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C ell- c ell  i nt er a cti o n s  i n str u ct  c ell  f at e  a n d f u n cti o n. T h e s e  i nt er a cti o n s  ar e  hij a c k e d  t o pr o m ot e  c a n c er d e v el -

o p m e nt. Si n gl e- c ell tr a n s cri pt o mi c s a n d s p ati al tr a n s cri pt o mi c s h a v e b e c o m e p o w erf ul n e w t o ol s f or r e s e ar c h er s 

t o pr o fil e t h e tr a n s cri pti o n al l a n d s c a p e of c a n c er at u n p ar all el e d g e n eti c d e pt h. I n t hi s r e vi e w, w e di s c u s s t h e 

r a pi dl y  gr o wi n g  arr a y  of  c o m p ut ati o n al  t o ol s  t o  i nf er  c ell- c ell  i nt er a cti o n s  fr o m  n o n- s p ati al  si n gl e- c ell  R N A- 

s e q u e n ci n g a n d t h e li mit e d b ut gr o wi n g n u m b er of m et h o d s f or s p ati al tr a n s cri pt o mi c s d at a. D o w n str e a m a n -

al y s e s of t h e s e c o m p ut ati o n al t o ol s a n d a p pli c ati o n s t o c a n c er st u di e s ar e hi g hli g ht e d. W e fi ni s h b y s u g g e sti n g 

s e v er al dir e cti o n s f or f urt h er e xt e n si o n s t h at a nti ci p at e t h e i n cr e a si n g a v ail a bilit y of m ulti- o mi c s c a n c er d at a.   

1. I nt r o d u cti o n 

C ell s  c o or di n at e  t o  p erf or m  f u n cti o n s  a s  a  m ulti c ell ul ar  or g a ni s m. 

S u c h c o or di n ati o n c a n b e a c hi e v e d t hr o u g h c ell- c ell i nt er a cti o n s ( C CI) — 

al s o  k n o w n  a s  c ell- c ell  c o m m u ni c ati o n  or  c ell  si g n ali n g — w h er e  c ell s 

c o m m u ni c at e  wit h  n e ar b y  c ell s  b y  s e n di n g  a n d  r e c ei vi n g  m ol e c ul ar 

m e s s a g e s. Wit hi n m ulti c ell ul ar or g a ni s m s, t h er e ar e di sti n ct gr o u p s of 

s p e ci ali z e d  c ell s wit h  di sti n ct c ell f u n cti o n s, w hi c h  f a cilit at e diff er e nt 

t y p e s of C CI. T h e s e r a n g e of i nt er a cti o n b e h a vi or s ar e cr u ci al t o m a n y 

bi ol o gi c al  pr o c e s s e s,  i n cl u di n g  c ell  gr o wt h,  di vi si o n,  diff er e nti ati o n, 

ti s s u e  or  or g a n  d e v el o p m e nt,  a n d  di s e a s e  pr o gr e s si o n [ 1- 3 ] .  F or 

e x a m pl e, i n t h e c o nt e xt of c ell diff er e nti ati o n, T f olli c ul ar h el p er c ell s, a 

s u b s et of C D 4 + T c ell s, ar e f o u n d t o s e cr et e I L- 4 a n d I L- 2 1 li g a n d s t h at 

pr o m ot e B c ell pr olif er ati o n a n d B c ell diff er e nti ati o n i nt o pl a s m a B c ell s 

or  g er mi n al  c e nt er  B  c ell s [ 4 ] .  I n  e m br y o ni c  d e v el o p m e nt,  W N T 

si g n ali n g ar e f o u n d t o pl a y di v er s e r ol e s i n c ell f at e d et er mi n ati o n, dif -

f er e nti ati o n, pr olif er ati o n a n d a p o pt o si s [ 5, 6 ] . I n di s e a s e pr o gr e s si o n, 

s o m e li g a n d s a n d r e c e pt or s ar e f o u n d t o i n hi bit i nt er a cti o n s i n v ol v e d i n 

f a cilit ati n g  t h e  i m m u n e  r e s p o n s e s.  F or  i n st a n c e,  c yt ot o xi c  T 

l y m p h o c yt e- a s s o ci at e d a nti g e n- 4 ( C T L A- 4) w a s f o u n d t o d o w nr e g ul at e 

i m m u n e  r e s p o n s e s a n d  i s  cl o s el y r el at e d  t o t u m or  pr o gr e s si o n [ 2 ] .  I n 

p arti c ul ar, C CI i s i m p ort a nt f or c a n c er st u di e s. M a n y c ell ul ar pr o c e s s e s 

t h at  ar e  cr u ci al  f or  t h e  d e v el o p m e nt  of  c a n c er  ar e  r e g ul at e d  b y  C CI, 

i n cl u di n g  c ell  gr o wt h  a n d  di vi si o n,  c ell  a p o pt o si s,  c ell  m otilit y  a n d 

i n v a si o n, a n gi o g e n e si s, i n fl a m m ati o n a n d i m m u n e s u p pr e s si o n [ 7- 9 ] . 

T h er e  ar e  t w o  c o m p o n e nt s  of  C CI.  O n e  i s  i nt er c ell ul ar  si g n ali n g, 

w hi c h  o c c ur s  b et w e e n  c ell s  a n d  at  t h e  c ell  m e m br a n e  ( Fi g.  1 A).  T h e 

ot h er  i s  i ntr a c ell ul ar  si g n ali n g,  w hi c h  i s  t h e  d o w n str e a m  r e s p o n s e  t o 

i nt er c ell ul ar si g n ali n g a n d t a k e s pl a c e i n si d e t h e c ell s (Fi g. 1 B). I nt er -

c ell ul ar si g n ali n g c o n si st s of s e n d er c ell s s e cr eti n g si g n ali n g m ol e c ul e s, 

c all e d li g a n d s, i nt o t h e e xtr a c ell ul ar s p a c e. E a c h li g a n d c a n t h e n o nl y 

bi n d t o a c ert ai n s et of pr ot ei n s l o c at e d o n t h e m e m br a n e of p o s si bl e 

r e c ei v er c ell s c all e d r e c e pt or s. W h e n a s uf fi ci e nt n u m b er of li g a n d s h a v e 

r e a c h e d a n d bi n d e d t o t h eir a p pr o pri at e r e c e pt or s, diff er e nt tr a n s cri p -

ti o n f a ct or s a n d c o n s e q u e ntl y t ar g et g e n e s wit hi n t h e c ell ar e a cti v at e d 

d o w n str e a m.  T h er e  ar e  f o ur  t y p e s  of  c ell  c o m m u ni c ati o n:  a ut o cri n e, 

p ar a cri n e, e n d o cri n e a n d j u xt a cri n e. A ut o cri n e si g n ali n g i s d e fi n e d a s a 

c ell r e c ei vi n g a si g n al s e cr et e d b y it s elf. F or e x a m pl e, it w a s f o u n d t h at 

a ut o cri n e T G F- β si g n ali n g m ai nt ai n s s elf-r e n e w al i n h u m a n e m br y o ni c 

st e m c ell s [ 1 0 ] . P ar a cri n e si g n ali n g i s d e fi n e d a s a c ell r e c ei vi n g a si g n al 

s e cr et e d  b y  ot h er  n e ar b y  c ell s.  F or  e x a m pl e,  p ar a cri n e  I nt erl e u ki n- 1 

si g n ali n g  fr o m  c ar ci n o m a  c ell s  i n d u c e s  c yt o ki n e  s e cr eti o n  i n  m e s e n -

c h y m al  st e m  c ell s [ 1 1 ] .  J u xt a cri n e  si g n ali n g  r e q uir e s  dir e ct  p h y si c al 

c o nt a ct b et w e e n c ell s, w h er e si g n al s ar e s e cr et e d a cr o s s g a p j u n cti o n s 

b et w e e n  c ell s  i n  c o nt a ct.  A n  e x a m pl e  of  t hi s  t y p e  of  si g n ali n g  i s  t h e 

i nt er a cti o n  b et w e e n  a  m e m br a n e- b o u n d  li g a n d  D elt a  a n d  t h e 

c ell- s urf a c e  r e c e pt or  N ot c h [ 1 2 ] .  Si g n al s  s e cr et e d  d uri n g  e n d o cri n e 

si g n ali n g tr a v el a l o n g di st a n c e fr o m s e n d er c ell s t hr o u g h t h e cir c ul at or y 
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s y st e m t o r e a c h p ot e nti al r e c ei v er c ell s. T h e r el e a s e of h or m o n e s fr o m 

gl a n d s a n d tr a v el t hr o u g h t h e bl o o d str e a m t o r e a c h di st a nt b o d y sit e s i s 

a n e x a m pl e of e n d o cri n e [ 1 3 ] . H o w e v er, d u e t o t h e f ar s p ati al di st a n c e s 

r e q uir e d f or e n d o cri n e si g n ali n g, s c R N A- s e q a n d S T d at a d o n ot pr o vi d e 

e n o u g h i nf or m ati o n t o i nf er e n d o cri n e si g n ali n g. 

Si n gl e- c ell R N A s e q u e n ci n g ( s c R N A- s e q) a n d s p ati al tr a n s cri pt o mi c 

( S T) t e c h n ol o gi e s ar e r a pi dl y d e v el o pi n g, e n a bli n g t h e pr o fili n g of bi o -

l o gi c al  ti s s u e  at  u n pr e c e d e nt e d  g e n o mi c  d e pt h.  T h e  g e n e  e x pr e s si o n 

pr o fil e of t e n s of t h o u s a n d s of g e n e s, m a n y of w hi c h ar e r el at e d t o C CI, 

c a n  b e  c a pt ur e d  f or  t h o u s a n d s  a n d  p ot e nti all y  milli o n s  of  c ell s [ 1 4 ] . 

B ei n g a bl e t o c a pt ur e s u c h ri c h g e n o mi c i nf or m ati o n off er s a gr e at o p -

p ort u nit y t o c h a n g e h o w C CI c a n b e i n v e sti g at e d i n diff er e nt ti s s u e s of 

diff er e nt s p e ci e s. F or k n o w n li g a n d-r e c e pt or i nt er a cti o n p air s, b a s e d o n 

t h e a s s u m pti o n t h at hi g h er l e v el s of r el e v a nt li g a n d a n d r e c e pt or g e n e 

e x pr e s si o n r e fl e ct a hi g h er p o s si bilit y of C CI o c c urri n g, o n e c a n u s e t h e 

e x pr e s si o n of li g a n d a n d r e c e pt or g e n e s i n p o s si bl e s e n d er a n d r e c ei v er 

c ell s  t o  i nf er  C CI.  A  gr e at  n u m b er  of  bi oi nf or m ati c s  t o ol s  h a v e  b e e n 

d e v el o p e d r e c e ntl y t o m o d el a n d a n al y z e C CI b et w e e n a n d wit hi n c ell s 

b a s e d o n g e n e e x pr e s si o n d at a o bt ai n e d fr o m n o n- s p ati al si n gl e- c ell a n d 

s p ati al tr a n s cri pt o mi c s d at a — a n d m a n y m or e c o nti n u e t o b e d e v el o p e d. 

U si n g t h e s e c o m p ut ati o n al t o ol s, w e c a n i nf er a n a p pr o xi m at e l a n d s c a p e 

of C CI fr o m s c R N A- s e q d at a ( or S T d at a) a n d a d v a n c e o ur u n d er st a n di n g 

of  C CI  m e c h a ni s m s  i n  diff er e nt  bi ol o gi c al  s y st e m s.  I n d e e d,  t h er e  i s  a 

r a pi dl y  gr o wi n g  n u m b er  of  a p pli c ati o n s  w h er e  t h e s e  t o ol s  h a v e  b e e n 

u s e d  t o  r e v e al  i m p ort a nt  a n d  n o v el  C CI s  fr o m  s c R N A- s e q  st u di e s  of 

c a n c er [ 1 5- 1 8 ] .  M o st  C CI  t o ol s  c o n si st  of  t w o  c o m p o n e nt s:  a 

li g a n d-r e c e pt or  d at a b a s e  w hi c h  c o nt ai n s  t h e  p o s si bl e  li g a n d-r e c e pt or 

p air s  a n d  a  c o m p ut ati o n al  m o d el  t o  c al c ul at e  t h e  li k eli h o o d  of  C CI 

b a s e d o n t h e e x pr e s si o n v al u e s of t h e li g a n d a n d r e c e pt or g e n e s. S o m e 

C CI t o ol s, s u c h a s C ell C h at [ 1 9 ] , i n cl u d e f u n cti o n alit y t o vi s u ali z e t h e 

C CI n et w or k s dir e ctl y ( Fi g. 2 ). I n t hi s p a p er, w e will bri e fi y r e vi e w t h e 

c urr e ntl y a v ail a bl e c o m p ut ati o n al t o ol s t h at m o d el C CI b a s e d o n g e n e 

e x pr e s si o n  d at a  o bt ai n e d  fr o m  n o n- s p ati al  s c R N A- s e q  or  S T  d at a.  W e 

di s c u s s c urr e nt w a y s t o p erf or m d o w n str e a m a n al y si s aft er i nf erri n g C CI, 

h o w C CI s ar e v ali d at e d, t h e a p pli c ati o n s of C CI r e s ult s i n c a n c er, a n d 

p o s si bl e f ut ur e dir e cti o n s. 

2.  A. C CI m et h o d s 

M a n y c o m p ut ati o n al C CI t o ol s h a v e b e e n d e v el o p e d b a s e d o n eit h er 

n o n- s p ati al s c R N A- s e q d at a or h a v e u s e d S T d at a t o c o n str ai n p ot e nti al 

i nt er a cti o n s.  T h e  C CI  t o ol s  u s u all y  t a k e  pr e pr o c e s s e d  d at a,  w hi c h  i n-

cl u d e s n or m ali z ati o n b y li br ar y d e pt h a n d l o g-tr a n sf or m ati o n, a s i n p ut. 

T h e s e t o ol s c o v er b ot h t h e c al c ul ati o n of i nt er c ell ul ar i nt er a cti o n s a n d 

i ntr a c ell ul ar i nt er a cti o n s. W hil e t h e s e t o ol s h a v e t h e c o m m o n g o al  of 

m o d eli n g C CI, t h e y ar e b a s e d o n diff er e nt c o m p ut ati o n al str at e gi e s a n d 

bi ol o gi c al a s s u m pti o n s. W e will d e s cri b e t h e c urr e ntl y a v ail a bl e t o ol s i n 

d et ail b el o w. 

2. 1.  N o ns p ati al C CI m et h o ds 

I n t hi s s e cti o n, w e bri e fi y d e s cri b e t h e c at e g ori e s of c o m p ut ati o n al 

m et h o d s t h at C CI t o ol s u s e t o m o d el t h e diff er e nt c o m p o n e nt s of c ell 

si g n ali n g ( T a bl e 1 ). 

2. 2. I nt er c ell ul ar C CI m et h o ds 

I nt er c ell ul ar  C CI  m et h o d s  ar e  u s e d  t o  i nf er  p ot e nti al  i nt er a cti o n s 

b et w e e n  c ell s.  M or e  s p e ci fi c all y,  t h e y  tr y  t o  c a pt ur e  t h e  i nt er a cti o n 

str e n gt h, w hi c h i s a s s u m e d t o r e fl e ct t h e pr o b a bilit y of a n i nt er a cti o n 

o c c urri n g, b et w e e n a s s o ci at e d li g a n d s a n d r e c e pt or s. 

T h r e s h ol d- b a s e d m et h o d s O n e t y p e of C CI m et h o d r e m o v e s i n si g -

ni fi c a nt i nt er a cti o n s b a s e d o n i n di vi d u al li g a n d a n d r e c e pt or e x pr e s si o n 

l e v el s, w h er e li g a n d s a n d r e c e pt or s ar e o nl y c o n si d er e d if t h eir e x pr e s-

si o n l e v el s e x c e e d a pr e d et er mi n e d t hr e s h ol d i n t h eir r e s p e cti v e s e n d er 

a n d  r e c ei v er  c ell  t y p e s.  Aft er  t hr e s h ol di n g,  o nl y  li g a n d-r e c e pt or  p air s 

w h er e b ot h t h e li g a n d a n d r e c e pt or ar e r et ai n e d f or C CI i nf er e n c e. T h e s e 

t y p e s of m et h o d s o ut p ut a bi n ar y C CI s c or e. O n e e x a m pl e of t hi s t y p e of 

m et h o d i s C ell T al k er [ 2 0 ] , w hi c h o nl y c o n si d er s li g a n d s a n d r e c e pt or s 

wit h n o n- z er o e x pr e s si o n i n m or e t h a n 5 % of c ell s f or i nf er e n c e, or li -

g a n d s  a n d  r e c e pt or s  wit h  n o n- z er o  e x pr e s si o n  i n  m or e  t h a n  3 %  of 

c ert ai n c ell t y p e gr o u p s f or s p e ci fi c i nt er a cti o n s. 

Diff e r e nti al- e x p r e s si o n- b a s e d  m et h o d s Diff er e nti al- e x pr e s si o n- 

b a s e d  C CI  m et h o d s  i nf er  si g ni fi c a nt  i nt er a cti o n s  b y  fir st  i d e ntif yi n g 

diff er e nti all y e x pr e s s e d li g a n d s a n d r e c e pt or s u si n g st ati sti c al m o d el s. 

T h e diff er e nti all y e x pr e s s e d li g a n d s a n d r e c e pt or s ar e t h e n c o m p ar e d t o 

e xi sti n g li g a n d-r e c e pt or p air s i n a c ur at e d C CI d at a b a s e. T h e o ut p ut of 

t h e s e  C CI  m et h o d s  ar e  g e n er all y  i nt er pr et e d  a s  a  bi n ar y  s c or e  f or  all 

li g a n d-r e c e pt or p air s. P y MI N Er i s a n e x a m pl e of o n e s u c h C CI m et h o d 

[ 2 1 ] .  It  fir st  fi n d s  t h e  si g ni fi c a ntl y  e nri c h e d  li g a n d s  a n d  r e c e pt or s  i n 

e a c h c ell t y p e b a s e d o n b ot h a n al y si s of v ari a n c e ( A N O V A) a n d z - s c or e 

e nri c h m e nt,  a n d  t h e n  cr o s s-r ef er e n c e s  li g a n d-r e c e pt or  p air s  wit h  t h e 

Stri n g D B i nt er a cti o n li st t o o nl y i n cl u d e dir e ct bi n di n g p air s. A n ot h er 

e x a m pl e of o n e s u c h C CI m et h o d i s i T A L K [ 2 2 ] , w hi c h all o w s f or t h e u s e 

of o n e of s e v er al diff er e nti al e x pr e s si o n m et h o d s f or si n gl e- c ell a p pli -

c ati o n s t o fi n d diff er e nti all y e x pr e s s e d li g a n d s a n d r e c e pt or s. 

P e r m ut ati o n- b a s e d  m et h o d s P er m ut ati o n- b a s e d  C CI  m et h o d s 

m e a s ur e t h e s p e ci fi cit y of a n i nt er a cti o n b et w e e n t w o c ell t y p e s. T h er e 

ar e t w o t y p e s of p er m ut ati o n t e st s c o n si d er e d: t e st s t h at p er m ut e eit h er 

g e n e l a b el s or c ell t y p e l a b el s. G e n e l a b el p er m ut ati o n t e st s m e a s ur e h o w 

hi g h t h e o b s er v e d li g a n d (r e c e pt or) e x pr e s si o n l e v el s ar e c o m p ar e d wit h 

a “ n ull di stri b uti o n ” o bt ai n e d fr o m r a n d o ml y s el e ct e d g e n e s. C ell t y p e 

l a b el  p er m ut ati o n  t e st s  m e a s ur e  h o w  hi g h  t h e  li g a n d  a n d  r e c e pt or 

e x pr e s si o n l e v el i n t h e c o n si d er e d c ell t y p e s ar e c o m p ar e d t o r a n d o ml y 

a s si g n e d c ell t y p e l a b el s. 

O n e e x a m pl e of a m et h o d t h at p erf or m s g e n e l a b el p er m ut ati o n t e st s 

i s s c S e q C o m m [ 2 3 ] . Gi v e n a fi x e d c ell t y p e, it fir st r a n d o ml y r e s a m pl e s 

Fi g. 1. T h e bi ol o gi c al c o m p o n e nt s of c ell- c ell i nt er a cti o n s t h at c a n b e i nf err e d fr o m si n gl e- c ell a n d s p ati al d at a. A T h e diff er e nt t y p e s of i nt er c ell ul ar C CI, w hi c h 

i n cl u d e a ut o cri n e, p ar a cri n e, a n d j u xt a cri n e si g n ali n g. A ut o cri n e si g n ali n g o c c ur s w h e n a c ell r e c ei v e s t h e s a m e si g n al s s e cr et e d b y it s elf. P ar a cri n e si g n ali n g o c c ur s 

w h e n a c ell r e c ei v e s a si g n al s e cr et e d b y n e ar b y c ell s. J u xt a cri n e si g n ali n g o c c ur s a c ell r e c ei v e s a si g n al fr o m a dir e ctl y a dj a c e nt c ell t hr o u g h p h y si c al c o nt a ct. B 

I ntr a c ell ul ar C CI i s t h e d o w n str e a m r e s p o n s e t o i nt er c ell ul ar si g n ali n g t h at t a k e s pl a c e i n si d e c ell s. W h e n a s uf fi ci e nt n u m b er of li g a n d s bi n d t o a s s o ci at e d r e c e pt or s, 

t h e r e c e pt or s ar e a cti v at e d. T h e si g n al r e c ei v e d b y r e c e pt or s will b e c o n v ert e d i nt o a n i ntr a c ell ul ar si g n al a n d a cti v at e tr a n s cri pti o n f a ct or s a n d t ar g et g e n e s. 

X. W a n g et al.                                                                                                                                                                                                                                   



S e mi n ars i n C a n c er Bi ol o g y 9 5 ( 2 0 2 3 ) 4 2 – 5 1

4 4

g e n e s fr o m all g e n e s a n d c o m p ut e s t h e di stri b uti o n of t h e a v er a g e g e n e 

e x pr e s si o n of a r a n d o ml y r e s a m pl e d g e n e. T h e di stri b uti o n of a v er a g e 

g e n e  e x pr e s si o n s  o b s er v e d  b y  c h a n c e  i s  t h e n  a p pr o xi m at e d  u si n g  a 

G a u s si a n di stri b uti o n. T h e s c or e of t h e li g a n d (r e c e pt or) i n t h e fi x e d c ell 

t y p e i s c o m p ut e d a s t h e pr o b a bilit y of o b s er vi n g l o w er v al u e s fr o m t h e 

a p pr o xi m at e d  di stri b uti o n  t h a n  t h e  a v er a g e  g e n e  e x pr e s si o n  of  t h e 

li g a n d (r e c e pt or) of i nt er e st. T h e li g a n d-r e c e pt or s c or e i s c al c ul at e d a s 

t h e mi ni m u m of t h e li g a n d a n d r e c e pt or s c or e. 

C ell P h o n e D B [ 2 4 ] i s a n e x a m pl e of a m et h o d t h at p erf or m s c ell t y p e 

l a b el p er m ut ati o n. A s s u mi n g c ell t y p e a n n ot ati o n s h a v e b e e n pr o vi d e d, 

C ell P h o n e D B  c al c ul at e s  a n  e nri c h m e nt  s c or e  of  li g a n d-r e c e pt or 

i nt er a cti o n s  b et w e e n  t w o  c ell  t y p e s  b a s e d  o n  t h e  g e n e  e x pr e s si o n  of 

li g a n d a n d r e c e pt or i n s e n d er a n d r e c ei v er c ell t y p e s, r e s p e cti v el y. T hi s 

e nri c h m e nt  s c or e  i s  c al c ul at e d  a s  t h e  mi ni m u m  of  t h e  a v er a g e  g e n e 

e x pr e s si o n of li g a n d a n d r e c e pt or i n t h eir r e s p e cti v e c ell t y p e s. N e xt, b y 

r a n d o ml y p er m uti n g t h e c ell t y p e l a b el s of e a c h c ell a l ar g e n u m b er of 

ti m e s, a n ull di stri b uti o n of e nri c h m e nt s c or e of li g a n d-r e c e pt or i nt er -

a cti o n i s c al c ul at e d. T h e n t h e i nt er a cti o n s c or e of a li g a n d-r e c e pt or p air 

i s c al c ul at e d a s t h e pr o p orti o n of e nri c h m e nt s c or e s t h at ar e hi g h er t h a n 

t h e a ct u al c o m p ut e d e nri c h m e nt s c or e. 

C o e x p r e s si o n- b a s e d  m et h o d s T h e  m aj orit y  of  C CI  m et h o d s 

a n al y z e d  i n  t hi s  p a p er  ar e  b a s e d  o n  t h e  m e a s uri n g  t h e  si m ult a n e o u s 

Fi g. 2. C o m m o n vi s u ali z ati o n s of C CI i nf er e n c e fr o m c a n c er d at a s et s A Cir cl e pl ot s h o wi n g dir e ct e d i nt er a cti o n s b et w e e n c ell t y p e s. B C h or d di a gr a m i n di c ati n g 

o ut g oi n g i nt er a cti o n s fr o m diff er e nt c ell t y p e s. C H e at m a p s h o wi n g t h e t ot al i nt er a cti o n str e n gt h b et w e e n s e n d er a n d r e c ei v er c ell t y p e s. D B u b bl e pl ot di s pl a yi n g t h e 

i nt er a cti o n str e n gt h b et w e e n c a n c er c ell s a n d ot h er c ell t y p e s wit h r e s p e ct t o diff er e nt li g a n d-r e c e pt or p air s. L 1, L 2, L 3 r e pr e s e nt t hr e e diff er e nt li g a n d s, a n d R 1, R 2, 

R 3, R 4 r e pr e s e nt f o ur diff er e nt r e c e pt or s. 
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coexpression of ligands and receptors. These types of methods can be 
further divided into three subcategories based on their calculation for
mula; that is, whether they are sum based, product based, or correlation 
based. 

(i). Sum-based coexpression: Sum-based coexpression methods 
infer CCI based on a calculated sum of certain features of ligand and 
receptor expression. For example, for a given ligand-receptor interac
tion, CellCall infers intercellular communication by calculating the 
Euclidean norm of a vector consisting of the normalized ligand and re
ceptor expression values, which is then weighted by an activity score of 
associated transcription factors [25]. CytoTalk is another method that 
uses a sum-based method to calculate the ligand-receptor interaction 
strength [26]; possible interactions are weighted by multiplying the sum 
of features of ligand and receptor expression with a “non-self-talk” score, 
which is calculated using the mutual information of ligand and receptor 
expression in the sender group and receiver groups, respectively. 

(ii). Product-based coexpression: Product-based coexpression 
methods, as their name suggests, infer CCI based on the product of 
ligand and receptor gene expression. CellChat [27] is one such popular 
method. CellChat considers the expression levels of ligands and 

receptors in respective sender and receiver cell groups, respectively. 
When considering multi-units of ligands or receptors, CellChat uses the 
geometric mean of each gene to approximate the average expression 
level.The communication probability between two cell groups for a 
given ligand-receptor pair is then defined as a product based on mass 
action kinetics, where the “base” ligand-receptor score, calculated as a 
normalized product of ligand and receptor expression, which is then 
weighted by the average expression of known agonists and antagonists. 

Product-based coexpression methods are popular for CCI inference. 
Other product-based methods include: NATMI [28], SingleCellSignalR 
[29], ICELLNET [30], scConnect [31], CSOmap [32], SoptSC [33], and 
Connectome [34]. Each method uses its own “product-based” formula to 
infer ligand-receptor interaction strength. 

(iii). Correlation-based coexpression: Correlation-based coex
pression methods infer CCI based on statistical correlation between gene 
expression in cell groups of interest. These methods assume that corre
lation in expression of two genes correspond to regulation by a common 
signaling mechanism. REMI calculates the Pearson correlation between 
ligand and receptor gene expressions to model the likelihood of inter
action [35]. 

Table 1 
Computational tools developed to infer CCI from non-spatial data.  

Tool Network type CCI 
value 

Method Cancer Application Visualization Downstream pipelines Platform 

CellTalker Intercellular Bin. Threshold Head and neck cell 
carcinoma tumors 

Chord diagram None R 

PyMINEr Intercellular Cont. Differential expression None Circle plot None Python 
iTalk Intercellular Bin. Differential expression None Network plot, chord 

diagram, errorbar plot 
Differential CCI between datasets R 

CellPhoneDB Intercellular Cont. Permutation None Dot plot, 
heatmap 

None Python 

scSeqComm Intercellular 
intracellular 

Cont. Permutation; Network; 
Fisher’s test 

None Chord diagram, 
heatmap, dot plot 

None R 

scMLnet Intercellular 
intracellular 

Bin. Differential Expression; 
Fisher’s test 

None Network plot None R/ 
Python 

CCCExplorer Intercellular 
intracellular 

Bin. Differential Expression; 
Fisher’s test 

Non-small-cell lung 
cancer 

Network plot None software 

CellCall Intercellular 
intracellular 

Cont. Coexpression (sum- 
based); Differential 
expression 

Testicular cancer Chord diagram, 
Sankey plot 

None R 

CytoTalk Intercellular 
intracellular 

Cont. Coexpression (sum- 
based); 
Coexpression 
(correlation-based) 

None Network plot Gene entropy analysis R/ 
Matlab 

NicheNet Intercellular 
intracellular 

Cont. Network Head and neck cell 
carcinoma tumors 

Chord diagram, 
heatmap 

Differential CCI between datasets R 

CellChat Intercellular Cont. Coexpression (product- 
based) 

None Hierarchy plot, 
circle plot, chord 
diagram, heatmap, 
bubble plot 

1. CCI Network centrality 
2. Communication patterns 
4. Classify signaling pathways 
based on functional or structural 
similarity 
5. Comparison analysis 

R 

NATMI Intercellular Cont. Coexpression (product- 
based) 

None Heatmap, 
network plot, chord 
diagram 

Differential CCI between datasets Python 

SingleCellSi 
gnalR 

Intercellular Cont. Coexpression (product- 
based) 

Melanoma; Head and 
neck cell carcinoma 
tumors 

Chord diagram None R 

ICELLNET Intercellular Cont. Coexpression (product- 
based) 

Breast cancer Chord diagram, 
heatmap, bubble plot, 
barplot 

None R 

CSOmap Intercellular Bin. Coexpression (product- 
based) 

None None None Matlab 

scConnect Intercellular Cont. Coexpression (product- 
based) 

Melanoma Network plot, 
sankey plot, heatmap 

Differential CCI between datasets Python 

soptSC Intercellular Cont. Coexpression (product- 
based) 

None Chord diagram, 
network plot 

None R/ 
MatLab 

Connectome Intercellular Cont. Coexpression (product- 
based) 

None Chord diagram Network centrality analysis, 
differential CCI between datasets 

R 

REMI Intercellular Cont. Coexpression 
(correlation-based) 

Lung squamous cell 
carcinoma 

Chord diagram, 
heatmap 

Network centrality analysis R 

Under the column ‘CCI value’, cont. and bin. refer to continuous and binary, respectively. 
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2.3. Intracellular CCI methods 

Intracellular CCI methods model the interaction process within cells. 
Some intracellular CCI methods specifically model downstream net
works containing interactions from receptors to transcription factors, 
and from transcription factors to downstream target genes, while others 
model interactions among all possible intracellular genes within the 
cells. 

Fisher’s Exact test To construct the intracellular signaling network, 
scMLnet utilizes Fisher’s exact test [36] to compute the activity score of 
a specified transcription factor in a given cell type [37]. First, known 
associations between receptors and transcription factors and between 
transcription factors and target genes are curated from existing public 
databases. Next, three sets are constructed: the set of significantly 
expressed target genes, the set of all possible target genes, and the set of 
target genes for a given transcription factor. Using the sizes of the 
intersection sets between these three constructed gene sets, Fisher’s test 
is used to compute the p-value, which represents the activity of a specific 
transcription factor in a certain cell type. This p-value of a specific 
transcription factor is lower if there are more highly expressed target 
genes regulated by it, indicating a higher activity of the transcription 
factor of interest. Cheng et al. use scMLnet to only consider transcription 
factors with a calculated p-value lower than 0.05 to be activated in the 
receiver cells, which are then included in the subnetwork describing 
interactions from transcription factors to target genes [38]. Similarly, to 
find links between receptors and transcription factors, Cheng et al. also 
use Fisher’s test is used to compute the activity of receptors according to 
the calculated p-value. Aside from scMLnet, other tools that use Fisher’s 
test to determine the intracellular interactions are CCCExplorer [39] and 
scSeqComm [23]. 

Differential expression-based Another method, CellCall [25], uses 
gene set enrichment analysis to calculate an activity score of transcrip
tion factors that are activated downstream of a ligand-receptor inter
action. CellCall first constructs regulons consisting of a transcription 
factor and its set of coexpressed target genes. The Spearman’s rank 
correlation coefficient is used to determine gene coexpression between a 
target gene and a transcription factor; significantly coexpressed genes 
are retained in the considered regulon. Next, the activity score of the 
transcription factor is calculated using the gene set enrichment analysis 
enrichment score for the regulon. If there are multiple transcription 
factors downstream of a ligand-receptor interaction, then the tran
scription factor activity score is calculated as the weighted sum of all 
transcription factors downstream of the interaction. 

Network-based Network-based methods use network analysis 
methods that utilize the structure of the network to infer likely in
teractions. scSeqComm uses this type of method to build the receptor-TF 
subnetwork, first by using existing databases. Next, the PageRank al
gorithm, a network analysis method in machine learning, is used to 
calculate the strength of associations between receptors and transcrip
tion factors, where the receptor as the seed node. The PageRank scores of 
each transcription factor is used to measure the association of the 
transcription factor to a given receptor. 

Coexpression-based Rather than consider interactions from re
ceptors to transcription factors and from transcription factors to target 
genes, one intracellular method, CytoTalk, constructs an intracellular 
gene coexpression network between all possible pairs of genes within 
cells using mutual information [26]. 

2.4. Ligand-target gene network CCI 

Most CCI methods that consider intracellular signaling networks 
model intercellular CCI and intracellular CCI separately. In contrast, 
NicheNet constructs a ligand-target network that connects signaling li
gands to downstream target, using PageRank, a network-based method 
[40]. NicheNet uses ligand-receptor networks, signaling networks, and 
gene regulatory networks constructed using multiple existing databases. 

These networks contain interactions from ligands to downstream tran
scription factors, and gene regulatory interactions between transcription 
factors and target genes. The data sources are integrated to build a 
weighted ligand-signaling network and gene regulatory network. Based 
on the ligand-signaling network, for target genes and upstream ligands 
of interest, a signaling importance score for each ligand to each target 
gene is calculated using a Personalized PageRank algorithm. Accord
ingly, a ligand-gene signaling importance matrix is obtained, where 
each entry denotes the signaling importance of each upstream ligand to 
each downstream gene. Next, the final ligand-target gene interaction 
network is obtained by multiplying the ligand-gene signaling impor
tance matrix and the weighted integrated gene regulatory network 
matrix. The entries in this matrix denote thus the regulatory potential of 
a ligand to a downstream target gene. 

2.5. Spatial CCI 

Spatial transcriptomic technologies are rapidly expanding, which 
include immunofluorescence-based methods, mass spectrometry- 
assisted methods, and barcoding-based methods [41]. In contrast to 
scRNA-seq data in which the spatial information is destroyed, spatial 
data preserves not only cell-cell heterogeneity information but also 
spatial positions. Since CCI can only occur between spatially proximal 
cells, knowing the cellular positions in space allows one to constrain the 
prediction of potential ligand-receptor interactions and significantly 
reduce the prediction of false positive interactions. There are two as
sumptions that are often used when inferring CCI from spatial data. 
First, CCI is a result of ligand-receptor co-occurrence. Second, the gene 
expression of cells also depends on their interactions with neighboring 
cells. Recent advancement in spatial transcriptomics makes it possible to 
detect genetic information at multiple cells, single-cell and even sub
cellular resolutions [42]. These advancements makes it possible to 
explore the above assumptions. Computational tools incorporating 
spatial information are developed based on these two different as
sumptions to capture CCI activity. Tools based on the first assumption 
include Giotto, SpaOTsc, GCN, and DeepLinc, and another tool based on 
the second assumption is SVCA. In contrast to most tools developed to 
analyze spatial data directly, SpaOTsc tries to map non-spatial 
scRNA-seq, which has single-cell resolution and typically higher gene 
coverage, to the positions of spatial data, and then analyze CCI using the 
mapped scRNA-data. We will briefly describe existing CCI methods 
utilizing spatial information below (Table 2). 

Giotto [43] uses spatial information to constrain possible cell in
teractions and then models CCI strength by calculating a sum-based 
coexpression score of ligands and receptors. Giotto first determines 
whether two cell types are preferentially located in a spatially proximal 
manner and then tries to identify which ligand-receptor pairs interact 
between two spatially proximal cell types. For each possible 
ligand-receptor pair in sender cell type and receiver cell type, the 
interaction score is a sum-based coexpression score, which is calculated 
by the weighted average gene expression of ligand and receptor in 
interacting sender and receiver cells, or in the subset of sender and 
receiver cells that are spatially close. Giotto then uses a permutation test 
to assess whether the calculated interaction score is statistically signif
icant. Rather than randomly permuting cell type labels, Giotto randomly 
permutes the cell locations within the same cell type before calculating 
the corresponding p-value. 

SpaOTsc is a tool that uses spatial data as a reference to provide 
spatial information to a non-spatial scRNA-seq dataset, from which 
ligand-receptor interactions are inferred using optimal transport [44]. 
First, SpaOTsc constructs a spatial metric for the non-spatial dataset. 
Using the pairwise gene expression similarity between cells in the 
non-spatial scRNA-seq dataset and cells in the reference spatial dataset, 
SpaOTsc assigns a position (as a probability distribution over all spatial 
positions) to each cell in scRNA-seq dataset using optimal transport. 
Based on this position assignment, SpaOTsc calculates a spatial metric 
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between each pair of cells in scRNA-seq dataset. Then the genes in 
scRNA-seq data can be viewed as distributions over all cells in the 
dataset. For a given ligand-receptor pair, SpaOTsc calculates an optimal 
transport plan from ligand distributions to receptor distributions, where 
the cost function is defined as the spatial distances between cells. This 
transport plan gives the ligand-receptor interaction between each cell 
pair. SpaOTsc then summarizes the interactions between cells across cell 
type groups to calculate interactions at the level of cell types. 

COMMOT is an extension of the optimal transport framework of 
SpaOTsc that further considers the competition between multiple li
gands and multiple receptors [45]. Instead of viewing CCI between cells 
as an optimal transport plan between probability distributions of a 
ligand and a receptor, COMMOT considers CCI between cells as a 
collection of optimal transport plans for all ligands and receptors that 
can be coupled simultaneously under some spatial constraint. To 
consider competition between ligands or receptors, COMMOT assumes 
that a specific ligand or receptor in a specific cell has limited capacity for 
interactions that depends on ligand or receptor expression in the specific 
cells. Thus, in a given pair of cells, for a specific ligand that can bind to 
different receptors, a stronger interaction with one receptor reduces its 
potential of interaction with another receptor. The CCI between certain 
ligand-receptor pair in a pair of cells is given by optimizing a collection 
of transportation plans. Similar to SpaOTsc, COMMOT then aggregates 
the interactions between cells in clusters to calculate cluster-level CCI. 

GCNG is a spatial CCI method based on supervised learning on graph 
neural networks [46]. The graph neural network takes a cell neighbor
hood graph as input. A graph Laplacian is then calculated to encode 
intercellular spatial relationships in the graph structure, and specific 
ligand-receptor pair expression in each cell are specified as node attri
butes. The output of the graph neural network is a binary value which 
represents whether the specific ligand-receptor interaction exists in this 
graph. 

DeepLinc is a spatial method that uses a variational graph autoen
coder (VGAE) to infer CCI [47]. A VGAE takes a cell neighborhood 
graph, where edges connect neighboring cells, and gene expression as 
features of the nodes in the graph as input. The encoder of VGAE outputs 
a latent representation for each cell. Next, the decoder of VGAE calcu
lates cell-cell similarity between by calculating the dot product between 
latent representations of cells to generate the CCI network. 

Spatial Variance Component Analysis models CCI based on the 
assumption that CCI is a cause of cellular variation, and gene expression 
variance in cells can be modeled as a linear combination of three com
ponents: an intrinsic cell state effect, an environmental effect accounting 
for the position of the cell, and a cell-cell interaction effect [48]. The 
three variational effects are then modeled as multivariate Gaussian 
distributions whose covariance matrices account for similarity in cell 
intrinsic state, spatial proximity, and cellular neighborhoods. The 
covariance matrix that account for similarity of cellular neighborhood is 
the term of interest that can account for cell-cell interactions, and it is 
determined by fitting a regression model using maximum likelihood 

estimation for each target gene. 

2.6. Significance test 

Some CCI tools incorporate a significance test, including permuta
tion test and Kendall’s rank-correlation coefficient, on the calculated 
CCI scores to filter out non-significant interactions. One common 
method used is the permutation test. After calculating a CCI score of a 
pair of ligand-receptor from sender to receiver cell types, the cell type 
labels are randomly permuted for a large number of times to generate a 
null distribution. The p-value of an interaction is calculated as the 
probability of obtaining a CCI score that is higher than the original 
inferred CCI score. Only CCI scores with corresponding p-values that are 
lower than a specified threshold are kept. The procedures are very 
similar to permutation based (cell type label permutation) intercellular 
CCI calculations, though in significance tests they are performed with a 
different purpose, which is to filter out nonsignificant interactions. 
Permutation tests are used in CellChat [19] and Graeber and Eisenberg 
[49]. Some methods, such as PyMINER [21], use an ANOVA test to 
calculate a p-value, using to determine differentially expressed ligand 
and receptor genes. Other methods, such as scConnect [31], PyMINEr 
[21], and ICELLNET [50], correct for multiple testing via, for example, 
the Benjamini-Hochberg correction. In contrast, Kendall’s 
rank-correlation coefficient is used in scMLnet [51] to filter out weakly 
correlated links from receptors to transcription factors and links from 
transcription factors to downstream target genes [38]. To infer links 
between receptor genes and transcription factors, the gene expression 
values receiver cells are used to compute the Kendall’s rank-correlation 
coefficient between receptor genes and transcription factors. Links with 
a Kendall’s rank-correlation coefficient below a specified threshold are 
removed. A similar method is used to remove links between transcrip
tion factors and target genes. 

3. B. downstream analysis of CCI 

After infering CCI, several methods go further and extract features 
based on the properties of the CCI networks, including network cen
trality analysis [52,34,35], network diversity analysis [53], gene en
tropy analysis [26], communication pattern analysis [52], classification 
of signaling pathways [52], and comparison between multiple datasets 
[40,28,52,34,53,22]. In spatial methods, downstream analysis include 
visualization of the signaling direction in space, and identification of 
differentially expressed genes affected by CCI [45]. 

CCI networks can be represented as a directed weighted network, 
where the nodes represent cell groups and the edges represent directed 
interactions from sender cell groups to inferred receiver cell groups. 
Therefore, many CCI downstream analysis methods exploit these 
network-level features of CCI networks, including network centrality 
analysis, network diversity analysis, functional and structural similarity 
of CCI networks [52]. Network centrality, especially node centrality, is 

Table 2 
Computational tools developed to infer CCI from spatial transcriptomics.  

Tool Network 
type 

CCI 
value 

method Cancer Application Visualization Downstream pipelines Platform 

SpaOTsc Intercellular Cont. Optimal transport None None None Python 
COMMOT Intercellular Cont. Optimal 

transport 
Breast 
cancer 

None Spatial signaling direction, genes 
regulated by signaling 

Python 

Giotto Intercellular Cont. Coexpression (sum- 
based) 

Triple negative breast 
cancer 

Network plot, dot plot, 
heatmap 

None R 

GCNG Intercellular Bin. Graph convolutional 
network 

None None None Python 

DeepLinc Intercellular Cont. Variational graph 
autoencoder 

Breast cancer None None Python 

SVCA Unspecified Cont. Gaussian process model Breast cancer None None Python 

Under the column ‘CCI value’, cont. and bin. refer to continuous and binary, respectively. 
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used to discover important senders, receivers, mediators and influencers 
in the CCI networks. The in-degree and out-degree measure the total 
interaction strength received and sent by a cell group, respectively. Flow 
betweenness measures the implied ability of a cell group to control the 
interaction flow between different cell groups. Information centrality 
provides the amount of control on the information flow. Many other 
popular centrality measures, including hub score, authority score, 
EigenCentrality, and PageRank can also help identify important cell 
groups in CCIs [52]. In addition, network diversity analysis can extract 
node-level, node-to-node-level, and network-level diversity of multiple 
CCI networks that represent the CCIs for different biological conditions 
[53]. For example, node degree centrality has been used to analyze 
COVID-19 datasets, where it has been found that there is a decreasing 
trend of cell interactions received by B cells as the severity of COVID-19 
increases [53]. Significant signaling pathways present in the CCI net
works can be classified according to pairwise functional similarity and 
structural similarity, where functional similarity quantifies the similar
ity of major senders and receivers in each signaling network, and 
structural similarity measures the topological differences between 
signaling networks [52]. Non-negative matrix factorization is used to 
identify how sender cells and receiver cells coordinate with each other 
with respect to the signaling pathways they use [52]. Apart from 
network analysis, gene entropy analysis measures the amount of un
certainty in the signaling from a specific gene to another [26]. It is based 
on an inferred gene-gene network, where each node indicates a gene and 
each edge indicates the interaction strength between the two genes. The 
signaling entropy of a gene in the network represents the uncertainty in 
the signaling activity to other genes, and is calculated using Shannon 
entropy [54]. 

Comparison of CCI features between multiple datasets is another 
popular downstream analysis. For example, CellChat implements 
methods to compare differences in interaction strengths, major sender 
and receiver cell groups, interaction strengths in signaling pathways, 
and upregulated and downregulated ligand-receptor pairs between 
conditions [52]. Network diversity analysis also enables the comparison 
of differences in CCI diversity across multiple conditions [53]. 

Among all spatial CCI methods, COMMOT performs some down
stream analysis based on the inferred CCI [45]. The spatial vector field of 
signaling directions of incoming and outgoing cells are visualized in a 
spatial signaling direction plot. Also, differential gene analysis is per
formed to identify differentially expressed genes that are affected by the 
spatial CCI. 

4. C. experimental validation 

As many computational tools have been developed to measure CCI 
levels, it is important to validate the predicted interactions. There are 
different ways to validate the calculated CCI levels, including experi
mental methods, spatial colocalization and literature support. 

Experimental validation can be performed in three different ways: 
(1) Validation of the expression of ligands and receptors involved in CCI 
using proteomics, enzyme-linked immunosorbent assay, immunohisto
chemistry or western blots. (2) Functional assessment of CCI roles by in 
vivo or in vitro experiments using activators or inhibitors of involved 
ligands and receptors. (3) Visualization of CCI between neighboring cells 
using microscopy and immunostaining, single-molecule fluorescence in 
situ hybridization, and flow cytometry [55]. 

Spatial colocalization validation assumes that spatially adjacent cells 
are more likely to interact than cells that are further apart. Thus, a 
reasonable CCI score should have the property that it is larger between 
adjacent cells and lower in further apart cells. Since this type of vali
dation requires spatial information of cells, it is normally performed on 
spatial transcriptomics dataset. 

Evidence from biological literature is also a popular method to 
indirectly validate the predicted CCIs. For example, when studying CCI 
between dermal condensate (DC) and epithelial placode cells in hair 

follicle morphogenesis, CellChat inferred that epithelial placode cells 
distinctly secrete Fgf20 ligand to all DC states, which is consistent with 
the previously known role of placode-derived Fgf20 signaling [52]. 

4.1. Analysis of CCI in cancer 

Cancer is a current major health concern worldwide. Genetic and 
epigenetic alterations induce changes in cell-cell interactions that let 
cells escape homeostatic controls and drive cancer. Changes in CCI in
fluence not only cancer cells but also other important components in the 
tumor microenvironment, including immune cells, endothelial cells, 
surrounding stromal cells, and others [56]. Ligand-receptor interactions 
between cancer cells and normal cells and intracellular signaling are 
capable of regulating multiple crucial cellular processes during the 
progression of cancer, including cell growth and division, cell apoptosis, 
cell motility and invasion, angiogenesis, inflammation and immune 
suppression [7-9]. For example, Sever and Brugge give a comprehensive 
examination of how changes in PI3K-Akt and Ras-ERK interactions to 
can cause different characteristic features of cancer to emerge [9]. Due 
to its clear importance in cancer, the analysis of CCI can potentially 
greatly enhance our understanding of cancer mechanisms. In pharma
cology, targeting the interacting cells or mediators of cell interactions 
has been proven to be effective in multiple tumor treatments [9,39]. 

Using computational CCI tools, one can quantitatively study the 
upregulated or downregulated ligands and receptors within and be
tween normal cells and tumor cells to potentially identify novel cell 
interactions, raise new hypothesis and provide evidence on cell inter
action mechanisms in cancer development. Here, we highlight but a few 
applications. For example, Choi et al. used CCCExplorer [39] to identify 
new ligand-receptor interactions, including IL6-IL6R and WNT11-FZD7, 
between macrophages and tumor cells in non-small cell lung cancer 
(NSCLC). Choi et al. also verified the presence of AREG-EGFR signaling 
from monocytes to tumor cells, which has been reported in many other 
cancer types. Since AREG has been reported to inhibit apoptosis, the 
presence of this interaction suggests a potential tumor-promoting role of 
monocytes in NSCLC [39]. In another study, using human scRNA-seq 
data of head and neck squamous cell carcinoma (HNSCC) tumors, Bro
waeys et al. used NicheNet to investigate the hypothesis that 
cancer-associated fibroblasts (CAFs) may regulate genes involved in the 
partial epithelial-to-mesenchymal transition (p-EMT) program, as orig
inally proposed by Puram et al. [40]. They inferred the top interactions 
between CAF-ligands and p-EMT target genes in cancer cells, including 
interactions from TGFB3 to TGFBI, LAMC2, and TNC, shedding further 
light on the potential regulatory roles of CAF-ligands on p-EMT target 
genes. Arnol et al. [48], the developers of SVCA, studied a breast cancer 
Imgaging Mass Cytometry (IMC) dataset. Using SVCA, they inferred that 
CCI components can explain up to 25% of the gene expression variance, 
where marker genes of immune cells, including CD44, CD20, CD3 and 
CD68, comprised the largest CCI effects. By using CellCall to study CCI 
between immune cells from six types of cancer, including liver hepato
cellular carcinoma, non-Hodgkin lymphoma, non-small cell lung cancer, 
kidney renal clear cell carcinoma, colorectal cancer, and breast invasive 
carcinoma, Zhang et al. inferred that monocytes and macrophages 
receive the largest amount of signals from other immune cell types, 
indicating their roles as dominant signaling receivers among all immune 
cell types in multiple cancers [25]. 

Due to frequent mutations occurring in cancer, there are some lim
itations of using computational CCI tools to infer cell interactions in 
cancer. First, cancer-causing mutations may lead to distortions in 
inferred interactions. For example, a recent study has shown that in 
melanomas, lung and colon cancers, the gene BRAF mutation V600E will 
induce a novel interaction between BRAF and KEAP1 [57]. Such dis
torted interactions caused by mutations may not be captured by 
currently available CCI methods or databases. Furthermore, for methods 
that consider downstream effects of ligand-receptor interactions, if one 
of the downstream genes is mutated, this could affect the entire 

X. Wang et al.                                                                                                                                                                                                                                   



Seminars in Cancer Biology 95 (2023) 42–51

49

downstream network significantly, which may, in turn, affect CCI 
inference. 

4.2. Future directions 

With the vastly increasing number of scRNA-seq and spatial datasets 
and the rapidly developing technologies, opportunities arise as we try to 
increase our understanding of CCI and improve the reliability of CCI 
tools. 

4.3. Incorporating spatial information 

Incorporating spatial information has many advantages. First, cells 
primarily interact with each other locally and across limited spatial 
distances. While scRNA-seq provides the gene expression of ligands and 
receptors in cells, which is important for the detection of CCI, it does not 
capture the physical positions of cells, missing an important spatial 
constraint on possible interactions. Second, non-spatial data cannot 
accurately infer CCI that occur through physical cell-cell contact. It is 
possible that future work can model the cell-cell contact by incorpo
rating cellular spatial information. Third, most current CCI methods 
calculate the interaction strengths between groups of cells to reduce 
false positive estimates. However, these methods implicitly assume that 
all cells within the sender and receiver groups are in signaling range. It 
may be the case that only a subset of these cells are close enough to 
interact. Thus, it is crucial to develop more tools that can map a spatial 
distance between cells, by either equipping spatial positions to non- 
spatial cells, or by using ST to profile the cells together with their 
spatial positions. 

4.4. Incorporating temporal information 

Most CCI methods rely on the average ligand and receptor expression 
in different groups of cells to infer CCI from scRNA-seq data. However, 
as scRNA-seq is a static snapshot of gene expression, these methods an 
important aspect of CCI, which is that it is dynamic. Incorporating time 
information provides a new angle of studying CCI in general. Apart from 
learning how CCI evolves with respect to time, time information may 
also aid in finding associations between CCI and key biological processes 
that may be important in cancer, including cell differentiation, organ 
development, disease progression, and immune response. To account for 
temporal information, one could analyze CCI across a time series dataset 
of scRNA-seq data sampled from the same biological system at multiple 
time points, or by applying a pseudotime ordering method on a single 
dataset and analyzing CCI across inferred pseudotime branches [19,58]. 

4.5. Competition and cooperation between CCI 

Currently, most CCI tools rely on the assumption that ligand-receptor 
interactions occur are independently, which may not be the case. For 
example, researches have shown that the invasion of a human mammary 
tumor is driven by both paracrine signaling to and from host macro
phages and autocrine signaling between tumor cells [59]. It may 
therefore be the case that these interactions co-interact. Furthermore, 
multiple ligands compete to bind to the same set of receptors, but cur
rent methods assume that these ligands can bind to the same receptors 
across all possible receiver cells. Thus, future work could incorporate the 
dependency between ligand-receptor interactions to improve accuracy 
of inferred CCI. There has been some recent research in this direction 
[35,60]. 

4.6. Multi-omics integration 

The overwhelming majority of current CCI methods focus on inter
cellular signaling and do not account for the intracellular downstream 
response (with some exceptions). A key aspect of intracellular signaling 

is the activation or in activation of transcription factors after ligand- 
receptor binding. One example is the activation of transcription fac
tors in the SMAD family due to TGF-β signaling [61]. Once a tran
scription factor is activated, it binds to specific regions of non-coding 
DNA to modulate the transcription downstream target genes as a 
response to cell signaling. Given their evidently important role in the 
intracellular signaling network, accounting for the signaling gene reg
ulatory network facilitated by transcription factors can provide extra 
information when studying CCI. Such information can be obtained 
through several recently developed technologies. For example, advances 
in mass spectrometry have enabled the high-throughput measurements 
of post-translational modulation of signaling proteins [61]. Other 
technologies like single-cell Assay for Transposase-Accessible Chro
matin using sequencing (scATAC-seq) and Chromatin immunoprecipi
tation followed by sequencing (ChiP-seq) provide information on 
chromatin structure and accessibility, which regulate binding affinity of 
transcription factors and their consequent regulation of downstream 
target genes [62]. The incorporation of measurement of transcription 
factor activity from other omics data is promising for both the inference 
and validation of CCI. Furthermore, as ligand-receptor interactions 
occur at the protein level, gene expression information alone cannot 
measure CCI directly. It is thus potentially promising to incorporate 
other technologies that provide protein level information. For example, 
cellular indexing of transcriptomes and epitopes by sequencing (CIT
E-seq) can integrate protein and transcriptome measurements into a 
single-cell readout [63]. 

5. Discussion 

The development of both scRNA-seq and ST technologies has 
generated a new, rapidly expanding field of CCI studies. A wide range of 
computational tools have been developed recently to model and infer 
both intercellular and intracellular interactions in different species (e.g. 
human or mouse), and to analyze the downstream features of these 
constructed CCI networks. The currently available tools use different 
computational methods to model CCI from gene expression, based on 
their modeling assumptions. Even though ground truth datasets are 
currently lacking, some efforts have been made to compare between 
different CCI methods. For example, one study compares seven CCI 
methods with respect to: agreement of inferred CCIs with spatial 
colocalization, cytokine activities, and receptor protein abundance, 
concluding that the predicted CCI are coherent with these modalities in 
general [64]. They also found that different ligand-receptor databases 
used by different CCI methods have different biases towards certain 
pathways and tissue-enriched proteins. Another comparative study 
evaluates 16 CCI methods by integrating scRNA-seq with ST data, 
concluding that CellChat, CellPhoneDB, NicheNet, and ICELLNET show 
better performance in alignment with spatial information and in scal
ability [65]. For future work, we envision that CCI methods will be 
benchmarked based on their agreement with existing biological evi
dence. Though a large number of single-cell-focused tools have been 
developed, there are still limitations of current CCI inference methods. 
First, scRNA-seq data contain biological and technical noise in experi
mental processing [66], which may obscure the true gene expression of 
signaling genes. Second, ligand-receptor interactions occur at the pro
tein level, meaning that the gene expression measurements provided by 
RNA-based measurements only give an indirect measurement of ligand 
and receptor expression. Third, most methods prioritize ligand-receptor 
interactions, but these are by no means the only form of CCI. For 
example, a recent method, NeuronChat [67] infers CCIs due to neuro
transmitters consisting of groups of small molecules that are typically 
excluded from current ligand-receptor databases and corresponding 
receptors. Such interactions are not accounted for by other CCI methods 
and are known to play a role in glioma progression [68,69]. Fourth, 
while experimental validation, spatial colocalization, and literature 
support provide validation of the computed CCI scores from different 
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tools to some extent, there is still a lack of ground truth datasets for 
which the underlying CCI networks are truly known, preventing sub
stantial benchmarking of CCI inference methods. We propose that future 
work should try to improve the following aspects in developing 
computational tools to study CCI: (1) incorporate spatial information to 
improve the accuracy of calculated ligand-receptor scores; (2) incorpo
rate temporal information to understand the dynamic process of CCI 
changes in time; (3) take into account the dependency of ligand-receptor 
interaction; (4) integrate scRNA-seq with other omics technologies to 
gain information at the protein and epigenetic levels and improve 
modeling and inference of CCI. With these points in mind, it is clear that 
the use of single-cell technology to analyze CCI will continue to grow at a 
rapid pace in the following decades to come, and so too will the insights 
that come with this growth. 
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