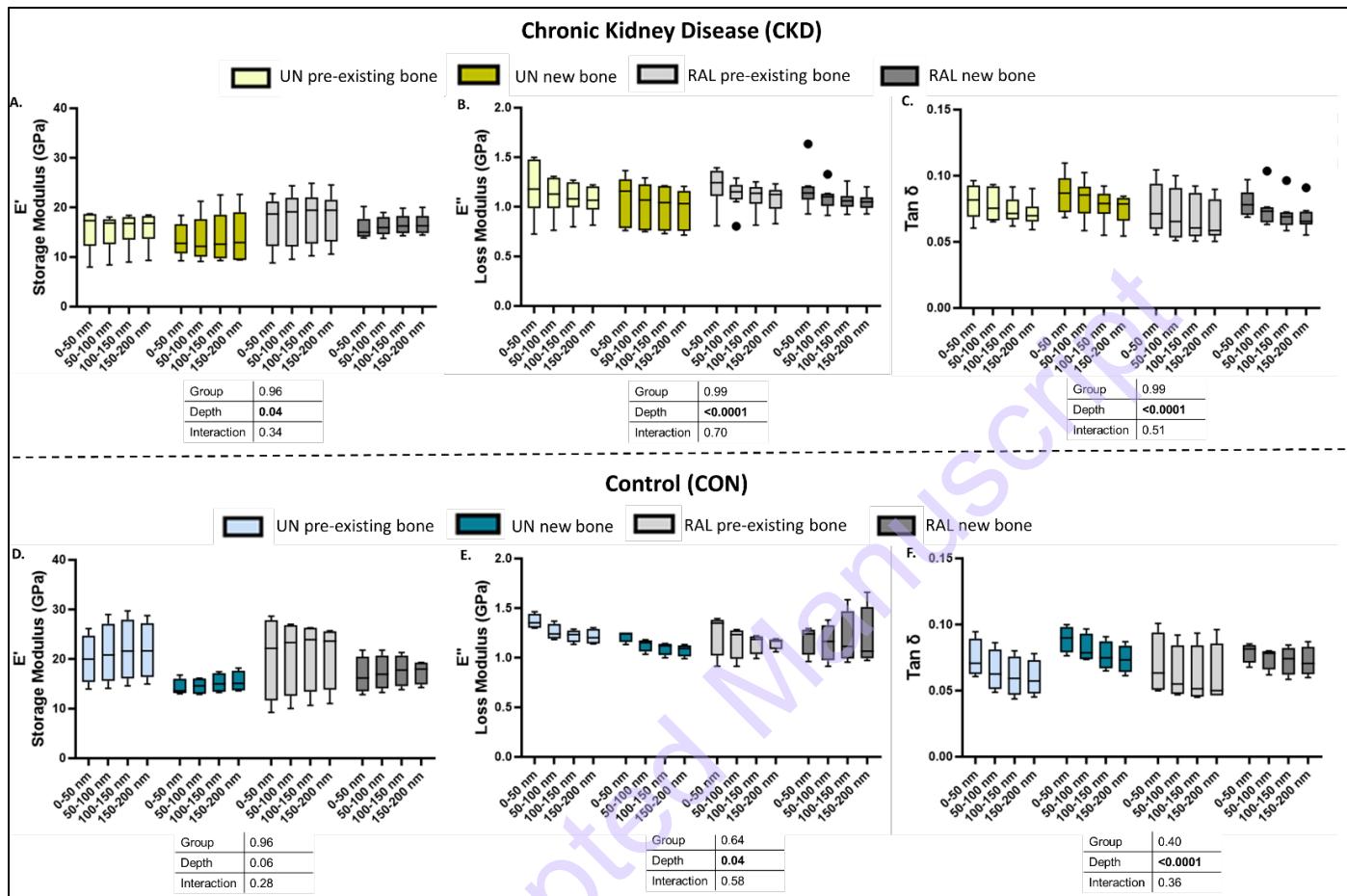


497

498 **Figure 6. Raman Spectroscopy.** A) For CKD, we noted a significant impact of matrix age and an interaction
499 regarding mineral crystallinity/maturity. Raloxifene-treated pre-existing bone exhibited lower crystallinity
500 than untreated pre-existing bone, and new bone receiving raloxifene displayed higher crystallinity than
501 pre-existing bone from raloxifene-treated animals. No significant ANOVA terms were observed for relative
502 type B carbonate substitution (B) or relative mineralization using Amide I area (D) or Amide III area (E). D)
503 A significant main effect of treatment was identified for relative mineralization using CH_2 wagging
504 intensity, with both pre-existing and new bone that had received raloxifene showing a lower mineral-to-
505 matrix ratio compared to untreated bone. For controls, treatment or matrix age had no significant impact
506 on mineral crystallinity (F) or the Amide I mineral-to-matrix ratio (H). G) We observed a significant main
507 effect of matrix age for relative type B carbonate substitution, with new bone displaying higher values
508 than pre-existing bone. L) Raloxifene treatment resulted in a lower mineral-to-matrix ratio measuring CH_2
509 wagging and higher Amide III area (J) compared to untreated samples. Figure depicts box and whisker
510 plot; whiskers denote min. and max.

511 *Quasi-static Nanoindentation*

512 For CKD, we observed a significant main effect of matrix age for indentation modulus ($p=0.02$,
513 **Fig.7A**) and hardness ($p=0.04$, **Fig.7B**) where values were lower in new bone versus pre-existing bone.
514 Similarly, control bone demonstrated a main effect of matrix age for indentation modulus ($p=0.007$,
515 **Fig.7C**) and hardness ($p=0.01$, **Fig.7D**) with lower values seen in the new bone. For all groups and matrix
516 location, treatment with RAL trended toward an increase in modulus and hardness which failed to reach
517 significance.



518

519 **Figure 7. Quasi-static Nanoindentation.** CKD tibiae had a significant main effect of matrix age for
 520 indentation modulus (A) and hardness (B) where measures were lower in the new bone versus pre-
 521 existing bone. Control bone also demonstrated a significant main effect of matrix age for modulus (C) and
 522 hardness (B) with new bone having lower values. Figure depicts box and whisker plot; whiskers denote
 523 min. and max.

524 *Dynamic Indentation Testing*

525 In loaded CKD tibia, we observed a main effect of indentation depth for storage modulus (E' ,
 526 $p=0.04$), loss modulus (E'' , $p<0.0001$), and tan delta ($\tan\delta$, $P<0.0001$) where E' increased and E'' and $\tan\delta$
 527 decreased as a function of increased testing depth (Fig. 8A-C). A main effect of indentation depth was
 528 seen for E'' ($p=0.04$) and $\tan\delta$ ($P<0.0001$) for loaded control limbs where average E'' and $\tan\delta$ decreased
 529 as a function of increased testing depth (Fig. 8E-G).

530

531 **Figure 8. Dynamic indentation testing.** Each indentation test used a constant strain rate CMX load
 532 function, oscillating the probe at 100 Hz and 5 μ N dynamic load as the indenter was pushed into the bone
 533 until a 1000 μ N peak static load was achieved. Thus, viscoelastic behavior was assessed as a function of
 534 indentation depth. In CKD, we observed a main effect of depth for storage modulus (A), loss modulus (B),
 535 and $\tan \delta$ (C). Only loss modulus (E) and $\tan \delta$ (F) but not storage modulus (D) were impacted by testing
 536 depth for control bone. Figure depicts box and whisker plot; whiskers denote min. and max.

537

538 **Discussion**

539 Multifaceted approaches that address cortical porosity and enhancing matrix composition are
540 desired to normalize mechanical properties and improve skeletal health in CKD. This study aimed to assess
541 the anabolic impact of in vivo mechanical loading, with and without adding raloxifene—a potential matrix-
542 modifying therapeutic. Using the adenine-induced mouse model of CKD, we observed that mechanical
543 loading reduced cortical porosity, improved several cortical geometry outcomes, and enhanced
544 mechanical properties related to strength. The addition of raloxifene induced changes in cortical area,
545 trabecular bone BV/TV, trabecular thickness, post-yield displacement, work, total strain, and toughness.
546 The combination of loading and raloxifene further improved deformation and energy, resulting in even
547 tougher, more ductile, and stronger bones. Furthermore, bones from animals treated with raloxifene had
548 elevated matrix-bound water, a change significant only in the CKD cohort. Additionally, bound water was
549 negatively associated with PTH levels, showing that animals with higher PTH levels often had the lowest
550 bound water content. While control animals responded positively to loading, their bones were far less
551 impacted by raloxifene treatment, showing no deformation, toughness, or bound water improvements.
552 This multifaceted treatment was effective in generating new bone with reduced porosity (through
553 loading) and improved matrix properties (with raloxifene), aiding in minimizing skeletal fragility induced
554 by CKD.

555 We confirmed a steady-state CKD disease state was achieved prior to the initiation of treatment,
556 where serum BUN and PTH were significantly elevated above control levels. A compromised CKD bone
557 phenotype was also evident, characterized by increased cortical porosity, decreased trabecular number,
558 and impaired whole bone mechanical and estimated material properties. Following 5 weeks of
559 intervention, the CKD group maintained elevated BUN and PTH serum levels compared to the control
560 group. Notably, the RAL-treated CKD group showed lower BUN (not significant), aligning with a trend
561 observed in a previous study using the Cy/+ rat treated with RAL²³. A post-hoc analysis of the MORE
562 study—a randomized clinical trial using RAL in post-menopausal women with osteoporosis—showed that
563 over three years, the RAL groups experienced slower increases in BUN and a slower decline in mean eGFR
564 compared to the placebo group. This observation suggests potential renoprotective effects of RAL³⁶. For
565 body mass, the CKD mice unsurprisingly had lower body weight than controls which is well documented
566 using the adenine chow-induced model. RAL treatment resulted in lower body weight than the UN group
567 within each cohort (CKD, control). Previous work evaluating the RAL in male non-CKD rats observed that
568 male body mass gain and food consumption were depressed at all dosage levels of RAL³⁷. When assessing
569 the kidney weight ratio, we observed that RAL treatment led to greater kidney mass compared to UN
570 animals in both the control and CKD cohorts; however, histology was not conducted on the kidneys and
571 thus the source of these changes were not elucidated.

572 Recent work has demonstrated that in animal models of progressive CKD, cortical porosity can
573 infill through active bone formation⁸. We chose in vivo cyclic axial compressive loading to initiate bone
574 formation in this study for several reasons: 1) in vivo loading is a robust anabolic stimulus in non-CKD
575 models^{9,10}, 2) repetitive mechanical loading using free wheel running has been shown to modify porosity
576 and serum biochemistries in CKD models¹¹, and 3) in vivo loading of one limb leaves the contralateral limb
577 as a non-loaded internal positive control, reducing the number of animals needed. In CKD animals, loading
578 was responsible for a notably lower percent porosity of the tibia versus the non-loaded limb. While
579 percent porosity was significantly lower, we cannot fully conclude that pores were infilled or if the loading
580 intervention suppressed new pore formation throughout the 5 weeks. To evaluate this, repeated in vivo

581 μ CT scans would need to be acquired longitudinally, registered across time points, and the pore dynamics
582 quantified as we have shown in our previous work in humans using HRpQCT imaging^{38, 39}. While loading-
583 based exercise may be a viable intervention in some bone conditions, the effects of physical activity or
584 exercise-based loading in CKD patients are less established, but resistance training is likely valuable⁴⁰.
585 Additional efforts are underway to identify therapeutics that can initiate bone formation, filling cortical
586 pores through various methods of PTH suppression⁴¹. Finally, while mechanical intervention through cage
587 wheel running in a CKD rat model demonstrated a decrease in PTH (which may have contributed to the
588 concurrent lower porosity) in a study by Avin et al., we could not evaluate the impact of loading on serum
589 biochemistries due to the study design where the right tibia of all mice were loaded¹¹. Future work would
590 need to implement a non-loaded CKD group to evaluate the impact of in vivo cyclic loading on serum PTH.

591 From a mechanical perspective, the effects of loading and RAL treatment were more robust in the
592 CKD cohort. Mechanical loading primarily led to increased properties related to strength, such as yield
593 and ultimate force. RAL, whether administered alone or in combination with loading, enhanced
594 deformation, and energy, resulting in a bone that was tougher and more ductile, indicative of positive
595 changes in the bone matrix. Loaded CKD limbs from untreated animals exhibited a higher elastic modulus
596 compared to non-loaded limbs. Raloxifene treatment, however, "blunted" the stiffening effect from
597 loading, resulting in bones with an overall similar modulus to non-loaded RAL-treated limbs and a lower
598 modulus than untreated loaded limbs. Bone toughness was improved in CKD treated animals, consistent
599 with previous observations. Interestingly, the property of toughness was not significantly impacted in the
600 control cohort treated with RAL, nor were post-yield and total displacement, similar to what has been
601 observed in previous work by members of our group suggesting that it may be difficult to make good
602 bones better⁴². Despite similar impacts on cortical geometry in CKD and control measured by μ CT, the
603 greater improvements in mechanics in CKD suggest that additional changes beyond what can be detected
604 in μ CT are at play, including modulation of bone hydration and other compositional properties discussed
605 in detail below.

606 We observed significantly higher matrix-bound water in the RAL-treated CKD cohort compared to
607 UN CKD, nearly reaching levels observed in UN controls. Notably, bound water was not significantly higher
608 in RAL-treated controls compared to UN controls. This observation supports findings from a prior ex vivo
609 soaking study, where long bones from the adenine-fed CKD mouse model or control bone were exposed
610 to a RAL solution for 14 days, and no significant change was observed in control bone exposed to RAL vs.
611 vehicle solution¹⁸. While RAL treatment has demonstrated enhancement of matrix-bound water in other
612 non-CKD animal models^{20, 43}, its positive impact was not evident when administered to the Cy/+ rat model
613 of progressive CKD²³. In Newman et al.'s study, improved skeletal properties, including enhanced
614 mechanical toughness, were observed in Cy/+ rats treated with RAL. However, when bones were
615 measured using ¹H NMR spectroscopy at 4.7T (without MAS), no significant difference in bound water by
616 volume was observed due to treatment. The exact source of the disparity in observations remains unclear,
617 but it could be attributed to variations in the method of determining bound water utilized across
618 published studies.

619 Unsurprisingly, CKD cortical bone exhibited lower total and bound water than control cortical
620 bone. This aligns with prior work in the Cy/+ model of progressive CKD, where animals with high turnover
621 CKD (indicated by high PTH) demonstrated lower bound water levels compared to normal littermates⁴³.
622 Interestingly, the same study Cy/+ rats with low turnover CKD (low PTH) had higher bound water than
623 their control littermates. This observation is noteworthy because, in our study, we observed a significant
624 negative association between PTH and matrix-bound water; higher PTH levels corresponded to lower

625 bound water content. This is intriguing, given that the regulatory mechanism of bound water remains
626 largely unknown. We speculate that there is likely some influence of PTH on bound water, whether
627 directly through unknown signaling or because of a high-turnover state where the bone matrix (the
628 location of bound water) is continually being resorbed. This aspect warrants further investigation. In a
629 study by Rai et al., which utilized ssNMR to assess trabecular bone water in normal rats, those with bone
630 loss, and those who received PTH following ovariectomy, it was observed that with bone restoration via
631 PTH, bound water remained low even after an increase in bone mass²⁶. This observation prompts further
632 investigation into the PTH/bone water axis, supported by findings from Rai et al. indicating that, even after
633 bone restoration via PTH, bound water remains low.

634 Interest in RAL's ability to modulate aspects of bone beyond the mineral was based on post-
635 menopausal clinical studies with RAL that showed a significant decrease in fractures, not fully explained
636 by a modest increase in BMD⁴⁴. Preclinically, studies have shown RAL can increase bone water in an
637 estrogen-independent manner by interacting with collagen and collagen/mineral interfaces^{19, 20}. In CKD
638 patients, the administration of RAL was associated with a significant increase in spine BMD and a reduction
639 in vertebral fractures compared to placebo, regardless of kidney function, with a similar number of
640 adverse events observed in both RAL and placebo-treated groups⁴⁵. In another study, RAL-treated
641 postmenopausal hemodialysis patients had reduced serum calcium levels⁴⁶. It is essential to highlight that
642 none of these clinical studies assessed bone quality metrics as an endpoint, leaving the impact of RAL on
643 bone hydration and collagen in patients unknown. Evaluation of these metrics necessitates clinically
644 relevant tools such as magnetic resonance imaging using ultrashort and zero echo time techniques (UTE-
645 MRI), capable of measuring bone hydration and matrix organization in vivo⁴⁷.

646 In CKD, newly formed bone treated with RAL exhibited significantly higher mineral crystallinity, a
647 measure which reflects mineral crystal size, shape, and perfection, compared to pre-existing bone
648 similarly treated with RAL. Additionally, pre-existing RAL-treated mineral crystallinity was lower than in
649 untreated pre-existing bone for CKD. These data suggest the development of new bone in preexisting
650 tissue characterized by an abundance of smaller and less mature mineral crystals⁴⁸. Lower crystallinity is
651 associated with increased ductility (less brittleness), which could partly account for improvements
652 observed in various 4-point bend testing parameters, including increased deformation/displacement once
653 permanent damage has initiated in the matrix. When treated with RAL, CKD and control groups exhibited
654 lower mineral-to-matrix ratios in both new and pre-existing tissues. The mineral-to-matrix ratio reflects
655 the degree of mineralization in bone, suggesting that after five weeks of treatment, there was an increase
656 in new bone formation with RAL that had not yet been fully mineralized. In both quasistatic
657 nanoindentation and DMA, no main effect of treatment was evident for any outcome measure, although
658 trends were observed. This is likely attributed to small sample sizes and high variability across the tested
659 samples.

660 **Limitations**

661 There are several limitations to this study that are worth noting. First, the study exclusively utilized
662 male mice, a choice driven in part by the study's scale, with plans to incorporate female mice in future
663 experiments. Additionally, the study only captured endpoint outcomes, precluding the assessment of
664 longitudinal changes resulting from the interventions, both in serum and outcomes such as porosity,
665 where the evaluation of pore infilling would be particularly informative⁴¹. While ssNMR served as the
666 method for bone hydration assessment in this study, UTE-MRI would offer a more clinically relevant

667 technique. However, practical constraints, including the size of mouse bones and the achievable
668 resolution using MRI, limited our choice. Subsequent studies aiming to evaluate bone water preclinically
669 may find employing rats (with larger bone size) necessary if UTE-MRI is a primary outcome. In our
670 examination of nano DMA, we investigated viscoelastic properties with depth as a variable. However, a
671 more suitable approach would involve assessing these properties in relation to a varying frequency at a
672 constant depth. This approach would assess the material's response to varying loading rates, as opposed
673 to assessing a property gradient as a function of indentation depth (which we would not anticipate given
674 the method of treatment). Subsequent work in our laboratory is planning to focus on this approach. The
675 study faced limitations in terms of the number of bones utilized for material-level mechanical property
676 assessments (nanoindentation) and Raman spectroscopy.

677 **Conclusions**

678 Addressing cortical porosity induced by CKD is crucial, but it is likely insufficient for maximizing
679 the enhancement of mechanical properties. Thus, an effective treatment program to improve fracture
680 risk in CKD likely requires focusing both cortical porosity and matrix properties. Our data suggest that
681 administering a bone hydration-modifying treatment, such as raloxifene, can improve bone matrix
682 properties in newly formed bone which often exists in high turnover CKD. Bones from animals that
683 received both in vivo loading and raloxifene had lower porosity and higher matrix-bound water and could
684 undergo a greater amount of deformation before failing.

685 **Declaration of Competing Interests**

686 The authors have no competing interests to disclose.

687 **Acknowledgments**

688 This work was supported by the National Science Foundation [LEAP-HI 1952993 (RKS, MRA, JMW)], the
689 National Institutes of Health [LRP 1L30DK130133-0 (RKS), R01AR072609 (JMW)], T32 AR065971 (AAT),
690 and the United States (U.S.) Department of Veterans Affairs Merit Grant (BX003025 and IK6BX006479,
691 MRA). The content is solely the responsibility of the authors and does not necessarily represent the official
692 views of the National Science Foundation, the National Institutes of Health or the VA.

693

694 **References**

695 1. Mittalhenkle, A, et al., *Increased risk of mortality associated with hip fracture in the dialysis*
696 *population*. Am J Kidney Dis, 2004. **44**(4): p. 672-9.

697 2. Coco, M, et al., *Increased incidence of hip fractures in dialysis patients with low serum*
698 *parathyroid hormone*. Am J Kidney Dis, 2000. **36**(6): p. 1115-21.

699 3. Burr, DB, *Cortical bone: a target for fracture prevention?* Lancet, 2010. **375**(9727): p. 1672-3.

700 4. Seeman, E, *Overview of bone microstructure, and treatment of bone fragility in chronic kidney*
701 *disease*. Nephrology (Carlton), 2017. **22 Suppl 2**: p. 34-35.

702 5. Nickolas, TL, et al., *Bone mass and microarchitecture in CKD patients with fracture*. J Am Soc
703 Nephrol, 2010. **21**(8): p. 1371-80.

704 6. Hasegawa, T, et al., *Evocalcet Rescues Secondary Hyperparathyroidism-driven Cortical Porosity in*
705 *CKD Male Rats*. Endocrinology, 2023. **164**(4).

706 7. Surowiec, RK, et al., *Tracking changes of individual cortical pores over 1 year via HR-pQCT in a*
707 *small cohort of 60-year-old females*. Bone Rep, 2022. **17**: p. 101633.

708 8. Metzger, CE, et al., *Reversing cortical porosity: Cortical pore infilling in preclinical models of*
709 *chronic kidney disease*. Bone, 2020: p. 115632.

710 9. Berman, AG, et al., *Structural and Mechanical Improvements to Bone Are Strain Dependent with*
711 *Axial Compression of the Tibia in Female C57BL/6 Mice*. PLoS One, 2015. **10**(6): p. e0130504.

712 10. Weatherholt, AM, et al., *Cortical and trabecular bone adaptation to incremental load*
713 *magnitudes using the mouse tibial axial compression loading model*. Bone, 2013. **52**(1): p. 372-9.

714 11. Avin, KG, et al., *Voluntary Wheel Running Has Beneficial Effects in a Rat Model of CKD-Mineral*
715 *Bone Disorder (CKD-MBD)*. J Am Soc Nephrol, 2019. **30**(10): p. 1898-1909.

716 12. Newman, CL, et al., *Cortical bone mechanical properties are altered in an animal model of*
717 *progressive chronic kidney disease*. PLoS One, 2014. **9**(6): p. e99262.

718 13. Iwasaki, Y, et al., *Altered material properties are responsible for bone fragility in rats with chronic*
719 *kidney injury*. Bone, 2015. **81**: p. 247-254.

720 14. Nyman, JS, et al., *Measurements of mobile and bound water by nuclear magnetic resonance*
721 *correlate with mechanical properties of bone*. Bone, 2008. **42**(1): p. 193-9.

722 15. Willett, TL, et al., *Bone collagen network integrity and transverse fracture toughness of human*
723 *cortical bone*. Bone, 2019. **120**: p. 187-193.

724 16. Wang, X, et al., *Age-Related Deterioration of Bone Toughness Is Related to Diminishing Amount*
725 *of Matrix Glycosaminoglycans (Gags)*. JBMR Plus, 2018. **2**(3): p. 164-173.

726 17. Rajapakse, CS, et al., *Volumetric Cortical Bone Porosity Assessment with MR Imaging: Validation*
727 *and Clinical Feasibility*. Radiology, 2015. **276**(2): p. 526-35.

728 18. Surowiec, RK, et al., *Ex vivo exposure to calcitonin or raloxifene improves mechanical properties*
729 *of diseased bone through non-cell mediated mechanisms*. Bone, 2023. **173**: p. 116805.

730 19. Bivi, N, et al., *Structural features underlying raloxifene's biophysical interaction with bone*
731 *matrix*. Bioorg Med Chem, 2016. **24**(4): p. 759-67.

732 20. Gallant, MA, et al., *Bone cell-independent benefits of raloxifene on the skeleton: a novel*
733 *mechanism for improving bone material properties*. Bone, 2014. **61**: p. 191-200.

734 21. Berman, AG, et al., *Raloxifene reduces skeletal fractures in an animal model of osteogenesis*
735 *imperfecta*. Matrix Biol, 2016. **52-54**: p. 19-28.

736 22. Allen, MR, et al., *In Vivo UTE-MRI Reveals Positive Effects of Raloxifene on Skeletal-Bound Water*
737 *in Skeletally Mature Beagle Dogs*. J Bone Miner Res, 2015. **30**(8): p. 1441-4.

738 23. Newman, CL, et al., *Raloxifene improves skeletal properties in an animal model of cystic chronic*
739 *kidney disease*. Kidney Int, 2016. **89**(1): p. 95-104.

740 24. Metzger, CE, et al., *Elevations in Cortical Porosity Occur Prior to Significant Rise in Serum*
741 *Parathyroid Hormone in Young Female Mice with Adenine-Induced CKD*. *Calcif Tissue Int*, 2020.
742 **106**(4): p. 392-400.

743 25. Wallace, JM, et al., *Inbred strain-specific response to biglycan deficiency in the cortical bone of*
744 *C57BL6/129 and C3H/He mice*. *J Bone Miner Res*, 2009. **24**(6): p. 1002-12.

745 26. Rai, RK, et al., *Total water, phosphorus relaxation and inter-atomic organic to inorganic interface*
746 *are new determinants of trabecular bone integrity*. *PLoS One*, 2013. **8**(12): p. e83478.

747 27. van Rossum, B-J, et al., *High-Field and High-Speed CP-MAS ³¹P NMR*
748 *Heteronuclear Dipolar-Correlation Spectroscopy of Solids with Frequency-Switched Lee-Goldburg*
749 *Homonuclear Decoupling*. *Journal of Magnetic Resonance*, 1997. **124**: p. 516-519.

750 28. Fung, BM, et al., *An improved broadband decoupling sequence for liquid crystals and solids*. *J*
751 *Magn Reson*, 2000. **142**(1): p. 97-101.

752 29. Levitt, MH, et al., *High-resolution ¹H NMR in solids with frequency-switched multiple-pulse*
753 *sequences*. *Solid State Nucl Magn Reson*, 1993. **2**(4): p. 151-63.

754 30. Dwivedi, N, et al., *Unraveling Water-Mediated ³¹P Relaxation in Bone Mineral*. *ACS Omega*,
755 2022. **7**(19): p. 16678-16688.

756 31. Kaflak, A, et al., *Phosphorus-31 spin-lattice NMR relaxation in bone apatite and its mineral*
757 *standards*. *Solid State Nucl Magn Reson*, 2007. **31**(4): p. 174-83.

758 32. Pines, A, et al., *Proton-enhanced NMR of dilute spins in solids*. *The Journal of chemical physics*,
759 1973. **59**(2): p. 569-590.

760 33. Zhu, P, et al., *Time-resolved dehydration-induced structural changes in an intact bovine cortical*
761 *bone revealed by solid-state NMR spectroscopy*. *J Am Chem Soc*, 2009. **131**(47): p. 17064-5.

762 34. Damrath, JG, et al., *Calcimimetics Alter Periosteal and Perilacunar Bone Matrix Composition and*
763 *Material Properties in Early Chronic Kidney Disease*. *J Bone Miner Res*, 2022. **37**(7): p. 1297-
764 1306.

765 35. Oliver, WC, et al., *An improved technique for determining hardness and elastic modulus using*
766 *load and displacement sensing indentation experiments*. *Journal of Materials Research*, 1992.
767 **7**(6): p. 1564-1583.

768 36. Melamed, ML, et al., *Raloxifene, a selective estrogen receptor modulator, is renoprotective: a*
769 *post-hoc analysis*. *Kidney International*, 2011. **79**(2): p. 241-249.

770 37. Hoyt, JA, et al., *The Selective Estrogen Receptor Modulator, Raloxifene: Reproductive*
771 *Assessments in Adult Male Rats* These studies were conducted in accordance with the Food
772 and Drug Administration "Good Laboratory Practice Regulations for Nonclinical Laboratory
773 Studies." CRF Part 58, 1978. *Reproductive Toxicology*, 1998. **12**(3): p. 223-232.

774 38. Surowiec, RK, et al., *Bone hydration: How we can evaluate it, what can it tell us, and is it an*
775 *effective therapeutic target?* *Bone Rep*, 2022. **16**: p. 101161.

776 39. Swallow, EA, et al., *Cortical porosity development and progression is mitigated after*
777 *etelcalcetide treatment in an animal model of chronic kidney disease*. *Bone*, 2022. **157**: p.
778 116340.

779 40. Cardoso, DF, et al., *Impact of physical activity and exercise on bone health in patients with*
780 *chronic kidney disease: a systematic review of observational and experimental studies*. *BMC*
781 *Nephrology*, 2020. **21**(1): p. 334.

782 41. Metzger, CE, et al., *Reversing cortical porosity: Cortical pore infilling in preclinical models of*
783 *chronic kidney disease*. *Bone*, 2021. **143**: p. 115632.

784 42. Berman, AG, et al., *Effects of Raloxifene and tibial loading on bone mass and mechanics in male*
785 *and female mice*. *Connect Tissue Res*, 2022. **63**(1): p. 3-15.

786 43. Allen, MR, et al., *Changes in skeletal collagen cross-links and matrix hydration in high- and low-*
787 *turnover chronic kidney disease*. *Osteoporos Int*, 2015. **26**(3): p. 977-85.

788 44. Riggs, BL, et al., *Bone Turnover Matters: The Raloxifene Treatment Paradox of Dramatic*
789 *Decreases in Vertebral Fractures Without Commensurate Increases in Bone Density*. *Journal of*
790 *Bone and Mineral Research*, 2002. **17**(1): p. 11-14.

791 45. Ishani, A, et al., *The effect of raloxifene treatment in postmenopausal women with CKD*. *J Am Soc*
792 *Nephrol*, 2008. **19**(7): p. 1430-8.

793 46. Tanaka, M, et al., *Effects of Raloxifene on Bone Mineral Metabolism in Postmenopausal*
794 *Japanese Women on Hemodialysis*. *Therapeutic Apheresis and Dialysis*, 2011. **15**(s1): p. 62-66.

795 47. Ma, Y-J, et al., *Quantitative Ultrashort Echo Time (UTE) Magnetic Resonance Imaging of Bone: An Update*. *Frontiers in Endocrinology*, 2020. **11**.

796 48. Gamsjaeger, S, et al., *Bone material properties in actively bone-forming trabeculae in*
797 *postmenopausal women with osteoporosis after three years of treatment with once-yearly*
798 *Zoledronic acid*. *J Bone Miner Res*, 2011. **26**(1): p. 12-8.

799

800