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Abstract
The last decade has witnessed a surge of theoretical and computational models to describe the
dynamics of complex gene regulatory networks, and how these interactions can give rise to
multistable and heterogeneous cell populations. As the use of theoretical modeling to describe
genetic and biochemical circuits becomes more widespread, theoreticians with mathematical
and physical backgrounds routinely apply concepts from statistical physics, non-linear
dynamics, and network theory to biological systems. This review aims at providing a clear
overview of the most important methodologies applied in the field while highlighting current
and future challenges. It also includes hands-on tutorials to solve and simulate some of the
archetypical biological system models used in the field. Furthermore, we provide concrete
examples from the existing literature for theoreticians that wish to explore this fast-developing
field. Whenever possible, we highlight the similarities and differences between biochemical and
regulatory networks and ‘classical’ systems typically studied in non-equilibrium statistical and
quantum mechanics.
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1. Introduction

Despite sharing similar genetic information, cells in living
organisms can diversify into many different cell types, each
of whom carrying a distinct and unique function [1]. For
example, cells in the human body differentiate into more than
200 different cell types that can be distinguished based on
the different profiles of molecular signatures [2]. The pro-
cess of molecule production can be summarized at a very
simplified level by stating that special sequences of the gen-
ome (genes) are used as templates to synthetize messenger
RNA (mRNA) molecules, which are in turn translated into
proteins by the cell’s machinery. Yet, transcription (gene to
mRNA) and translation (mRNA to protein) are not independ-
ent processes, but rather happen in a complex cellular envir-
onment. For example, special molecules called transcription
factors (TFs) can regulate the production of other molecular
species by binding to the DNA in proximity to genes and either
facilitating or obstructing transcription [3]. This seemingly
simple mechanism can give rise to a spectacular level of com-
plexity when considering that living cells have tens of thou-
sands of genes, and their mutual interactions are only partially
understood [4, 5].

The purpose of this review is to provide an overview of
the mathematical strategies used to describe this complex
phenomenon and predict how cellular heterogeneity emerges
from the underlying regulatory dynamics. The fundamental
assumptions connecting all these modeling strategies is that
it is possible to describe, with some extent of success, the
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intricated interactions between genes and TFs with mathem-
atical models (such as differential equations or logic circuits),
and that the outputs of these models (such as probability dis-
tributions or attractors) can be related to the different states
that cells can attain. We acknowledge the existence of other
recent reviews that discuss the application of mathematical and
physical concepts to chemical-reaction systems, stochastic
events, and simulation strategies in biological systems
[6-9]. Compared to these reviews, which explore the the-
oretical aspects in deeper details, we aim at presenting a
more hands-on and simplified overview of the main theor-
etical strategies necessary to investigate the multistability
and heterogeneity in biological systems, explicitly discuss-
ing examples and offering hands-on tutorials and simula-
tions. With this approach, we aim to create a unifying ground
not only for theoreticians interested in biological systems,
but also for biologists who are interested in the theoretical
tools to model complex biological systems. In this sense, this
review can be seen as a set of suggestions to tackle gene
regulation and biochemical interactions at different levels of
complexity.

In the first section of the review, we introduce theoretical
and computational methods to model the emerging dynamics
of gene regulatory networks and their contribution in many
biological open problems. First, we discuss discrete, stochastic
frameworks to model transcription, translation, and interac-
tions between TFs. Further, we introduce a continuous frame-
work that allows to model larger circuits with several TFs,
and discuss how to characterize multistable systems with the
pseudopotential landscape, the ‘systems biology’ analogy to
the potential landscape. Finally, we discuss strategies to tackle
large circuits, where missing information about the model’s
parameters require approximation methods such as Boolean
networks and parameter randomization, and provide an intro-
duction to how gene regulatory networks can be inferred using
high-resolution single cell sequencing data. This section also
includes hands-on tutorials to simulate some of the simplest
and most widely used circuit structures in the literature. In the
second section of the review, we discuss in detail three spe-
cific biological examples where the application of these meth-
ods led to new and significant biological insights, including
the epithelial-mesenchymal transition (EMT), differentiation
of stem cells, and cell-cell communication through Notch sig-
naling. These examples, which were chosen not least due to the
expertise of the authors, cannot fully do justice to the extens-
ive available literature, and we would like to acknowledge
the many outstanding works that could not be included here
due to the limitation of space. While discussing these three
examples, we introduce further mathematical tools that have
been especially important in their respective fields, includ-
ing: the modeling of non-coding RNA in the EMT, the applic-
ation of quantum many-body formalism in the modeling of
stem cell differentiation, and spatial models with many cells

in the description of cell-cell communication through Notch
signaling.

2. Mathematical methods to study the multistability
of regulatory networks

2.1. Discrete models of circuits: from reactions to the
chemical master equation (CME)

2.1.1. Construction of the CME for protein synthesis.  In this
first section, we start by analyzing theoretical approaches that
aim at modeling the stochastic nature of individual molecu-
lar reactions. The basic steps in molecule production include
transcription, where a mRNA transcript is created, and trans-
lation, when the final molecule is produced from the mRNA
transcript. This working model can be formalized by assum-
ing that a gene transcribes mRNA molecules with constant rate
k. Moreover, each mRNA molecule translates into proteins
with rate constant k,. Further, if mRNA and protein molecules
degrade with rate constants ,,, 7,, we can write the following
set of reactions

S, (1a)
kym  ~ypp
—p—0. (1b)

Reactions (la) and (1b) are summarized in figure 1(A).
Starting from copy numbers of mRNA and protein (m,p) at
time ¢, the next reaction will move the system to a new con-
figuration (m’,p’) as shown in figure 1(B). Since the rates in
the reactions (la) and (1b) are either constant or depend lin-
early on (m,p), the copy number of mRNA or protein can be
increased or decreased only by one molecule at a time. This is
not necessarily the case; in more complex processes molecules
might bind or degrade as oligomer complexes, which can-
not be described by linear rates; we will discuss this case in
more details at a later point when introducing Hill functions.
It is also interesting to note that, in equations (1a) and (1),
four rates control the copy number of two molecular species.
Therefore, infinite combinations of the parameters (k,,, kp, Y,
7p) can give rise to the same (m, p) state. Recent studies using
high throughput data suggest, however, that only certain para-
meter combinations are naturally observed as a result of balan-
cing between transcription precision, which is achieved with
large rate constants, and costs, which are minimized by low
rate constants [10].

Starting from reactions (1a) and (1), we aim at construct-
ing an equation to predict the probability to observe a certain
combination of copy numbers (m, p) at any given time. To con-
struct the chemical master equation (CME), we define a dis-
crete, infinite set of probabilities { P (m,p, 1) }, so that P (m, p, 1)
describes the probability to observe m mRNA molecules and
p protein molecules at time ¢. These probabilities satisfy
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Figure 1. Circuit and reactions for transcription-translation chain.
(A) mRNA molecules are transcribed from the promoter with
constant rate k. Each mRNA molecule is translated into proteins
with rate constant k,. Both mRNA and protein degrade with
degradation rates 7yu, vp. (B) Schematic representation of all the
possible reactions leading to or out of the configuration with m
mRNA transcripts and p proteins.
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time 1)
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Following the reaction scheme of figure 1(B), we can write
an evolution equation for the set of probabilities

PUL) — [P~ 1,9) ~ P (m,p)] + [+ 1) P+ 1,p)
P () + k[P (mp — 1) P (m.p)]

+% [(p+ 1) P (m,p+1) —pP (m,p)]. 3)

In equation (3), all the positive and negative terms repres-
ent influx and outflux of probability. In other words, posit-
ive terms in equation (3) are associated with reactions that
bring the system to the (m,p) state, whereas negative terms
are associated with reactions that bring the system out of the
(m, p) state (see again the reactions in figure 1(B)). Moreover,
equation (3) can be further simplified with reasonable assump-
tions when different terms on the right-hand size are associ-
ated to well-separated timescales. Specifically, one common
approximation is to assume a quasi steady state approximation
(QSSA) for mRNA, whereby the variable m is substituted by
its average value &, / ;. In other words, the number of mRNAs
can be treated as a constant if it equilibrates much faster than
the protein. This assumption trades a more faithful descrip-
tion of the biological system for a reduction in complexity and
computational time, and may or may not be accurate depend-
ing on the specific biological systems. For example, tran-
scription and translation have similar rates in bacteria (about

1 min/gene and 1 min/protein), thus making QSSA a poor
approximation. Translation, however, is significantly slower
in mammalian cells (about 10 min/protein) due to an interme-
diate reaction called ‘RNA splicing’, which will be discussed
later in section 2.1.5, thus justifying transcription QSSA [11].
For comparison, protein loss due to degradation and/or cell
division (typically referred to as ‘dilution’) has a typical times-
cale of hours to days depending on the organism [11], thus
making it the slower reaction in equation (3). The simplified
CME after mRNA QSSA describes only the protein copy num-
ber p

%§Q2+HP@_U_P@n+wup+npw+1%wP@m

“

where k = k,m = k,k,, /7m- equation (4) describes a birth-
death process with rate constants (k, 7,). The steady state solu-
tion of equation (4) can be evaluated with different analytical,
numerical or simulation methods that are explored in detail in
the following section.

2.1.2. Solving and simulating the birth-death CME.  The
steady state solution of the CME (equation (4)) is the com-
plete set { P, } obtained by solving d’;":s = 0. In this section,
we discuss three methods that may be suitable to tackle differ-
ent types of CMEs using the birth-death process (equation (4))
as an example. The insight box 1 in section 2.1.4 offers the
explicitly solution/implemented of the three methods. First, it
is possible to find analytical solutions of the CME when the
number of variables is small and the reactions are zeroth or
first order. Typically, one first takes advantage of the fact that
the equation for Py** has a simpler form since 7 is strictly semi-
positive. Then, all the other P,* can be found iteratively. This
method can be successfully applied to the birth-death process,

yielding P, = -} (K) e~ (see insight box 1).

5
Second, generating functions provide a more general

framework to solve CMEs by converting the infinite-
dimensional system of equations into the single differential
equation. In the simple case of the birth-death process, this
approach can be developed analytically (see insight box 1).
Nonetheless, large number of variables and higher-order inter-
action terms typically prevent analytical solutions and poten-
tially make numerical approaches expansive.

Finally, a third possibility to study the CME is to explicitly
simulate the dynamics using algorithms such as non-rejective
Monte Carlo, more commonly known as Gillespie algorithm
[12, 13]. In the Gillespie simulation scheme, chemical reac-
tions are treated as independent events (see for example [14,
15]). Under this assumption, the waiting time until the next
realization of any given reaction with rate w is an exponentially
distributed random variable with mean and standard deviation
equal to 1 /w. Therefore, an iteration of a Gillespie simulation
withi = 1,..., M reactions includes the following steps. First,
compute the individual reaction rates w;. Second, draw an
exponentially distributed random variable (7) with rate para-
meter W= Zf‘l:l w; that represents the waiting time until the
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Figure 2. Testing the mRNA quasi steady state approximation in protein synthesis. (A) The distribution of protein copy number for the full
model presented in equation (3) (blue) and for mRNA QSSA corresponding to equation (4) (red). Solid lines indicate Gaussian fit. (B) Blue:
The standard deviation of protein (p) distribution for increasingly fast mRNA dynamics. The dashed black line indicates the parameters used
in panel (A). Red: standard deviation for mRNA QSSA. The code to simulate protein synthesis is available in our protein synthesis tutorial.

next reaction occurs. Finally, draw a uniformly distributed ran-
dom variable (r) to select which reaction occurs. The prob-
ability of each reaction is given by its relative weight w;/W
(a pseudocode is presented in the insight box 1 for the birth-
death process). The result of the simulation is a trajectory of
the number of molecules n(f) as a function of time starting
from an initial condition specified by the user. In the long-time
limit, the statistics of n(#) will resemble closely and closely
the steady-state distribution p obtained with iterative and gen-
erating function methods (provided that these approaches are
feasible for the specific system under study). The long-time
limit is identified as a timescale that is substantially larger
than any typical timescale in the reaction scheme, and there-
fore depends on the parameters of the model (see the insight
box 1 for this specific calculation in the birth-death process).

The steady state solution of the simplified birth-death pro-
cess modeled by equation (4) is a Poisson distribution with
mean (i,) and variance (o,,) both equal to kp/vp. However,
as discussed in more detail by Tsimring [7], a full model that
takes into account mRNA dynamics leads to a broader protein
copy number distribution with variance equal to

ky )
oy, = +1). 5
p = Mp (’Yp+’}/m (5)

Experimentally, it is well known that mRNA and protein
count distributions in cells can exhibit variances much lar-
ger than the predicted Poisson distribution of the birth-death
CME [16]. This effect arises due to the so-called transcrip-
tional bursting. Namely, promoters do not transcribe mRNA
molecules at a constant rate, but rather switch between ‘ON’
and ‘OFF’ periods, thus leading to bursts of mRNA molecule
production on a typical timescale of a few minutes [16], thus
leading to broader copy number distributions. The contribu-
tion of mRNA dynamics on protein copy number dispersion
can be quantified with Gillespie simulations. The protein copy
number distribution over the course of a long simulation is nar-
rower in the simpler mRNA QSSA model, compared to the
full mRNA-protein model (figure 2(A)). The relation between
width of the distribution and mRNA QSSA can be quantified
by testing the performance at different mRNA dynamics

speed. The average, expected value of mRNA copy num-
ber is determined by the model’s parameters: m* = ki, /.
Therefore, increasing both the mRNA production rate k,, and
degradation rate +,, by the same factor does not modify the
expected mRNA copy number, but makes the mRNA equilib-
ration dynamics faster, thus making mRNA QSSA more and
more precise. As the value of these parameters is increased,
the standard deviation of protein (p) copy number in Gillespie
simulations decreases, and finally becomes comparable to the
QSSA standard deviation when the mRNA dynamics is suffi-
ciently fast (figure 2(B)). Further discussion of transcriptional
bursting and mathematical attempts to quantitatively capture
model it are reviewed in [7, 16].

Both the full and QSSA models of protein synthesis res-
ult in a distribution with a single peak, which can be iden-
tified as the state assumed by the system, corresponding to
a specific cell phenotype (see figure 2(A)). More complex
systems can instead exhibit multimodal distributions, where
the different peaks can be interpreted as the different, co-
existing states/phenotypes available to a cell. By adding a self-
activation loop, the probability distribution obtained with the
Gillespie simulations becomes bimodal, with one peak corres-
ponding to a low-expressing state and one peak corresponding
to a high-expressing state (figure 3(A)). In the self-activation
loop, the protein p acts as a TF and activates the transcription
of its own gene [17]. Furthermore, the simulated trajectory of
protein copy number highlights transitions between the low-
expressing and high-expressing states driven by the stochastic
fluctuations (figure 3(B)). A detailed analysis of this circuit
motif can be found in [17]. Despite its simplicity, the self-
activating loop can describe realistic biological systems, as
in the case of the cell fate differentiation in the developing
fruit fly embryo based on the self-activation of the ffz gene,
where the authors further test many parameter combinations
and identify the conditions enabling bistability [18].

2.1.3. CME for the toggle switch and larger networks.  The
CME formalism can be extended to study the coupled dynam-
ics of a network of interacting species. In this section, we
will set up the CMEs to describe the toggle switch, a simple


https://github.com/federicobocci/Computational-Modeling-of-Gene-Regulatory-Networks/blob/main/Protein%2520Synthesis.ipynb

Rep. Prog. Phys. 86 (2023) 106601

Review

50
0.05 1
401
0.04 4
2 ©
2 £ 30
S 0031 g
2" :
£ 2
2 § 204
S 0.02 4 <
& a
10
0.014
0
0.00 1 . . , : v : . : :
0 10 20 30 40 50 2000 4000 6000 8000

p (copy number)

10000

Simulation step

Figure 3. Bimodal dynamics of the self-activating gene. (A) The bimodal copy number distribution in the self-activating gene.
(B) A sample of simulation trajectory highlights the transitions between low expression and high expression.

A

l: kon/kofr @ a

Gene X

k|-

oo

" Y ® kon/kosr

—

@ GeneY

Fixed Sx, Syi (Tl m — 1)

konjofs I}’m
yn y(n+1)

—
—_—

(n—1,m)
konsors

konjorf
kOn/OfoY(m +1)

n,m+1)

(nm) ¥=—="(n+1,m)

Fixed n, m:

(0,0

(ﬂ) n2||k_

(kikp/ky)m?

—
e —

(1,0)

ey

ky
(k+kD /kM)m?‘

’ 4]{,

(1,1)

Figure 4. Circuit and reactions in a CME model of the toggle switch. (A) In the toggle switch, gene x encodes for protein X (red blocks). X
can dimerize and bind to DNA to inhibit the production of Y. Similarly, ¥ dimerizes and inhibits X. The dimerization reactions are fast
compared to protein production and can thus be treated as instantaneously equilibrated. (B) Schematic of all the possible reactions leading
to or out of the configuration (n,m, Sy, Sy). For convenience, reactions are separated into two groups: changes in molecule copy number and

changes in the state of activity of one of the promoters.

motif composed by two genes that mutually repress each other,
which can be seen as a basic mechanism to model differenti-
ation between two distinct cell types [19]. This method can
serve as a general example to tackle more complex networks
of interconnected biochemical species.

In the toggle switch, two genes (x and y) transcribe mRNA
for the transcription factors (TF for brevity in the following) X
and Y. We will follow the same strategy of the birth-death pro-
cess of equation (4) and assume QSSA for the mRNA species
x and y to reduce the number of degrees of freedom and para-
meters. After being produced, TF X can inhibit the production
of Y by binding to the promoter transcribing for gene y, and
vice versa (see figure 4(A)).

TFs do not necessarily bind and regulates the transcription
of other species as single molecules; often, they first dimer-
ize (or create higher-order oligomer complexes) and then bind
to DNA. Here, we assume that both TFs X and Y dimerize
with forward and backward rate constants kp, ks, as often
assumed in existing mathematical modeling [20]. Molecular
binding and unbinding that regulate TF dimerization have
much shorter timescales compared to protein synthesis, thus
providing a possibility to further simplify the model by
assume QSSA for the dimerization/monomerization reactions
[21] (see figure 4(A)). Thus, the steady state concentrations
of the dimers are [X;] = (kp/ky) X* and [Ya] = (kp/ky)Y?.
Following dimerization, the dimers bind and unbind to the
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DNA with rate constants k., k_. Both TFs are produced at a
rate ko when their respective promoters are not bound; the rate,
however, decreases to k; < ko when the promoters are bound
to the dimerized form of the TF. Therefore, the toggle switch
can be viewed as two separate birth-death processes where the
final molecular products X and Y bind to the other protein’s
gene to inhibit its production. All the considered reactions are
depicted in figure 4(A).

The toggle switch can be characterized with four vari-
ables: two positive integer variables (n, m) accounting for the
number of molecules for species X and Y, respectively, and
two Boolean variables (S, Sy) that encode the state of the
two promoters. S; = 0 implies that promoter of species i is
unbound, while S; = 1 implies that promoter is bound, respect-
ively. Thus, starting from a generic configuration (n, m, S.Sy)
at time ¢, a subsequent reaction can either modify the copy
number of X and Y or change the state of one of the two
promoters. All reactions and rates are illustrated in figure 4(B).
Following the CME approach, we write an evolution equation
for the probability P(n, m, S,Sy). To write the CME in a com-
pact form, we define the following functions. First, a general-
ized production rate function

k(S) =ko(1—8)+k (S). (6)

This function assumes the value ky when the promoter is
unbound (S = 0) and k; when the promoter is bound (S = 1).
Furthermore, a generalized rate function to describe bind-
ing/unbinding of a promoter

kikp

M

f(S,k) =k_S+ K (1-8). (7)

This function returns the unbinding rate k_ when the pro-
moter is occupied (S = 1) and the binding rate %kz if the
promoter is free (S = 0). In this definition, k is the molecu-
lar copy number of the TF that inhibits the promoter. With
these definitions, we can formally write the CME for the toggle
switch by listing all the reactions depicted in figure 4(B)

dP (n,m,Sx, Sy, 1)
dr
= —[yn+ym+k(S) +k(Sy) +f(Sx,m)
+7(Sy,n)] P(n,m,Ss,Sy,t) +v(n+1)P(n+ 1,m,Sx,Sy,1)
+y(m+1)P(n,m+1,8,8y,t) +k(Sx)P(n—1,m,S,,Sy,1)
+k(Sy) P (n,m—1,8,Sy, 1) +f(1 — Sx,m) P(n,m,1 — Sy, Sy,1)
—f(1—=Sy,n)P(n,m,S¢,1—S,,1). 8)

In equation (8), the first term on the RHS accounts for all
the outflux terms from the configuration (n,m, Sy, S,), includ-
ing degradation, production and change in the promoters’
states. The second term accounts for influx due to degrad-
ation in configurations with higher molecule copy numbers;
the third term counts influx due to molecular production in
configurations with lower copy numbers; and the fourth term

considers influx due to changes in the state of one of the pro-
moters. This equation is far too complex for an exact solution
with iterative methods; moreover, the relatively large number
of variables makes equation (8) stiff for generating function
approaches. Simulations with the Gillespie algorithm, how-
ever, easily provide information about the relaxation dynamics
and steady state (see for example [22, 23]).

This treatment of the toggle switch can be considered as
a footprint to tackle larger circuits of interconnected genes
and TFs comprising transcription, translation, degradation,
molecular binding and transcriptional regulation. As size of
the circuits increases, understanding reasonable approxima-
tions to decrease the complexity of the model becomes crucial.
Here, we applied some common approximations including
QSSA for mRNA dynamics and protein-protein binding. In
general, these approximations yield good results when times-
cales are well-separable. Therefore, depending on the para-
meters of the specific system of interest, QSSA might or might
not be a suitable approximation.

2.14. Insight box 1: three ways to compute the steady state
of the birth-death CME. In this insight box, we discuss
three approaches to tackle the birth-death CME derived in
section 2.1

dp,
dr

=—kP,+ kP — P, +y(mn+1)Pry1. (9

2.14.1. lterative solution of the CME.  This infinite system of
equations can be solved by taking advantage of the simplified
form of the equation for Py and then using induction. Since the
copy number is strictly positive (n > 0)

dPy

dt

Steady state dPy/dr = 0 implies Py = (k/~y) Py. Similarly,
dP,/dr =0 yields

= —kPo +yP;. (10)

1 1/k\?
Py=— (kP —kPo+~P)) ==~ ) Pp. (11
2 27( 1 o+ YP1) 2(7) 0 (11)

Repeating the process iteratively to higher-order equations,
one finds the general expression for p,

1 k n
Pn:<> P07
n! \ v

where the constant P can be calculated by imposing normal-
ization of the total probability

12)

oo oo 1 k n .
zyymE:(:>PwéL (13)
n=0 n=0 n' v

Thus, the steady state set of probabilities follows a Poisson
distribution with rate A = k/~y

1 n
P,=— (k> efg.
n! \ vy

(14
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2.14.2. Generating functions.  Generating functions advant-
ageously transform an infinite-dimensional problem into a
one-dimensional problem. Given the set of probabilities
{P,,n x [0,00]}, the generating function ¢ (z) is defined as

¢(z) = P (15)
n=0

From equation (15), an equation for the temporal dynamics
of ¢ (z) can be obtained by taking a time derivative and substi-

tuting the actual expression of ap n/ qz- Then, the probabilities
P, are obtained by differentiation ¢ (z)
10"¢

”:ﬂazn

(z=0). (16)

Using the definition of ¢ (Z)of equation (15), we write the
single ordinary differential equation (ODE) that describes the
temporal variation of ¢ (z)

d¢() S dPVl n = n = n
dtz :ZEZ =—kZPnz +kZPn71Z

n= n=0 n=0

—’YZHP11Zn+’YZ(n+1)Pn+1Z"- a7n
n=0 n=0

This equation can be tackled as follows. The first term
on the RHS is simply —k¢ (z). In the second term, we shift
indexing to m = n — 1; then, it becomes apparent that the term
equals +kz¢ (z). In the third term, we can eliminate the factor
n by exploiting d% (z") = nz"~1; then, the term can be rewritten

d¢ (2)

as —yz—g, . Finally, combining the tricks used for the second
and third terms, the fourth term becomes V%EZ). The long-

time limit solution %gz) =0 1is then

1-9% —a-9(4)oc.

(18)

In any point z# 1, this equation has the simple
general solution ¢ (z) =C 1e%Z + C,. The probabilities
{P,, n x [0,00]} are then obtained by differentiating the gen-
erating function

-0 LY e

I onl (19)
n! nl \ vy

This is the same expression found with the iterative method,

with the parameter C in place of Py. Therefore, normalization
k

n
of the probability set {P,} yields P, = 1 (ﬁ> e 7.

n!

2.14.3. Gillespie simulation.  In the simple case of the birth-
death process, starting from a generic configuration at time ¢
with n molecules, two reactions are possible: birth of a new
protein molecule with rate k and death of an existing molecule
with rate yn. Below we provide the pseudocode for the imple-
mentation of the Gillespie scheme for the birth-death process.

Pseudocode:

n = n;, # set the initial number of molecules
t=0 # start the simulation att =0
while t < T:
# compute total rate
W=k+n
# sample an exponentially-distributed random variable
with rate parameter 1/W
T =exp_rmd(1/W)
# sample a uniformly distributed random number in
[0,1] to pick the reaction
# select birth reaction
if uniform ([0, 1]) < 1
n=n+1
# select death reaction
else:
n=n—1
# update time
t=t+T.

In the birth-death process, the birth rate is configuration-
independent and always equal to k. The death rate, how-
ever, depends on protein number and is minimal at n= 1.
Therefore, the simulation time (7)) required to obtain substan-
tial information about the steady state must at least satisfy

T>> max (1//0 1/7).

2.15. Explore further: RNA splicing.  In this section, we
mostly focused on transcription (production of mRNA) and
translation (production of the finalized molecule) as the build-
ing blocks of cellular reaction systems. Newly transcribed
RNA molecules, however, require a specific reaction where
pre-determined portions of the RNA sequence are removed.
This ‘splicing’ reaction converts nascent to mature RNA,
which can be then effectively translated into protein [24].
mRNA splicing has recently drawn interest in the systems
biology field due to the development of new single cell
sequencing technologies that now enable to precisely meas-
ure the amount of unspliced (nascent) and spliced (mature)
RNA within individual cells [25, 26]. This high-dimensional
information has been used to build biochemical reaction
models that infer interactions between chemical species and
predict transitions between cellular states [27-29]. A detailed
discussion of the mathematical approaches and consequences
of splicing in the molecular dynamics can be found in [30, 31].

2.2. Continuous models of regulatory networks

2.2.1 The chemical rate equation emerges as the average
dynamics of the CME.  In the previous section, we developed
a probabilistic framework to account for the inherent stochasti-
city of biochemical reactions in regulatory networks. This
probabilistic framework is especially important when the copy
number of a protein is low within a cell, and thus stochastic
fluctuations can substantially influence a biochemical circuit’s
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response and potentially play a role in cellular function. A
well-known example of the role of fluctuations is the selec-
tion of a competent state for DNA uptake in Bacillus subtilis
[32]. In the limit of large molecular copy number, however,
one can assume that stochastic fluctuations become less and
less relevant (also referred to as ‘thermodynamic limit’). In
this limit, the concentration or copy number can be described
as a continuous variable. In more practical terms, when mov-
ing from the CME to a continuous formalism, we coarse-grain
the model of a biochemical network by describing each chem-
ical species with a single, continuous variable, whose temporal
dynamics can be described by a single ODE, rather than an
infinite-dimensional system of CMEs.

The relation between the CME and the continuous chem-
ical rate equation can be understood in the simple case of a
birth-death process presented in equation (4) by considering
the dynamics of the average number of proteins (n(z))

din()) <X dp.) X
- = ;nT = kgo [nP,_1 () — nP, (1)]

“+oo
=D [Py () = n(n+1) Payi (1))
n=0

(20)

After some manipulation of the summation indexes,
equation (20) can be simplified as

d(n (1))
dr

=k—=~(n(1). 2D

Therefore, the evolution of the average number of
molecules, which is now a continuous variable, is described
by a single ODE.

This approach facilitates the treatment of large networks
with many interconnected regulations that would be unfeas-
ible with the CME approach. In general, a circuit of N inter-
connected species can be described as a dynamical system

x=F(x), (22)
where x = (x1,x2,...,xy) is the vector of concentration/copy
number of the N species in the circuit and the force field F'(x)
describes their coupled dynamics and the possible intercon-
nections between them. Therefore, all the prior knowledge on
the circuit of interest is encoded by the choice of functions
and parameters in the force field. The force field F (x) cap-
tures all the relevant reactions, including transcription, trans-
lation, chemical binding and degradation. The continuous for-
mulation of equation (22) conveniently allows to apply all the
tools of nonlinear dynamics, including linear stability analysis,
phase diagrams and bifurcations that are usually applied to
classical physical problems. In the following section, we will
develop some of these methods in the study of the continuous
toggle switch.

Finally, it is worth noting that significant deviations
between CME and mean field modeling may arise when mean
field models are pushed to the mesoscale where stochastic fluc-
tuations become important. The presence of different states,
or cell phenotypes, is represented in the CME formalism by

multimodal probability distributions whereby each peak cor-
responds to a cell phenotype, as seen in the self-activating gene
(figure 3). In the framework of deterministic ODE models, the
accessible phenotypes are represented by the stable attract-
ors. The correspondence between distribution peaks and stable
attractors is generally good in the thermodynamic limit but dis-
crepancies can arise in the low copy number limit (see [33,
34] for detailed comparisons). In addition, deterministic mod-
els cannot capture the transitions between cell states guided
by stochastic fluctuations. The effect of noise-driven phen-
otype switching can be introduced in ODE-based modeling
with the stochastic differential equation framework, which
will be introduced in section 2.2.3. More detailed mathemat-
ical insight and a thorough comparison between the stochastic
and mean field approaches can be found in [35].

2.2.2. Continuous model of the toggle switch.  Following the
parallel with the treatment of the CME, we develop a continu-
ous formalism for the toggle switch system composed of two
genes that mutually repress each other. We also exploit this
example to present some common functions used to model
transcriptional activation and inhibition in the gene regulatory
network literature. In the CME, the mutual inhibition between
two TFs was explicitly modeled by considering TF dimeriza-
tion and binding to the DNA. The main challenge of the con-
tinuous version is to find a suitable force field F (x) that effect-
ively captures the same dynamics. This is typically achieved
by introducing a continuous function that modulates the tran-
scription rate. First, we can introduce transcriptional regula-
tion in the simpler case of the noise-free chemical rate equation
of the birth-death process

d
L —kH(R) —p.

” (23)

Here, R is the concentration of a TF that inhibits or activ-
ates the production of p; H(R) is a continuous function that
modulates the production rate. In general, H (R) must satisfy
the condition H(0) =1 so that the basal transcription rate
k is recovered in the absence of external regulation. Then,
H(R) increases or decreases monotonically as a function of
R depending on whether R activates or inhibits p. Assuming
equilibration of both TF dimerization/multimerization and TF-
DNA binding leads to the so-called Hill function, which was
originally introduced in 1910 to describe the binding of oxy-
gen to hemoglobin [36], and has been since applied to a variety
of biological contexts [37]

1+A(%)
()
The functional form of the Hill function in equation (24)
is derived exactly from the underlying chemical reactions in
the insight box 2. In this expression, Ry represents a threshold
concentration that is related to the rate constants for TF-TF

and TF-DNA binding (see insight box 2). Therefore, when
R > Ry the regulatory effect of R becomes important. A is a

H(R) = 24)
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Figure 5. The deterministic and stochastic toggle switch. (A) The phase space of the toggle switch described in equation (25) including
nullclines and fixed points. (B) Local sensitivity analysis of the toggle switch parameter around the (high X, low Y) stable fixed point. (C) A
temporal trajectory for the stochastic toggle switch. (D) The pseudopotential landscape of the toggle switch. The white noise level is fixed to
o = 2 in panels C, D. The source code to reproduce these results is available in our toggle switch tutorial.

fold-change that represents the change in transcription rate
due to R. In the limit R > Ry, the production rate relaxes
to kA. Therefore, 0 < A < 1 indicates transcriptional inhib-
ition and A > 1 indicates transcriptional activation. Lastly,
the Hill coefficient n indicates the cooperativity of the TF.
For instance, n =1 indicates that R binds to the promoter
of p as a single molecule, n =2 indicates dimerization of
the TF, and so forth. It is important to stress that a Hill-like
relation between protein and TF does not necessarily imply
TF cooperation and binding, as other biological processes
upstream or downstream of transcriptional regulation that are
not accounted for in the model can lead the nonlinear response
of equation (24). The insight box 2 (section 2.2.5) further dis-
cusses how these parameters can be fitted or inferred from
experiment observations.

In this continuous formalism, the toggle switch can be thus
described by a set of two ODE:s of the form

(25a)

dy

1+A(2)"
o)

1+(2)

For simplicity, we assumed that both x and y are produced
and degraded with the same rate constants. Furthermore, the
system is completely symmetric as the Hill thresholds, fold-
changes and coefficients are the same for the two species. The
ODE system of equation (25) can exhibit bistability between
a (high X, low Y) and a (low X, high Y) states (figure 5(A)). A
potential pitfall of this modeling approach is the uncertainty
in the estimation of the model’s parameters. The dependence
on the parameter choice can be investigated with parameter
sensitivity approaches. Figure 5(B) shows the change of steady
state X level in the (high X, low Y) state upon varying the
model’s parameter one at a time by 5%. More sophisticated
approaches to parameter sensitivity exist in the current literat-
ure that can be reviewed in references [38, 39].

While the toggle switch represents a simple case of bistabil-
ity of two opposite states, often the description of realistic bio-
logical processes requires more complex models, which can be
achieved by increasing the number of nodes and interactions.
For example, allowing both species to self-activate enables a

— . (25b)
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third stable state with intermediate expression of both x and
y. This self-activating toggle switch can describe the differen-
tiation of an undecided stem-like state into either one of two
differentiate states that exclusively express x or y [40], and will
be further discussed in the context of stem cell differentiation
(see section 3.2). Recently, a systematic network motif search
by Ye et al identified two large families of 3-node networks
that give rise to 4 stable cell states. In this study, the authors
first sampled different network topologies defined as the sets
of positive and negative interactions between nodes, and then
developed a mathematical model for each topology to determ-
ine the number of attractors. Finally, these multi-stable circuits
were used to describe the differentiation of T-cells, where an
undifferentiated progenitor transitions through several inter-
mediate states before reaching a differentiated state [41].

2.2.3. Introducing noise in continuous circuits with the
overdamped Langevin equation.  We derived the continu-
ous chemical rate equation as a noise-free approximation to the
CME. In many situations, however, the continuous limit is util-
ized because the complexity and size of the circuit of interest
prevents a treatment with discrete modeling. The effect of
stochastic fluctuations can be still incorporated in continu-
ous models in a coarse-grained manner by considering the
stochastic differential equation

x=F(x)+&(x,1). (26)

This equation describes the motion of a particle in the
overdamped limit (x = 0) under the presence of a force F'(x)
and a noise term & (x,f) that satisfies (¢ (x,7)¢ (x,¢')) =
2DD6 (t—t'). In other words, the noise term is a random
variable whose intensity at any time ¢ is completely uncor-
related to the intensity at any other given time. D is a con-
stant with the interpretation of an effective diffusion coeffi-
cient. In most of the current models of genetic circuits, the
noise is assumed to be white. Thus, D is simply a unitary
matrix. In other words, the noise term for each species has
the form & (x,y,t) = 0 N(0, 1), where o is the noise amplitude
and N(0,1) is a Gaussian random variable with zero mean
and unitary variance. In the case of the bistable toggle switch,
white noise introduces stochastic fluctuations that can induce
transitions between the two stable states (figure 5(C)).

It is important to stress that stochastic fluctuations modeled
in the previous section with Gillespie simulations depend
on the models’ parameters. In other words, each chemical
species had a distinct noise amplitude, which could further-
more depend on time as the different reaction rates may
depend on many variables’ copy numbers. For this reason,
the stochastic fluctuations arising from biochemical reactions
and modeled with Gillespie-style simulations are referred to
as ‘intrinsic noise’. Conversely, the so-called ‘extrinsic noise’
broadly captures all other perturbations related to other cel-
Iular components and/or external factors in the cell’s local
microenvironment [42, 43]. Modeling fluctuations with white
noise implies that all species in a circuit are subjected to
a fixed noise intensity. From a statistical perspective, the
approximation of stochastic fluctuations with white noise

can be motivated, in the thermodynamic limit, by the cent-
ral limit theorem. For example, the protein distribution in
the birth-death process is well-approximated by a Gaussian
fit (see again figure 2(A)). On a more physical basis, white
noise emerges, under specific conditions, whenever a system
receives and dissipated energy from a ‘bath’ (in this case, the
rest of the cell) that is not explicitly included in the model
[44, 45]. This assumption, however, could become problem-
atic when modeling species that are lowly expressed or near
‘extinction’ points where all molecule copies are degraded.
Protein copy numbers vary significantly across species and
specific conditions. Copy numbers in human cells span as
much as 7 orders of magnitude, and low-expressed proteins
can have less than 500 copies, whereas TFs in bacteria can
have only tens of copies [46, 47]. For example, the behavior
of the A-phage virus has been described using a toggle switch
model between the repressors ¢/ and cro whereby high cl
implies lysogeny where the virus is incorporated into the host’s
DNA while high cro implies lysis where the virus reproduces
and kills the host cell [48]. Detailed mathematical analysis by
Schultz et al showed that a stochastic ODE model cannot cor-
rectly account for the bistability as cro can undergo ‘extinc-
tion” and ‘resurrection’ events, where cro is temporarily absent
before being produced again [49].

To bridge the gap at least partially between continuous and
discrete models at low molecule copy numbers, other ways to
model noise have been explored. One notable example is shot
noise where D is a diagonal matrix with D;; = x; [44, 45]. In
other words, the intensity of noise for the ith species is propor-
tional to the square root of the variable’s copy number (,/x;).
Therefore, variables with higher copy number experience fluc-
tuations with larger amplitude. On the other hand, the noise-to-
signal ratio /x;/x; = 1/x; is lower for high copy number spe-
cies. As a practical example, a species with average copy num-
ber n = 10?> molecules will have typical fluctuations of ~10
molecules, or 10% of its average copy number. Conversely, the
average fluctuations of a species with copy number of n = 10*
will be larger in absolute intensity (~10% molecules) but will
only correspond to 1% of the variable’s average copy number.
Thus, species with low copy number can be subjected to large
deviations somewhat similar to the bursting effect discussed in
the context of the CME. As noted by Lu et al, a combination
of white and shot noise is likely a more precise way to model
stochastic fluctuations in continuous, ODE model of biochem-
ical regulatory networks as shot noise captures low copy num-
ber deviations while white noise captures external inputs [50].

2.2.4. Characterizing the landscape of multistable gene
regulatory networks. In general, a multistable circuit gov-
erned by the overdamped Langevin equation will exhibit mul-
tiple attractors and, as in the case of the bistable toggle switch,
stochastic fluctuations introduce the possibility of transitions
from one state to another. Landscape theory is a popular way
to quantify the global stability in a multistable system by com-
puting the equivalent of a potential function.

The idea that cells follow ‘paths’ in some underlying,
high-dimensional landscape that guide the transition toward
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new cell states was first formalized by Waddington. In
Waddington’s epigenetic landscape, cells are visualized as
marbles that roll through a downhill landscape where valleys
and ridges define alternative routes leading to different cellu-
lar phenotypes characterized by distinct gene expression pro-
files and different sets of epigenetic interactions [51]. Here, the
term ‘epigenetics’ denotes the set of intracellular interactions
between the genome, RNAs, TFs and enzymes, such as DNA
methylation and phosphorylation, that modulate gene expres-
sion. Therefore, the differences in gene expression and pro-
tein concentration in cells belonging to different valleys is not
a result of mutations in the genetic sequence, and rather arise
from different epigenetic interactions operating on the same
genome [52, 53].

The construction of the landscape begins by mapping
the Langevin dynamics onto a Fokker-Planck (FP) equation
describing the joint probability distribution p (x1,x2,. .. xy,)

Op (x,1)

ot @7)

==V [F(x)p 0]+ V[D(x)p(x,1)],
where F (x) is the force field driving the Langevin dynamics
and D (x) is a diffusion tensor related to the noise amplitude
by D(x) =0 (X) o' (x) /2. We will not discuss the derivation
of the FP equation form the Langevin equation, which can be
found in many textbooks on non-equilibrium statistical mech-
anics. The FP equation can be written more compactly in the
form of a continuity equation

Op(xX,1)/ 5+ V -7 =0, (28)
where  J(x,t)=F(x)p(x,t) =V -[D(x)p(x,t)].  From
equation (28), it is evident that the steady state solution
Ip (x,1) / o = O requires a divergence-free flux V - J = 0. This
condition can be satisfied in different ways. Systems that
respect detailed balance satisfy the stringent condition J = 0;
in this case, there is a clear relation between force, potential
and equilibrium probability distribution. Indeed, enforcing
J =0 implies

VDss
pSS

=D(x)

(x). 29

Rewriting Vpi = —Vlog(ps) clarifies the relation
between potentiaT and the equilibrium probability distribu-
tion U= —log(ps). The dynamics of the system is com-
pletely determined by the gradient of the potential U (up to a
shift due to local variation of the diffusion matrix V - D (x)).
In the simple case of white noise, the diffusion is uniform
(V-D(x) =0) and the correspondence between force and
potential gradient is exact.

Typically, force fields describing regulatory networks are
constructed in a phenomenological manner to capture bio-
chemical interactions such as transcription, binding or degrad-
ation with the use of functional forms such as Hill functions.
For this reason, they cannot be derived from an underlying
potential and do not satisfy J = 0. Therefore, at steady state,
the force field can be written as the sum of two components. A

gradient of the log-scaled steady-state probability distribution
and flux term

) VDss

A

F(x) =D (x) (30)

AN

‘]YS
+VD(x) + o

The flux term J, effectively quantifies the deviation from
gradient-driven dynamics. Since there are no sources or sinks
of probability in the domain of existence of x, p must be loc-
ally curled, and is therefore often referred to as the curl flux.
As observed by Wang, the dynamics of ‘gradient’ dynam-
ical systems that respect detailed balance can be compared to
the motion of an electron in an electric field; conversely, the
dynamics of ‘non-gradient’ systems such as gene regulatory
networks is similar to the motion of an electron in an electro-
magnetic field [54].

Figure 5(D) shows the pseudopotential landscape of the
bistable toggle switch under the effect of white noise, which
include two deep minima corresponding to the two stable fixed
points of the deterministic system.

In non-gradient systems such as coupled biochemical net-
works, the steady-state probability distribution p (x,) cannot
be established a priori, but only from stochastic simulations
of the Langevin equation or steady state solution of the FP
equation. Nonetheless, the steady-state probability distribu-
tion and curl flux provide key information about (1) the num-
ber of accessible states, (2) their relative stability, and (3) the
deviation from gradient-driven dynamics.

As seen in the self-activating gene (figure 3) and the
toggle switch (figure 5), noise can induce cell state transitions
between attractors. While these transitions can be studied with
long simulations of the overdamped Langevin equation (such
as the trajectory in figure 5(C)), this approach is time consum-
ing and often cannot provide large statistics because escape
events from attractors are rare. The pseudopotential landscape
offers a more general strategy to study transitions with meth-
ods based on the path integral formalism. These methods
have been widely applied to biochemical systems to recon-
struct transition trajectories and compute transition rates in a
more computationally efficient manner. Interesting examples
of these approaches include [55, 56], and are summarized in
[57] for interested readers.

2.2.5. Insight box 2: modeling transcriptional regulation with
Hill functions.  In the simplest model of protein production,
a gene transcribes mRNA at a constant rate k,,; in turn, mRNA
molecules are translated into proteins with rate constant k.
Therefore, the copy number of mRNA (m) and protein (p) can
be described by first order equations

d

?”t' = kDo — Y, (la)
dp
U = kym — y,p, (31b)

where Dy is the total number of promoters transcribing for
the protein p, and can be treated as a constant unless DNA is
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being replicated during cell division; ,, and +, are degrada-
tion rate constants for mRNA and protein. Assuming fast equi-
libration of mRNA (dm/dr = 0), the mRNA copy number is
m = k;,Dy /7 and the protein copy number directly depends
on the number of genes Dy
dp

= —kDy—

ar (32)

YpP>
where k = ky,k, /7. In presence of a transcriptional factor x
that activates or inhibits gene expression, the mRNA produc-
tion rate is modulated by a function k,, — k,f(x) (figure A).
First, we assume that the TF can bind and unbind to DNA as
a single molecule with rate constants k., k_. Assuming fast
equilibration of the TF-DNA binding, the fraction of genes that
are unbound (U) and bound (B) to the TF are

1

1+£°

X0

U=D, (33a)

X

Xo

B=Dy—U=D
0 01_’_%7

(33b)

where xo = k4 /k_ represents the half-concentration so that
U = B when x = xo. The mRNA is transcribed with rate con-
stant k,, by an unbound promoter and k; by a bound promoter,
respectively. k, > k, implies that x is an activator while k, < k,
implies that x is an inhibitor. The corresponding protein (p) is
then produced with rate (kyk,/~m)U + (kpk,/~m)B. Thus, the
dynamics of protein p is governed by the following equation

X

1
B
R

X0

L4+ AL
YT+ E

d
Ly = — W =K

X0

- ’7ppa
(34)

where k' = (k,k,/~m) and kg = (kpk, /). In the compact
form on the right-hand side, A\ = k”5/k”y represents a fold-
change in the transcription of p due to the regulatory activity
of x.

In the more complex case where the TF dimerizes revers-
ibly (x + x<>x,) with dimerization and monomerization rate
constants k», k1, and binds and unbind to DNA only in its dimer
form x,, the fractions of bound and unbound DNA become

(35a)

X

2
Xo)

B:DO—U:DO(Z,
1 (2)

where xo = /kiky /kok_. The corresponding equation for
protein p becomes:

(35b)

dp

2
1+A(§)
a Y

7 — WpD- (36)
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Figure 6. Derivation and fitting of the Hill function. (A) The
derivation of the Hill function considers a case where the regulator
can dimerize (or create a higher-order oligomer) and then bind to
DNA. (B) The parameters of the Hill functions can be inferred from
experimental data reporting the expression of the molecule p as a
function of transcription factor concentration.

In general, a TF that binds to DNA as an n-oligomer is
described by the nth power of its monomeric concentration.
If the TF is an activator, it is often assumed that the transcrip-
tion rate of the unbound gene is zero (i.e. k, = 0), hence

»_ k<x>n — VP> (37)
14 (—)

X0
dr

where the concentration of DNA (Dg) has been absorbed into
the production rate constant k. Similarly, if a TF is a very
effective inhibitor, no transcription is assumed for the bound
genes (i.e. k, = 0), hence

d I
Lk

i W —WP- (38)

The expressions in equations (37) and (38) are referred
to as positive and negative Hill functions, whereas the gen-
eral form presented in equation (36) is referred to as shifted
Hill function. Detailed data about TF oligomerization is not
always available. The Hill coefficient, half-concentration and
fold-change (n, xp, A), however, can still be inferred from an
experiment describing protein concentration as a function of
TF concentration (figure 6(B)). In this case, however, there is
no guarantee that the inferred Hill coefficient truly reflects TF
oligomerization, as other processes can modulate transcription
and change the protein-TF relation.
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2.2.6. Explore further: Time delay, molecular memory and
noncanonical pathways to multistability. A key assumption
of both the CME and Langevin modeling strategies is that
all biochemical reactions are Markovian with a Poisson wait-
ing time distribution. Several biochemical processes, however,
do not satisfy these assumptions. Protein synthesis involves
the sequential assembly of long molecules, wherein a mul-
tistep process is aggregated into a simpler, single-step reac-
tion described by a single rate constant, thus effectively imply-
ing a minimal waiting time for transcription or translation
to occur [58, 59]. The idea that the synthesis or degradation
of a macromolecule involves a cascade of multiple, sequen-
tial events is referred to as ‘molecular memory’ [60]. Non-
Markovian dynamics has been modeled in different ways,
often leading to diverse mathematical behavior that could
not be obtained under Markovian assumptions. The auto-
regulatory motif where a TF inhibits its own transcription is a
clear example that illustrates this concept. Experimentally, this
motif can lead to oscillations in TF concentration, as the time
required for TF synthesis and diffusion inside the cell nuc-
leus introduces a temporal delay. This effect can be modeled
by introducing a delay in the transcription rate: f(TF (1)) —
S(TE (¢t — 7)). Thus, the transcription at time ¢ is a function of
TF concentration at time ¢ — 7, where the specific values of
delay and degradation rate parameters determines the period of
the oscillations [61]. This modeling strategy has been applied
to many models involving TFs such as p53 [62], NF-kB [63],
and PAGE4 [64], yielding a good description of the oscil-
latory behavior that could not be captured by a ‘standard’
Markovian model including instantaneous transcription, trans-
lation, and repression. Moreover, spatial models of partial dif-
ferential equations have been developed to describe in greater
details the timescale arising from mRNA and protein diffu-
sion within cells, thus avoiding the need to explicitly introduce
delay terms in the model’s parameters [65]. Recent systematic
studied of the mathematical conditions enabling oscillations in
in gene regulatory networks can be found in [66, 67].

Besides non-Markovian reactions, multistability can be
achieved via ‘noncanonical’ mechanisms that do not simply
rely on transcriptional activation or inhibition. A first example
is the action of microRNAs, specific RNA species that bind
to mRNA to promote their degradation. Recently, a model of
mRNA-microRNA interactions was used to explain the spa-
tial segregation of TFs Hoxa5 and Hoxa8 during spinal cord
development [68]. In this context, a toggle-switch type mutual
inhibition between Hoxa5 and Hoxa8, although theoretically
suitable to explain the bistability, was disproven by experi-
mental evidence suggesting unilateral inhibition from Hoxa8
toward Hoxa5 [68]. The detailed mathematical modeling of
microRNA-assisted mRNA degradation will be discussed later
(section 3.1.3) in the context of the epithelial-mesenchymal
transition (EMT). A second noncanonical pathway to bista-
bility without transcriptional regulation involves phosphoryla-
tion by enzymes. The activation of Mitogen-activated protein
kinases (MAPK), a class of proteins that convert and process
extracellular stimuli, requires two sequential phosphorylation
events carried by different enzymes at two sites, whereby a
first enzyme phosphorylates the first site and then releases

the intermediate kinase before a second phosphorylation event
occurs. Markevich et al demonstrated that the competitive
binding of different enzymes to the MAPK binding sites is
sufficient to generate bistability without additional transcrip-
tional regulation [69].

2.3. Large networks: Boolean models, parameter
randomization and interfacing with data

In the previous two sections we discussed CME and continu-
ous models that describe genetic and biochemical interactions
in a mechanism-based, detailed manner. These approaches
can become impractical when applied to large networks with
dozens, or even hundreds, of chemical species. These con-
siderations are becoming more and more relevant as detailed
experimental techniques provide detailed insight into the
organization of large regulatory networks, thus providing an
opportunity to build and benchmark larger models of gene reg-
ulation. A first challenge, from a computational standpoint,
is to perform long simulations on models with hundreds of
reactions and/or ODEs. A second, more fundamental prob-
lem is the difficulty to precisely estimate all the parameters
of the model. Quite often, only a qualitative relation can be
established between species in a network, such as inhibition
or induction. In this section, we discuss two classes of models
that resolve these issues and allow the modeling of large net-
works. First, we discuss Boolean models where nodes can only
be active or inactive, and transcriptional and biochemical inter-
actions are described via logic operators. Second, we present
parameter randomization approaches that assume the func-
tional form of the interactions and test many different com-
binations of parameter values. Finally, we introduce how the
problem of determining the gene regulatory network architec-
ture and connections can be tackled by interfacing quantitative
modeling and high-resolution single cell sequencing data.

2.3.1. Boolean models.  Boolean models perhaps represent
the most coarse-grained approach to describe regulatory net-
works since they require a minimal amount of information
including solely the circuit’s connections of positive or neg-
ative interactions among genes [70]. For this reason, Boolean
approaches stand out as some of the first attempts to model
gene regulation [71]. In Boolean models, each node can either
be ON (o0 =1) or OFF (¢ =0), thus representing a gene
or molecular species that is active or inactive, respectively.
Therefore, the state of a regulatory network of N genes at any
given time ¢ is specified by an array of N Boolean variables
o =(01,02,...,0n). The value of each node i (0;) is a func-
tion of all the incoming signal from nodes that directly regulate
node i. These functions B; are typically constructed in an ad
hoc manner starting from experimental evidence and using the
logic commands AND, OR and NOT. Similar to their continu-
ous counterparts, Boolean networks can be represented graph-
ically as a set of nodes and arrows to indicate mutual activa-
tion or inhibition, such as shown in figure 7(A). It is important
to stress that the functional form of the functions B; cannot
be inferred by simply looking at the schematic representation.



Rep. Prog. Phys. 86 (2023) 106601

Review

A B
(D—— @) w—m

N/
®

—_—
—

110

011 — 001 — 000 — 10‘67

1 1?

Figure 7. (A) Example of a three-node Boolean model. (B) Three different initial conditions that lead to oscillations between two

configurations.

For example, in the circuit of figure 7(A), x and z both activate
the node y. Their input, however, can be combined in an AND
or OR manner, which must be specified.

Starting from an initial configuration, the values of the
nodes are updated according to an integration scheme. In par-
ticular, the synchronous scheme is the simplest update method
on a Boolean network. Under this deterministic scheme, the
state of each node (i) at iteration 7+ 1 is the output of the
Boolean function B; computed at time ¢

oi(t+1)=B;(o(1)). 39

This method presents some important drawbacks.
Specifically, reactions in regulatory networks can be time-
separated, with given reactions evolving on faster timescales
than others. A popular solution is given by asynchronous
updating schemes, which can be considered as a Boolean
equivalent of the Gillespie algorithm. With this method, any
reaction in the network is associated with a typical timescale.
At any updating step, one node is selected with a probabil-
ity proportional to the frequency of that reaction. Therefore,
faster reactions are more probable and thus selected more
often. These reference timescales are not known a priori, so
they must be inferred from literature and given as an additional
input in the construction of the model. A more in-depth discus-
sion and comparison between different integration schemes is
provided in [72, 73].

Starting from a given initial condition, a Boolean network
relaxes to an attractor or limit cycle by following the update
scheme. In figure 7(A), we present a simple example of a 3-
nodes network originally proposed by Wang et al [74] with the
following Boolean functions

B,=xOR (NOT z), (40a)
By, =x AND z, (40b)
B,=y. (40¢)

Three different initial conditions lead to three different
steady states, including two stable attractors and a limit cycle
(figure 7(B)). More generally, a large Boolean network with
N nodes has 2V different initial conditions that can lead to

multiple attractors and/or limit cycles. Typically, their basin
of attraction is quantified with a large number of simulations
starting from randomized initial conditions.

2.3.2. Parameterrandomization. ~Boolean models overcome
the insufficient knowledge of the model’s parameters by
assuming more coarse-grained relationships between spe-
cies based on logical operators, thus sacrificing the detailed
description of biochemical reactions. An alternative approach
is to hypothesize more detailed functional forms to describe
the circuit’s reactions, such as Hill functions for transcriptional
regulation, and explore several parameter combinations.

For example, random circuit perturbation (RACIPE) takes
the topological information of a network (i.e., the list of pos-
itive and negative interactions between species) as the input
and generates an ensemble of mathematical models [75]. Each
mathematical model, also referred to as an RACIPE model,
is simulated with the same set of chemical rate equations
but with distinct sets of parameters. Each set of paramet-
ers are randomly sampled from a fixed distribution (uniform,
Gaussian etc.) within their biologically reasonable ranges. For
each RACIPE model, multiple (typically tens of thousands)
initial conditions are used to perform the numerical simula-
tion to solve all possible stable-state solutions. The stable-state
solutions from the ensemble RACIPE models and their cor-
responding parameters are collected for statistical analysis, by
which the pattern of solutions and the differences in paramet-
ers leading to different solutions can be identified. RACIPE
originally focuses on transcriptional regulatory networks and
uses the shifted Hill function [76] to simulate the transcrip-
tional regulations. The method RACIPE has been implemen-
ted as a free open source software which can be accessed in
GitHub [77]. To reach convergence of RACIPE simulation res-
ults, there are two key parameters—the number of RACIPE
models and the number of initial conditions for each model
should be evaluated and decided. As the average simulation
time of a RACIPE model is linearly proportional to the num-
ber of parameters of that model, RACIPE can be potentially
applied to large gene networks. Notably, the main purpose of
RACIPE is to determine the robust stable states enabled by
the gene networks by considering the large variations in para-
meters. For example, parameter randomization of the toggle
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switch topology using RACIPE showed that, even though the
toggle switch topology is typically associated with bistabil-
ity, more than 75% of parameter combinations lead to a single
stable fixed point [75].

To detect the stability of different stable states exhib-
ited by the gene network, a method integrating RACIPE
with stochastic analysis, referred to as sSRACIPE, has been
recently developed [78]. The SRACIPE employs a simulated
annealing-based scheme to estimate the stability of differ-
ent stable states resulting from various initial conditions.
One interesting observation by applying sRACIPE to toggle-
switch-like circuits is that high expression noise induced state
merging. Recently, the Boolean and parameter randomization
approaches were compared on the same set of network topolo-
gies, showing that both methods can successfully recapitulate
the important dynamical features of the circuits [79].

2.3.3. Learning regulatory networks from single cell
transcriptomics. So far, we have always assumed the
existence of biological knowledge that serves as input to
build GRN models. In many cases, however, the interactions
between genes are not well known, and alternative, data-driven
strategies are necessary. Over the last decade, many single cell
Omics technologies have started to provide unprecedented
resolution over gene regulation at the single cell level [80]. In
this section, we focus specifically on single cell RNA sequen-
cing (scRNA-seq), a technology capable to measure the copy
number of tens of thousands of RNA species simultaneously
within a cell [81]. The output of a sScRNA-seq experiment can
be intuitively understood as a count matrix where the rows
identify individual cells, and the columns identify the genes
in the cell’s genome. While this data can be very useful to
investigate the gene expression patterns associated to differ-
ent types of cells, recently several models have been proposed
to infer the regulation between genes [82, 83]. Here, we briefly
introduce the topic and focus on the emerging mathematical
challenges. The inference of GRN from the scRNA-seq data
introduces the challenge of inferring causal relationships from
data that lacks temporal information. Generalizing the math-
ematical models of GRN developed in previous sections, the
GRN inference problem can be generally set up as a nonlinear,
high-dimensional system of the form
X=f(X). 41
In equation (24), X represents the vector of mRNA counts
of the N genes in the cell, and f(X) is a general nonlinear func-
tion that describes how genes mutually regulate each other. In
most existing applications, the problem is further simplified by
assuming linear interactions between genes and degradation
X =AX — X, 42)
where A is a N x N matrix encoding linear interactions
between genes, with the implicit assumption that the posit-
ive and negative coefficients A correspond to activation and
inhibition, and + is a degradation rate vector. Interestingly,
the existing bioinformatics methods for GRN inference can be

broadly divided into two main classes based on whether steady
state is assumed in equation (42), with both approaches exhib-
iting strengths and pitfalls. First, steady state methods assume
that X = 0 [84, 85]. Without further assumptions, however, this
leads to the trivial, non-interacting solution A = Iy, where [ is
the N x N identity matrix. This problem is typically circum-
vented by eliminating self-interactions and setting the diag-
onal elements of A to zero. With this strategy, the off-diagonal
elements of A can be determined, one row at a time, by solving
the regression problem

Xi = E aijxj — YiXi-

JF#i

(43)

Bocci et al showed that this method can detect the presence
of GRN edges (i.e., causal connections between genes), but
might lead to inaccurate sign prediction [28]. Alternatively,
equation (42) can be interpreted as an out-of-equilibrium
problem [86—88]. This approach, however, requires an estim-
ation of the first derivative X from scRNA-seq data that typic-
ally does not have temporal information. Thus, physical time
is typically substituted with pseudotime. Pseudotime (pst)
inference is a cell lineage reconstruction technique based on
cell-cell gene expression similarity, where the pst coordin-
ate approximates real time and indicates the positions of cells
along the lineage [89, 90]. For example, in a differentiation
process from multipotent toward differentiated cells, stem
cells will be at the beginning of the lineage and thus will
have smaller pst coordinates, whereas the terminal cells will
be toward the end of the lineage and thus will have large pst
values. After substituting physical time with pst in the RHS,
equation (42) can be solved for A. While pst is a powerful
tool to reveal the lineages of biological systems, there might
be pitfalls when using it as a proxy for physical time. For
example, in a scenario of multistability cells at different points
of a differentiation trajectory coexist at the same physical
time while exhibiting different pst values. Interested readers
can find more in-depth description of GRN inference methods
and their application to biological datasets in topical reviews
[82, 83].

3. Examples from various biological contexts

In this section, we examine examples where the tools to
model multistable regulatory networks have been successfully
applied and unraveled new biological functions. First, we con-
sider the epithelial-mesenchymal transition (or EMT in short),
a trans-differentiation process that regulates cell motility in
physiological processes and diseases. In our description of
EMT, we further review mathematical approaches to describe
the regulation of non-coding RNAs which play an essential
part in the control of EMT. Second, we review theoretical and
computational models of stem cell differentiation, along with
theoretical approaches that rephrase multistable gene regu-
latory networks as a many-body problem. Finally, we exam-
ine models of cell-cell communications through the Notch
signaling pathway. These models introduce spatial patterning



Rep. Prog. Phys. 86 (2023) 106601

Review

and multicellular communication that arise when cells can
exchange information with their neighbors.

3.1. Intermediate states in the epithelial-mesenchymal
transition

3.1.1. EMT in development and cancer. EMT is a com-
plex biochemical and biophysical process where epithelial
cells, typically characterized by strong adhesion to neighbor-
ing cells and apicobasal polarity, loosen their adhesion and
gain motility [91]. EMT and its reverse, MET, play a funda-
mental role in several developmental and physiological pro-
cesses, such as organogenesis and wound healing, when cells
need to transiently acquire motility to travel and rearrange
their spatial organization. Moreover, EMT is implicated in
several aspects of cancer progression, including metastasis
and resistance to therapies [92, 93]. A particularly interest-
ing topic in EMT is the existence of intermediate cellular
states separating the epithelial and mesenchymal phenotypes.
These hybrid epithelial/mesenchymal cells (called E/M for
short in the rest of the section) retain both cell-cell adhesion
typical of epithelial cells and migration potential typical of
mesenchymal cells. For this reason, these hybrid E/M states
play an important role in collective cell migration in both
physiological and pathological processes [94-96]. In recent
years, theoretical modeling helped targeting several elusive
questions about hybrid epithelial/mesenchymal states: is the
EMT spectrum discretized in a set of intermediate states?
Are these states truly stable or just metastable intermediates?
Are they redundant or do they serve different biological func-
tions? In this section we explore mathematical models that
applied a wide array of methods to seek answers to these
poignant questions.

3.1.2. Muiltistability predicted by continuous models of a core
EMT regulatory network.  Experiments have revealed intric-
ated and interconnected network of genes, transcriptional
factors and protein that regulate the epigenetic and biophys-
ical transformations associated with EMT. Nonetheless, math-
ematical modeling has shown that some of the main aspects
of EMT including the existence of intermediate cell states
can be captured by a simple model of a core gene regulat-
ory network including two micro-RNAs (miR-34 and miR-
200) and two TFs (Zeb and Snail). In this core circuit, miR-
34 and miR-200 inhibit, and are in turn inhibited, by Zeb
and Snail, respectively. Moreover, Zeb regulates its own activ-
ity, while Snail activates Zeb and self-inhibits (figure 8(A)).
Zeb and Snail are typically activated when a cell undergoes
EMT and are therefore associated with a mesenchymal phen-
otype. Conversely, miR-34 and miR-200 inhibit the action of
Zeb and Snail and are therefore associated with an epithelial
phenotype. A continuous framework proposed by Zhang
et al [97] models all these coupled interactions with Hill
functions. Under this approximation, both the miR-34/Snail
and miR-200/Zeb motifs behave as bistable toggle switches.
Therefore, EMT is achieved by first flipping the miR-34/Snail
switch from (high miR-34, low Snail) to (low miR-34, high
Snail), and subsequently flipping the miR-200/Zeb switch

from (high miR-200, low Zeb) to (low miR-200, high Zeb).
The intermediate state with (low miR-34, high miR-200, high
Snail, low Zeb) does not exhibit clear epithelial or mesen-
chymal signatures and is therefore interpreted as a hybrid E/M
transition state (figure 8(B)).

3.1.3. Micro-RNA based regulation of EMT.  As we previ-
ously discussed, Hill functions can effectively model tran-
scriptional activation/inhibition where a TF binds to DNA—
either alone, as a dimer, or as an oligomer, to enhance or
repress the transcription of its target gene (see Insight box 2).
Micro-RNAs such as miR-34 and miR-200, however, inhibit
their target at a post-translational stage by binding to the tran-
scribed mRNA and facilitating its degradation. This reaction,
which is always inhibitory, is therefore better described with
an explicit model of microRNA-mRNA binding, rather than
Hill functions [100, 101]. Targeted mRNA molecules have a
variable number (n) of available binding sites for the micro-
RNAs. The higher the number of micro-RNA molecules bound
to the mRNA, the larger the degradation rate of the com-
plex. Therefore, micro-RNAs inhibit their target by preventing
translation of the mRNA into protein. Lu ef al [76] developed
a model of EMT regulation with similar circuit topology but
different functional form to describe the action of miR-34 and
miR-200 [76, 102]. The micro-RNA based chimeric circuit
approach models the chemical binding between micro-RNA
and target mRNA molecules and the possible translation and
degradation rates as a function of number of occupied bind-
ing sites. This mathematical model is discussed in detail in the
insight box 3.

Similar to the model of Zhang et al [97], Lu et al [76] pre-
dicted the existence of a hybrid E/M state. Different modeling
assumptions on micro-RNA regulation, however, are reflected
into distinct features of the hybrid E/M state. In the model of
Lu et al, the miR-200/Zeb circuit acts as a tristable switch with
an additional stable fixed point with intermediate expression of
both miR-200 and Zeb (figure 8(B)). The miR-34/Snail circuit,
conversely, is monostable, and was proposed to act as a buf-
fer that filter noise and confers robustness to the miR-200/Zeb
switch [76].

This models has been further extended to investigate
the coupling with various ‘phenotypic stability factors’ that
modify the topology of the core EMT circuit and increase
the stability of the hybrid E/M phenotype [98, 103-105].
This approach shifts the focus from the underlying bio-
logy characterizing a specific EMT regulator, and success-
fully predict its qualitative impact on EMT based on how
it is connected to the core EMT gene regulatory network
(figures 8(C) and (D)).

Interestingly, a study by Nordick er al [106] recently
demonstrated that the cooperative RNA degradation by
microRNAs alone can generate intermediate EMT states.
The combination of such cooperative RNA degradation with
transcriptional regulation can give rise to a broader spec-
trum of up to seven states, which could better represent
the broader spectrum of EMT states/EMT continuum
recently observed by high-throughput transcriptomics
measurements [107].
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Figure 8. Continuous models of EMT. (A) A core EMT gene regulatory network comprising the epithelial microRNAs miR-34, miR-200
and the mesenchymal transcription factors Zeb, Snail. (B) In the model by Zhang et al [97], the transition state with (low miR-34, high
miR-200, high Snail, low Zeb) is identified as the hybrid E/M. Conversely, in the model by Lu et al [76], the hybrid E/M state has
intermediate expression of all nodes. (C) Example of ‘phenotypic stability factor’ motifs that increase the stability of the hybrid E/M state
by coupling to the core EMT circuit. (D) The stabilizing action of the PSF NRF2 is evaluated with a bifurcation diagram of miR-200 as a
function of EMT inducer (Reproduced with permission from [98]. © The Author(s) 2019. Published by Oxford University Press.

CC BY-NC 4.0.); PSFs extend the hybrid E/M branch. (E) Pseudopotential landscape of the EMT circuit. Reproduced from [99] with
permission from the PCCP Owner Societies. E, P and M indicate the locations of the epithelial, hybrid E/M (partial) and mesenchymal
attractors. White and purple continuous lines indicate the minimum action paths (MAPs) of EMT and MET, while the dashed lines indicate
the EMT and MET MAPs that pass through the hybrid E/M attractor.

3.14. Landscape and path integral analysis highlights EMT  the tristability of the circuit. This way, the pseudopotential
transition routes.  To gain further insights about the stability can be easily visualized on a two-dimensional (miR-200,
of the various EMT states and the transitions between them, Li  Zeb) space. The pseudopotential is obtained from the steady
et al [99] studied the pseudopotential landscape of the EMT  state probability U= —log (pss (miR — 200, Zeb)) and is
circuit of Lu et al by explicitly solving the Fokker-Planck shown in figure 8(E). As expected, the landscape features
equation associated with the circuit. Specifically, the authors three attractors corresponding to epithelial, hybrid E/M, and
focused on the miR-200/Zeb switch that is responsible for ~mesenchymal phenotypes. The authors further identified the
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nodes are inactive. Nodes with blue background are predicted as sensible knockout targets that suppress EMT. (B) Density of steady states
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high or low probability that E-cadherin is on in the steady state. (C) Clustering and correlation of 500 steady state solutions in the model of

Font-Clos et al.

minimum action paths (MAPs) connecting the three states.
As discussed previously, the transitions are determined by the
pseudopotential as well as the curl flux arising from broken
detailed balance. Due to the curl flux, the MAP connecting the
E and M attractors does not pass through the saddle points of
the landscape, thus deviating from the behavior of ‘classical’,
gradient-driven physical systems. There are several interest-
ing biological implications stemming from this observation.
First, cells undergoing E-to-M transition do not necessarily
pass through the hybrid E/M phenotype, because the action
of the E-E/M-M path is higher than the action of the direct
E-M path. Moreover, the paths for the E-M transition and its
reverse, M-E, are different, hence making them irreversible
(figure 8(E)). This suggests that cells undergoing EMT and
MET might exhibit different molecular signatures. Finally, the
action required for the E-E/M-M transition is higher than the
action of the irreversible E-M transition; the action required
for the first step (E-E/M transition), however, is lower than
that of the E-M transition. Therefore, the E-E/M transition path
could be chosen when the cell is not exposed to enough stim-
ulus to undergo a complete E-M transition.

3.1.5. Boolean networks identify biological regulators and
intermediate states in EMT. ~ While small circuits of a core
regulatory network enable a detailed analysis of EMT, several
molecular players and signaling pathways participate in the
regulation of EMT. Steinway et al [108] reconstructed a large
EMT Boolean network with 70 nodes and 135 connections by
integrating experimental observations on known EMT factors
and regulators from human hepatocellular carcinoma. To sim-
ulate the dynamics of EMT driven by TGF-5—a well-known

EMT inducer—the authors initialized the network in an epi-
thelial state and updated the model following a stochastic asyn-
chronous scheme. To decrease the complexity of the network,
they also applied reduction methods to eliminate ‘redundant’
nodes and connections. Interestingly, they identified a reduced
network with 19 nodes and 70 connections with a very sim-
ilar dynamical behavior (figure 9(A)). This reduced network
enabled the identification of transition trajectories from the ini-
tial epithelial state to the final mesenchymal state, thus offer-
ing interesting information on the temporal ordering in the
activation and deactivation of relevant genes. Furthermore, the
authors explored the effect of knockout and/or constitutive
activation of nodes or combinations of nodes by artificially
enforcing an ‘ON’ or ‘OFF’ state for certain nodes in the
circuit [109]. Strikingly, some of these perturbations prevent
EMT but do not reverse the transition to the original epithelial
attractor; rather, alternative attractors with both epithelial and
mesenchymal active genes become stable, which are identified
as candidates for hybrid epithelial/mesenchymal states.
Font-clos et al [110] described the same EMT network with
a pseudo Hamiltonian based on the formalism of spin sys-
tems H=—3_, . Jis;s;. Compared to the Hamiltonian typic-
ally used to describe spin systems, here the s; =0, 1 describe
an inactive or active gene, respectively, and the J;; describe
inhibition (J;; = —1), activation (J;; = 1) or lack of interaction
(Ji; = 0) from gene i to gene j. Thus, differently from standard
spin system Hamiltonians, interactions are not symmetric (i.e.,
Jij # J;i) and therefore it is not guaranteed that the fixed points
of the system correspond to the minima of H. The authors
sampled the landscape of the network with a large number of
stochastic simulations using the same update scheme origin-
ally used by Steinway et al [108, 109]. This analysis revealed
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Figure 10. Schematic representation of microRNA-based regulation in the chimeric circuit model. A mRNA molecule (large white-filled
rectangle) can bind to multiple microRNA molecules (small blue rectangles). mRNA-microRNA binding does not depend on the number of
already occupied binding sites (same binding and unbinding rate constants in the different pictures). The more microRNA molecules bound,
the higher the complex degradation rate (indicated by brighter red arrow from leftmost to rightmost panel) and the lower the mRNA
translation rate (indicated by lighter blue arrow from leftmost to rightmost panel).

two deep minima associated with the epithelial and mesen-
chymal states separated by a complex landscape with sev-
eral local minima that are interpreted as intermediate, less
stable states. On a two-dimensional PCA map, the distribu-
tion of steady states shows two dense regions corresponding
to epithelial (E-cadherin node is ON) and mesenchymal (E-
cadherin node is OFF), separated by a sparser region where
E-cadherin can be ON or OFF (figures 9(B) and (C)). This
distribution is reminiscent of frequencies and relative stabil-
ities of epithelial, mesenchymal and hybrid epithelial/mesen-
chymal states as identified in multiple Boolean models of EMT
regulatory networks [111].

3.1.6. Insight box 3: describe micro-RNA mediated inhibition
with mass action and chimeric circuits. = Micro-RNAs
(miRs) inhibit the expression of a protein by binding to the
target mRNA molecules and degrade them before translation.
Several models that describe miR-mediated inhibition employ
the principles of mass action [100, 101]. Suppose that mRNA
of a given protein (/) is transcribed with rate k,, and the cor-
responding molecule (p) is translated with rate k,. Moreover,
we consider a miR species (u) that is produced and degraded
with rate constants k,,, vy, respectively. 4 binds and unbinds
to m with rate constants kg and ky, respectively, and the
mRNA-miR complex [m] degrades with rate constant .
The coupled dynamics of mRNA, miR, mRNA-miR complex
and protein (m, i1, [mu] ,p) is described by the following sys-
tem of ODEs

%:l = ki — kgmp + ky [mp] — vymm, (44a)
?Tl: =Ky = Yults (44b)
d [thﬂ] = kgmp — ky [mp] — Yy [mp] (44¢)
% = Kpm = pp- (44d)

Various approximations can be made from this basic frame-
work, for instance by assuming fast mRNA-miR binding and
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writing the loss term of m as a function that only depends on m
and . Moreover, as discussed in the insight box 1, fast mRNA
dynamics can be another valid approach. More details on this
are provided in other reviews [100, 101].

The general scheme of equation (44), however, assumes
a 1-to-1 stoichiometry in the mRNA- miR binding. Often,
mRNA molecules have multiple binding sites, whose occu-
pancy modulates translation and degradation rates (figure 10).
In the following, we discuss a generalization of equation (44)
developed by Lu et al that accounts for multiple miR binding
sites that has been successfully applied to the gene circuit that
regulates the EMT [76, 102].

Similar to equation (44), let us consider a system with an
mRNA species (m) and an inhibiting miR (x). Moreover, let
us assume that each mRNA molecule has n binding sites for
miR molecules. miR molecules bind and unbind to the mRNA
with rate constants r,, and r,_, respectively. In the model,
binding at different sites are treated as independent events due
to the small size of the miR compared to the mRNA molecule.
Assuming fast equilibration of mRNA-miR binding, the frac-
tion of mRNA molecules with i occupied binding sites satisfies

P o [mi] = [miga ] (45)

Iteratively, [m;] can be expressed as a function of [my)],
i.e. the fraction of mRNAs without any occupied binding site

)i [mo],

where fio =r,—/r 4. The set of concentrations [m;], i =
0, 1,...n, must also satisfy:

Z c, [m] =m,
i=0

where C,' =n!/i'(n—1)! is the number of arrangements
for i micro-RNA molecules on n binding sites. Plugging
equation (46) into equation (47) yields

m= [mo]g G (:())l [mo] (

o

(v

0

[my] (46)

(47)

1+ £
0

_ : )

(48)
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Thus, using equations (46) and (48), the fraction of mRNA
molecules with i miR bound ([m;]) can be expressed as

()

o
©

(1+%)

[m]=m (49)

Finally, we introduce sets of rate constants [/;], [V;] and
[7.i] that represent the translation rate of a mRNA molecule
with i miR bound, the degradation rate of a mRNA molecule
with i miR bound, and the degradation rate of miR molecules
associated with i-bound mRNAs. Therefore, it is possible to
write total translation and degradation terms

n

%n; =k = m§7micszni (1) = Ymm, (50a)
% =k = mg’YuiCniMni (1) = Vutts (50b)
% = k]’miz:;licniMni () = pps (50¢)
where M, (1) = (ﬁ)l/(l + ﬁ

Compared to modeling inhibition with Hill functions or
simpler mass-action dynamics, the chimeric circuit approach
requires knowledge of more parameters which might or might
not be readily accessible from experiments. In the case of the
EMT circuit proposed by Lu et al, the expression levels of
translated protein with various number of occupied mRNA
binding sites were used to calibrate the model’s parameters.
Further information about this procedure can be found in the
original publication [76].

3.2. Stem cell differentiation

It has been a continuing research interest to understand how
stem cells accurately specify cell fates during differentiation,
referred to as stemness regulation. Mathematical modeling
approaches have been applied extensively to elucidate the gene
regulatory mechanisms underlying stem cell differentiation.

3.2.1 A toggle switch topology regulates the differentiation
of stem cells.  Mathematical models focusing on the
acquisition of stable states representing cell phenotypes are
often derived using chemical rate equations. Similar to the
approaches discussed in EMT that focus on small circuits,
the modeling of stem cell differentiation are often applied to
the proposed ‘core’ stemness regulatory networks that contain
master stemness regulators.

Huang and co-workers developed a continuous model
focusing on the binary decision-making during the lin-
eage commitment of erythroid and myelomonocytic fates
[112]. The model is derived to represent the temporal
dynamics of a core circuit containing the two lineage spe-
cifying TFs GATAl and PU.1. GATA1l and PU.1 exhibit
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Figure 11. Core regulatory circuits to model stem cell
differentiation. (A) Huang et al [112] modeled stem cell
differentiation via mutual inhibition between GATA1 and PU.1.
(B) The stemness circuit constructed by Jolly ez al [113] to model
the acquisition of cancer stem cell traits in cancer. (C) The circuit
developed by Chickarmane et al [114] focuses in the stemness
regulators OCT4, SOX2 and Nanog. Reprinted from [112],
Copyright (2007), with permission from Elsevier. Reproduced with
permission from [113]. © 2014 The Author(s) Published by the
Royal Society. All rights reserved. Reproduced from [109].

© 2006 Chickarmane et al CC BY 4.0.
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mutual inhibition and auto-stimulation, which are modeled
by Hill functions (figure 11(A)). Modeling analysis shows
that the circuit can generate stable attractors correspond-
ing to erythroid (GATA1 high, PU.1 low) and myelomono-
cytic (GATAL1 low, PU.1 high) phenotypes, and a metastable
state representing the ‘multilineage priming’ stage, character-
ized by coexpression of both GATA1 and PU.1. This study
describes a binary cell fate decision-making for a bipotent
progenitor cell.

Another kinetic model of stemness regulation has been
developed by Jolly and co-workers focusing on the LIN28/let-
7 circuit [113]. LIN28 (an RNA-binding protein) and let-
7 (a microRNA) are mutually inhibitory and self-excitatory
(figure 11(B)). Two ODEs have been derived to represent
the birth and death process of LIN28 and let-7. The shifted
Hill functions are used to represent the let-7/LIN28 mediated
inhibition and self-activation. The modeling analysis suggests
that the LIN28/let-7 circuit can operate as a three-way switch
enabling three stable states characterized by (high LIN28, low
let-7), (high let-7, low LIN28) and (intermediate LIN28, inter-
mediate let-7). As the experimental studies suggest that inter-
mediate levels of OCT4 account for pluripotency and OCT4 is
a downstream target of LIN28, this model proposes the stable
state characterized by (intermediate LIN28, intermediate let-
7) associates with pluripotency. From a theoretical perspect-
ive, this model highlights the effect of additional regulatory
interactions on the ‘standard’ toggle switch topology. While
mutual inhibition typically leads to bistability, the additional
self-activation of both LIN28 and let-7 introduces a third state
with intermediate expression of both factors.

To elucidate the transcriptional dynamics of the mas-
ter stemness regulatory TFs—OCT4, SOX2 and Nanog dur-
ing stem cell differentiation, Chickarmane and co-workers
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developed a kinetic model to study the stemness circuit con-
taining three master stemness regulatory TFs—OCT4, SOX2
and Chickarmane et al [114] (figure 11(C)). These three TFs
play a critical role in positively regulating the stemness genes
and negatively regulating the differentiation genes. The mod-
eling analysis in this study shows that the OCT4/SOX2/Nanog
circuit can function as a binary switch, and enable two
stable states that are characterized by (high OCT4-SOX2,
high Nanog) and (low OCT4-SOX2, low Nanog), respect-
ively. Here OCT4-SOX?2 is a heterodimer formed by OCT4
and SOX2 and can regulate OCT4, SOX2 and Nanog indi-
vidually. The stable state characterized by (high OCT4-SOX2,
high Nanog) exhibits high expression of stemness genes and
low expression of differentiation genes thus corresponding to
stem cell phenotype. Conversely, the stable state characterized
by (low OCT4-SOX2, low Nanog) corresponds to cells under-
going differentiation. Through bifurcation analysis, the study
shows how stem cells—(high OCT4-SOX2, high Nanog) can
maintain their stemness state upon removal of the stimulus
signals that upregulate OCT4 and SOX2. Later Chickarmane
and Peterson [115] extended their model by including addi-
tional stemness TFs (Cdx2, Genf, Gata-6) to elucidate the
Trophectoderm and Endoderm lineage commitment. By per-
forming perturbation analysis on the circuit, the study suggests
strategies to reprogram cells back to stemness state, such as
activation of Nanog and suppression of Gata6.

3.2.2. Role of stochastic fluctuations in stem cell
differentiation. ~ While the deterministic models discussed
in the previous section successfully capture the stem cells
decision-making dynamics, it remains unclear how this differ-
entiation is regulated in the fluctuating cellular environment.
To capture the stochastic effects, Kalmar and co-workers
developed a continuous model based on the Oct4/Nanog
circuit [116]. The dynamics of the Oct4/Nanog circuit are
represented by two coupled differential equations. The tran-
scription noise (represented by Gaussian white noise) is incor-
porated into the differential equation representing the temporal
dynamics of Nanog. This study sheds light on how cells can
vary their Nanog level without losing their pluripotency. The
study suggests an interesting view of pluripotency. The pluri-
potency, instead of being viewed as a stable state characterized
by fixed amount of gene expression levels, can be viewed as a
heterogenous population driven by transcriptional noise such
as the noise during Nanog transcription.

To continue studying the mechanisms underlying the het-
erogenous levels of Nanog in mouse embryonic stem cells
(ESCs), Glauche and co-works developed an ODE model to
simulate the Oct2/Sox2/Nanog circuit [117]. They showed that
the experimental characteristics of Nanog variation can be
recapitulated by the model via either adding a Gaussian white
noise term in the ODE representing Nanog (noise-induced
transition between Nanog low and Nanog high states) or
including a transcriptional repressor of Nanog (oscillation).
This study also shows how Nanog low cells can be more
prone to differentiation relative to Nanog high cells. Another
modeling study to elucidate the variation of Nanog levels
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in embryonic cells has been performed by Herberg and co-
workers by integrating a negative feedback loop FGF4/Erk sig-
naling with the Oct4/Sox2/Nanog/Rex1 circuit. The effect of
the transcriptional noise, defined by the zero-mean Gaussian
process, has been incorporated into the ODEs representing
the temporal dynamics of Oct4-Sox2, Nanog and Rex1. The
model shows a bimodal distribution of Nanog levels and block-
ing the Erk signaling pathway can lead to a merged Nanoga
distribution [118].

3.2.3. CME models characterize the role of Nanog during
differentiation. ~ The heterogeneous expression of Nanog in
pluripotent cells has also been studied by applying master
equations to describe the stochastic dynamics of a stemness
network containing eight stemness TFs (Oct4, Sox2, Nanog,
GATAG6, Genf, Cdx2, Pbx 1, KIf4) and one heterodimer (Oct4-
Sox2) formed by Oct4 and Sox?2 [119]. The master equations
for the stemness network were derived by considering both
the concentration of proteins and the occupancy of the DNA
sites. This study shows how the stemness network can enable
up to five steady states, corresponding to two stem cell phen-
otypes expressing (high Oct4, high Sox2 and high Klf4), one
primitive endoderm phenotype, one trophectoderm phenotype
and one differentiated cell type. The stem cell steady states
are differentiated by distinct levels of Nanog, which is con-
sistent with its experimental characteristics. Through analyz-
ing the most probable transition paths among the steady states,
the study suggests a sequential transition path that Nanog high
stem cell steady state first decreases the Nanog levels to enter
a novel, Nanog low stem cell steady state, and then transition
to the primitive endoderm steady state. The modeling results
support the critical role of Nanog in safeguarding stemness
against differentiation.

Furthermore, to overcome the computational limitations of
simulating large networks, Sasai and Wolynes described the
stochastic gene expression and feedback interactions between
TFs using the many-body approach typically employed in
quantum statistical mechanics [20]. In the Insight box 4, we
introduce this approach and show how the CME of an autore-
gulating TF can be effectively mapped with this formalism.
By extending this approach to an 8-gene circuit of ESC devel-
opment, they characterized the multistable landscape and the
most probable transitions between attractors [119].

3.2.4. Landscape theory identifies the trajectories of
differentiation and reprogramming.  To quantify the kin-
etic flow during ESC differentiation, epigenetic landscape
approach has been applied. Li and Wang developed a global
potential landscape for a stem cell development network
containing 52 genes [120]. There are two basins of attrac-
tions identified on the landscape corresponding to a stem
cell state and a differentiated state. The model shows the
development process can be viewed as a transition from the
stem cell attractor to the differentiated attractor. Interestingly,
the reversed ‘reprograming’ trajectory where differentiated
cells acquire pluripotent traits can be different in the 52-gene
expression space. Later, the authors applied the landscape and
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flux path approach to quantify the landscape for a reduced can-
cer stem cell (CSC) circuit that only contains six key genes
(two microRNAs—miR200 and miR-145, four proteins—
ZEB, P53, MDM2 and OCT#4), to identify the basins of attrac-
tions and transition paths in between [121]. This study shows
the CSC circuit enables four basins of attractions correspond-
ing to a normal state, a normal stem cell state, a cancer state, a
CSC state. Specifically, the study suggests that P53 activation
promotes the transition from the CSC attractor to the normal
cell attractor, which is consistent with the tumor suppressor
role of P53.

To understand the large cell-to-cell variation of Nanog and
other stemness TFs in ESCs, Sasai and co-workers developed
an epigenetic landscape approach for a stemness regulatory
network contains six genes—three stemness genes (Sox2,
Oct4, Nanog), and three lineage-specific genes (Gata6, Cdx2,
and Genf) [122]. One interesting prediction from this study
is the distribution of time scales of the regulatory processes
(binding/unbinding of TFs, histone modification etc.) is crit-
ical to determine the dynamic behaviors of the network.
Specifically, the slow transcriptional switching of Nanog leads
to large fluctuations among multiple transient states.

3.2.5. Parameter randomization on the stemness circuit. =~ To
identify the robust gene states during stem cell differenti-
ation, parametric randomization methods have been applied
to the stemness network. For example, RACIPE has been
applied to a proposed core stemness regulatory network con-
taining eight master regulatory TFs (Oct4, Sox2, Cdx2, Gata6,
Genf, Pbx1, Kif4 and Nanog) [123]. The stemness regulat-
ory network contains mostly transcriptional regulation with
protein-protein interaction, i.e., the binding/unbinding inter-
actions between So0X2, Oct4 and the Oct4-Sox2 complex.
Using exclusively the topological information of the network
as input, RACIPE generated an ensemble of mathematical
models with various numbers of steady-state solutions that can
be explored with statistical analysis. Hierarchical clustering
results of the RACIPE solutions exhibit distinct gene expres-
sion patterns that can be associated with different develop-
ment stages and match the single-cell mRNA expression data
of mouse ESCs. One intriguing result of this study is the multi-
stable behaviors of the stemness GRN and the recapitulation
of the experimentally measured gene expression patterns can-
not be achieved by networks with randomized topologies, even
though the randomized networks can have similar amount of
mutual inhibitory and self-excitatory feedback loops relative
to the stemness circuit. The results suggest that the stemness
GRN may indeed contain some topological properties that are
beyond the expectation based on the counting of the simple
motifs. By analyzing the difference of the parameters that lead
to different states, the key parameters whose variation can
induce the transitions among different states are identified.
The physiological representation of those parameters can be
the stimuli that trigger the transition. Through systematic-
ally perturbing each gene and each regulatory link in the
stemness GRN, RACIPE elucidates a hierarchical decision-
making structure of the stemness GRN, with the OCT4/CDX?2
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motif functioning as the first decision-making module fol-
lowed by the GATA6/Nanog module. By simulating the effect
of external signals that perturb the TFs in the stemness GRN,
RACIPE analysis results suggest that the presence of external
signals often restrains the gene states that can be accessed
instead of creating new states. The results suggest an altern-
ative explanation of the Waddington landscape that the stem
cell population, instead of being viewed as a fixed stable ‘stem-
ness’ state, can be regarded as a mixture of heterogeneous cell
phenotypes. Along the differentiation, upon external signals,
the cell population heterogeneity decreases partially because
cells lose access to some stable states. In other words, cells are
committed to specific phenotypes, therefore, differentiated.

3.2.6. Combing landscape theory with random parametric
perturbation.  To calculate the landscape of stem cell net-
works by considering the large variation of parameters, Li
developed an approach that combines landscape theory with
random parameter perturbation, referred to as LRPP [124].
The LRPP approach contains the following steps: the time
evolution of each gene in the stemness network is represented
by ODEs; the modeling parameters are sampled from a range
with either uniform or Gaussian distribution; multiple initial
conditions are chosen to identify all possible steady states;
the landscape is calculated using the self-consistent mean field
approximation; repeat the aforementioned procedure for mul-
tiple times and Sum over the landscape of different sets of
parameters to get the landscape for the ensemble models. By
applying the LRPP approach to a stemness GRN that con-
tain four stem cell marker genes OCT4, SOX2, NANOG, and
KLF4 and three differentiation marker genes GCNF, CDX2,
and GATAG®6, the author identifies three main stable basins of
attractions corresponding to an ESC state (high Nanog, low
Gata0), a differentiate cell state (low Nanog, high Gata6) and
an intermediate state (high Nanog, high Gata6). The interme-
diate state characterized by co-expression of stemness marker
Nanog and differentiation marker Gata6 may account for the
heterogeneity of these TFs observed during single-cell exper-
iments, and may play a critical role in regulating stem cell
plasticity.

3.2.7 Insight box 4: spin-boson formalism for an
autoregulatory gene. In this insight box, we discuss the
application of spin-boson formalism to describe stochastic
gene switches. Here, we only aim at giving the reader a flavor
of this approach. Following Sasai and Wolynes, we examine a
single autoregulatory gene (i.e., a gene that regulates its own
transcription). An extensive review on the uses of quantum
field theory in diffusion-reaction systems is offered by Mattis
and Glasser [125].

The autoregulatory gene is described by the protein copy
number n and a Boolean variable s = 0, 1 describing whether
the gene is bound or unbound.

We have previously developed the CME for a birth-death
process (see insight box 1). In addition to production and
degradation, produced molecules can bind to DNA and regu-
late their own transcription. Depending on whether molecules
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bind to DNA as monomers or oligomers, the protein-DNA
binding rate depends on a power of protein level n (see insight
box 2). Since we are not interested in solving a specific case
but rather layout the mapping procedure, we assume a generic
binding rate 4 (n). The DNA-protein unbinding rate is a con-
stant f independent from 7. The unbound and bound promoter
produces molecules at rates gg and g, respectively. Similar to
the birth-death process, we are condensing mRNA transcrip-
tion and translation into a single production rate. Finally, pro-
tein molecules degrade with rate constant k. A set of two prob-
abilities (P; (n,1),Pg (n,t)) describes the probabilities to have
nmolecules and an unbound/bound promoter at time #, respect-
ively. Combining all reactions, CMEs for Py and P; assume
the form

dP?lt(n) =goP(n—1,0) — goP(n,0) +k(n+1)P(n+1,0)
dpcllt(i’l) =giP(n—1,1)—goP(n,1)+k(n+1)P(n+1,1)

—knP (n,1) —fP(n,1) + h(n) P (n,0). (51b)

To map this CME onto a many-body problem, the first step
is to rearrange equation (51) as a single equation for the prob-
ability vector P (n,t) = (P (n,t), Py (n,t))

O p(ni) = ( H g(:) )[P(n—],t)—P(n,t)]+k[(n+1)
P(n+ 1,6 —nP(n,6)] + ( _hh(,(q’;) ff )P(n,t)
(52)
Further, we define a state vector 1 :
+00
U = P(n,1)|n). (53)

n=0
To make the connection to the quantum many-body prob-
lem more evident, we introduce ladder operators [125]

a*|n)=|n+1), (54a)

aln)y =nln—1). (54b)

Notably, the ladder operators still satisfy the commutation
relation [a,a*] = 1, but their definition slightly differ from the
standard harmonic oscillator operators (a* |n) = v/n+ 1|n),
aln) =+/n|n—1)). This unconventional definition arises
because the coefficients in the expansion of equation (53)
are probabilities, whereas typically probabilities correspond to
the squared coefficients in ‘standard’ expansions of the wave
function.

With these definitions in hand, the CME can be rewritten in
the form

oy
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where all the information about chemical reactions is encoded
by the operator (2:

Q=(g+6g0z) (a" —1)+k(a—ata)+p" (—1+0x)

+‘LL7 (71'0')/70'2). (56)
With the following definitions
2
h +
ut = (h(aa )+f)7 (57¢)
2
h +)
po = Blea )=h, (57d)
2
and the introduction of the matrices:
0 1
O'X:(l 0), (58a)
. 0 1
ioy = ( 1 0 ), (58b)
1 0
UZ:(O 1 ) (58¢)

Sasai and Wolynes further apply this formalism to a more
complex 8-gene circuit of stemness TFs to predict stable
attractors and transitions corresponding to differentiation.
More details about this work can be found in [20].

3.3. From muiltistability to spatial patterning: cell
communication through Notch signaling

So far, we have considered intracellular signaling networks
that regulate cell-fate dynamics. In all these cases, the decision
on cell fate was cell-autonomous, i.e., it did not depend on
the signaling state of other cells in the surrounding environ-
ment. A cell population where cells can assume one of mul-
tiple states will exhibit heterogeneity according to the states’
relative stability but without any spatial organization. If cells
exchange information with their neighbors, however, the cell-
fate decision processes become correlated, thus giving rise to
spatial organization. In this section, we consider the example
of Notch signaling, one of the most well-conserved and stud-
ied signaling pathways that regulate both physiological and
pathological processes [126, 127]. Notch signaling operates
via binding of ligands and receptors belonging to neighboring
cells, thus serving as a nearest neighbor communication mech-
anism that couples cell-fate decisions in a spatially-dependent
manner. Signaling through different classes of Notch ligands
can lead to either converging or diverging cell states between
neighbors, thus raising interesting parallels with the behavior
of spin systems such as ferromagnets and antiferromagnets.
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Figure 12. Lateral inhibition and patterning of Senders and Receivers in the Notch-Delta system. (A) Schematic of the model proposed by
Collier et al in a system of two cells [134]. Pointing arrows indicate Delta-mediated activation of Notch in neighboring cells, while t-shaped
arrows indicate Notch-mediated inhibition of Delta within the same cell. (B) On a hexagonal lattice, Notch-Delta lateral inhibition gives rise
to a pattern where high-Delta Senders (green hexagons) are surrounded by high-Notch Receivers (red hexagons).

3.3.1 Notch signaling relays single cell multistability to spatial
patterning.  Notch signaling is initiated when the extracel-
Iular domain of the Notch receptor binds to the transmem-
brane domain of a ligand at the surface of a neighboring cell.
Mammalian species typically exhibit one class of receptors
(Notch) and two classes of ligands (Delta and Jagged), which
can be further divided into a variable number of subtypes with
different molecular structures. Upon binding, pulling forces
by endocytosis and sequential cleavage actions by assisting
enzymes lead to the release of the Notch intracellular domain
(NICD). The NICD is transported to the cell nucleus where
it activates or inhibits the transcription of several target genes
[126, 128, 129]. In particular, NICD transcriptionally activates
Notch and Jagged while inhibiting Delta. Therefore, a cell with
high expression of Delta ligands activates the Notch receptors
in its neighbors, thus in turn implying the repression of Delta.
Conversely, when a cell is exposed to low levels of Delta from
its neighbors, the Notch receptor is not activated, thus allow-
ing production of Delta. Hence, Notch-Delta signaling leads
neighboring cells to divergent cell states: a (low Notch, high
Delta) state typically referred to as Sender, and a (high Notch,
low Delta) state typically referred to as Receiver. At the mul-
ticellular level, this patterning principle leads to alternation
of Senders and Receivers, typically referred as ‘lateral inhib-
ition’, which plays a crucial role in the differentiation of cell
states in several physiological processes including somitogen-
esis, angiogenesis and neurogenesis [130-132]. Conversely, a
cell with high expression of Jagged activates Notch recept-
ors in its neighbors, which in turn activates the production
of both Notch and Jagged. Therefore, Notch-Jagged signaling
promotes a convergent (high Notch, high Jagged) state among
neighbors that is often referred to as hybrid Sender/Receiver.
On a multicellular level, this patterning principle leads to a
homogeneous population of hybrid Sender/Receiver cells, or
‘lateral induction’, which is observed, for instance, in the spa-
tial propagation of a pluripotent cell state during inner ear
development [130, 131, 133]. In the following paragraphs, we

will review models that investigate how intracellular signal-
ing and ligand-receptor binding relay cell-fate decisions in
individual cells and multicellular patterning, the competition
between lateral inhibition and lateral induction, and the role
of stochastic fluctuations in enforcing or disrupting ordered
patterns.

3.3.2. Notch-Delta lateral inhibition: a two-cell toggle switch.

The first mathematical model of Notch signaling proposed by
Collier et al [134] directly generalizes the single cell toggle
switch and focuses on lateral inhibition driven by Notch-Delta
signaling between neighboring cells (figure 12(A)). It con-
siders a two-dimensional lattice where the temporal dynamics
of Notch and Delta in a cell (p) is described by the set of ODEs

~ k

d(NflfNO) - —’(_D(P;IZ(Z )k — (N, /No), (59a)
a /Do

d(Dg{DO) - 1 —l—b(l\lf /N )h —p(Dp/Do), (59b)
p 0

where D), = %Zp,Dpf is the average level of Delta ligand
in the nearest neighbors; in this expression ¢ is the num-
ber of nearest neighbors and the summation goes over all
nearest neighbor cells p’. Ny and Dy are typical levels of
Notch and Delta used to scale the model while p, p are dimen-
sionless degradation rate constants. Compared to all the cir-
cuits reviewed so far, this model considers a multicellular lat-
tice (typically two-dimensional) where each individual cell is
described by the Notch-Delta circuit, and circuits of neighbor-
ing cells are connected through the nearest neighbor summa-
tions in the Hill functions of equation (59a).

Therefore, if neighbors of cell p are Senders with high
Delta, cell p represses the production of Delta while increasing
the production of Notch, hence assuming a (high Notch, low
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Delta), Receiver state. Conversely, if neighbors of cell p are
Receivers with low Delta, Notch is weakly activated in cell p,
thus maintaining a Sender state with (low Notch, high Delta)
[132, 134]. Therefore, if two neighboring cells start with very
similar but not exactly equal levels of Notch and Delta at time
t = 0, the mutual inhibition mechanism will amplify the small
initial difference and ultimately differentiate between a Sender
cell and a Receiver cell.

On an extended two-dimensional lattice, this model allows
patterns where Sender cells are surrounded by Receiver
cells. Specifically, on a square lattice, these interactions lead
to a chessboard-like pattern with alternating Senders and
Receivers [135]. On a hexagonal lattice that perhaps better rep-
resents the arrangement of cells in an epithelial tissue, how-
ever, a perfect alternation of Senders and Receivers cannot
be achieved due to lattice frustration. Therefore, Sender cells
are typically surrounded by six Receivers that are in contact
with one another, leading to a 3-to-1 Receiver/Sender ratio
(figure 12(B)). Indeed, Receiver cells can be in contact as they
do not express Delta, and therefore do not actively regulate
each other, while Sender-Sender contacts give rise to mutual
inhibition until one cell is converted to the Receiver state
[136]. In other words, a contact between Receivers simply res-
ults in lack of cell-cell signaling, whereas a contact between
Senders leads to the mutual inhibition that ultimately breaks
the symmetry and forces one cell to the Receiver state. This
mechanism is not flawless and sometimes patterning mistakes
can be observed; in the last section of the chapter, we will dis-
cuss in more details the nature of these ‘defects’, their bio-
logical implications and the role of stochastic fluctuations in
modulating these patterns.

3.3.3. Variable cell shape as an imprint to guide lateral
inhibition.  Notch receptors and ligands become available for
signaling only once they reach the cell membrane. Therefore,
the signaling between pairs of neighbors depends on the geo-
metry of cell-cell contact and their shared membrane area.
From a theoretical perspective, this observation offers the pos-
sibility to integrate aspects of cell biophysics into the ‘stand-
ard’ Notch-Delta signaling.

Shaya et al [137] investigated the relation between cell size
and cell fate by integrating experimental and computational
methods. By introducing reports to track the activity of Notch
and Delta, they showed that signaling between pairs of nearest
neighbors correlates with their shared contact area. Including
the role of cell shape requires a more detailed model that
explicitly describes ligand-receptor binding as well as tran-
scriptional regulation by the NICD thereafter [132, 137-139].
This can be achieved by directly generalizing the model of
equation (59) to explicitly include variable cell shapes. In this
generalized model, a cell is described by a set of three ODEs
for Notch, Delta and NICD
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In equations (60a) and (60b), the production of Notch and
Delta is regulated by Hill functions that depend on the level of
NICD, with Ay > 1 and 0 < Ap < 1 to capture transcriptional
activation of Notch and transcriptional inhibition of Delta.
Moreover, this model considers binding of Notch and Delta
molecules of a given cell (p) to ligands and receptors of neigh-
boring cells (j); here, k represents a bimolecular binding rate
constant between a ligand and a receptor at the surfaces of
neighboring cells, and the summation spans over the nearest
neighbors of cell (p). Binding of Notch with external ligands
leads to release of NICD and degradation of the remaining
molecular complex; therefore, the binding term results in a
loss term in equation (60a) and a corresponding production
term in NICD’s equation (60c). Furthermore, the binding term
of Notch receptors with external ligands in equation (60a) is
weighted by a contact area term (/,;) that describes the shared
cell contact area between cells p and j. The limit of a regular
lattice is achieved by imposing that all weightage terms are
equal (I,; = 1/0).

On a disordered lattice with variable cell sizes, smaller cells
with smaller contact area tend to acquire a Sender state while
larger cells tend to acquire a Receiver state [137]. In the per-
fectly regular lattice, Senders are selected from a homogen-
eous initial condition simply due to spontaneous breaking of
symmetry and amplification of small initial differences [134].
Instead, variation of cell size bias cell fate selection by weight-
ing the amount of signaling between pairs of neighboring cells,
and can be thus viewed as an imprint that guides the patterning
by breaking the symmetry between cells. This prediction was
directly validated in the context of chicken inner ear devel-
opment, where smaller cells produce Delta at a high rate and
eventually become hair cells, while larger cells generally com-
mitted to a non-hair, supporting phenotype [137, 140].

3.3.4. Notch-dagged signaling guides a ftransition between
lateral inhibition and lateral induction. So far, we have
reviewed models that primarily focus on Notch-Delta lateral
inhibition. Ligands of the Jagged type, however, can give rise
to a positive feedback between neighbors and thus promot-
ing lateral induction of the (high Notch, high Jagged) hybrid
Sender/Receiver phenotype. The conflicting effects of Delta
and Jagged ligands on cell fate raise interesting questions
about their competition in multicellular models where many
cells collectively converge to diverse patterns. Boareto et al
[139, 141] proposed a model of Notch-Delta-Jagged signal-
ing based on the circuit schematic of figure 13(A) that dir-
ectly generalizes the Notch-Delta circuit of equations (60a)—
(60c¢) to include NICD transcriptional activation of Jagged and
Notch-Jagged binding:
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Figure 13. Lateral inhibition and lateral induction patterns in the Notch-Delta-Jagged model. (A) Schematic of the Notch-Delta-Jagged
circuit in the model of Boareto et al [139]. Dotted arrows summarize production and transport to cell membrane of Notch, Delta and Jagged
molecules. (B) Phase diagram of single cell exposed to constant external levels of Delta and jagged ligands (Dext and Jgxt). (C) Phase
diagram of a 2-cell system as a function of cellular production rate of Jagged and Delta (g; and gp). (D) Typical patterns observed in a
1D-chain of cells with periodic boundary conditions. Green, orange and purple squares indicate Sender, Receiver and hybrid
Sender/Receiver cells, respectively. Panels (B), (D) are adapted from Boareto et al [139]; panel (C) is adapted from Kang er al [142].
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In this model, a cell behaves as a three-way switch that can
assume a Sender, Receiver, or hybrid Sender/Receiver state
based on initial conditions, parameters and state of the neigh-
bors. In the limit of a dominant Notch-Delta signaling (gp >
g7), this model recovers a lateral inhibition pattern with altern-
ated Senders and Receivers. In the opposite limit of a dominant
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Notch-Jagged signaling (gp < g;), however, there is a homo-
geneous solution where all cells are hybrid Sender/Receivers
with (high Notch, high Jagged).

Therefore, a single cell exposed to a fixed level of external
Notch receptors and ligands can be monostable S, R or S/R,
or fall in a regime of multistability based on the levels of
external Delta and Jagged (figure 13(B)). In a two cells scen-
ario, this model undergoes a sharp transition from lateral inhib-
ition to lateral induction triggered by an increasing production
rate of Jagged (figure 13(C)). This transition has been used
to explain how TNF-«, and inflammatory signal that activ-
ates Jagged, prevents physiological angiogenesis that relies
on Notch-Delta lateral inhibition [142]. On a one-dimensional
chain of cells with periodic boundary conditions, interme-
diate conditions where both Notch-Delta and Notch-Jagged
‘modes’ of the signaling are relevant (gp ~ g;) give rise to
disordered configurations with mixtures of Senders, Receivers
and hybrid Sender/Receivers [139] reminiscent of partially
disordered configurations in a spin system (figure 13(D)).

Interestingly, both mathematical models and experimental
observations suggest a dual role for Jagged. While a strong
Notch-Jagged signaling promotes homogeneous patterns of
hybrid Sender/Receiver cells, as observed during inner ear
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development and angiogenesis, a weaker expression of Jagged
assists Notch-Delta signaling to organize a precise lateral
inhibition. In the context of inner ear development, Petrovic
et al [143] showed experimentally that Jagged ligands help
refine the pattern of Senders and Receivers by competing with
Delta over Notch receptors. This leads to even more NICD,
and thus an even stronger inhibition of Delta, in the Receivers.
Similarly, a weak activation of Jagged improves Notch-Delta-
driven angiogenesis in an in vitro model developed by Kang
et al [142].

3.3.5. Stochastic fluctuations lead to optimal lateral inhibition
patterning.  While the standard paradigm of Notch-Delta
lateral inhibition assumes a precise patterning of alternated
Senders and Receivers, it is reasonable to assume that spatial
constraints might lead to frustrated patterns, in analogy with
the relaxation of spin systems. Evidence of patterning mistakes
was recently quantified in the context of Tip-Stalk differenti-
ation during sprouting angiogenesis, where Tip cells are occa-
sionally separated by multiple Stalk cells [144, 145]. Galbraith
et al studied the relaxation of a multicell Notch-Delta sys-
tem under the effect of white and shot noise, respectively
[135]. First, the authors showed that a deterministic Notch-
Delta multicell model on a square lattice equilibrates to the
‘standard’, lateral inhibition alternate pattern only for a small
set of well-defined initial conditions, such as the ‘seeding’
of a single Sender cell, while typically reaching disordered
patterns when starting from more randomized initial condi-
tions. By quantifying the patterning order based on the frac-
tion of correct Sender-Receiver contacts, they demonstrated
that intermediate levels of stochastic fluctuations help achiev-
ing more ordered patterns, independently of the specific type
of noise. The authors suggested an analogy with the navigation
of rugged energy landscapes of spin glass systems. The highly
ordered salt-and-pepper configuration can be interpreted as a
low energy attractor, or global minimum, in a complex, high-
dimensional landscape. Conversely, more disordered configur-
ations can be interpreted as local minima with higher energy.
Therefore, the relaxation of the Notch-Delta systems is char-
acterized by two timescales. First, on a shorter timescale, the
equilibration of the chemical reaction terms leads to the closest
local minimum. Second, on a longer timescale, stochastic
fluctuations allow a more thorough exploration of the land-
scape, finally leading to the global minimum with ordered pat-
tern. Intermediate stochastic fluctuations are key to achieve
an ordered pattern because low noise levels are not sufficient
to escape local minima and navigate the landscape and, con-
versely, strong fluctuations in the high noise regime become
larger than the typical barrier height separating attractors, thus
preventing relaxation toward any specific attractor [135].

4. Final remarks and future challenges

In this review, we have provided a general overview of mod-
eling and computational strategies to study the dynamics of
gene regulatory networks at various scales and levels of detail,
ranging from stochastic simulations of individual chemical
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reactions up to coarse-grained Boolean descriptions of large
networks. In particular, our main goal was to showcase tools
to study complex biochemical systems that can give rise to
multistability, or, in biological terms, the coexistence of mul-
tiple states that can be associated with different cell pheno-
types. We urge to point out that there is not an intrinsically bet-
ter approach, but rather different biological questions require
choosing the most suitable tools. For example, stochastic mod-
els based on the CME might be suitable to investigate the
dynamics of smaller, well-defined circuits where prior know-
ledge is available about the reaction parameters. More coarse-
grained approaches such as continuous models, parameter
randomization or Boolean circuits might be more appropri-
ate to study the emerging dynamics of larger circuits where
an informed guess of the model’s parameters is unfeasible.
Throughout the review, we have demonstrated how some of
these strategies can be implemented using small, archetypical
systems, such as a single transcribing gene and the bistable
toggle switch.

Furthermore, we have provided three specific examples to
showcase how the ‘basic’ biological building blocks including
transcription and translation can be complemented and gener-
alized to include additional biological processes. In the case
of the EMT, mathematical models that only focus on the tran-
scriptional interactions between genes and TFs might not be
sufficient to fully capture the biology, as post-translational
regulation of non-coding RNAs follow a different dynamic
and thus requires different mathematical formulations (see
section 3.1 and insight box 3). Moreover, the discussion of
stem cell differentiation provided an example of how meth-
odologies originally developed for more traditional physical
problems, such as quantum mechanics, can be successfully
applied to biology, in this case to capture the stochastic fluctu-
ations of an auto-regulatory gene (see section 3.2 and insight
box 4). Finally, while most of the existing modeling efforts
tend to focus on the dynamics of individual cells, the dis-
cussion of Notch signaling showed how these models can be
applied to multicell, spatial models, thus raising interesting
connections between regulation of cell fate and spatial pattern-
ing (see section 3.3).

In conclusion, we stress that, while existing methodologies
reviewed here and elsewhere provide an exhaustive framework
to describe gene regulation, many open questions and chal-
lenges lie ahead. For example, the fast development of tran-
scriptomics methods has radically improved our resolution on
gene regulation at the single cell level [25]. scRNA-seq allows
to estimate the number of transcripts of each RNA species
in individual cells [81]. Some computational methods have
been proposed recently to infer the interactions between genes
from scRNA-seq data by coupling modeling and statistical
regression [28, 82, 146]. Furthermore, it is becoming increas-
ingly clear that the decision-making of cell fate specification
does not solely rely on regulatory interactions between genes.
For example, in both the cases of EMT and Notch signaling,
phenotypic transitions also imply changes in the cell’s mech-
anical properties, which in turn regulate the transcriptional
signaling, thus giving rise to mechano-chemical feedbacks
[96]. Therefore, the integration of chemical and mechanical
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regulation in cell-fate specification represents a novel and
intriguing challenge for theoretical and computational mod-
eling. Tackling these exciting open questions will require an
even stronger combination of existing and new physical and
mathematical concepts towards the description of complex
biological systems.
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