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Abstract

The present study focuses on the mechanical chirality in plate-type topologi-
cally interlocked material systems. Topologically interlocked material (TIM)
systems are a class of dense architectured materials for which the mechanical
response emerges from the elastic behavior of the building blocks and the
contact-frictions interactions between the blocks. The resulting mechanical
behavior is strongly non-linear due to the stability-instability characteris-
tics of the internal load transfer pattern. Two tessellations are considered
(square and hexagonal) and patches from each are used as templates. While
individual building blocks are achiral, chirality emerges from the assembly
pattern. The measure of microstructure circulation is introduced to identify
the geometric chirality of TIM systems. TIM systems identified as geomet-
rically chiral are demonstrated to possess mechanical chiral response with a
force-torque coupling under transverse mechanical loading of the TIM plate.
The chiral length is found to be constant during the elastic response, yet size-
dependent. During nonlinear deformation, the chiral length scale increases
significantly and again exhibits a strong size dependence. The principle of
dissection is introduced to transform non-chiral TIM systems into chiral ones.
In the linear deformation regime, the framework of chiral elasticity is shown
to be applicable. In the non-linear deformation regime, chirality is found to
strongly affect the mechanical behavior more significantly than in the linear
regime. Experiments on selected TIM systems validate key findings of the
main computational study with the finite element method.
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1. Introduction

There is distinct evidence that deformation and failure behavior of ma-
terials can require the consideration of internal and emerging length scales
[1, 2, 3, 4]. Chiral materials are one type of materials in which a length
scale is present. Architectured materials and material systems [5] present
themselves as opportunities to realize mechanical chirality. Chiral cellular ar-
chitectured materials with chiral mechanical behavior are constructed from
either re-entrant, rotating, or chiral unit cells [6, 7, 8, 9, 10, 11]. Chiral
kirigami [12] and tile structures [13] are based on the rotation of gaps in the
microstructure. Dense chiral architectured materials are composites with
chiral seciond phases [14, 15] or specific spatial orientation and distribution
of phases [16, 17].

This present study investigates chirality in Topologically Interlocked Ma-
terial (TIM) systems [18]. In TIM systems, polyhedra are arranged in an
overall planar configuration such that neither building block can be removed
from the assembly without disassembly of the overall system. The most fun-
damental such assembly is the densest packaging of tetrahedra in a plane
[19]. Once the assembly is confined by a bounding frame, the assembly can
carry transverse loads, much like a plate [20, 21, 22]. Contact and friction
then determine the mechanical load response and, similar, to granular solids,
lead to the formation of an internal force chain system. The deflection behav-
ior of 2D TIM systems can be described by a theory expanding on concepts
of the Mises truss structure and its instability [23]. TIM systems are of
relevance in the context of brittle solids as contact interfaces act as crack ar-
restors and alter failure probabilities [20] and increase toughness compared to
monolithic constructs, particularly when considering brittle materials. The
optimized selection of building block geometry and the characteristics of in-
teraction block-to-block interaction can allow for the construction of TIM
systems that exceed both the toughness and the strength of the monolithic
counterpart [24]. We address the following questions.

• We seek to determine how chirality emerges in a TIM system where
individual building blocks are not chiral. We expect chirality in TIM
systems to be an emerging property connected to the building block
geometry and the assembly pattern, similar to [13, 25, 26].

• If the assembly structure and building block geometry define chirality,
can microstructure descriptors of chirality in TIM systems be defined?
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If so, how does such a geometric descriptor relate to the mechanical
response?

• The main focus of past investigations on mechanical chirality relates
to investigations of the elastic response and the definition of constitu-
tive relations allowing for rotations and moments in addition to stress
and strain. TIM systems uniquely allow for the investigation of the
chiral response throughout the initial elastic, nonlinear deformation,
and damage regimes. We seek to determine how the chiral charac-
ter changes throughout these domains of deformation. This will allow
us to assess effects related to internal length scales on strength and
toughness.

• Finally, we seek to expand the design space for chiral TIM systems.
While the theory of tessellation provides the templates for the construc-
tion of TIM systems, uniform tessellations have limitations in achieving
variations solely through the arrangement of tiles. Yet additional vari-
ation of the tessellation pattern can be realized using the principle of
dissection, [27]. We seek to determine how the principle of dissections
can be used to modulate the chirality in TIM systems.

We address these questions by the use of computational modeling and ex-
periments.

2. Methods

2.1. Tessellation Pattern

The mid-plane section of a TIM system is a 2D tessellation that serves as
the starting point for the design of a TIM system. The uniform square and
uniform hexagon tessellations provide the baseline templates. Tessellation
patterns are further modulated by the applications of principles of dissection.

2.1.1. Patches with a Single Prototile

For square tessellations, patches with two types of configuration at the
patch center are possible [28]. For patches S1(i), the patch center is at the
center tile of the patch, Fig. 1(a-d). These square patches possess an odd-
numbered tile count, i = 3, 5, 7, 9, ..., at each edge. For square patches S2(i)
the center is at the intersection of four tiles, Fig. 1(e-h). These patches
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possess an even-numbered tile count, i = 4, 6, 8, ..., along each edge. We
consider 3 ≤ i ≤ 10. The number of tiles N in patches S1(i) and S2(i) is:

NS1 = NS2 = i2 (1)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Patches of square tiles: (a-d) S1: i = 3, 5, 7, 9; (e-f) S2: i = 4, 6, 8, 10.

For hexagonal tiles, two types of patches are considered, Fig. 2 [28]. For
patches H1(i), Fig. 2(a-d), the patch center is at the center tile. For patches
H2(i), Fig. 2(e-h), the center point is situated at the intersection of three
tiles. We consider consider 2 ≤ i ≤ 5. The number of tiles N in H1 and H2,
respectively, is:

NH1 = 3i2 − 3i+ 1 (2)

NH2
i = 3i2 (3)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Patches of hexagonal tiles: (a-d) H1: i = 2, 3, 4, 5; (e-f) H2: i = 2, 3, 4, 5.

Figure 3 depicts the interlocking building block geometry for square and
hexagon tiles. The edge length of the square is a0. Square and hexagonal
prototiles areas, As and Ah, respectively, are set to be identical a20 = AS =
AH . We construct interlocking building blocks by projecting each edge of
the tiles at alternating angles |φ| = 17◦, and terminate the tilted side faces
to a block height h/a0 = 0.5.
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(a) (b)

Figure 3: Assemblies of interlocking building blocks (thickness h, square edge length a0,
mid-section area a20 = AS = AH for patches of type (a) S and (b) H.

2.1.2. Patches with Dissections

A dissection provides a collection of polygons that can be arranged to
form the original tile of interest. In a TIM system, every building block
possesses inclined side faces with alternating inclinations toward and away
from the normal direction to the tessellation plane. Thus, all polygons in the
tessellation and its dissections must possess an even number of sides so that
a complete set of matching inclinations is enabled. Also, tile vertices must
be matched with other tile vertices.

A Haberdasher’s puzzle [29] visualizes this constraint, Fig. 4. Accord-
ingly, a typical dissection of the triangle, Fig. 4(a), to transform to a square,
Fig. 4(b), is not suited here. This dissection contains triangles, e.g. HIF as
well as edge-matched vertices, e.g. vertex A on HI.
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(a) (b)

Figure 4: Haberdasher’s puzzle to demonstrate the principle of dissection: (a) triangle-to-
(b) square dissection.

The Penrose tessellation [30] provides rules for allowable dissections of
quadrilaterals [31]. Figure 5(a) shows a kite-dart configuration for a Penrose-
type tessellation on a parallelogram. For the square tessellations here, the
angles of the dissecting lines are modified from those in the Penrose-type
tessellation (36◦, 72◦) to (30◦, 60◦). The resulting dissection, Fig. 5(b), can
be used to construct building blocks allowing for the assembly of a TIM
system, Fig. 5(c). The dissection of hexagons into rhombuses [32] provides
rules for allowable dissections for the hexagon tessellations, Fig. 6(a). The
three resulting building blocks are presented in Fig. 6(b).

(a) (b) (c)

Figure 5: (a) Kite-dart configuration in the Penrose tessellation, (b) modified kite-dart
configuration for the square tile, (c) building blocks for the dissected square tile.
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(a) (b)

Figure 6: (a) Hexagon tile dissected into three rhombus tiles, (b) building blocks for the
dissected hexagon tile.

2.2. Architecture Descriptor

The directions of alternating angles of tile faces, Figs 7(a) and 7(b), play
a central role in the load transfer mechanism in TIM systems as load transfer
follows the angle direction [33]. We represent the projection direction of a
plane by its plane tilt vector t⃗. Considering the center tiles in Figs 7(a) and
7(b), red-colored planes are tilted inward, and the respective vector points
to the tile center; blue-colored planes are tilted outward and the respective
tilt vector points away from the tile. By representing these tilt vectors across
the entire TIM system, a field of t⃗ is obtained.

Chirality is defined as a directional property, i.e. right/left-handedness.
We define chirality of the architecture of the TIM systems as the circulation,
C, of the tilt vector field t⃗ by integrating along a closed loop L centered at
the patch center:

C =

∮
L

t⃗ dr⃗ (4)

where dr⃗ is tangential along L. The condition C = 0 defines an achiral
architecture while C ̸= 0 defines a chiral architecture (counter-clockwise or
clockwise). In this study, only cases with C > 0 are considered.
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(a) (b)

Figure 7: Tessellations and projected side planes in a (a) square and (b) hexagon tessel-
lation. Tilt angles are expressed by the tilt vector field t⃗.

2.3. Computational Methods

We employ finite element analysis for the numerical simulations of the
mechanical response of the TIM systems. Building blocks are linear elastic
solids, with properties of the polymer in the experimental part of the study
(modulus E=1.827 GPa and Poisson’s ratio ν=0.35). A linear pressure-
overclosure relationship defines the normal interaction between building blocks.
The contact stiffness is K = 100,000E/l0, in order to limit contact overclo-
sure value, with l0 being unit length. The tangential interaction is given by
a Coulomb friction model and a coefficient of friction of µ=0.3. A patch of
building blocks is confined within an external frame with matching geome-
try. The TIM systems are constrained against axial rotation (θz = 0). A
centrally positioned indentor provides a transverse mechanical load to the
TIM systems. The indenter is modeled as a rigid body.

The indenter prescribes a normalized transverse deflection δ/h and is
constrained against axial rotation (θz = 0). The normalized force in the
indenter axis, F/(EH2), and normalized moment about the indenter axis,
M/(Eh3), are calculated from data computed at the reference point of the
indenter part. Consequently, force-displacement and moment-displacement
records are obtained. We quantify chirality the normalized chiral length,
Lc/h obtained as the ratio of the normalized moment to normalized force.

The bounding frame is created by adding an additional layer of build-
ing blocks on each edge and by fusing the additional blocks into one rigid
body. A mass-scaled dynamic FE approach is used (ABAQUS/Explicit) as
the interest is in the long-term, quasi-static response of the system. Mass
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density was set such that the kinetic energy component in the system so-
lution remains a small fraction of the other energy components throughout
the analysis. The applied displacement function is sigmoidal to a constant
velocity of ˙δ/h = 10.0 /s. Computational files are available [34].

2.4. Experimental Methods

We manufactured physical realization of TIM systems for patches S1(i =
3), S2(i = 4), H1(i = 2), and H2(i = 2), Fig. 1 and Fig. 2. We also
manufacture a dissected variant of H1(i = 2), i.e. Hd

1(i = 2). The assemblies
of individual building blocks are confined by matching bounding frames. The
TIM systems are created using a Stratasys Objet 350 Polyjet 3D Printer.
Individual building blocks (h = 5.0 mm and a0 = 10.0 mm) and the bounding
frames are printed with the polymer resin VeroWhitePlus. After the print
process, the support resin is removed. A consistent assembly method is
provided. First, all building blocks are positioned in accordance with the
patch under consideration. Then, a two-part configuration of the bounding
frame is placed to surround the assembly. An elastic rubber band is stretched
along the outside of the frame parts and constrains the assembly. The length
of the rubber band is selected to minimize the pre-stress in the assembly.
Assembly conditions between patches are controlled by ensuring equal strain
in the rubber band for all assemblies built. Adhesive bonding is applied at
the joints of two two-part frames to merge the frames into a single part to
constrain the patch, and the rubber band is removed, Fig. 8(a).

Patches are subjected to a transverse uniaxial displacement applied at
the center of the patch. The specimens and the indenter are constrained
against rotation, θz = 0. The displacement, δ is applied through a cylindrical
indenter of diameter 6.0 mm (δ̇ = 2.0 mm/min). Both the axial reaction
force F and the reaction moment around the load axis M are measured in
dependence on δ. The chiral length is Lc = M/F . The experimental set-up
is depicted in Fig. 8(b). The assembly is inserted in a holder attached to a
digital moment gauge (ATGE05CN-G). The torque gauge is located in the
load axis of a uniaxial test machine (TESTRESOURCES, 100 load frame)
with the indenter attached to the load cell.
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(a) (b)

Figure 8: (a) Example of patch used in the experiments, S1(i = 3): building block assembly
as constrained by a two-part bounding frame joined by adhesive bonding. (b) Transverse
point deflection experiment with measurement of reaction F and M .

3. Results

3.1. Architecture and Chirality

Figure 9 shows the tilt vector fields t⃗ for patches S1(i = 3) and S2(i =
4) together with the loop L closest to the loading point. Circulation C is
evaluated following Eq. 4 as C =

∑
i t⃗i · r⃗i. For S1(i = 3), and similar

other odd-numbered patches, Fig. 9(a), C = 0. Patches S1 are achiral.
For S2(i = 4) and similar other even-numbered patches, Fig. 9(b), C > 0.
Patches S2 are chiral with a counter-clockwise rotation. Figure 10 depicts
t⃗ and L for H1(i = 2) and H2(i = 2). Patches H1, C = 0, these patches
are achiral. For patches H2, C > 0, these patches are chiral, again with a
counter-clockwise rotation.
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(a)
(b)

Figure 9: Tilt vectors t⃗ and loop L to determine the circulation in (a) S1(i = 3) and (b)
S2(i = 4). Circulation: gray - achiral, red - chiral.

(a) (b)

Figure 10: Tilt vectors t⃗ and loop L to determine the circulation in (a) H1(i = 2) and (b)
H2(i = 2). Circulation: gray - achiral, red - chiral.

Figure 11 depicts t⃗ and L for the uniform patches S1(i = 5) and S2(i = 6)
and their dissection Sd

1 (i = 5), SD
1 (i = 5), and Sd

2 (i = 6). The uniform patch
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S1 is achiral (C = 0), Fig. 11(a). With the dissection of the center building
block as shown in Fig. 11(b), the patch Sd

1 , however, possesses C > 0, and
becomes chiral. Alternatively, the dissections of six building blocks in the
layer surrounding the center tile of S1, leads to SD

1 (i = 5), Fig. 11(c) also with
C > 0. Patches S2 are chiral even for the initial achiral uniform tessellation,
Fig. 11(d). The dissection of the building blocks at the patch center leads to
Sd
1 (i = 6), Fig. 11(e) which retains C > 0.

(a) (b) (c)

(d) (e)

Figure 11: Tilt vectors t⃗ and loop L to in the presence of dissection: (a) no dissection:
S1(i = 5), (b) center dissection: Sd

1 (i = 5), (c) center-surround dissection: SD
1 (i = 5), (d)

no dissection: S2(i = 6), (e) center dissection: Sd
2 (i = 6). Circulation: gray - achiral, red

or blue - chiral.

Figure 12 depicts t⃗ and L for the original patchesH1(i = 3) andH2(i = 3)
and their dissections Hd

1(i = 3), HD
1 (i = 3), and Hd

2(i = 3). The uniform
patch H1(i = 3) is achiral, Fig. 12(a). With the dissection of the center
building block, we introduce the patch Hd

1(i = 3) as shown Fig. 12(b). This
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patch is chiral, C > 0. With the dissections applied to the six building
blocks surrounding the center tile we obtain HD

1 (i = 3) as shown Fig. 12(c).
This patch is again chiral, C > 0. The uniform patch H2(i = 3) is chiral,
Fig. 12(d), and the dissection of the building blocks at the patch center leads
to Hd

2(i = 3) as shown in Fig. 12(e) which retains C > 0.

(a) (b) (c)

(d) (e)

Figure 12: Tilt vectors t⃗ and loop L in the presence of dissection: (a) no dissection:
H1(i = 3), (b) center dissection: Hd

1(i = 3), (c) center-surround dissection: HD
1 (i = 3),

(d) no dissection H2(i = 3), (e) center dissection: Hd
2(i = 3). Circulation: gray - achiral,

red or blue - chiral.

3.2. Computational Analysis of Mechanical Behavior

Figure 13 shows data for the mechanical response of one selected TIM
system, i.e. H2(i = 3) with C > 0. The normalized force, F/(Eh2), - dis-
placement, δ/h, response is typical of the mechanical behavior documented
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for TIM systems. The F/(Eh2)-δ/h record is parabolic, with maximum load
at δ/h ≈ 0.7 and final failure at δ/h ≈ 1.5. However, there is also a non-zero
reaction moment, M/(Eh3), in addition to the reaction force, Fig. 13(b). Ini-
tially, the magnitude of M increases proportional to F . Following δ/h > 0.7,
while F starts to decline, M increases at a rate larger than in the initial
stages of loading until a maximum in M is reached at about δ/h ≈ 1.1.
Subsequently, M also drops and reaches zero at δ/h ≈ 1.5. The (normal-
ized) chiral length M/(Fh) = Lc/h is found to be significantly different in
the initial elastic and subsequent nonlinear deformation regimes, Fig. 13(c).
During the initial (reversible) load stage, δ/h > 0.4, Lc/h = const. The
strength of the chiral response subsequently increases during the nonlinear
deformation regime. At the maximum of F , the magnitude of Lc/h is about
double its value in the elastic regime. A more significant increase of Lc/h
occurs during the subsequent softening response of the axial load such that
the maximum value of Lc/h is about seven times that of the elastic regime.
In the range following the maximum for the moment, and as the TIM system
disintegrates, Lc/h drops to zero.
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(a) (b)

(c)

Figure 13: Computed (a) Normalized force, F/(Eh2), vs. deflection, δ/h, (b) Normalized
moment, M/(Eh3), vs. deflection, δ/h, (c) Normalized chiral length, Lc/h, vs. deflection
δ/h for the chiral TIM system H1(i = 3).

Figure 14 depicts the computed mechanical response of TIMs systems S1

where C = 0. All TIM systems S1 exhibit the characteristic skew parabolic
F − δ responses. Stiffness, the maximum load, and toughness decline as i is
increased. Moments are effectively zero. On the other hand, TIM systems
S2 with C > 0 display both axial force and moments, Fig. 15(a,b) and
Lc/h ̸= 0, Fig. 15(c). The chiral response in the elastic regime is found to be
dependent on the system size, i, with smaller systems possessing larger chiral
length scale. Smaller systems exhibit a more significant relative increase in
Lc/h in the nonlinear regime. However, the maximum value of Lc/h is found
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as largely independent of the system size.

(a) (b)

Figure 14: Computational analysis of TIM systems S1. (a) Normalized force, F/(Eh2),
vs. deflection, δ/h, (b) Normalized moment, M/(Eh3), vs. deflection, δ/h.
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(a) (b)

(c)

Figure 15: Computational analysis of TIM systems type S2. (a) Normalized force,
F/(Eh2), vs. deflection, δ/h, (b) Normalized moment, M/(Eh3), vs. deflection, δ/h,
(c) Normalized chiral length, Lc/h, vs. deflection δ/h.

Figure 16 depicts the computed mechanical properties of the achiral
hexagonal TIM systems H1. The F − δ response exhibits the typical skewed
parabolic character, 16(a), but moments are found to be absent, Fig. 16(b).
However, the chiral hexagonal TIM systems H2 exhibit both axial forces,
Fig. 17(a), and moments, Fig. 17(b) and Lc/h > 0, Fig. 17(c). Again, Lc/h
is constant in the initial elastic regime and declines with the increase in
system size. Again, Lc/h increases during non-linear deformation with the
relative increase larger for small system sizes. The maximum values of Lc/h
are rather size-independent.
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(a) (b)

Figure 16: Computational analysis of TIM systems type H1. (a) Normalized force,
F/(Eh2), vs. deflection, δ/h, (b) Normalized moment, M/(Eh3), vs. deflection, δ/h.
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(a) (b)

(c)

Figure 17: Computational analysis of TIM systems type H2. (a) Normalized force,
F/(Eh2), vs. deflection, δ/h, (b) Normalized moment, M/(Eh3), vs. deflection, δ/h,
(c) Normalized chiral length, Lc/h, vs. deflection δ/h.

The computed response of TIM systems with dissections Sd
1 (i = 5),

SD
1 (i = 5), and Sd

2 (i = 6), Fig. 11, and of Hd
1(i = 3), HD

1 (i = 3), and
Hd

2(i = 3), Fig. 12, are depicted in Fig. 18 and Fig. 19, respectively, and
compared to those of the original undissected configurations. While the uni-
form TIM systems S1(i = 5) is achiral, both types of dissections, Sd

1 (i = 5)
and SD

1 (i = 5), exhibit a moment and non-zero chiral length scale, Fig. 18.
The TIM system Sd

1 (i = 5) exhibits a chiral length scale far exceeding that
of the other TIM systems and Lc/h is rather constant throughout the de-
formation history. In the TIM system S2(i = 6) and its dissected variant

20

Auth
or 

App
rov

ed
 C

op
y



Sd
2 (i = 6), the moments initially are similar but S2(i = 6) retains a more sig-

nificant chirality throughout the subsequent nonlinear deformation regime.
For the hexagon based TIM system, H1(i = 3) is achiral, but both dissected
variants Hd

1(i = 3) and HD
1 (i = 3) are chiral with a significant Lc/h, Fig. 19.

For the chiral TIM system H2(i = 3) dissection to Hd
2(i = 3) retains the

chirality again and increases Lc/h. Dissection of the TIM systems generally
is found to lead to a reduction in axial load-carrying capability. Center-
surround dissection leads to TIM system with a larger number of dissected
tiles than the center-dissection. Yet, the center-surround dissection leads to a
smaller increase in chiral length compared to the center-dissectioned system.
The number of dissected tiles has less impact on the chiral length than the
distance between the dissected tiles and the loading point.
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(a) (b)

(c)

Figure 18: Computational analysis of TIM systems S1(i = 5), Sd
1 (i = 5), SD

1 (i = 5), as
well as S2(i = 6), Sd

2 (i = 6). (a) Normalized force, F/(Eh2), vs. deflection, δ/h, (b)
Normalized moment, M/(Eh3), vs. deflection, δ/h, (c) Normalized chiral length, Lc/h,
vs. deflection δ/h.
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(a) (b)

(c)

Figure 19: Computational analysis of TIM systems H1(i = 3), Hd
1(i = 3), HD

1 (i = 3), as
well as H2(i = 3), Hd

2(i = 3). (a) Normalized force, F/(Eh2), vs. deflection, δ/h, (b)
Normalized moment, M/(Eh3), vs. deflection, δ/h, (c) Normalized chiral length, Lc/h,
vs. deflection δ/h.

3.3. Experiments

Figure 20 depicts measured transverse force-deflection data and moment-
deflection data for TIM systems S1(i = 3) (achiral), S2(i = 4) (chiral),
H2(i = 2) (achiral) and H2(i = 2) (chiral). The data shown are the mean
and range for three repeat experiments. Experiments were limited to the
magnitudes of deflection δ/h < 0.6 For the achiral systems, S1(i = 3) and
H2(i = 2) measured moments are of significantly smaller magnitude than
those for the chiral systems S2(i = 4) and H2(i = 2), respectively. We at-
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tribute the non-zero moments for the achiral systems to misalignment in the
load system. The behavior of H2(i = 2) can be compared to that of its dis-
sected variant, Hd

1(i = 3), Fig. 21. While for H2(i = 2) the moment is small
for Hd

1(i = 3), the moment is significant. Figure 22 summarizes the experi-
ments in terms of the chiral length Lc. The chiral length is found as rather
constant throughout the initial, linear stage of deformation but subsequently
is found to increase substantially during the nonlinear deformation state.

The general trends observed in the experiments agree well with those
from the simulation models. No attempt was made to match the magnitudes
of forces and moments, as the focus is on qualitative behavior.

(a) (b)

(c)

Figure 21: Experimental mechanical properties of hexagon TIM with center dissection.
(a) Force F -deflection δ, (b) Moment M -deflection δ, (c) Hd

1(i = 3) .
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(a) (b)

(c) (d)

(e)
(f) (g)

(h)

Figure 20: Experiment results present (a) Force, F , vs. deflection, δ, for S1(i = 3),
S2(i = 4), (b) Moment, M , vs. deflection, δ, for S1(i = 3), S2(i = 4), (c) Force, F ,
vs. deflection, δ, for H1(i = 2), H2(i = 2), (d) Moment, M , vs. deflection, δ, for
H1(i = 2),H2(i = 2). (e) S1(i = 3) (achiral), (f) S2(i = 4) (chiral), (g) H2(i = 2)
(achiral), (h) H2(i = 2) (chiral).
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Figure 22: Experimental chiral length LC for Hd
1(i = 3), S2(i = 4), H2(i = 2) .

4. Discussion

Chirality in the mechanical response of architectured material systems
has commonly been found when the unit cells of the chiral material them-
selves already possess a chiral character, or if the connectors between them
impose a chiral structure [35]. [36]. In contrast, in the TIM systems here,
individual building blocks as well as the contact and friction interactions be-
tween them are non-chiral and the emergence of the overall chiral response is
the outcome of the assembly state of the non-chiral building blocks. To effec-
tively represent the interaction between building blocks, a descriptor vector
field is utilized and the circulation C of this vector field defines the chiral-
ity of the material system architecture. Achiral systems with C = 0 do not
exhibit a noteworthy reaction moment, while chiral systems generate a signif-
icant reaction moment. These concepts apply to both uniform tessellations
and dissected tessellations as templates for the construction of TIM systems.
Selected experiments qualitatively confirm the computational model results.

For the initial, linear deformation regime, chiral lengths are found to be
independent of deformation and system size dependent. The chiral length
declines with system size and reaches a steady state at a large system size.
A similar size dependence of the chiral length on size was found in [11] for
a chiral cellular material. The use of dissections to modify the underlying
tessellation at least in the surrounding of the point of load application is a
successful strategy to increase the degree of chirality in the linear deformation
regime. The TIM system with the most significant degree of chiral response
is a dissection of the uniform hexagonal tiling, Hd

1(i = 3), Fig. 12(b).
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While the bulk of the study focuses on the relationship between chirality
and architecture under one loading condition, generalizations of the behavior
in the linear response regime are discussed here based on further analysis of
the TIM system Hd

1(i = 3). Two sets of boundary conditions are considered:
(1) θz = 0, and (2) θz free. Analysis results are given in Fig. 23. With θz = 0,
M = FLc, while for θz ̸= 0, M = 0 and θz increases with δ. The mechanical
response from can be expressed via Eq. 5, [14]:

F = C1δ + C2θz

M = C3δ + C4θz
(5)

where Ci are the generalized plate stiffness constants, with C2 = C3. From
the case θz = 0 and data at F/(Eh2) = 1.6 · 10−2, C1 and C3 are obtained
as C1 = 462.7 N/mm, C3 = C2 = 126.4 N. This confirms the relationship
C3/(C1h) = Lc/h. If θz ̸= 0, no moment is present and θz increases with the
δ. Now, C4 = −C3(δ/θz) = −5, 938.7 Nmm. As a result, one can estimate
the deflection under a given load in the absence of the rotational constraint as
δ = (F−C3θz)/C1. In the absence of the rotational constraint, the transverse
stiffness is reduced.

The application of cyclic axial loads in combination with changes in
boundary condition (switching from constrained to unconstrained during un-
loading, and back to constrained during loading) can thus be envisioned to
create a work cycle similar to those discussed in [37].

We calculate the elastic field and rotational field of the system possessing
the highest chiral length at the initial deformation. A difference of around 7%
was found between the analytical estimates of Eq. 5 and the full numerical
simulations. We attribute this difference to deviation from a fully elastic,
reversible response in even the initial stages of deformation.
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(a) (b)

(c)

Figure 23: Computational analysis of TIM system Hd
1(i = 3) in the initial linear deforma-

tion regime considering the boundary conditions θz = 0 and θz ̸= 0. (a) Normalized force,
F/(Eh2), vs. deflection, δ/h, (b) Normalized moment, M/(Eh3), vs. deflection, δ/h, (c)
Rotation, θz, vs. deflection δ/h.

The analysis of chiral mechanical behavior, e.g. Eq. 5 is restricted to the
linear elastic regime. With the TIM systems, we can investigate chirality
in the nonlinear and damage evolution regime, and thereby investigate the
effects of boundary conditions on strength and toughness. As the chiral
length scale magnitudes increase in the non-linear deformation regime, more
significant effects are expected. Figure 24 depicts the full force-deflection
response for the TIM systemHd

1(i = 3) under the boundary conditions θz = 0
and θz ̸= 0. For θz = 0 the initial apparent stiffness is higher than for
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the unconstraint condition. Strength is predicted as slightly lower in the
constrained condition, but deflection to failure is significantly increased in
the unconstrained condition. While failure in the constrained condition is
more gradual, the unconstrained condition exhibits an increased toughness.
Since strength and toughness are now dependent on the boundary conditions,
these quantities must be considered as apparent properties in the case of
chiral response.

Figure 24: Computational analysis of TIM system Hd
1(i = 3) considering the boundary

conditions θz = 0 and θz ̸= 0, Normalized force, F/(Eh2), vs. deflection.

5. Conclusion

In topologically interlocked material systems built from achiral building
blocks, chirality emerges from the assembly structure. Microstructure modi-
fication by introducing dissection is found as an effective approach to further
modify the chiral character in TIMs. The combination of building block
geometry, tilt vectors, arrangement patterns, and dissection defines a rich
array of possible system designs, including achiral and chiral directionality.
The TIM system geometry can be described by a vector field, where vectors
represent the direction of projection of the tile side walls relative to the as-
sembly plane. The circulation of this vector field is a measure of geometric
chirality. If a TIM system is geometrically chiral and possesses a non-zero
circulation in the tilt vector field, such a TIM system is mechanically chiral.
Beyond the linear regime, the chiral length scale is found to be dependent on
deformation and to far exceed that of the elastic regime, indicating a more
significant effect of chirality on failure than on elasticity. Two size-effects
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are found. While mechanical chirality declines with system size in the linear
deformation regime, the increase of the chiral characteristics relative to that
of the elastic domain increases with system size. In the presence of chirality,
strength, deformation to failure and toughness are apparent properties and
dependent on the constraint present. A low-constraint configuration exhibits
a higher deformation to failure than a high-constraint configuration. This
effect is not dissimilar from failure in many ductile metals. Experiments
validate key findings from the computational study.
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