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The organization of cells within tissues plays a vital role in various biological
processes, including development and morphogenesis. As a result, understanding
how cells self-organize in tissues has been an active area of research. In our study,
we explore a mechanistic model of cellular organization that represents cells as
force dipoles that interact with each other via the tissue, which we model as an
elastic medium. By conducting numerical simulations using this model, we are
able to observe organizational features that are consistent with those obtained
from vertex model simulations. This approach provides valuable insights into the
underlying mechanisms that govern cellular organization within tissues, which can
help us better understand the processes involved in development and disease.
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1 Introduction

Organ surfaces are covered with confluent monolayers of epithelial cells or endothelial
cells, providing physical barriers for organs and bodies. Under healthy conditions, the cells in
these layers remain static and non-migratory, meaning that they do not move or change
position. This feature is an important aspect of their function as a physical barrier, as any
gaps or spaces between the cells could allow harmful substances to pass through. Instead, the
cells remain securely connected to each other through a network of tight junctions, adherens
junctions, and desmosomes, creating a solid-like structure. The cellular collective behaves as
a solid-like object because of the cohesive forces that hold the cells together. Together, these
forces create a strong and stable structure that resists deformation and maintains the
integrity of the organ surface.

Inside a confluent tissue, cells form a polygonal tiling of space without any gaps between
them. In most cases, they form an amorphous tiling without any spatial order. In spite of
major differences between their microscopic constituents and interactions, these cellular
assemblies bear a strong resemblance to jammed granular solids. Cells within dense tissues
can be considered as particles in a jammed granular solid, where the packing and
arrangement of cells play a crucial role in determining the overall tissue properties. This
packing can be influenced by various factors, such as cell size, shape, and cell-cell
interactions, as well as the mechanical microenvironment.

The essential features that are shared by these two distinct classes of amorphous solids
include i) both form via out-of-equilibrium, non-thermal processes, ii) their elasticity
develops in response to external stresses, and iii) the cells within tissues are
instantaneously in a state of mechanical equilibrium with each cell maintaining force
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and torque balance. These properties define jammed solids: solids
whose rigidity emerge in response to external stresses Cates et al.
(1998). A further consequence is that cells in tissues can be
represented by force dipoles since force-balance eliminates the
force-monopole contribution. Recent work has uncovered a
universal statistical distribution that governs cell shapes in cell
monolayers across a wide range of tissues and biological
processes Atia et al. (2018). This distribution has been observed
in various contexts, including the maturation of the pseudostratified
bronchial epithelial layer in both asthmatic and non-asthmatic
donors, as well as in the formation of the ventral furrow in the
Drosophila embryo. These findings imply a relationship between
jamming and geometry that extends beyond specific system details,
encompassing both living organisms and non-living jammed
systems.

Crucially, tissues differ from jammed granular solids in their
display of a complex pattern of cell attributes, including the shapes
of cells. Our primary hypothesis is that, in a solid-like tissue, the
organization of cell shapes is driven by the constraints of mechanical
equilibrium. This mechanistic perspective naturally leads to a model
of interacting force dipoles Schwarz and Safran (2013). Recently, this
same mechanistic perspective has been framed as an “emergent
theory” of elasticity of jammed solids (Nampoothiri et al., 2020;
Nampoothiri et al., 2022). From this viewpoint, the organization of
cells in tissues and the elasticity of tissues, emerges from the
constraints of force and torque balance, locally, as the collection
of cells respond to externally imposed forces, which are the natural
“charges” of this emergent gauge theory (Nampoothiri et al., 20205
Nampoothiri et al., 2022). The emergent elasticity theory parallels
that of classical elasticity, with two crucial differences: physical
displacements or strains do not appear, and the elastic moduli
are not material properties but depend on how these non-
equilibrium, jammed solids are created.

In this paper, we adopt this perspective, however, in practice, our
model reduces to the force-dipole models that have been extensively
used to study cell-cell interactions in tissues Schwarz and Safran
(2013), if we assume a set of elastic moduli for a tissue. In future
work, we would like to determine these elastic moduli,
phenomenologically, through the measurement of stress-stress
correlations Vinutha et al. (2023); Nampoothiri et al. (2022).

The article is divided into the following sections. In section 2, we
define the mechanistic model, and discuss how this is related to
other models of cell organizations in tissues and the Vertex model
(Farhadifar et al., 2007; Bi et al., 2016; Li et al., 2018; Yan and Bi,
2019; Das et al., 2021). In section 3, we present the results from
numerical simulations, and discuss relationships with the vertex
model, focusing on the appearance of orientational order and the
organization of the magnitudes of cell polarizations (aspect ratios).
In section 4, we present a summary and discussion of future work.

2 Theoretical model

Each cell is modeled as a force dipole, with two equal and opposite
forces acting along the same line Schwarz and Safran (2013). These
force dipoles interact with each other by virtue of the fact that they are
embedded in an elastic medium, the tissue. The force dipole associated
with a cell is given by the tensor Bischofs et al. (2004):
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Paﬁ = Pﬁaﬂﬁ = anﬁ, (1)

where the cell is viewed as a pair of juxtaposed forces with dipole
strength P and orientation 7. The dipole strength is a measure of the
anisotropy of the cell shape, and can be measured via a cell’s aspect
ratio Atia et al. (2018). Cell aspect ratio is important because it can
influence various cellular processes such as cell division Gibson et al.
(2006), migration Atia et al. (2018); Mitchel et al. (2020), and
differentiation. The aspect ratio is the ratio of the length of the
longest axis of a cell to the length of the shortest axis.

The elastic energy of the 2D tissue due to interaction between
cells modeled here as force dipoles, can be written as E = Y ju,(r;)
P,(r;), where P,,(r;) is the dipole moment and u,,(r;) is the strain
field experienced by the ith dipole. This strain field represents the
response to other dipoles (cells) in the tissue, which is modeled as an
elastic continuum. The strain response is, therefore, expressed in
terms of an elastic Green’s function

Uay (1)) = = ayaBGaB(ri - rj)Pﬁ5(rf) = G“ﬁvl"*(rf - rf)P/‘5(rf) @

Our analysis is based on the 2D elastic Green’s function obtained
from the classic Boussinesq solution for an isotropic elastic medium
Bischofs et al. (2004):

B rotp\ 1

G (r) = ﬂl(“25aﬁ + 2 ); (3)
where the parameters, a; and a,, are defined in terms of the shear
modulus, 4 and the Poisson ratio, v as: a; = v/2mu and a, = (1 — v)/v. The
model presented above is based on the assumption of point dipoles,
which means that the lengths of the dipoles are considered to be much
smaller than the distance between dipoles. Therefore, this purely
mechanistic model does not incorporate any steric interactions or
geometrical constraints arising from the physical shapes of cells. This
distinction will be important to bear in mind when comparing the results
of this purely mechanistic model to the Vertex model. The explicit form
of the dipole Green’s function (Eq. 2), obtained from Eq. 3 is:

1 3
Gaﬁ,yg (1’) =a r—3 (azéaﬁéyg - 60‘5651, - 6/;55“),) + F (8‘1},7’[;1’5

+0pyTals + Opstarg + Sastpry + Opstaly — azéaﬁryrg)
1
—r—7rurﬁryr5]. (4)
Thus the elastic energy of the tissue is given by

E= Z P(l'i)qay (ri)Gntﬂ,y8(ri - l‘j)P(l‘j)Qﬂﬁ(l‘j)» (5)

i<j

where Gog,s(r; — 1)) is the Green’s function containing the elastic
properties of the tissue.

The results presented in this paper are for an isotropic and
incompressible elastic medium, characterized by a Poisson ratio, v =
1/2, and all energies are measured in terms of the shear modulus, y.
It is worth noting that this mechanistic model of cell interactions is
inherently tensorial: the interaction strength depends both on the
relative positions and on relative orientations of the dipole pair. In
Figure 1, we illustrate this feature, for two representative
configurations of force dipoles.

There is increasing evidence that liquid crystalline, nematic
order, and topological defects associated with such order, play a
prominent role in cellular development and function Armengol-
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FIGURE 1

10

B E0.5

_.

-0.5
-1.0

Interaction energy e between a pair of dipoles. The nature of the energy landscape depends on both the relative distance and the relative orientation

of the dipoles. In the two figures shown here, one dipole is fixed at the origin with its axis aligned in the x direction. A second dipole, either (A) parallel to the
first dipole or (B) perpendicular to the first dipole, is placed at different points in space and energy of the configuration is indicated by the color at that
point. Blue and yellow regions represent attractive and repulsive regions respectively. (A) When both dipoles are parallel, the most preferred
configuration is the head-to-tail line up. Stacking along the y-axis is also a preferred configuration. (B) However when the dipoles are mutually
perpendicular, both of the previously attractive regions become repulsive. The new attractive regions lie along 45° to the x-axis.

Collado et al. (2022); Saw et al. (2017); Mueller et al. (2019). This
liquid crystalline order is associated with the shape of cells, and is
viewed as emerging from the collection of cells in tissues behaving as
an active liquid crystal. In general, migrating cells tend to have along
axis, and the movement direction of neighboring cells is strongly
correlated Kawaguchi et al. (2017). For example, Saw et al. (2017).
Demonstrated that defects akin to those observed in nematic liquid
crystals manifest in epithelial tissues. The distribution of stress
around the defects is comparable to that observed in nematic
liquid crystals, and the occurrence of extrusions correlates closely
with +1/2 defects. The interaction potential in Eq. 5, derived from a
mechanistic perspective of a jammed solid, has commonalities with
liquid-crystal models, and as we show in this work, orientational
order can naturally emerge from the interaction between force-
dipoles in a jammed solid. This model of force dipoles in a solid has
features that are distinct from an active liquid crystal model. Before
embarking on a discussion of our numerical simulations and results,
we explore these differences.

In liquid crystals, the microscopic degrees of freedom are the
orientations, 7, of the objects, whether they are ellipsoidal
molecules or cells with a longitudinal axis. Active liquid
crystals, are driven out of equilibrium by active stresses and
fluid flow Mueller et al. (2019). Nematic order, in both
equilibrium and active liquid crystals, is characterized by the
traceless tensor Chaikin and (1995):
Qup = (Aaftg — 84p/2), in  2D. Rewriting the force-dipole
interaction in terms of Q, reveals the qualitatively different

Lubensky

features of the mechanistic model from the energy function in
liquid crystal models (see Supplementary Material for detailed
calculation):

E= ZP(rx)Qay(rx)Gaﬁyé(rz ) (r])QﬂzS(r])

i<j 6
+ 2 P () Quy (1) (1), ©

where we have defined a local field, ha(r;}) = Yi<jGapp(x; — 1,)P (x)).
This representation highlights two important sources of difference
between the force dipole model and a generic liquid crystal model: 1)
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there is an effective field that couples to the nematic field (second set
of terms in Eq. 6), and 2) the field P(r), which is believed to be
distributed broadly.

A universal statistical distribution that governs the shapes of
cells in cell monolayers across various tissues and biological
processes has recently been discovered in research Atia et al
(2018). This distribution has
situations, such as the development of the pseudostratified
bronchial epithelial layer in both asthmatic and non-asthmatic
donors, and the formation of the ventral furrow in the
Drosophila embryo. Using the aspect ratio (defined as the ratio

been observed in different

between the long and short axes of the cell) to quantify cell shape
elongation, Atia et al. (2018) showed that epithelial cells inside
confluent tissues obey a universal distribution that is well described
by a k — T distribution Sadhukhan and Nandi (2022). This naturally
occurring hetereogenity form the basis for an inherent
polydispersity in our model.

An interesting feature, which we will explore in our numerical
studies, is the possibility of different dynamics associated with the
fields P and Qqg. If the two fields relax on the same time scales, then
we have a system with annealed disorder arising from the
polydispersity. In this case, a generalized nematic order
parameter can be defined as p,s =(PQqg). This is similar to the
generalized shape function defined in Huang et al. (2022); Fielding
et al. (2022); Hernandez and Marchetti (2021); Armengol-Collado
et al. (2022) We refer to this dynamics as Model 1, and unless
otherwise stated, the results in the main text are all obtained from
numerical simulations of this model. The configurations of Model
1 can be fully characterized by the order parameter, p,z. This model
is not “frustrated” in the classic sense since the interactions are
specified just by the elastic Green’s function. The local field, fq, (1)),
is strongly influenced by the total magnitude of the polarization,
Y.P(r), and as we will show, numerically, the energy of the
configurations in Model 1 is primarily governed by the total
polarization magnitude of the sample. Since this quantity
depends on the distribution of P(r), the energetics also depends
on the distribution that characterizes a particular tissue line. We will
present results, both for the nature of orientational order, and the
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characteristics of the energy landscape for different realizations of
the distribution of P(r).

If the field P evolves on a much longer time scale, for example,
because the distribution of P is fixed, then we have a situation of
quenched disorder. In this case, the effective interaction is a
quenched random variable: J;; = P(r)G(r; — r;j)P (r;). This model
can be frustrated if the effective interaction J; is incompatible with
long range order, which could lead to the appearance of defects in
the nematic field. This scenario is closer to nematic ordering in
porous media such as aerogels Mertelj and Copic (1997), if we
threshold P and envision regions with P lower than the threshold as
being “pores”. In the mechanistic model, the local field, haﬁ, isalsoa
quenched variable, and this is a difference from classical nematic
models in disordered media. We refer to this quenched-disorder
model as Model 2.

In this paper, we focus primarily on the results of Model 1,
obtained from Monte Carlo simulations. We will also present
analysis of data obtained from vertex-model simulations of
sheared tissues. We will briefly discuss results from Model 2 in
the Supplementary Material.

3 Numerical results

We present numerical results from Monte Carlo simulations of
our mechanistic model. Our primary objective is to understand the
interplay between the spatial organization of the magnitude of the
force dipoles (cell aspect ratios) and their orientations. We also
explore the energy landscape and reveal important connections with
magnitudes of force dipoles.

We compare results from Monte Carlo simulations with those
from Vertex model simulations.

3.1 Monte Carlo simulation results

We perform Monte Carlo simulation to explore the energy
landscape and the spatial organization of the force dipoles
emerging from the interactions between force dipoles (Eq. 5). We
consider a square lattice of size L x L where each lattice site (r;)
contains a point force dipole characterized by a polarization
magnitude P(r;) and an orientation angle ¢; The polarization
magnitude is given by the product of the dipole length and the
dipole force, P (r;) = dF (r;). In our simulations, the dipole length d is
taken to be the same for all dipoles. We also choose d (<« 1), the
lattice spacing, to mimic the point dipole in Eq. 5. The dipole force, F
(r;) is chosen from a distribution, as detailed below.

Several biological cell lines are known to have their aspect ratios
distributed according to a k — I distribution. We replicate this in our
simulations by drawing polarization magnitudes (P) from a
distribution characterized by parameters k and 6, and described
by probability density function

1
T (k)¢

f(P) = pkte /o, ?)

The orientation angles (¢) are randomly chosen between 0 and 7.
The interaction between force dipoles is given by Equation 5, where
a dipole’s nematic tensor qp (r;) = i,#ig can be obtained by writing
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the dipole orientation vector as 71 = (cos ¢, sin ¢). The total energy is
obtained by summing the long range interactions between all pairs
of dipoles with periodic boundary condition on all sides.

To analyze the energy landscape, we access a multitude of
metastable states by thermalizing the system at a high
temperature and then running the simulation at a temperature
that is low compared to the energy of the system: kBTT ~ 107°. For
convenience, we will often use a dimensionless form of the energy
given by ¢ = #l;zdz, where E is the dimensionful energy (Eq. 5), [ is
the lattice spacing, N is total number of dipoles, (P) is the mean
value of polarization magnitude, and d is the dipole length.

During each Monte Carlo step, the two properties of each dipole,
polarization and orientation, are updated following two different
rules. For the orientation, we use model A (non-conserved)
dynamics (Hohenberg and Halperin (1977)), where a new
orientation angle is proposed randomly between 0 and 7. The
polarization magnitudes are updated following model B
(conserved) dynamics (Hohenberg and Halperin (1977)), where
the polarization magnitudes of two randomly chosen dipoles are
exchanged. This dynamics guarantees that the overall distribution of
the polarization does not change during the simulation, however, the
spatial organization of the magnitudes evolves along with the
orientation of the dipoles. We draw the polarization magnitudes
of our force dipoles from a k-distribution for each of our initial
conditions. Individual Monte Carlo runs then lead to a sampling of
the energy landscape corresponding to a particular k-distribution.
Statistical properties can then be inferred by averaging over initial
conditions. Acceptance rate of a proposed update is determined by
the Boltzmann factor exp (—I?—BET), AE being the difference of energy
of the proposed state and the present state, and T'is the temperature.

The simulation is run for a long enough time to ensure that the
system reaches a metastable, local minimum, of the energy function:
the energy fluctuates around a well-defined average value. The time
evolution of the system is monitored by observing three different
quantities - i) the total energy of the system, E, which undergoes a
sharp decrease from the initial high-energy state, and then fluctuates
around a much lower value, ii) the average nematic scalar order
parameter, S = { cos 2¢), which evolves from = 0 in the initial state
to a value close to unity in the low energy state, iii) the average
weighted order parameter, Q = {(P; cos2¢)/{P), which shows a
similar trend, growing from = 0 in the initial state to a large positive
value (>1) in the final state. The time evolution of these three
quantities, for a sample run, are plotted in Figure 2.

3.2 Orientational order

Figure 2 shows initial and final configurations of a sample run.
The initial state (A) shows dipoles that are placed on the sites of the
with
magnitudes drawn from a k — T distribution. The final state (B),

square lattice, random orientations and polarization
which has a much lower energy, has a majority of the dipoles aligned
along the horizontal direction. We also observe that the dipoles are
sorted into well-defined domains by their polarization magnitudes.

In Figure 3, we take a closer look at the spatial organization of
the order parameters S and Q in the final, low-energy states. The
three rows represent results from simulations with three different

values of 6 (Eq. 7). Each row represents adifferent representation of
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FIGURE 2

(A) Initial and (B) final stages of a Monte Carlo simulation of dipoles on a square lattice. Arrows indicate orientation of dipoles, and colorbar indicates

magnitude of polarization. Polarization magnitudes are randomly drawn from a gamma distribution (k = 2.5, 6 = 2.0). (A) In the initial state dipoles have
random orientations and there is no spatial correlation between polarization magnitudes of neighboring dipoles. (B) The final state obtained by slowly
anenealing the system to a low temperature, shows formation of domains of similar polarization magnitudes and domains with non-zero nematic

order. (C) During the anneal, the energy of the system decreases sharply and soon the system gets stuck in a metastable state. (D) Average nematic order
parameter S shows a steady shift from zero to + 1 indicating emergence of nematic order. Here ¢ is the orientation angle of each dipole. (E) The weighted
order parameter Q is plotted against time. In the disordered state the value of this weighted nematic order parameter is close to zero, but as the system
gets ordered its value becomes more positive or negative. In this example, this order parameter approaches unity. Simulation parameters: k = 2.5, 6 = 2.0,

=01 L=15 kgT =0.001, »=05 =05

the same end state, in order to highlight different measures of the
ordering. The leftmost figure in each row shows the two defining
properties of every dipole - orientation (arrows) and polarization
magnitude (heatmap). We see clear formation of domains of large
polarization in all three sets of data. The middle figure in each row
shows local values of scalar order parameter S which again organizes
the system into domains of nematic order, oriented in different
directions. In the rightmost figure of each row, the heatmap shows
local values of the weighted nematic order parameter Q. From the
figures it is clear that Q provides a better characterization of the
“order” than the pure nematic order parameter, S, and clearly
identifies regions where the nematically ordered domains overlap
with domains of large polarization magnitudes. For clarity we have
also plotted the polarization magnitudes using contour lines.
These figures clearly demonstrate, one of our primary findings,
that domains of largest polarization magnitude overlap with
domains of highest nematic order. Although not surprising in
retrospect, this aspect of the mechanistic model is missing from
pure liquid crystalline models of tissues where the magnitude of P is
the same for all cells, and points to the need for characterizing cell-
polarity in tissues by both the magnitude of the polarization and its

Frontiers in Soft Matter

orientation. Our results imply that because of mechanistic
interactions between cells, defects in orientational order would
likely be localized to regions where the cells are not significantly
distorted from an isotropic shape. The consequences of this for
tissue development and morphogenesis needs to be explored further.
Therefore, further exploration of the mechanisms that regulate cell
orientation and the consequences of defects in cell orientation for
tissue development and disease is crucial. This could involve using
advanced imaging and computational techniques to study the
dynamics of cell orientation in tissues, as well as investigating the
role of mechanical and biochemical factors in regulating cell
orientation. Ultimately, a better understanding of these processes
could lead to new therapeutic strategies for treating a wide range of
diseases and disorders.

In a separate set of simulations, of Model 2, we keep the dipoles
fixed at the same positions as in the initial disordered state. Dipoles
do not exchange polarization magnitudes and are allowed to update
only their orientation angles. Please see Supplementary Material for
results.

The dynamics of cells within solid-like biological tissues is, of
course, much more complex than can be captured by Model 1 or 2,
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FIGURE 3

-1

Snapshots of final states obtained from Monte Carlo annealing runs starting with three different initial realizations of the distribution of P. (a) k = 2.5,
0=3.0,(b)k=2560=2.0,(c)k=25,0=1.0.Al three columns (A-C) of each row (a,b,c) shows the same configuration through different lenses. Column
(A) shows heatmap of polarization magnitudes and orientations of dipoles. Column (B) represent the nematic scalar order parameter S = cos 2¢ as
heatmap. The heatmap in column (C) shows the weighted nematic order parameter Q = Pcos 2¢/{P). In columns (B) and (C), the polarization
magnitudes are represented by contour lines. It is evident from column (C) that the domains of large polarizations align with largest absolute values of Q
and hence are coincident with ordered domains. Simulation parameters: v = 0.5, y = 0.5, L = 1.5, [ = 0.1, kgT = 0.001.

discussed in this work. To connect to observations in a much more
realistic model of tissues, we present results from simulations of the
vertex model, subjected to external shear. Most biological tissues
growth,
morphogenesis, wound healing, efc., Are under external stresses.

undergoing shape change due to development,
We have not extended our mechanistic model to explore the effect of

external stresses. Below, we compare the order-parameter
correlations that develop in a vertex model under shear to results

from Model 1.

3.3 Vertex model simulations

The Voronoi-based implementation Bi et al. (2016) of the vertex
model Farhadifar et al. (2007); Li et al. (2019, 2018); Yan and Bi
(2019); Mitchel et al. (2020); Das et al. (2021) is employed to model a
2D cell layer, with the cell centers r; serving as the degrees of freedom
and their Voronoi tessellation dictating the cellular structureBi et al.
(2016). The mechanics of the cell layer are described by the energy
function Staple et al. (2010).

Frontiers in Soft Matter

N
E= Z[KA (A - Ao)2 +Kp(P; - PO)Z] (8)
i=1

, where N is the number of cells, K, and Kp are the area and
perimeter elastic moduli, respectively, and A; and P; are the area
and perimeter of the ith cell. Ay and P, are their corresponding
equilibrium values. The origin of the first term in the expression,
which is quadratic in the cell areas A;, can be attributed to the
incompressibility of the cell volume. As a result, a 2D area
elasticity constant K, and a preferred area A, are produced, as
discussed in Farhadifar et al. (2007); Staple et al. (2010). The
second term in the expression, which is quadratic in the cell
perimeters P;, is a result of the contractile nature of the cell cortex
and is described by an elastic constant Kp Farhadifar et al. (2007).
The target cell perimeter Py, which represents the interfacial
tension between adjacent cells arising from the competition
between cortical tension and adhesion Farhadifar et al. (2007);
Staple et al. (2010). Here, we focus on the case where all cells
share the same single cell parameters: K4, Kp, Py, Ag. We also
choose Ay = A, the mean cell area, which defines the unit of
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Panel showing results from voronoi Vertex model simulations where a constant shear in xy direction is applied to a tissue which undergoes multiple
rearrangements in response to the external shear. Snapshots from the vertex model simulations from (A, B) initial and (C, D) final time step. (A—C) Shows
orientation (arrows) and magnitude of polarization (heatmap), and (B—D) shows weighted nematic order parameter (heatmap) and polarization
magnitude (contours). In the initial state, the system is random with no spatial or orientational order, but as time progresses we observe emergence
of domains with large nematic order which also coincides with domains of large polarization. This matches with our observation from the Monte Carlo
simulations above. (E) Distribution of polarization changes throughout the process unlike the Monte Carlo simulations where polarization distribution is
held constant throughout an annealing run. These fluctuations are characteristic of a steady-state flow at yield stress, which proceeds via a sequence of
elastic loading and plastic failure. Both (F) nematic scalar order parameter S and (G) weighted nematic order parameter Q2 goes from near zero in the

random phase to a large positive value in the ordered phase.

length. For all results presented in this work, we used N = 400
cells.

To study tissue mechanical response in the vertex model, we
subject the model tissue to quasistatic simple shear using Lees-
Edwards boundary conditions Allen and Tildesley (1989); Huang
et al. (2022). We start from a strain-free state, the strain y is
increased in increments of Ay = 2 x 107°, while cells are subject
to an affine deformation given by Ar; = Ay y; X. At each strain step,
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the tissue energy is minimized to find a mechanically stable
configuration.

We plot the data obtained from vertex model simulations in
Figure 4. Figure 4A shows initial state (y = 0) of the tissue with the
cellular aspect ratios indicated by the heatmap and cell orientations
indicated by arrows. Figure 4B shows a configuration of the tissue in
the quasistatic plastic flow regime at larger strain values. Here the
cell shapes are oriented at ~ 45° to the x-axis due to shear. We
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(A) Spatial map of Q in the final step of a Monte Carlo simulation. Two mutually perpendicular directions are identified, r; which is along the largest
polarization domain, and r, which is perpendicular to it. (B) Spatial map of Q2 in the a steady-state configuration of the vertex model simulation. Here ryand
r, are tilted by 45° because a shear is applied to the tissue in the xy direction. (C) Correlations Cpand Cg, in parallel (ry) and perpendicular (r,) directions in
the initial state of Monte Carlo simulation. The initial state is completely random, hence the correlations die out just beyond r = 0. (D) Initial state of

the vertex model simulations also show insignificant correlation. (E) Long range correlation is observed in the final state of the Monte Carlo simulation.
Correlation lengths in the parallel direction are longer than those in the perpendicular direction. (F) Correlations in the final state of vertex model
simulation also show larger correlation lengths in the parallel direction compared to those in the perpendicular direction. The correlation plots have been
produced by averaging over 50 independent Monte Carlo runs (subfigures C and E), and 100 independent Vertex model simulations (subfigures D and F).

observe alignment of cells and formation of domains of large
polarization magnitudes parallel to the direction of the external
shear. Figures 4C, D shows the corresponding heat maps for the
order parameter (), and contour lines indicating magnitude of
polarization. Here again we observe that the domains of large
polarization coincides with domains of large nematic order,
similar to the Monte Carlo simulations. This system reaches
steady state following a very different mechanism from the
Monte Carlo simulations. In the steady state, the cells undergo
elongation and plastic failure Huang et al. (2022) multiple times as
indicated in the time series plot of the mean polarization magnitude.
Still we find end states that are qualitatively similar to those of
annealed Monte Carlo runs. The emergence of order in the system is
indicated by the time series plots of S and ©, both of which starts at a
value close to 0 in the initial state and plateaus to a large positive
value as time progresses.
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3.4 Comparison between Monte Carlo and
vertex model

We are specifically interested in understanding the differences/
similarities between (a) correlations, and (b) energy landscapes that
result from our mechanistic model and the vertex model. These
comparisons are discussed in the context of Figure 5, and Figure 6,
respectively. Our perspective is that both model cell shapes in tissues
but ours is a purely mechanistic model, and comparison between the
two can distinguish between mechanistic and geometrical influences
on the spatial organization of cell shapes. Both Monte Carlo and
vertex model simulations show the common features of i) formation
of ordered domains, ii) formation of domains of large polarization,
and iii) overlap of these two types of domains.

In order to quantify these observations we calculate spatial
correlations of (a) the polarization magnitudes (Cp) and (b) the

frontiersin.org


https://www.frontiersin.org/journals/soft-matter
https://www.frontiersin.org
https://doi.org/10.3389/frsfm.2023.1214159

Malakar et al.

10.3389/frsfm.2023.1214159

A 2
. |[t40
oy
-0.5F 3.5
w
<+ _o.6- 3.0
-0.7f, =2
L 1
-3.25e-3 2.75e-3
(hxx + hyy L3 /Nd?(P)
C 0
_o3l ."..‘( 0.08
A
-0.4 *
. .5 0.06
= .,
-0.5 .
. 0.04
-0.6-. |
-2.5e-3 -2e-3
(hxx + hyy)ut>/Nd?(P)

FIGURE 6

B 6
. . 4.0
B N L3 ....0
=0 ?';"b e 3.5
‘s :'.H. °®
w o el K.
< _0.6- ‘M’r“'-’, ‘1|30
. * j L
4 0.‘\. "
. .. N .. .
—0.7F 2.5
| |
0 2e-5
hxy[.ll3/Nd2(P)
D 6
.
-0.3f* ".».... 006
L ."%.:.o:}
ol Lr
. 0.4 ‘.%.'. 0.06
LX)
3 b °
_0.5 N ..‘ L]
¢ 0.04
—0.6 ! 1
5e-4 10e-4
Byt ING2(P)

Energy versus average mean field. The y-axis represents dimensionless energy in units of 1/, and x-axis represents components of the dimensionless

field tensor h. Each data point represents final time frame of a different experiment. The color of each point is the 8 value of the corresponding polarization
distribution. (A, B) Results from Monte Carlo, (C, D) Vertex model simulations. Energy is calculated using Eq. 5 for both models. In case of the vertex model,
we have assumed the Poisson ratio of the tissue to be 0.5. The imposed shear in the vertex model, in the xy direction creates a strong effective field in

that direction, which is absent in the Monte Carlo simulations without shear.

order parameter (Cp) for the two models (Figure 5). In the initial
states, the correlation of both P and Q die out very fast, indicating
that there is no correlation in these variables to start with. Since we
observe formation of anisotropic domains with a long and a short
axis in the final states, we calculate correlations in two independent
directions - i) parallel to the largest domain and ii) perpedicular to it.
Because of the externally imposed shear, the “parallel” direction is
always at 45° to the x-axis in case of the vertex model simulation. In
the case of Monte Carlo simulations, for each final state, we align the
largest domain along the x-axis, for convenience, and determine the
average correlations over all final states. In the final states of both the
Monte Carlo simulations and the steady states of the vertex model
simulations, Cp and Cg decay simultaneously indicating a strong
correlation between the two quantities. For the Monte Carlo runs we
see a significant increase in correlation lengths of both quantities to
almost 1/5-th of the system size in perpendicular direction and
system size in parallel direction. This sharp contrast between
longitudinal and transverse correlations is also evident in
Figure 3C depicting nematic order in Armengol-Collado et al.
(2022). There it was remarked that these “chain-like” correlations
are reminiscent of force-chains in granular media. We want to
emphasize that the origin of this type of correlation in the
polarization that we observed is the same as that observed in
stresses in granular media (Nampoothiri et al,, 2020). In Figures
5A, B the heatmap of Q is analogous to a heatmap of grain-level
stresses shown in Figure 3 of Nampoothiri et al. (2020), since Qis a
measure of P,,. The origin of the longer-ranged correlations of the
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dipole tensor P,g in our model tissues and stress components in
jammed granular solids is the imposition of the local constraint of
force balance on each cell Bischofs et al. (2004) and grain
(Nampoothiri et al, 2020; Nampoothiri et al, 2022). As
discussed at length in the context of granular solids, this
constraint leads to a Gauss’s law type constraint in the
2020;
Nampoothiri et al., 2022), leading to a pinch-point singularity in
stress-stress that
correlations in the longitudinal direction. The Greens function in

continuum elasticity theory (Nampoothiri et al,

correlations implies much longer-ranged
Eq. 5 encapsulates the force-balance constraint, and is directly
responsible for the observed difference between longitudinal and
transverse correlations. The visual appearance of “force-chain” like
structures is a reflection of these correlations.

As in the Monte Carlo simulations, the correlations observed in
the steady-state of the vertex model (Figure 5F) are stronger in the
parallel direction than those in the perpendicular direction. But the
correlation lengths are systematically smaller in the vertex model.
We believe that this is due to a difference in cell dynamics in the two
models. Cell dynamics in the vertex model simulation is subject to
geometric constraints which prevent “long-range exchanges” of cell
aspect ratios (polarization magnitues), allowed in Model 1 of the
mechanistic model. These Monte Carlo moves in Model 1 facilitate
formation of large ordered domains of polarization magnitudes,
spanning the system size. As observed in Figure 5B, the steady states
of the vertex model are instead characterized by multiple domains of
large polarization magnitudes. This reduces the correlation length in
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(A) In this figure we plot the time dependence of energy of the system for 10 independent MC runs. Each run is characterised by an effective value of
k and 6. Each system reaches a different steady state energy depending on its specific k, 6 value. (B) Distribution of normalized energies ¢ obtained from

the last configuration of each Monte Carlo run.

the vertex model simulations compared to those in the Monte Carlo
simulations. If instead of Model 1, we analyze the results of Model 2,
where we spatially quench all the force dipoles in the Monte Carlo
simulation, we observe several small domains, and much shorter
correlations lengths (See Supplementary Figure S1 in Supplementary
Material). We expect the dynamics in a physical tissue to lie
somewhere in between the two extreme scenarios represented by
Model 1 and Model 2, because there are additional constraints on
how cells can migrate or change their geometrical shape. It is more
likely that there is a characteristic length scale over which cells can
exchange polarization, which will define a domain size.

Lastly, we analyze the energy landscape explored at low
temperatures by looking at the energies of the final states in the
simulations. In the Monte Carlo simulations, independent runs
achieve different values of the final energy. We observe,
however, that if the simulation is run with a fixed set of P
but with different spatial realizations in the initial state, they
attain final states with energy values that are virtually
indistinguishable from each other. This observation indicates
that the energy landscape at low temperatures is not sensitive to
the initial configurations but is controlled by the particular
realization of P, which are drawn from a k — I distribution. To
quantify this feature, we plot the energy as a function of the
average field h,g (Eq. 6) in the final states. Each point in Figure 6
represents one configuration, with its y coordinate indicating
total energy and x coordinate indicating value of average field
hey = ﬁZiZquaﬁ,yﬁ(n —1;)P(rj). We see a strong correlation
between energy and the average local field k., + h,, in both
Monte Carlo and vertex model simulations. As seen from Eq. 6,
the average local field is controlled by the total polarization,
Y.iPi. We have checked that replacing average field h,g by the
total polarization produces plots that capture the same
correlation as seen in Figure 6. The vertex model runs also
show a strong correlation between final energy and the
transverse field h,, because of the shearing in that direction,
but this trend is absent in the Monte Carlo simulations, where
the values of h,, are also much smaller because of the isotropy of
the system.
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3.5 Energy landscape

The other aspect of the model that we explore in this study is the
energy landscape explored in Model 1. Figure 7A shows the time
dependence of energy for ten independent Monte Carlo runs. Each
of our simulations is initiated with a set of polarization magnitudes
drawn from a k — T distribution which is then kept fixed throughout
that run. The initial configuration is completely random and hence
is a high energy state. As the simulation progresses, the system
approaches a low energy configuration. It is evident from the plot
that each system approaches a different value of the final energy. The
energy of the final state depends on the average value of polarization
magnitudes of the dipoles. We performed three different sets of
simulations fixing the value of k to be 2.5 but with 6 = 1.0, 2.0, 3.0.
Since the systems are of finite size, each set of polarization
magnitudes drawn from, nominally, the same k — I' distribution
is characterized by k, 0 values that are slightly different, leading to
different values of the final energy.

If we normalize the final energies from all three sets of runs by
the square of the average polarization of the respective run, then they
fall in a pretty narrow range of values as shown by the distribution in
Figure 7B.

In Figure 8A, we plot the normalized final energies of each
system against their respective k, 6 values. In all three sets of data, the
range of the normalized energy is approximately the same. We
divide the data points into three sections by their energy values and
plot correlations in two mutually perpendicular directions 7 and 7, .
7) is defined as the direction in which the largest polarization
domain is aligned and correlation C is calculated by taking pairs
of points lying on thin strips along this direction. Similarly for C, we
take pairs of points on thin strips along the perpendicular direction.
We observe that both P and  have longer-ranged correlations in the
parallel direction, as compared to the perpendicular one. In
addition, as we go to higher values of absolute energies (lower in
the energy landscape) the systems become more strongly correlated
in the parallel direction whereas energy has no significant effect on
the correlations in the perpendicular direction. Unsurprisingly, the
conclusion is that lower energy states are more ordered.
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(A) Scatter plot of absolute values of final energy of each run against the respective k, 6 values obtained from the particular distribution of P. The three
groups of data correspond to simulations run at three sets of parameters k = 2.5 and 6 = 1.0, 2.0, 3.0. The actual values of k, 8 in these finite size systems
vary about these mean values. The scaled energy values in all three groups of points have the same range. We divide the data by the values of final scaled
energy into three sections ¢, &, €3, such that each section has equal number of data points. (B) Schematic diagram showing 7; and 7, directions with
respect to the domain of largest polarization. (C) Correlation functions Cp ad Cq, in the parallel direction averaged over points belonging to the energy
sectors & < & < €3. Both p and Q have the longest correlation length corresponding to ez, and shortest correlation length corresponding to &;. (D)
Correlation functions calculated in the same way in the perpendicular direction. There is no significant effect of energy on the correlation length in this

direction.

Conclusion

Using a combination of numerical simulations and theoretical
analysis, our study investigates the interplay between the spatial
distributions of cell aspect ratios and orientational (nematic) order,
as well as the complexity of the resulting energy landscape.

Our main finding reveals a strong correlation between nematic
order and the magnitude of cell polarizations (aspect ratios), which
are known to follow k — T distributions that vary across different
tissue types. Therefore, it is critical to analyze the spatial
organization of both cell aspect ratios and orientations in order
to fully understand tissue morphogenesis and development.

These results have significant implications for the field of tissue
engineering and regenerative medicine, as they highlight the
importance of understanding how cell shape and orientation
impact tissue function and organization. By better understanding
the complex interplay between these factors, we can develop more
effective strategies for engineering functional tissues in vitro and for
promoting tissue regeneration in vivo.

The mechanistic model used in the study has not been extended
to explore the effects of external stresses on tissue shape changes.
This means that the model does not take into account the influence
of external factors that can affect tissue shape and organization. In
reality, the shape changes that occur in biological tissues are often

Frontiers in Soft Matter

11

the result of complex interactions between internal cellular processes
and external mechanical and biochemical factors. For example,
during embryonic development, the shape and positioning of
organs are influenced by mechanical forces generated by the
surrounding tissues and organs, as well as by the biochemical
signals that regulate cell behavior.

Therefore, it is important to extend the mechanistic model used
in the study to include the effects of external stresses on tissue shape
changes. This would require incorporating additional parameters
and variables into the model, such as the magnitude and direction of
external forces, the stiffness and elasticity of the surrounding tissues,
and the presence of biochemical signals that modulate cell behavior.
Such an extended model would provide a more realistic
representation of tissue shape changes and could help to uncover
the underlying mechanisms that regulate these processes. This could
ultimately lead to a better understanding of how tissues develop,
grow, and repair, as well as how they respond to various
physiological and pathological conditions.
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