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Abstract

The present study focuses on the mechanical chirality in@ype topologi-
cally interlocked material systems. Topologically intgrloc aterial (TIM)

systems are a class of dense architectured materials hich the mechanical
response emerges from the elastic behavior of ing blocks and the
contact-frictions interactions between the blo @he resulting mechanical
behavior is strongly non-linear due to thesgt@bility-instability characteris-
tics of the internal load transfer patter wo tessellations are considered
(square and hexagonal) and patches h are used as templates. While
individual building blocks are achi irality emerges from the assembly
pattern. The measure of micro Q circulation is introduced to identify
the geometric chirality of TI ems. TIM systems identified as geomet-
rically chiral are demonst ossess mechanical chiral response with a
force-torque coupling undeRtransverse mechanical loading of the TIM plate.
The chiral length is foind to be constant during the elastic response, yet size-
dependent. Duri inear deformation, the chiral length scale increases
exhibits a strong size dependence. The principle of
ced to transform non-chiral TIM systems into chiral ones.
In the lin rmation regime, the framework of chiral elasticity is shown
icable. In the non-linear deformation regime, chirality is found to
ect the mechanical behavior more significantly than in the linear
. Experiments on selected TIM systems validate key findings of the
main computational study with the finite element method.
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1. Introduction

There is distinct evidence that deformation and failure behavior of ma-
terials can require the consideration of internal and emerging length scales
[1, 2, 3, 4]. Chiral materials are one type of materials in which a length
scale is present. Architectured materials and material systems [5] present
themselves as opportunities to realize mechanical chirality. Chiral cellular ar-

chitectured materials with chiral mechanical behavior are construct m
either re-entrant, rotating, or chiral unit cells [6, 7, 8, 9, 10, higal
kirigami [12] and tile structures [13] are based on the rotation in the

microstructure. Dense chiral architectured materials 0 ites with
chiral seciond phases [14, 15] or specific spatial orientat@i distribution
of phases [16, 17].

This present study investigates chirality in Top@lly Interlocked Ma-
terial (TIM) systems [18]. In TIM systems, p are arranged in an
overall planar configuration such that neither ifg block can be removed
from the assembly without disassembly of erall system. The most fun-
damental such assembly is the densest agmg of tetrahedra in a plane
[19]. Once the assembly is confined hff aNa@tinding frame, the assembly can
carry transverse loads, much like 20, 21, 22]. Contact and friction
then determine the mechanical Jeg onse and, similar, to granular solids,
lead to the formation of an int®& @b foree chain system. The deflection behav-
ior of 2D TIM systems ca ribed by a theory expanding on concepts
of the Mises truss structufe and its instability [23]. TIM systems are of
relevance in the cont&if brittle solids as contact interfaces act as crack ar-
restors and alter f; obabilities [20] and increase toughness compared to
monolithic ; particularly when considering brittle materials. The
optimized Sgledgiort of building block geometry and the characteristics of in-
teraction to-block interaction can allow for the construction of TIM

S$exceed both the toughness and the strength of the monolithic

t [24]. We address the following questions.

Sys
cou

e We seek to determine how chirality emerges in a TIM system where
individual building blocks are not chiral. We expect chirality in TIM
systems to be an emerging property connected to the building block
geometry and the assembly pattern, similar to [13, 25, 26].

e If the assembly structure and building block geometry define chirality,
can microstructure descriptors of chirality in TIM systems be defined?



If so, how does such a geometric descriptor relate to the mechanical
response”?

e The main focus of past investigations on mechanical chirality relates
to investigations of the elastic response and the definition of constitu-
tive relations allowing for rotations and moments in addition to stress
and strain. TIM systems uniquely allow for the investigation of the
chiral response throughout the initial elastic, nonlinear defo n,
and damage regimes. We seek to determine how the chi arac-
ter changes throughout these domains of deformation. m allow

ng

us to assess effects related to internal length sca. n and
toughness.

e Finally, we seek to expand the design space chiral TIM systems.
While the theory of tessellation provides th es for the construc-
tion of TIM systems, uniform tessellatio s@ limitations in achieving
variations solely through the arrange%o iles. Yet additional vari-
ation of the tessellation pattern c alized using the principle of
dissection, [27]. We seek to det ow the principle of dissections
can be used to modulate thegehirality in TIM systems.

We address these questions
periments. v
2. Methods K

2.1. Tessellatiq @m

of computational modeling and ex-

The mi nesection of a TIM system is a 2D tessellation that serves as
the starti for the design of a TIM system. The uniform square and
uniformWaexidgon tessellations provide the baseline templates. Tessellation
pat e further modulated by the applications of principles of dissection.

2.1.1.Y Patches with a Single Prototile

For square tessellations, patches with two types of configuration at the
patch center are possible [28]. For patches Si(i), the patch center is at the
center tile of the patch, Fig. 1(a-d). These square patches possess an odd-
numbered tile count, i = 3,5,7,9, ..., at each edge. For square patches S,(7)
the center is at the intersection of four tiles, Fig. 1(e-h). These patches



possess an even-numbered tile count, i = 4,6,8, ..., along each edge. We
consider 3 < ¢ < 10. The number of tiles N in patches &;(¢) and Sy(i) is

N = N® = ¢? (1)
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Figure 1: Patches o ( iles: (a~d) S1: 1 =3,5,7,9; (e-f) So: i =4,6,8,10.

For hexago two types of patches are considered, Fig. 2 [28]. For
2(a d) the patch center is at the center tile. For patches
, the center point is situated at the intersection of three

N =3 - 3i+1 (2)
Nt = 32 (3)



Figure 2: Patches of hexagonal tiles: 0: 2,3,4,5; (e-f) Ho: i =2,3,4,5.

ilding block geometry for square and
hexagon tiles. The edge leng ¢ square is ay. Square and hexagonal
prototiles areas, A, and X

Ap. We construct interlo€

the tiles at alternatiﬁng
to a block height

Sk
N

King bulldlng blocks by projecting each edge of
es || = 17°, and terminate the tilted side faces



Figure 3: Assemblies of interlocking building blocks (thickness h, edge length ay,
mid-section area a3 = Ags = Ay for patches of type (a) S andy(b) H.

2.1.2. Patches with Dissections @
A dissection provides a collection of p hat can be arranged to

form the original tile of interest. In a stem, every building block
possesses inclined side faces with alt inclinations toward and away
from the normal direction to the t ion plane. Thus, all polygons in the
tessellation and its dissections sess an even number of sides so that
a complete set of matching i 10ws is enabled. Also, tile vertices must
be matched with other ti .

A Haberdasher’s puzzI&|29] visualizes this constraint, Fig. 4. Accord-
ingly, a typical dissecfion of*the triangle, Fig. 4(a), to transform to a square,
Fig. 4(b), is not ere. This dissection contains triangles, e.g. HIF as
well as edge ertices, e.g. vertex A on HI.
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Figure 4: Haberdasher’s puzzle to demonstrate the principle of dlSQ ) triangle-to-

(b) square dissection.

The Penrose tessellation [30] provides rule@a owable dissections of
quadrilaterals [31]. Figure 5(a) shows a kite-da figuration for a Penrose-
type tessellation on a parallelogram. Fq square tessellations here, the
angles of the dissecting lines are modif rom those in the Penrose-type
tessellation (36°,72°) to (30°,60°) resulting dissection, Fig. 5(b), can
be used to construct building b allowing for the assembly of a TIM
system, Fig. 5(c). The disse @\ exagons into rhombuses [32] provides

rules for allowable dissec [drthe hexagon tessellations, Fig. 6(a). The
three resulting building bl8¢ks are presented in Fig. 6(b).

60" ]

[
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(b)

Figure 5: (a) Kite-dart configuration in the Penrose tessellation, (b) modified kite-dart
configuration for the square tile, (c) building blocks for the dissected square tile.
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Figure 6: (a) Hexagon tile dissected into three rhombus tiles, (b) @ cks”for the

dissected hexagon tile.

2.2. Architecture Descriptor

The directions of alternating angles of tile f 7(a) and 7(b), play
a central role in the load transfer mechanism i systems as load transfer
follows the angle direction [33]. We repr&he projection direction of a
plane by its plane tilt vector ¢. Consi he center tiles in Figs 7(a) and
7(b), red-colored planes are tilted inWard®™and the respective vector points
to the tile center; blue-colored pla @: tilted outward and the respective

tilt vector points away from th By representing these tilt vectors across
the entire TIM system, d s obtained.

Chirality is defined as chonal property, i.e. right/left-handedness.
We define chirality of ghe afghitecture of the TIM systems as the circulation,
C, of the tilt vectg d ¢ by integrating along a closed loop L centered at
the patch center:

5\\0 = f [ dF (@)
) L
Wh%' tangential along L. The condition C' = 0 defines an achiral

archigéctire while C' # 0 defines a chiral architecture (counter-clockwise or
clockWise). In this study, only cases with C' > 0 are considered.



lation. Tilt angles are expressed by the tilt vector field .

p Q
Figure 7: Tessellations and projected side planes in a (a) square @ agon tessel-

2.3. Computational Methods

We employ finite element analysis for th @rical simulations of the
mechanical response of the TIM systems. %l ¢ blocks are linear elastic
solids, with properties of the polymer i experimental part of the study
(modulus £=1.827 GPa and Poiss mo v=0.35). A linear pressure-

overclosure relationship defines the l interaction between building blocks.
The contact stiffness is K =1 /1y, in order to limit contact overclo-
sure value, with [y being unit hNThe tangential interaction is given by
a Coulomb friction mode oefficient of friction of ©=0.3. A patch of

building blocks is confined§within an external frame with matching geome-
try. The TIM systex%xre constrained against axial rotation (6, = 0). A
centrally position@ ntor provides a transverse mechanical load to the
TIM systemsg. enter is modeled as a rigid body.

The in r Prescribes a normalized transverse deflection §/h and is
constrain thst axial rotation (f, = 0). The normalized force in the
indgnteaxi$ F//(EH?), and normalized moment about the indenter axis,
are calculated from data computed at the reference point of the
indenger part. Consequently, force-displacement and moment-displacement
records are obtained. We quantify chirality the normalized chiral length,
L./h obtained as the ratio of the normalized moment to normalized force.

The bounding frame is created by adding an additional layer of build-
ing blocks on each edge and by fusing the additional blocks into one rigid
body. A mass-scaled dynamic FE approach is used (ABAQUS /Explicit) as
the interest is in the long-term, quasi-static response of the system. Mass




density was set such that the kinetic energy component in the system so-
lution remains a small fraction of the other energy components throughout
the analysis. The applied displacement function is sigmoidal to a constant
velocity of §/h = 10.0 /s. Computational files are available [34].

2.4. FExperimental Methods

We manufactured physical realization of TIM systems for patches
3), Sa(i = 4), Hi(: = 2), and Ha(i = 2), Fig. 1 and Fig. 2.
manufacture a dissected variant of H; (i = 2), i.e. Hi(i = 2). The bifes
of individual building blocks are confined by matching boundi
TIM systems are created using a Stratasys Objet 350 fPolyj D Printer.
Individual building blocks (h = 5.0 mm and ag = 10.0 mmy, and'the bounding
frames are printed with the polymer resin VeroWhiPlus. After the print

process, the support resin is removed. A consis ssembly method is
provided. First, all building blocks are positi%J accordance with the
patch under consideration. Then, a two-part ration of the bounding
frame is placed to surround the assembly. A tic rubber band is stretched
along the outside of the frame parts a% rains the assembly. The length

of the rubber band is selected to miMunize the pre-stress in the assembly.
Assembly conditions between pate @ re controlled by ensuring equal strain
in the rubber band for all as 168, built. Adhesive bonding is applied at
the joints of two two-pa o merge the frames into a single part to
constrain the patch, and%b r band is removed, Fig. 8(a).

Patches are subjegted t9 a transverse uniaxial displacement applied at
the center of the The specimens and the indenter are constrained
against rotation . The displacement, § is applied through a cylindrical
indenter o @r 6.0 mm (0 = 2.0 mm/min). Both the axial reaction
force F' a eaction moment around the load axis M are measured in
dependu}@w 0. The chiral length is L, = M/F. The experimental set-up
is e Fig. 8(b). The assembly is inserted in a holder attached to a
digited moment gauge (ATGE05CN-G). The torque gauge is located in the
load &is of a uniaxial test machine (TESTRESOURCES, 100 load frame)
with the indenter attached to the load cell.
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Figure 8: (a) Example of patch used in the experiments, S building block assembly
as constrained by a two-part bounding frame joined by onding. (b) Transverse
point deflection experiment with measurement of reactl nd M.

3. Results @

3.1. Architecture and Chirality

Figure 9 shows the tilt vecpe s ¢ for patches S;(i = 3) and Sy(i =
4) together with the loop the loading point. Circulation C' is
evaluated following Eq. v St - 7. For Si(i = 3), and similar
other odd-numbered patchgs, Fig. 9(a), C' = 0. Patches S; are achiral.
For Sy(i = 4) and si%r other even-numbered patches, Fig. 9(b), C' > 0.

h a counter-clockwise rotation. Figure 10 depicts

Patches S, are ¢ @
t and L fo@ ?) and Ho(i = 2). Patches H;, C' = 0, these patches

are achiral patches Hy, C' > 0, these patches are chiral, again with a

counter@ ise rotation.

11
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Figure 9: Tilt vectors ¢ and loop L to determine the ci@ion in (a) S1(¢ = 3) and (b)
Ss(i = 4). Circulation: gray - achiral, red - chiral.
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Figure 10: Tilt vectors ¢ and loop L to determine the circulation in (a) H1(i = 2) and (b)
Ho(i = 2). Circulation: gray - achiral, red - chiral.

Figure 11 depicts ¢ and L for the uniform patches S; (i = 5) and S, (i = 6)
and their dissection S{(i =5), SP(i = 5), and S3(i = 6). The uniform patch

12



S is achiral (C' = 0), Fig. 11(a). With the dissection of the center building
block as shown in Fig. 11(b), the patch S{, however, possesses C' > 0, and
becomes chiral. Alternatively, the dissections of six building blocks in the
layer surrounding the center tile of S, leads to SP (i = 5), Fig. 11(c) also with
C > 0. Patches S, are chiral even for the initial achiral uniform tessellation,
Fig. 11(d). The dissection of the building blocks at the patch center leads to

Sd(i = 6), Fig. 11(e) which retains C' > 0. *
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Fig : t vectors t and loop L to in the presence of dissection: (a) no dissection:
S1(i %5), (b) center dissection: S{(i = 5), (c) center-surround dissection: SP (i = 5), (d)
no dissection: Sy(i = 6), (e) center dissection: S¢(i = 6). Circulation: gray - achiral, red
or blue - chiral.

Figure 12 depicts ¢ and L for the original patches H, (i = 3) and H,(i = 3)
and their dissections H{(i = 3), HP(i = 3), and HI(i = 3). The uniform
patch H;(i = 3) is achiral, Fig. 12(a). With the dissection of the center
building block, we introduce the patch H{(i = 3) as shown Fig. 12(b). This

13



patch is chiral, ' > 0. With the dissections applied to the six building
blocks surrounding the center tile we obtain HP (i = 3) as shown Fig. 12(c).
This patch is again chiral, C' > 0. The uniform patch Hy(i = 3) is chiral,
Fig. 12(d), and the dissection of the building blocks at the patch center leads
to Hi(i = 3) as shown in Fig. 12(e) which retains C' > 0.
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1@ vectors t and loop L in the presence of dissection: (a) no dissection:
b) center dissection: H{(i = 3), (c) center-surround dissection: HP (i = 3),
(d) ndgdissection Ha(i = 3), (e) center dissection: HJ(i = 3). Circulation: gray - achiral,
red or blue - chiral.

3.2. Computational Analysis of Mechanical Behavior

Figure 13 shows data for the mechanical response of one selected TIM
system, i.e. Ha(i = 3) with C' > 0. The normalized force, F'/(Eh?), - dis-
placement, d/h, response is typical of the mechanical behavior documented

14



for TIM systems. The F/(Eh?)-6/h record is parabolic, with maximum load
at d/h ~ 0.7 and final failure at 6/h ~ 1.5. However, there is also a non-zero
reaction moment, M/(Eh?), in addition to the reaction force, Fig. 13(b). Ini-
tially, the magnitude of M increases proportional to F'. Following 6/h > 0.7,
while F' starts to decline, M increases at a rate larger than in the initial
stages of loading until a maximum in M is reached at about §/h ~ 1.1.
Subsequently, M also drops and reaches zero at 6/h ~ 1.5. The (nofnal-
ized) chiral length M/(Fh) = L./h is found to be significantly diffe in
the initial elastic and subsequent nonlinear deformation regimes, % 13@).
During the initial (reversible) load stage, d/h > 0.4, L h@ . The
strength of the chiral response subsequently increases dfirin nonlinear
deformation regime. At the maximum of F', the magnitige offL./h is about
double its value in the elastic regime. A more sig&can‘u mcrease of L./h

occurs during the subsequent softening response o xial load such that
the maximum value of L./h is about seven ti of the elastic regime.
In the range following the maximum for the m' , and as the TIM system

disintegrates, L./h drops to zero. O

15
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Figure 13: Computeormalized force, F/(Eh?), vs. deflection, 6/h, (b) Normalized
moment, M/( Nis-"eflection, §/h, (¢) Normalized chiral length, L./h, vs. deflection
8/h for the chiraNLIM system Hi(i = 3).

Qdepicts the computed mechanical response of TIMs systems Sy

Z (0. All TIM systems S; exhibit the characteristic skew parabolic
responses. Stiffness, the maximum load, and toughness decline as i is
increased. Moments are effectively zero. On the other hand, TIM systems
Sy with C' > 0 display both axial force and moments, Fig. 15(a,b) and
L./h # 0, Fig. 15(c). The chiral response in the elastic regime is found to be
dependent on the system size, ¢, with smaller systems possessing larger chiral
length scale. Smaller systems exhibit a more significant relative increase in
L./h in the nonlinear regime. However, the maximum value of L./h is found

16



as largely independent of the system size.
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Figure 14: Computational analysis of TIM systems & Na)/Normalized force, F//(Eh?),
vs. deflection, 6/h, (b) Normalized moment, M /(FHk3){vs. deflection, §/h.
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Figure 15: Com l analys1s of TIM systems type Ss. (a) Normalized force,
F/ (ER?), %on §/h, (b) Normalized moment, M/(Eh?), vs. deflection, §/h,

Normah | length, L /h vs. deflection §/h.

depicts the computed mechanical properties of the achiral
hexagbnal TIM systems H;. The F' — § response exhibits the typical skewed
parabelic character, 16(a), but moments are found to be absent, Fig. 16(b).
However, the chiral hexagonal TIM systems Ho exhibit both axial forces,
Fig. 17(a), and moments, Fig. 17(b) and L./h > 0, Fig. 17(c). Again, L./h
is constant in the initial elastic regime and declines with the increase in
system size. Again, L./h increases during non-linear deformation with the
relative increase larger for small system sizes. The maximum values of L./h
are rather size-independent.
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Figure 16: Computational analysis of TIM systems typ
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Figure 17: Comput’l analy51s of TIM systems type H,. (a) Normalized force,
F / (ER?), ) Normalized moment, M/(Eh?), vs. deflection, §/h,
Normah iral ength L /h vs. deflection §/h.

uted response of TIM systems with dissections S{(i = 5),
%} and S4(i = 6), Fig. 11, and of Hi(i = 3), HP(i = 3), and
), Fig. 12, are depicted in Fig. 18 and Fig. 19, respectively, and

compared to those of the original undissected configurations. While the uni-
form TIM systems S;(i = 5) is achiral, both types of dissections, S{(i = 5)
and SP(i = 5), exhibit a moment and non-zero chiral length scale, Fig. 18.
The TIM system S{(i = 5) exhibits a chiral length scale far exceeding that
of the other TIM systems and L./h is rather constant throughout the de-
formation history. In the TIM system Sy(i = 6) and its dissected variant

20



S4(i = 6), the moments initially are similar but S, (i = 6) retains a more sig-
nificant chirality throughout the subsequent nonlinear deformation regime.
For the hexagon based TIM system, H;(i = 3) is achiral, but both dissected
variants H{(i = 3) and HP (i = 3) are chiral with a significant L./h, Fig. 19.
For the chiral TIM system Ha(i = 3) dissection to HI(i = 3) retains the
chirality again and increases L./h. Dissection of the TIM systems generally
is found to lead to a reduction in axial load-carrying capability. Ceuter-
surround dissection leads to TIM system with a larger number of d
tiles than the center-dissection. Yet, the center-surround dissectio @

) a
smaller increase in chiral length compared to the center-dissec d§ystem
The number of dissected tiles has less impact on the ¢ pohi than the

distance between the dissected tiles and the loading poi

21
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Figure 18: Computa analysis of TIM systems S;(i = 5), S{(i = 5), SP(i = 5), as
well as Sa(i 6). (a) Normalized force, F/(Eh?), vs. deflection, §/h, (b)
Normalized /(ER3), vs. deflection, J/h, (c) Normalized chiral length, L./h,
vs. deflecti
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/(ER?), vs. deflection, d/h, (c) Normalized chiral length, L./h,

ure 20 depicts measured transverse force-deflection data and moment-
deflection data for TIM systems Si(i = 3) (achiral), Sa(i = 4) (chiral),
Ho(i = 2) (achiral) and Hq(i = 2) (chiral). The data shown are the mean
and range for three repeat experiments. Experiments were limited to the
magnitudes of deflection d/h < 0.6 For the achiral systems, S;(i = 3) and
Ho(i = 2) measured moments are of significantly smaller magnitude than
those for the chiral systems Sy(i = 4) and Ha(i = 2), respectively. We at-
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tribute the non-zero moments for the achiral systems to misalignment in the
load system. The behavior of Hy(i = 2) can be compared to that of its dis-
sected variant, H{(i = 3), Fig. 21. While for Hs(i = 2) the moment is small
for H(i = 3), the moment is significant. Figure 22 summarizes the experi-
ments in terms of the chiral length L.. The chiral length is found as rather
constant throughout the initial, linear stage of deformation but subsequently
is found to increase substantially during the nonlinear deformation stafi.

The general trends observed in the experiments agree well wi
from the simulation models. No attempt was made to match the f
of forces and moments, as the focus is on qualitative behavio
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Figure 21: Experimental mechanical properties of hexagon TIM with center dissection.
(a) Force F -deflection §, (b) Moment M -deflection 4, (c) HI(i = 3) .
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Figure 20: Experiment results present (a) Force, F', vs. deflection, ¢, for S;(i = 3),
Sz2(i = 4), (b) Moment, M, vs. deflection, d, for S1(i = 3), S2(i = 4), (c¢) Force, F,
vs. deflection, ¢, for Hq(i = 2), Ha(i = 2), (d) Moment, M, vs. deflection, ¢, for
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(achiral), (h) Hz(i = 2) (chiral).
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4. Discussion

Chirality in the mechanical response of ;\D tured material systems
has commonly been found when the uni f the chiral material them-
selves already possess a chiral charactg f the connectors between them
impose a chiral structure [35]. [36],_ T cO trast in the TIM systems here,
individual building blocks as well ontact and friction interactions be-
tween them are non-chiral an rgence of the overall chiral response is
the outcome of the assem t f the non-chiral building blocks. To effec-
tively represent the interag@on between building blocks, a descriptor vector
field is utilized and tlge cir@ulation C of this vector field defines the chiral-
ity of the materia m architecture. Achiral systems with C' = 0 do not
exhibit a notewor action moment, while chiral systems generate a signif-
icant react& ent. These concepts apply to both uniform tessellations

ellations as templates for the construction of TIM systems.
Selectedyexperiments qualitatively confirm the computational model results.

declines with system size and reaches a steady state at a large system size.
A similar size dependence of the chiral length on size was found in [11] for
a chiral cellular material. The use of dissections to modify the underlying
tessellation at least in the surrounding of the point of load application is a
successful strategy to increase the degree of chirality in the linear deformation
regime. The TIM system with the most significant degree of chiral response
is a dissection of the uniform hexagonal tiling, Hd(i = 3), Fig. 12(b).
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While the bulk of the study focuses on the relationship between chirality
and architecture under one loading condition, generalizations of the behavior
in the linear response regime are discussed here based on further analysis of
the TIM system HS(i = 3). Two sets of boundary conditions are considered:
(1) 0. =0, and (2) 0, free. Analysis results are given in Fig. 23. With 6, = 0,
M = FL,, while for 6, # 0, M = 0 and 6, increases with §. The mechanical

response from can be expressed via Eq. 5, [14]: A
F=C0+Cy0, Q
M = Cs50 + C40, C)O
where C; are the generalized plate stiffness constangs, wi 5 = C3. From
the case 6, = 0 and data at F'/(Eh*) = 1.6 - 1072 and Cj are obtained
as C; = 462.7 N/mm, C3 = Cy = 126.4 N. Thi ms the relationship
C3/(Cyh) = L./h. If 0, # 0, no moment is pr d 0, increases with the
d. Now, Cy = —C5(8/0,) = —5,938.7 Nm s a result, one can estimate
the deflection under a given load in the a‘ e of the rotational constraint as
d = (F—C50,)/Cy. In the absence of K ional constraint, the transverse
stiffness is reduced.
The application of cyclic 3 ds in combination with changes in
boundary condition (switghi strained to unconstrained during un-

loading, and back to con gel\during loading) can thus be envisioned to
create a work cycle si{ﬂjr o those discussed in [37].

We calculate the 8lastic field and rotational field of the system possessing
the highest chiral t the initial deformation. A difference of around 7%
was found begt e analytical estimates of Eq. 5 and the full numerical

simulation attribute this difference to deviation from a fully elastic,
reversib@

se in even the initial stages of deformation.
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Figure 23: Computa @ analysis of TIM system H{(i = 3) in the initial linear deforma-
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F/(Eh?), vst , 6/h, (b) Normalized moment, M/(Eh?), vs. deflection, §/h, (c)
Rotation, ¢ ection &/h.

alysis of chiral mechanical behavior, e.g. Eq. 5 is restricted to the
lineal elastic regime. With the TIM systems, we can investigate chirality
in the nonlinear and damage evolution regime, and thereby investigate the
effects of boundary conditions on strength and toughness. As the chiral
length scale magnitudes increase in the non-linear deformation regime, more
significant effects are expected. Figure 24 depicts the full force-deflection
response for the TIM system H{ (i = 3) under the boundary conditions 6, = 0
and 0, # 0. For 6, = 0 the initial apparent stiffness is higher than for
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the unconstraint condition. Strength is predicted as slightly lower in the
constrained condition, but deflection to failure is significantly increased in
the unconstrained condition. While failure in the constrained condition is
more gradual, the unconstrained condition exhibits an increased toughness.
Since strength and toughness are now dependent on the boundary conditions,
these quantities must be considered as apparent properties in the case of

chiral response. A
L Q

1.6e-02 z
8,#0

1.46-02 b O
1.2¢-02 . !

& 1.0e-02 ¥

L

]

= 8003

00 \
Figure 24: Computational analysis of stem H{(i = 3) considering the boundary
conditions 6, = 0 and 6, # 0, Nor ce, F/( Eh2 , vs. deflection.

5. Conclusion ;

In topologicallysnterlocked material systems built from achiral building
blocks, chirality efnerges from the assembly structure. Microstructure modi-
fication by,iigfodcing dissection is found as an effective approach to further
modify t 1 character in TIMs. The combination of building block
geomet, ectors, arrangement patterns, and dissection defines a rich
arr ible system designs, including achiral and chiral directionality.
The system geometry can be described by a vector field, where vectors
represent the direction of projection of the tile side walls relative to the as-
sembly plane. The circulation of this vector field is a measure of geometric
chirality. If a TIM system is geometrically chiral and possesses a non-zero
circulation in the tilt vector field, such a TIM system is mechanically chiral.
Beyond the linear regime, the chiral length scale is found to be dependent on
deformation and to far exceed that of the elastic regime, indicating a more
significant effect of chirality on failure than on elasticity. Two size-effects

6.0e-03

4.0e-03

2.0e-03

/

0.0e+00,

29



are found. While mechanical chirality declines with system size in the linear
deformation regime, the increase of the chiral characteristics relative to that
of the elastic domain increases with system size. In the presence of chirality,
strength, deformation to failure and toughness are apparent properties and
dependent on the constraint present. A low-constraint configuration exhibits
a higher deformation to failure than a high-constraint configuration. This
effect is not dissimilar from failure in many ductile metals. FExperimients
validate key findings from the computational study.
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