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ARTICLEINFO ABSTRACT

Caell-cell interactions insouct cell fate and function. These interactionz are hijacked to promote cancer dewel-
opment Single-cell transcriptomics and spatial ranseriptomics have become powerful new tools for rezearchers
to profile the tranzeriptional landscape of cancer at unparalleled genetic depth. In thiz review, we dizeuss the
rapidly growing array of computational tool: to infer cell-cell interactions from non-zpatal single-cell RNA-

alyses of these computational tools and applications to cancer studies are highlighted. We fAnizh by suggesting
several directions for further extenzions that anticipate the increasing availability of multi-omics cancer data.

1. Introduction

Cells coordinate to perform functions as a multicellular organiem.
Such coordination can be achieved through eell-cell interactions (CCI}—
alzo known as cell-cell communication or cell signaling—where cells
mezsages. Within multicellular organieme, there are distinet groupe of
specialized cells with distinet cell funchions, which facilitate different
types of OClL. Theese range of interaction behaviors are crucial to many
biclogical processes, including cell growth, division, differentiation,
tissue or organ development, and disease progression [1-3]. For
example, in the context of eell differentiation, T follicular helper celle, a
subeet of CD44 T eells, are found to secrete [L-4 and 11-2]1 ligands that
promote B cell proliferation and B cell differentiation into plasma B cells
or germinal center B ecelle [4]. In embryonic development, WNT
signaling are found to play diverse roles in eell fate determination, dif-
ferentiation, proliferation and apoptoeis [5,6]. In disease progression,
some Ligands and receptors are found to inhibit interactons invelved n
facilitating the Iimmune responses. For iInstance, cytotoxe T
Iymphocyte-associated antigen-4 (CTLA-4) was found to downregulate
immune responses and iz closely related to tumeor progression [2]. In
particular, CCI iz important for cancer studies. Many cellular processes
that are erucial for the development of cancer are regulated by CCI,
including eell growth and division, cell apoptosis, cell motlity and

inwvagion, anglogenesiz, iInflammation and immune suppression [7-9].

There are two components of CCl. One iz intercellular signaling,
which oceurs between cells and at the cell membrane (Fiz. 1A). The
other 1z intracellular signaling, which iz the downstream response to
intereellular signaling and takes place inside the eells (Fiz. 1B). Inter-
cellular signaling consists of sender cells secreting signaling molecules,
called ligands, into the extracellular space. Each lizand can then only
bind to a ecertain st of proteins located on the membrane of possible
recerver cells called receptors. When a sufficient number of ligands have
reached and binded to their appropriate receptors, different transerip-
tion factors and consequently target gencs within the eell are activated
downstream. There are four types of cell communication: autocrine,
paracrine, endocrine and juxtacrine. Autocrine signaling iz defined az a
cell reeriving a signal secreted by itself. For example, it was found that
autocrine TGF-f signaling maintains self-renewal in human embryonie
stem eells [10]. Paracrine signaling iz defined az a eell receiving a signal
secreted by other nearby eells. For example, paracrine Interleukin-1
signaling from carcinoma cells induces eytokine secrebion In mesen-
chymal stem eells [11]. Juxtacrine signaling requires direct physical
contact between eells, where signals are secreted across gap junchons
between cells in contact An example of thiz type of signaling 1= the
interaction between a membrane-bound ligand Delta and the
cell-surface receptor Moteh [12]. Signals seereted during endeocrine
signaling travel a long distance from sender cells through the circulatory
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gyetem to reach potential recetver cells. The release of hormones from
glands and travel through the bloodstream to reach distant body sites 1z
an example of endocrine [13]. However, due to the far epatial distances
required for endocrine signaling, ecRMNA-seq and ST data do not provide

Single-cell RNA sequencing (seRMNA-seq) and spatial transeriptomic
(5T} technologies are rapidly developing, enabling the profiling of bio-
logical tissue at unprecedented genomic depth. The gene expression
profile of tens of thousands of genes, many of which are related to CCI,
can be captured for thousands and potentially mallions of cells [14].
Being able to capture such rich genomic information offers a great op-
portumity to change how CCl can be investizated in different tizsues of
different species. For known ligand-receptor interaction paire, based on
the assumption that higher levels of relevant ligand and receptor gene
expression reflect a higher poesibility of CCl occurming, one can use the
expression of ligand and receptor genes in possible sender and receiver
cells to infer CCI. A great number of bicinformatics tools have been
developed recently to model and analyze CCl between and within cells
based on gene expression data obtained from non-spatial single-cell and
spatial transeriptomics data—and many more continue to be developed.
Using these computational tools, we can infer an approximate landscape
of CCl from scRMNA-seq data (or ST data) and advanece our understanding
of CCl mechamsms mn different biclogical syetems. Indeed, there 1z a
rapidly growing number of applications where these tools have been
used to reveal important and novel CCle from scRMA-seq studies of
cancer [15-12]. Meost CCI toocls consist of two components: a
ligand-receptor database which contains the poessible ligand-receptor
pairs and a computational model to caleulate the likelhood of CCI
based on the expression walues of the ligand and receptor genes. Some
CCl tools, such az CellChat [19], include fimctionality to visualize the
CCl networks directly (Fiz. 2). In thiz paper, we will briefly review the
currently available computational tools that model CCI based on gene
expression data obtained from non-spatial ecRNA-seq or ST data. We
dizcuss current waye to perform downstream analyeis after inferring CCI,
how CCle are validated, the applications of CCI results in cancer, and
possible future directions.

2. A. CCl methods

Many computational CCI tools have been developed based on either
non-spatial ecRNA-seq data or have used ST data to constrain potential
interactions. The CCI tools wsually take preprocessed data, which in-
cludes normalization by hibrary depth and log-transformation, as input.
Theee tools cover both the caleulation of intereellular interachons and
intracellular interactions. While these tools have the common goal of
modeling CCl, they are based on different computational strategies and
biological assumptions. We will describe the currently available tools in
detail below.
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2.]. Nonspatial CCI methods

In thiz section, we briefly deseribe the categories of computational
methods that CCl tools use to model the different components of eell
signaling (Table 1).

2.2 Intercellular CCT methods

Intereellular CCl methods are used to infer potential interactons
between eelle. More specifically, they try to capture the interaction
strength, which 1z assumed to reflect the probability of an interaction

Threshold-based methods One type of CCI method removes Insig-
nificant interactions based on individual higand and receptor expression
lewele, where ligands and receptors are only considered if their expres-
sion levels exceed a predetermined threshold in their respective sender
and receiver cell types. After thresholding, only ligand-receptor pairs
where both the igand and receptor are retained for CCI inference. These
tyvpes of methods output a binary CCl score. One example of this type of
method iz CellTalker [20], which only considers ligands and receptors
with non-zero expression In more than 5% of cells for inference, or li-
gands and receptors with non-zero expression In more than 3% of
certain cell type groups for specific interachons.

Differential-expression-based methods Differential-expression-
based CCl methods infer zignificant interactions by first identifying
differentially expressed ligands and receptors using statistical models.
exizting ligand-receptor pairs in a curated CCl database. The output of
these CCl methods are generally interpreted az a binary score for all
ligand-receptor pairs. PyMINEr iz an example of one such CCl method
[21]. It first finde the significantly enriched ligand: and receptors in
each eell type based on both analysiz of variance (ANOVA) and g-score
enrichment, and then eross-references ligand-receptor pairs with the
StringDB interaction list to only include direct binding pairs. Another
example of one such OCl method iz 1ITALE [22], which allows for the use
of one of several differential expression methods for single-cell appli-
cations to find differentially expressed ligands and receptors.

Permutation-based methods Permutation-based CCl methods
measure the specificity of an interaction between two cell types. There
are two types of permutation tests considered: tests that permute either
gene labels or eell type labels. Gene label permutation tests measure how
high the obeerved ligand (receptor) expression levels are compared with
a "null distribution” obtained from randomly selected genes. Cell type
label permutation tests measure how high the ligand and receptor
expreszion level in the considered eell types are compared to randomly
assigned cell type labels.

One example of a method that performs gene label permutation tests
1z seSeqComm [22]. Given a fixed eell type, it first randomly resamples
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Fig. 1. The biological components of cell-cell interactions that can be inferred from zingle-cell and spatial data. A The different types of intercellular CCI, which
include autocrine, paracrine, and juxtacrine signaling. Autocrine zignaling occurs when a cell receives the zame signals secreted by itself. Paracrine signaling occurs
when a cell receives a signal secreted by nearby cells. Juxtacrine signaling oecurs a cell receives a signal from a directly adjacent cell through physical contact. B
Intracellular CCI iz the dowmsream response to intercellular signaling that takes place inzide cells. When a sufficient number of ligands bind to azsociated receptors,
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Flg. 2. Common visualizations of CCI inference from cancer datasetz A Circle plot showing directed interactions between cell types. B Chord diagram indicating
outgoing interactions from different cell types. C Heatmap showing the total interaction strength between sender and receiver cell types. D Bubble plot displaying the
interaction strength between cancer cellz and other cell types with respect to different ligand-receptor pairs. L1, L2, L3 represent three different ligands, and R1, R2,

B3, B4 reprezent four different receptors.

genes from all genes and computes the distribution of the average gene
expression of a randomly resampled gene. The distribution of average
gene expressions observed by chanece iz then approximated using a
Gauesian distribution. The score of the higand (receptor) n the fixed cell
type i= computed as the probability of observing lower values from the
approximated distnbution than the average gene expression of the
ligand (receptor) of interest. The ligand-receptor score iz caleulated as

CellPhoneDB [24] iz an example of a method that performs cell type
label permutation. Assuming cell type annotations have been provided,
CellPhoneDB caleculates an ennchment score of ligand-receptor

interactions between two cell types based on the gene expression of
ligand and receptor in sender and recerver cell types, respectively. This
enrichment score iz calculated as the minimum of the average gene
expreszion of igand and receptor in their respective cell types. Next, by
randomly permuting the cell type labels of each eell a large number of
times, a null disinbution of enrichment score of Lhgand-receptor inter-
action iz calculated. Then the interachion score of a ligand-receptor pair
iz caleulated as the proportion of enrichment scores that are higher than
the actual computed enrichment score.

Coecxpression-based methods The majonty of CCl methods
analyzed in thiz paper are based on the measuring the simultaneous
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Table 1
Computational tools developed to infer CCI from non-spatial data.
Tool Network type CCI Method Cancer Application Visualization Downstream pipelines Platform
value
CellTalker Intercellular Bin. Threshold Head and neck cell Chord diagram None R
carcinoma tumors
PyMINEr Intercellular Cont. Differential expression None Circle plot None Python
iTalk Intercellular Bin. Differential expression None Network plot, chord Differential CCI between datasets R
diagram, errorbar plot
CellPhoneDB Intercellular Cont. Permutation None Dot plot, None Python
heatmap
scSeqComm Intercellular Cont. Permutation; Network; None Chord diagram, None R
intracellular Fisher’s test heatmap, dot plot
scMLnet Intercellular Bin. Differential Expression; None Network plot None R/
intracellular Fisher’s test Python
CCCExplorer Intercellular Bin. Differential Expression; Non-small-cell lung Network plot None software
intracellular Fisher’s test cancer
CellCall Intercellular Cont. Coexpression (sum- Testicular cancer Chord diagram, None R
intracellular based); Differential Sankey plot
expression
CytoTalk Intercellular Cont. Coexpression (sum- None Network plot Gene entropy analysis R/
intracellular based); Matlab
Coexpression
(correlation-based)
NicheNet Intercellular Cont. Network Head and neck cell Chord diagram, Differential CCI between datasets R
intracellular carcinoma tumors heatmap
CellChat Intercellular Cont. Coexpression (product- None Hierarchy plot, 1. CCI Network centrality R
based) circle plot, chord 2. Communication patterns
diagram, heatmap, 4. Classify signaling pathways
bubble plot based on functional or structural
similarity
5. Comparison analysis
NATMI Intercellular Cont. Coexpression (product- None Heatmap, Differential CCI between datasets Python
based) network plot, chord
diagram
SingleCellSi Intercellular Cont. Coexpression (product- Melanoma; Head and Chord diagram None R
gnalR based) neck cell carcinoma
tumors
ICELLNET Intercellular Cont. Coexpression (product- Breast cancer Chord diagram, None R
based) heatmap, bubble plot,
barplot
CSOmap Intercellular Bin. Coexpression (product- None None None Matlab
based)
scConnect Intercellular Cont. Coexpression (product- Melanoma Network plot, Differential CCI between datasets Python
based) sankey plot, heatmap
soptSC Intercellular Cont. Coexpression (product- None Chord diagram, None R/
based) network plot MatLab
Connectome Intercellular Cont. Coexpression (product- None Chord diagram Network centrality analysis, R
based) differential CCI between datasets
REMI Intercellular Cont. Coexpression Lung squamous cell Chord diagram, Network centrality analysis R
(correlation-based) carcinoma heatmap

Under the column ‘CCI value’, cont. and bin. refer to continuous and binary, respectively.

coexpression of ligands and receptors. These types of methods can be
further divided into three subcategories based on their calculation for-
mula; that is, whether they are sum based, product based, or correlation
based.

(i). Sum-based coexpression: Sum-based coexpression methods
infer CCI based on a calculated sum of certain features of ligand and
receptor expression. For example, for a given ligand-receptor interac-
tion, CellCall infers intercellular communication by calculating the
Euclidean norm of a vector consisting of the normalized ligand and re-
ceptor expression values, which is then weighted by an activity score of
associated transcription factors [25]. CytoTalk is another method that
uses a sum-based method to calculate the ligand-receptor interaction
strength [26]; possible interactions are weighted by multiplying the sum
of features of ligand and receptor expression with a “non-self-talk” score,
which is calculated using the mutual information of ligand and receptor
expression in the sender group and receiver groups, respectively.

(ii). Product-based coexpression: Product-based coexpression
methods, as their name suggests, infer CCI based on the product of
ligand and receptor gene expression. CellChat [27] is one such popular
method. CellChat considers the expression levels of ligands and
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receptors in respective sender and receiver cell groups, respectively.
When considering multi-units of ligands or receptors, CellChat uses the
geometric mean of each gene to approximate the average expression
level.The communication probability between two cell groups for a
given ligand-receptor pair is then defined as a product based on mass
action kinetics, where the “base” ligand-receptor score, calculated as a
normalized product of ligand and receptor expression, which is then
weighted by the average expression of known agonists and antagonists.

Product-based coexpression methods are popular for CCI inference.
Other product-based methods include: NATMI [28], SingleCellSignalR
[29], ICELLNET [30], scConnect [31], CSOmap [32], SoptSC [33], and
Connectome [34]. Each method uses its own “product-based” formula to
infer ligand-receptor interaction strength.

(iii). Correlation-based coexpression: Correlation-based coex-
pression methods infer CCI based on statistical correlation between gene
expression in cell groups of interest. These methods assume that corre-
lation in expression of two genes correspond to regulation by a common
signaling mechanism. REMI calculates the Pearson correlation between
ligand and receptor gene expressions to model the likelihood of inter-
action [35].
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2.3. Intracellular CCI methods

Intracellular CCI methods model the interaction process within cells.
Some intracellular CCI methods specifically model downstream net-
works containing interactions from receptors to transcription factors,
and from transcription factors to downstream target genes, while others
model interactions among all possible intracellular genes within the
cells.

Fisher’s Exact test To construct the intracellular signaling network,
scMLnet utilizes Fisher’s exact test [36] to compute the activity score of
a specified transcription factor in a given cell type [37]. First, known
associations between receptors and transcription factors and between
transcription factors and target genes are curated from existing public
databases. Next, three sets are constructed: the set of significantly
expressed target genes, the set of all possible target genes, and the set of
target genes for a given transcription factor. Using the sizes of the
intersection sets between these three constructed gene sets, Fisher’s test
is used to compute the p-value, which represents the activity of a specific
transcription factor in a certain cell type. This p-value of a specific
transcription factor is lower if there are more highly expressed target
genes regulated by it, indicating a higher activity of the transcription
factor of interest. Cheng et al. use scMLnet to only consider transcription
factors with a calculated p-value lower than 0.05 to be activated in the
receiver cells, which are then included in the subnetwork describing
interactions from transcription factors to target genes [38]. Similarly, to
find links between receptors and transcription factors, Cheng et al. also
use Fisher’s test is used to compute the activity of receptors according to
the calculated p-value. Aside from scMLnet, other tools that use Fisher’s
test to determine the intracellular interactions are CCCExplorer [39] and
scSeqComm [23].

Differential expression-based Another method, CellCall [25], uses
gene set enrichment analysis to calculate an activity score of transcrip-
tion factors that are activated downstream of a ligand-receptor inter-
action. CellCall first constructs regulons consisting of a transcription
factor and its set of coexpressed target genes. The Spearman’s rank
correlation coefficient is used to determine gene coexpression between a
target gene and a transcription factor; significantly coexpressed genes
are retained in the considered regulon. Next, the activity score of the
transcription factor is calculated using the gene set enrichment analysis
enrichment score for the regulon. If there are multiple transcription
factors downstream of a ligand-receptor interaction, then the tran-
scription factor activity score is calculated as the weighted sum of all
transcription factors downstream of the interaction.

Network-based Network-based methods use network analysis
methods that utilize the structure of the network to infer likely in-
teractions. scSeqComm uses this type of method to build the receptor-TF
subnetwork, first by using existing databases. Next, the PageRank al-
gorithm, a network analysis method in machine learning, is used to
calculate the strength of associations between receptors and transcrip-
tion factors, where the receptor as the seed node. The PageRank scores of
each transcription factor is used to measure the association of the
transcription factor to a given receptor.

Coexpression-based Rather than consider interactions from re-
ceptors to transcription factors and from transcription factors to target
genes, one intracellular method, CytoTalk, constructs an intracellular
gene coexpression network between all possible pairs of genes within
cells using mutual information [26].

2.4. Ligand-target gene network CCI

Most CCI methods that consider intracellular signaling networks
model intercellular CCI and intracellular CCI separately. In contrast,
NicheNet constructs a ligand-target network that connects signaling li-
gands to downstream target, using PageRank, a network-based method
[40]. NicheNet uses ligand-receptor networks, signaling networks, and
gene regulatory networks constructed using multiple existing databases.
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These networks contain interactions from ligands to downstream tran-
scription factors, and gene regulatory interactions between transcription
factors and target genes. The data sources are integrated to build a
weighted ligand-signaling network and gene regulatory network. Based
on the ligand-signaling network, for target genes and upstream ligands
of interest, a signaling importance score for each ligand to each target
gene is calculated using a Personalized PageRank algorithm. Accord-
ingly, a ligand-gene signaling importance matrix is obtained, where
each entry denotes the signaling importance of each upstream ligand to
each downstream gene. Next, the final ligand-target gene interaction
network is obtained by multiplying the ligand-gene signaling impor-
tance matrix and the weighted integrated gene regulatory network
matrix. The entries in this matrix denote thus the regulatory potential of
a ligand to a downstream target gene.

2.5. Spatial CCI

Spatial transcriptomic technologies are rapidly expanding, which
include immunofluorescence-based methods, mass spectrometry-
assisted methods, and barcoding-based methods [41]. In contrast to
scRNA-seq data in which the spatial information is destroyed, spatial
data preserves not only cell-cell heterogeneity information but also
spatial positions. Since CCI can only occur between spatially proximal
cells, knowing the cellular positions in space allows one to constrain the
prediction of potential ligand-receptor interactions and significantly
reduce the prediction of false positive interactions. There are two as-
sumptions that are often used when inferring CCI from spatial data.
First, CCI is a result of ligand-receptor co-occurrence. Second, the gene
expression of cells also depends on their interactions with neighboring
cells. Recent advancement in spatial transcriptomics makes it possible to
detect genetic information at multiple cells, single-cell and even sub-
cellular resolutions [42]. These advancements makes it possible to
explore the above assumptions. Computational tools incorporating
spatial information are developed based on these two different as-
sumptions to capture CCI activity. Tools based on the first assumption
include Giotto, SpaOTsc, GCN, and DeepLinc, and another tool based on
the second assumption is SVCA. In contrast to most tools developed to
analyze spatial data directly, SpaOTsc tries to map non-spatial
scRNA-seq, which has single-cell resolution and typically higher gene
coverage, to the positions of spatial data, and then analyze CCI using the
mapped scRNA-data. We will briefly describe existing CCI methods
utilizing spatial information below (Table 2).

Giotto [43] uses spatial information to constrain possible cell in-
teractions and then models CCI strength by calculating a sum-based
coexpression score of ligands and receptors. Giotto first determines
whether two cell types are preferentially located in a spatially proximal
manner and then tries to identify which ligand-receptor pairs interact
between two spatially proximal cell types. For each possible
ligand-receptor pair in sender cell type and receiver cell type, the
interaction score is a sum-based coexpression score, which is calculated
by the weighted average gene expression of ligand and receptor in
interacting sender and receiver cells, or in the subset of sender and
receiver cells that are spatially close. Giotto then uses a permutation test
to assess whether the calculated interaction score is statistically signif-
icant. Rather than randomly permuting cell type labels, Giotto randomly
permutes the cell locations within the same cell type before calculating
the corresponding p-value.

SpaOTsc is a tool that uses spatial data as a reference to provide
spatial information to a non-spatial scRNA-seq dataset, from which
ligand-receptor interactions are inferred using optimal transport [44].
First, SpaOTsc constructs a spatial metric for the non-spatial dataset.
Using the pairwise gene expression similarity between cells in the
non-spatial scRNA-seq dataset and cells in the reference spatial dataset,
SpaOTsc assigns a position (as a probability distribution over all spatial
positions) to each cell in scRNA-seq dataset using optimal transport.
Based on this position assignment, SpaOTsc calculates a spatial metric
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Table 2
Computational tools developed to infer CCI from spatial transcriptomics.
Tool Network CCI method Cancer Application Visualization Downstream pipelines Platform
type value
SpaOTsc Intercellular Cont. Optimal transport None None None Python
COMMOT  Intercellular Cont. Optimal Breast None Spatial signaling direction, genes Python
transport cancer regulated by signaling
Giotto Intercellular Cont. Coexpression (sum- Triple negative breast Network plot, dot plot, None R
based) cancer heatmap
GCNG Intercellular Bin. Graph convolutional None None None Python
network
DeepLinc Intercellular Cont. Variational graph Breast cancer None None Python
autoencoder
SVCA Unspecified Cont. Gaussian process model Breast cancer None None Python

Under the column ‘CCI value’, cont. and bin. refer to continuous and binary, respectively.

between each pair of cells in scRNA-seq dataset. Then the genes in
scRNA-seq data can be viewed as distributions over all cells in the
dataset. For a given ligand-receptor pair, SpaOTsc calculates an optimal
transport plan from ligand distributions to receptor distributions, where
the cost function is defined as the spatial distances between cells. This
transport plan gives the ligand-receptor interaction between each cell
pair. SpaOTsc then summarizes the interactions between cells across cell
type groups to calculate interactions at the level of cell types.

COMMOT is an extension of the optimal transport framework of
SpaOTsc that further considers the competition between multiple li-
gands and multiple receptors [45]. Instead of viewing CCI between cells
as an optimal transport plan between probability distributions of a
ligand and a receptor, COMMOT considers CCI between cells as a
collection of optimal transport plans for all ligands and receptors that
can be coupled simultaneously under some spatial constraint. To
consider competition between ligands or receptors, COMMOT assumes
that a specific ligand or receptor in a specific cell has limited capacity for
interactions that depends on ligand or receptor expression in the specific
cells. Thus, in a given pair of cells, for a specific ligand that can bind to
different receptors, a stronger interaction with one receptor reduces its
potential of interaction with another receptor. The CCI between certain
ligand-receptor pair in a pair of cells is given by optimizing a collection
of transportation plans. Similar to SpaOTsc, COMMOT then aggregates
the interactions between cells in clusters to calculate cluster-level CCI.

GCNG is a spatial CCI method based on supervised learning on graph
neural networks [46]. The graph neural network takes a cell neighbor-
hood graph as input. A graph Laplacian is then calculated to encode
intercellular spatial relationships in the graph structure, and specific
ligand-receptor pair expression in each cell are specified as node attri-
butes. The output of the graph neural network is a binary value which
represents whether the specific ligand-receptor interaction exists in this
graph.

DeeplLinc is a spatial method that uses a variational graph autoen-
coder (VGAE) to infer CCI [47]. A VGAE takes a cell neighborhood
graph, where edges connect neighboring cells, and gene expression as
features of the nodes in the graph as input. The encoder of VGAE outputs
a latent representation for each cell. Next, the decoder of VGAE calcu-
lates cell-cell similarity between by calculating the dot product between
latent representations of cells to generate the CCI network.

Spatial Variance Component Analysis models CCI based on the
assumption that CCI is a cause of cellular variation, and gene expression
variance in cells can be modeled as a linear combination of three com-
ponents: an intrinsic cell state effect, an environmental effect accounting
for the position of the cell, and a cell-cell interaction effect [48]. The
three variational effects are then modeled as multivariate Gaussian
distributions whose covariance matrices account for similarity in cell
intrinsic state, spatial proximity, and cellular neighborhoods. The
covariance matrix that account for similarity of cellular neighborhood is
the term of interest that can account for cell-cell interactions, and it is
determined by fitting a regression model using maximum likelihood
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estimation for each target gene.

2.6. Significance test

Some CCI tools incorporate a significance test, including permuta-
tion test and Kendall’s rank-correlation coefficient, on the calculated
CCI scores to filter out non-significant interactions. One common
method used is the permutation test. After calculating a CCI score of a
pair of ligand-receptor from sender to receiver cell types, the cell type
labels are randomly permuted for a large number of times to generate a
null distribution. The p-value of an interaction is calculated as the
probability of obtaining a CCI score that is higher than the original
inferred CCI score. Only CCI scores with corresponding p-values that are
lower than a specified threshold are kept. The procedures are very
similar to permutation based (cell type label permutation) intercellular
CCI calculations, though in significance tests they are performed with a
different purpose, which is to filter out nonsignificant interactions.
Permutation tests are used in CellChat [19] and Graeber and Eisenberg
[49]. Some methods, such as PyMINER [21], use an ANOVA test to
calculate a p-value, using to determine differentially expressed ligand
and receptor genes. Other methods, such as scConnect [31], PyMINEr
[21], and ICELLNET [50], correct for multiple testing via, for example,
the Benjamini-Hochberg correction. In contrast, Kendall’s
rank-correlation coefficient is used in scMLnet [51] to filter out weakly
correlated links from receptors to transcription factors and links from
transcription factors to downstream target genes [38]. To infer links
between receptor genes and transcription factors, the gene expression
values receiver cells are used to compute the Kendall’s rank-correlation
coefficient between receptor genes and transcription factors. Links with
a Kendall’s rank-correlation coefficient below a specified threshold are
removed. A similar method is used to remove links between transcrip-
tion factors and target genes.

3. B. downstream analysis of CCI

After infering CCI, several methods go further and extract features
based on the properties of the CCI networks, including network cen-
trality analysis [52,34,35], network diversity analysis [53], gene en-
tropy analysis [26], communication pattern analysis [52], classification
of signaling pathways [52], and comparison between multiple datasets
[40,28,52,34,53,22]. In spatial methods, downstream analysis include
visualization of the signaling direction in space, and identification of
differentially expressed genes affected by CCI [45].

CCI networks can be represented as a directed weighted network,
where the nodes represent cell groups and the edges represent directed
interactions from sender cell groups to inferred receiver cell groups.
Therefore, many CCI downstream analysis methods exploit these
network-level features of CCI networks, including network centrality
analysis, network diversity analysis, functional and structural similarity
of CCI networks [52]. Network centrality, especially node centrality, is
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used to discover important senders, receivers, mediators and influencers
in the CCI networks. The in-degree and out-degree measure the total
interaction strength received and sent by a cell group, respectively. Flow
betweenness measures the implied ability of a cell group to control the
interaction flow between different cell groups. Information centrality
provides the amount of control on the information flow. Many other
popular centrality measures, including hub score, authority score,
EigenCentrality, and PageRank can also help identify important cell
groups in CCIs [52]. In addition, network diversity analysis can extract
node-level, node-to-node-level, and network-level diversity of multiple
CCI networks that represent the CClIs for different biological conditions
[53]. For example, node degree centrality has been used to analyze
COVID-19 datasets, where it has been found that there is a decreasing
trend of cell interactions received by B cells as the severity of COVID-19
increases [53]. Significant signaling pathways present in the CCI net-
works can be classified according to pairwise functional similarity and
structural similarity, where functional similarity quantifies the similar-
ity of major senders and receivers in each signaling network, and
structural similarity measures the topological differences between
signaling networks [52]. Non-negative matrix factorization is used to
identify how sender cells and receiver cells coordinate with each other
with respect to the signaling pathways they use [52]. Apart from
network analysis, gene entropy analysis measures the amount of un-
certainty in the signaling from a specific gene to another [26]. It is based
on an inferred gene-gene network, where each node indicates a gene and
each edge indicates the interaction strength between the two genes. The
signaling entropy of a gene in the network represents the uncertainty in
the signaling activity to other genes, and is calculated using Shannon
entropy [54].

Comparison of CCI features between multiple datasets is another
popular downstream analysis. For example, CellChat implements
methods to compare differences in interaction strengths, major sender
and receiver cell groups, interaction strengths in signaling pathways,
and upregulated and downregulated ligand-receptor pairs between
conditions [52]. Network diversity analysis also enables the comparison
of differences in CCI diversity across multiple conditions [53].

Among all spatial CCI methods, COMMOT performs some down-
stream analysis based on the inferred CCI [45]. The spatial vector field of
signaling directions of incoming and outgoing cells are visualized in a
spatial signaling direction plot. Also, differential gene analysis is per-
formed to identify differentially expressed genes that are affected by the
spatial CCIL.

4. C. experimental validation

As many computational tools have been developed to measure CCI
levels, it is important to validate the predicted interactions. There are
different ways to validate the calculated CCI levels, including experi-
mental methods, spatial colocalization and literature support.

Experimental validation can be performed in three different ways:
(1) Validation of the expression of ligands and receptors involved in CCI
using proteomics, enzyme-linked immunosorbent assay, immunohisto-
chemistry or western blots. (2) Functional assessment of CCI roles by in
vivo or in vitro experiments using activators or inhibitors of involved
ligands and receptors. (3) Visualization of CCI between neighboring cells
using microscopy and immunostaining, single-molecule fluorescence in
situ hybridization, and flow cytometry [55].

Spatial colocalization validation assumes that spatially adjacent cells
are more likely to interact than cells that are further apart. Thus, a
reasonable CCI score should have the property that it is larger between
adjacent cells and lower in further apart cells. Since this type of vali-
dation requires spatial information of cells, it is normally performed on
spatial transcriptomics dataset.

Evidence from biological literature is also a popular method to
indirectly validate the predicted CCIs. For example, when studying CCI
between dermal condensate (DC) and epithelial placode cells in hair
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follicle morphogenesis, CellChat inferred that epithelial placode cells
distinctly secrete Fgf20 ligand to all DC states, which is consistent with
the previously known role of placode-derived Fgf20 signaling [52].

4.1. Analysis of CCI in cancer

Cancer is a current major health concern worldwide. Genetic and
epigenetic alterations induce changes in cell-cell interactions that let
cells escape homeostatic controls and drive cancer. Changes in CCI in-
fluence not only cancer cells but also other important components in the
tumor microenvironment, including immune cells, endothelial cells,
surrounding stromal cells, and others [56]. Ligand-receptor interactions
between cancer cells and normal cells and intracellular signaling are
capable of regulating multiple crucial cellular processes during the
progression of cancer, including cell growth and division, cell apoptosis,
cell motility and invasion, angiogenesis, inflammation and immune
suppression [7-9]. For example, Sever and Brugge give a comprehensive
examination of how changes in PI3K-Akt and Ras-ERK interactions to
can cause different characteristic features of cancer to emerge [9]. Due
to its clear importance in cancer, the analysis of CCI can potentially
greatly enhance our understanding of cancer mechanisms. In pharma-
cology, targeting the interacting cells or mediators of cell interactions
has been proven to be effective in multiple tumor treatments [9,39].

Using computational CCI tools, one can quantitatively study the
upregulated or downregulated ligands and receptors within and be-
tween normal cells and tumor cells to potentially identify novel cell
interactions, raise new hypothesis and provide evidence on cell inter-
action mechanisms in cancer development. Here, we highlight but a few
applications. For example, Choi et al. used CCCExplorer [39] to identify
new ligand-receptor interactions, including IL6-IL6R and WNT11-FZD7,
between macrophages and tumor cells in non-small cell lung cancer
(NSCLC). Choi et al. also verified the presence of AREG-EGFR signaling
from monocytes to tumor cells, which has been reported in many other
cancer types. Since AREG has been reported to inhibit apoptosis, the
presence of this interaction suggests a potential tumor-promoting role of
monocytes in NSCLC [39]. In another study, using human scRNA-seq
data of head and neck squamous cell carcinoma (HNSCC) tumors, Bro-
waeys et al. used NicheNet to investigate the hypothesis that
cancer-associated fibroblasts (CAFs) may regulate genes involved in the
partial epithelial-to-mesenchymal transition (p-EMT) program, as orig-
inally proposed by Puram et al. [40]. They inferred the top interactions
between CAF-ligands and p-EMT target genes in cancer cells, including
interactions from TGFB3 to TGFBI, LAMC2, and TNC, shedding further
light on the potential regulatory roles of CAF-ligands on p-EMT target
genes. Arnol et al. [48], the developers of SVCA, studied a breast cancer
Imgaging Mass Cytometry (IMC) dataset. Using SVCA, they inferred that
CCI components can explain up to 25% of the gene expression variance,
where marker genes of immune cells, including CD44, CD20, CD3 and
CD68, comprised the largest CCI effects. By using CellCall to study CCI
between immune cells from six types of cancer, including liver hepato-
cellular carcinoma, non-Hodgkin lymphoma, non-small cell lung cancer,
kidney renal clear cell carcinoma, colorectal cancer, and breast invasive
carcinoma, Zhang et al. inferred that monocytes and macrophages
receive the largest amount of signals from other immune cell types,
indicating their roles as dominant signaling receivers among all immune
cell types in multiple cancers [25].

Due to frequent mutations occurring in cancer, there are some lim-
itations of using computational CCI tools to infer cell interactions in
cancer. First, cancer-causing mutations may lead to distortions in
inferred interactions. For example, a recent study has shown that in
melanomas, lung and colon cancers, the gene BRAF mutation V600E will
induce a novel interaction between BRAF and KEAP1 [57]. Such dis-
torted interactions caused by mutations may not be captured by
currently available CCI methods or databases. Furthermore, for methods
that consider downstream effects of ligand-receptor interactions, if one
of the downstream genes is mutated, this could affect the entire
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downstream network significantly, which may, in turn, affect CCI
inference.

4.2. Future directions

With the vastly increasing number of scRNA-seq and spatial datasets
and the rapidly developing technologies, opportunities arise as we try to
increase our understanding of CCI and improve the reliability of CCI
tools.

4.3. Incorporating spatial information

Incorporating spatial information has many advantages. First, cells
primarily interact with each other locally and across limited spatial
distances. While scRNA-seq provides the gene expression of ligands and
receptors in cells, which is important for the detection of CCI, it does not
capture the physical positions of cells, missing an important spatial
constraint on possible interactions. Second, non-spatial data cannot
accurately infer CCI that occur through physical cell-cell contact. It is
possible that future work can model the cell-cell contact by incorpo-
rating cellular spatial information. Third, most current CCI methods
calculate the interaction strengths between groups of cells to reduce
false positive estimates. However, these methods implicitly assume that
all cells within the sender and receiver groups are in signaling range. It
may be the case that only a subset of these cells are close enough to
interact. Thus, it is crucial to develop more tools that can map a spatial
distance between cells, by either equipping spatial positions to non-
spatial cells, or by using ST to profile the cells together with their
spatial positions.

4.4. Incorporating temporal information

Most CCI methods rely on the average ligand and receptor expression
in different groups of cells to infer CCI from scRNA-seq data. However,
as scRNA-seq is a static snapshot of gene expression, these methods an
important aspect of CCI, which is that it is dynamic. Incorporating time
information provides a new angle of studying CCI in general. Apart from
learning how CCI evolves with respect to time, time information may
also aid in finding associations between CCI and key biological processes
that may be important in cancer, including cell differentiation, organ
development, disease progression, and immune response. To account for
temporal information, one could analyze CCI across a time series dataset
of scRNA-seq data sampled from the same biological system at multiple
time points, or by applying a pseudotime ordering method on a single
dataset and analyzing CCI across inferred pseudotime branches [19,58].

4.5. Competition and cooperation between CCI

Currently, most CCI tools rely on the assumption that ligand-receptor
interactions occur are independently, which may not be the case. For
example, researches have shown that the invasion of a human mammary
tumor is driven by both paracrine signaling to and from host macro-
phages and autocrine signaling between tumor cells [59]. It may
therefore be the case that these interactions co-interact. Furthermore,
multiple ligands compete to bind to the same set of receptors, but cur-
rent methods assume that these ligands can bind to the same receptors
across all possible receiver cells. Thus, future work could incorporate the
dependency between ligand-receptor interactions to improve accuracy
of inferred CCI. There has been some recent research in this direction
[35,60].

4.6. Multi-omics integration
The overwhelming majority of current CCI methods focus on inter-

cellular signaling and do not account for the intracellular downstream
response (with some exceptions). A key aspect of intracellular signaling
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is the activation or in activation of transcription factors after ligand-
receptor binding. One example is the activation of transcription fac-
tors in the SMAD family due to TGF-f signaling [61]. Once a tran-
scription factor is activated, it binds to specific regions of non-coding
DNA to modulate the transcription downstream target genes as a
response to cell signaling. Given their evidently important role in the
intracellular signaling network, accounting for the signaling gene reg-
ulatory network facilitated by transcription factors can provide extra
information when studying CCI. Such information can be obtained
through several recently developed technologies. For example, advances
in mass spectrometry have enabled the high-throughput measurements
of post-translational modulation of signaling proteins [61]. Other
technologies like single-cell Assay for Transposase-Accessible Chro-
matin using sequencing (scATAC-seq) and Chromatin immunoprecipi-
tation followed by sequencing (ChiP-seq) provide information on
chromatin structure and accessibility, which regulate binding affinity of
transcription factors and their consequent regulation of downstream
target genes [62]. The incorporation of measurement of transcription
factor activity from other omics data is promising for both the inference
and validation of CCIL. Furthermore, as ligand-receptor interactions
occur at the protein level, gene expression information alone cannot
measure CCI directly. It is thus potentially promising to incorporate
other technologies that provide protein level information. For example,
cellular indexing of transcriptomes and epitopes by sequencing (CIT-
E-seq) can integrate protein and transcriptome measurements into a
single-cell readout [63].

5. Discussion

The development of both scRNA-seq and ST technologies has
generated a new, rapidly expanding field of CCI studies. A wide range of
computational tools have been developed recently to model and infer
both intercellular and intracellular interactions in different species (e.g.
human or mouse), and to analyze the downstream features of these
constructed CCI networks. The currently available tools use different
computational methods to model CCI from gene expression, based on
their modeling assumptions. Even though ground truth datasets are
currently lacking, some efforts have been made to compare between
different CCI methods. For example, one study compares seven CCI
methods with respect to: agreement of inferred CCIs with spatial
colocalization, cytokine activities, and receptor protein abundance,
concluding that the predicted CCI are coherent with these modalities in
general [64]. They also found that different ligand-receptor databases
used by different CCI methods have different biases towards certain
pathways and tissue-enriched proteins. Another comparative study
evaluates 16 CCI methods by integrating scRNA-seq with ST data,
concluding that CellChat, CellPhoneDB, NicheNet, and ICELLNET show
better performance in alignment with spatial information and in scal-
ability [65]. For future work, we envision that CCI methods will be
benchmarked based on their agreement with existing biological evi-
dence. Though a large number of single-cell-focused tools have been
developed, there are still limitations of current CCI inference methods.
First, scRNA-seq data contain biological and technical noise in experi-
mental processing [66], which may obscure the true gene expression of
signaling genes. Second, ligand-receptor interactions occur at the pro-
tein level, meaning that the gene expression measurements provided by
RNA-based measurements only give an indirect measurement of ligand
and receptor expression. Third, most methods prioritize ligand-receptor
interactions, but these are by no means the only form of CCI. For
example, a recent method, NeuronChat [67] infers CCIs due to neuro-
transmitters consisting of groups of small molecules that are typically
excluded from current ligand-receptor databases and corresponding
receptors. Such interactions are not accounted for by other CCI methods
and are known to play a role in glioma progression [68,69]. Fourth,
while experimental validation, spatial colocalization, and literature
support provide validation of the computed CCI scores from different
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tools to some extent, there is still a lack of ground truth datasets for
which the underlying CCI networks are truly known, preventing sub-
stantial benchmarking of CCI inference methods. We propose that future
work should try to improve the following aspects in developing
computational tools to study CCI: (1) incorporate spatial information to
improve the accuracy of calculated ligand-receptor scores; (2) incorpo-
rate temporal information to understand the dynamic process of CCI
changes in time; (3) take into account the dependency of ligand-receptor
interaction; (4) integrate scRNA-seq with other omics technologies to
gain information at the protein and epigenetic levels and improve
modeling and inference of CCI. With these points in mind, it is clear that
the use of single-cell technology to analyze CCI will continue to grow at a
rapid pace in the following decades to come, and so too will the insights
that come with this growth.
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