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In biology, cell-fate decisions are controlled by complex gene regulation. Although gene expression
data may be collected at multiple time points, it remains difficult to construct the continuous dy-
namics from the data. In this work, we developed a data-driven approach, NeuralGene, a model
based on neural ordinary differential equations (ODEs), to reconstruct continuous dynamical sys-
tems governing gene regulation from temporal gene expression data. In addition, NeuralGene has
the flexibility of incorporating partial prior biological information in the model to further improve
its accuracy. For a given cell at a static time point, the NeuralGene model can impute its contin-
uous gene expression dynamics and predict its cell fate. We applied NeuralGene to a simulation
toggle-switch model to verify its utility in modeling and reconstructing temporal dynamics. In ad-
dition, NeuralGene was applied to experimental single-cell gPCR data to show its ability for gene
expression imputation and cell-fate prediction.

KEY WORDS: data-driven modeling, cell-fate decisions, deep learning

1. INTRODUCTION

In biology, cells exhibit distinct phenotypic states and fates in multicellular organisms. The cell
fate is associated with the temporal dynamics of gene regulation, where thousands of genes
interact with each other in a complex network, such as gene regulatory networks (GRNs). Math-
ematical modeling has been widely applied to study the functions of networks, such as adaptivity
to fluctuations and noise attenuation (Shen-Orr et al., 2002; Qiao et al., 2019; Nie et al., 2020).
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While genes interact with each other within an intracellular environment, extracellular signaling,
morphogen, provides stimulation to the GRN to induce distinct fates over space (Lander et al.,
2005, 2007). By integrating well-studied biological processes, the forward-engineering model-
ing successfully reveals the spatiotemporal dynamics of the biological tissues and dissects the
individual functions and coordination of those complex processes (Qiu et al., 2019, 2021; Zhang
etal., 2012; Zhu et al., 2020).

With the recent advance of machine learning and deep learning techniques along with the
availability of genomic data, data-driven modeling becomes possible in inferring equations gov-
erning the temporal dynamics. Physical-informed neural networks (PINNs) can embed physical
laws into the partial differential equations (PDEs), recovering the dynamics of the systems even
with limited data (Raissi et al., 2019). For example, PINNs have been applied to infer parame-
ters and dynamics of biological systems (Yazdani et al., 2020). Sparse identification of nonlinear
dynamics (SINDy) can build differential equations from a library of physical laws using the
sparsity-promoting techniques and machine learning (Brunton et al., 2016; Lusch et al., 2018).
SINDy has been applied to infer gene regulatory network from the dynamical data (Mangan
et al., 2016). Both PINNs and SINDy require partial physical laws as inputs. Alternatively, the
residual network (ResNet)-based models are used to derive the temporal dynamics from the data
without physical laws (Qin et al., 2019, 2020; Chen et al., 2022). Neural ordinary differential
equations (neural ODEs) provide more a general approach that learns physical laws and continu-
ous temporal dynamics from the data (Chen et al., 2018; Zhuang et al., 2020). Neural ODEs may
infer complex interaction (i.e., right-hand side of ODEs) from neural networks and have the flexi-
bility of partial prior knowledge to improve the model accuracy. Neural ODEs have been success-
fully applied to infer mechanistic models from biological data (Roesch et al., 2021). For example,
TrajectoryNet describes cell trajectories by combining a known convection term with unknown
neural network-based velocity fields (Tong et al., 2020), and a recurrent neural network recovers
the spatiotemporal dynamics and GRNSs in a spatial gene regulation model (Shen et al., 2021).

In this work, we present a neural ODEs-based model, NeuralGene, in learning dynamics of
gene regulation from temporal gene expression data. In Section 2, we introduce the algorithms
of NeuralGene and its utility in inferring dynamics of gene regulation and integrating known
biological information along with black-box neural networks. In Section 3, we test NeuralGene
on a simulated toggle-switch model with bifurcations. We show that NeuralGene can accurately
capture the temporal dynamics of gene expression and classify cell-fate decisions governed by
the toggle-switch system. With additional inputs of biological information, accuracy of Neural-
Gene can be largely improved. In Section 4, we apply NeuralGene to a single-cell gPCR dataset
with bifurcation governing by two fate-marker genes. NeuralGene successfully reconstructs con-
tinuous dynamical systems in controlling the cell-fate mapping with different initial conditions.
Moreover, given the expression data for one cell at a static time point, NeuralGene can impute
the gene expression dynamics and accurately predict the cell fate at the final time. Lastly, in
Section 5 we conclude and discuss.

2. METHODS AND BACKGROUND

Cells can select multiple cell fates through temporal dynamics of gene regulation. The cell-fate
decision of an individual cell can be modeled by a multi steady-state gene regulation model
using an autonomous system of ODEs:

dx
= = @), z(t=0) =, @
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where x(t) = (z1(t),z2(¢),...,x,(t)) represents temporal dynamics of the expression of n
genes. f: R™ — R™ describes the regulations between these n genes, which is fully or partially
unknown. The steady states of the system (i.e., cell fates) depend on the initial state . To deci-
pher the regulation and cell fate, NeuralGene learns from K series of temporal gene expression

data, {X" }kl;, obtained from different initial stages:
XF={abt =t),2"t=1t),....a8t =¢;),....2a"t =t,)}, (2)

where tg = 0 and z*(t = ty) = x} are the initial conditions. {to,t1,...,t;} is a set of sample
time points for collecting time-series data, and the final time ¢; is large enough to allow all

genes to converge to steady states. znc;C is the expression state at ¢; with initial condition xk.

Taking {Xk }kl; as inputs, NeuralGene utilizes neural ODEs (Chen et al., 2018; Zhuang et al.,
2020) to infer the unknown regulation f.

In NeuralGene, the right-hand side of Eq. (1) is approximated by a deep-learning-based
black-box function, specifically deep neural network (DNN). With no prior knowledge available,
the entire right-hand side f can be approximated by a DNN N : f(z) ~ R(x;0) = N(x;0),
where 0 is the set of hyperparameters for DNN. If there is available biological knowledge for the
systems, such as degradation rates of genes, then DNN can be used to model partial unknown
right-hand side: f(x) ~ R(x;0) = fy(x) + N(a; 0), where fy(x) is the well-known term. The
architecture of DNN is a sequence of fully connected feedforward neural network with L hidden
layers N(x; 0) : R — R™:

N(QZ; 6) = WL o (O'L,I @) WLfl) o (O'L,Z (@) WL72) O---0 (0'0 @) Wo)(a?), (3)

where o is the composition operator. W; is the linear layer, and W;(z) = ¢;z + b;, which
maps the ith layer to the (¢ + 1)th layer. In the linear layer, ¢; is the linear weight and b; is the
bias term. Oth and (L + 1)th layers are input and output layers, respectively. o; is the nonlinear
activation function, and we designed the network without activation function for the output layer.
We used rectified linear unit (ReLU) function, which is a component-wise operation, o;(z) =
max(0, z).

For a given initial stage =, we can integrate the neural network to obtain approximate solu-
tion of Eq. (1), which is inspired by the neural ODEs (Chen et al., 2018):

¢
v ) =af + [ R () 0)ds 0
0
y*(t) at time points t1, . . ., ; can be numerically solved by using an arbitrary ODE solver:
vl ys, oyl (5)

Then, the mean-square error (MSE) was taken as the loss function to describe the discrepancy
between the gene expression data and the estimated temporal data:

1 K J
20) = g7 2l 41 ©

where ||.|| is the L, norm. The loss function was minimized to update hyperparameters 6. The
numerical ODE solver can also be regarded as a deep neural network without hyperparameters
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being optimized during training. NeuralGene can be regarded as a deep neural network by com-
bining the DNN and the numerical ODE solver. Indeed, hyperparameters © are optimized via
backpropagation for both DNN and ODE solver. The gradient of © was obtained from auto-
differentiation of the loss function, and Adam optimizer (Kingma et al., 2014) was employed to
optimize 0. Although the adjoint method proposed in neural ODEs can reduce the memory used
to store the gradient, it requires longer computational time (Rubanova et al., 2019). Due to the
relatively small size of neural network in this work, one single GPU is always sufficient to store
the gradient. Indeed, we used the traditional auto-differentiation to accelerate computations. The
DOPRIS method (Dormand and Prince, 1980), one type of Runge-Kutta model with adaptive
step size, is used for the ODE solver in neural ODEs.

3. APPLICATIONS TO A SIMULATED BISTABLE TWO-GENE REGULATORY
NETWORK MODEL

3.1 NeuralGene Identifies Cell-Fate Bifurcation

Genetic toggle switch is a canonical gene regulatory motif in biology to study the bistability
of cell-fate decisions (i.e., bifurcation) (Gardner et al., 2000; Kramer et al., 2004). Here, we
study a classic toggle switch widely found in biology (Qiu et al., 2021; Zhang et al., 2012)
[Fig. 1(a)]: two interactive genes A and B along with an extracellular signal activating both
genes. For example, morphogen is a prevalent signal that diffuses over space to form a gra-
dient, and it induces heterogeneity of cell-fate decisions via a concentration-dependent man-
ner in spatial pattern formation (Qiu et al., 2021; Zhang et al., 2012; Zhu et al., 2020; Lan-
der, 2011). Meanwhile, these two genes mutually inhibit each other with an auto-activation
for their own expression. The gene regulatory network is a bistable system depending on ini-
tial gene expression levels. The dynamics of two-gene interactions are modeled by a system of
ODE:s:

dA]_  srald?
dt s aalAP + bp(BP daldl,
(7
dBl _ s+ap[B]’ _
dt Bs+aB[B]2+bA[A]2 45(B],

where [A](t) and [B](t) are concentration of two genes at time ¢. s is the signal strength,
as and ap are strengths of auto-activation for the two genes, and b4 and bp are strengths
of mutual inhibition. The signal, mutual inhibition, and auto-activation are modeled by Hill
functions. In addition, d4[A] and dg[B] are degradations for gene A and B, respectively. In
this work, we used one set of parameters allowing two genes to have the same interactive
strength: my = mp = 1.0,ayq = ap = 1.0,by = bp = 1.0,dy = dg = 0.4, and
s =0.8.

Due to the mutual inhibition, only one gene can maintain a high expression level whereas
the other gene is suppressed at a low level [Figs. 1(c) and 1(d)]. Indeed, the bistability can be
observed with different initial expression levels, where two distinct cell states, fate A and fate
B, are named by the highly expressed gene. By taking the identical parameters in the equations
of two genes, the boundary of the phase diagram is equally split by the initial expression level
of two genes [Fig. 1(b)].

Journal of Machine Learning for Modeling and Computing



NeuralGene: Inferring Gene Regulation and Cell-Fate Dynamics from Neural ODEs

a b 5 i
’0
4 o
’0
) fate B <
=3 w
z
£2
fate A
Oy N
%
%
I 00 1 2 3 4 5
—] Initial [A]
—fate boundary
==== fate boundary (prediction)
- Gene [A] d,: Gene [B]
Ad —fate A AV — fate A
3'4 — fate B 3'4 — fate B
© -~ fate A (prediction) | @ -- fate A (prediction)
\Cl -- fate B (prediction) \C/ -- fate B (prediction)
o3 o3
s | g\
22 <24\ =
g § g
51 - G 14
[ RS S (&)
0: 0:
60 80 100 O 20 40 60 80 100
Time (a.u.) Time (a.u.)

FIG. 1: NeuralGene identifying cell-fate bifurcation in a toggle switch model. (a) Illustration of gene
regulatory network for the toggle switch. Gene A and gene B mutually inhibit each other, and they have
auto-activation for their own expression. An extracellular signal activates both genes. (b) Phase diagram of
cell-fate bifurcation under different initial expression levels. Cell fate is determined by expressions of A
and B at the final time. The fate named by a gene indicates this gene has higher expression than the other
at the final time. The solid green line is the ground-truth boundary for distinct cell fates. The predicted
bifurcation boundary from NeuralGene is given by a dashed green line. (c) and (d) Temporal dynamics of
gene expression for gene A (c) and gene B (d). Solid lines represent ground truth and dashed lines represent
predictions from NeuralGene. Fate A and fate B are represented by blue and red, respectively.

3.2 NeuralGene Learns and Predicts Temporal Dynamics of Gene Expression
and Cell-Fate Bifurcation

Here, we applied NeuralGene to the genetic toggle-switch model in learning and predicting
its temporal dynamics of gene expression and cell fates. The simulations assume the well-
established degradation while the neural network approximates the Hill functions in Eq. (7).
The range of initial value of each gene is restricted in [0, 5]. For training set, its initial gene ex-
pression is generated using Latin hypercube sampling (Tang, 1993) from the rectangular space
[0, 5]* for gene A and B. For testing set, we uniformly divided [0, 5] with mesh size 0.05 to
obtain 101 sample points for each gene, and the testing set contains 101? = 10,201 sets of ini-
tial gene expression values. The temporal data of training and testing sets were generated by
DOPRIS ODEs solver at 20 time points uniformly distributed in [0, 100].

The model accurately captures the temporal dynamics of gene expression and the cell-fate
decisions [Figs. 1(c) and 1(d)]. The gene expression only evolves quickly for a short time and
then slows down to hit the steady states, and the predictions successfully capture such dynamics.
With only 400 sets of training data, NeuralGene accurately classifies the bifurcation of the sys-
tem [Fig. 1(b)]. Specifically, in the [0, 5]* initial gene expression region, NeuralGene achieves a
high accuracy 0.95, and a high F1 score 0.95 in classifying cell fates.
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3.3 Inclusion of Partial Biological Information Improves NeuralGene’s Accuracy

An essential feature of NeuralGene is that it can couple with well-known biological terms in
the model. To explore the inclusion of known biological knowledge, we compared three models
with different amounts of inputting biological information. One uses DNN to approximate the
gene regulation terms for both genes, and the other two models include more information about
gene regulation, where DNN only approximates a regulation term for one gene by assuming the
other is well-known.

All three models accurately identify cell-fate decisions for different initial gene expression
levels [Fig. 2(a)]. The inclusion of one gene regulation term significantly improves the classifi-
cation accuracy, where the predicted boundary separating two fates is closer to the ground-truth
boundary [Fig. 2(a)]. For the case masking both regulation terms, more simulations show poor

as b
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=, masked [B] 0.98 0.98 |0.032
- Fate boundary
1 = ground truth
== masked regulations [A] & [B]
=== Masked regulation [A]
0 == Masked regulation [B]
0 1 2 3 4 5
Initial [A]
C Cell fate classification d Temporal gene dynamics
1.04
1.2
0.9 : 1.0
08 - 0.8
8 4
0.6 45
<07 =
0.4
0.6 ) . -
0.2
05 A L . 0.0
masked masked masked masked masked masked
[Al&B]  [A] [B] [Al&B]  [A] [B]

FIG. 2: Impacts of additional prior knowledge for NeuralGene. NeuralGene models are performed on sim-
ulated toggle-switch model. Three models are tested with different amount of prior knowledge, where the
degradation terms for both genes are explicitly given in the right-hand sides of the equations for all cases.
Masked [ A]&[B] indicates regulation terms for both genes are inferred by NeuralGene. Masked [A] indi-
cates only regulation term for gene A is inferred by NeuralGene. Masked [ B] indicates only regulation term
for gene B is inferred by NeuralGene. (a) Phase diagram of cell-fate bifurcation with cell-fate boundaries
obtained from ground truth and predictions from three types of NeuralGene models. (b) Average accuracy
of three NeuralGene models’ performance in classifying cell fate and predicting temporal gene dynamics.
n = 100 independent repeats are used to obtain the statistics. (c) and (d) Violin plots and scatter plots
show distributions of metrics obtained by three NeuralGene models from n = 100 repeats for (c) accuracy
(ACC) of cell-fate classifications and (d) mean-squared errors (MSEs) of accuracy in predicting temporal
gene dynamics.
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accuracy around 0.5 (i.e., equivalent accuracy using random sampling), and a relatively low av-
erage accuracy, 0.86, is achieved [Figs. 2(b) and 2(c)]. By explicitly including one regulation
term, fewer simulations show the poor accuracy, and the average accuracy has at least 10.4%
improvement over the case masking both regulation terms [Fig. 2(b)]. Other than the cell-fate
classification, we also investigated the accuracy in predicting temporal dynamics of gene expres-
sion, which is measured by MSE. The case masking two interaction terms shows relatively large
MSE with 0.21 while significant reduction of MSE is observed, at least 65.7% reduction, for the
case masking interaction of A or B [Figs. 2(b) and 2(d)].

Overall, with the increasingly available biological information, NeuralGene can improve the
model accuracy for both fate classification and gene expression predictions.

4. APPLICATION TO SINGLE-CELL QPCR DATA

Next, we applied NeuralGene to an experimental single-cell gPCR dataset (Bargaje et al., 2017).
By profiling 96 developmental genes at single-cell resolution, the experiment observed a cell-
fate bifurcation event where induced pluripotent stem cells (iPSCs) differentiated to two distinct
lineages, mesodermal and endodermal lineages, in cardiomyocyte [Fig. 3(a)]. From 2.5 days,
HANDI1 and SOX17 expression start and they interact as a toggle switch to determine cell-fate
bifurcation. In this study we selected data collected later than 2.5 days to study the bifurcation
event for the interactions between HANDI1 and SOX17. HAND1 and SOX17 provide markers

a —»fate HAND1
—» fate SOX17 HAND1 ~soxt7  Hioh

—_—
Pseudotime

C HAND1

time time
+ fate HAND1 (data) — fate HAND1 (fitted curve)
- fate SOX17 (data) — fate SOX17 (fitted curve)

FIG. 3: Data preprocessing and training data generation for single-cell qPCR dataset. (a) The dataset is vi-
sualized at top two principal components (PC1 and PC2). (b) HAND1 and SOX17 provide fate marker for
mesodermal (i.e., fate HAND1) and endodermal (i.e., fate SOX17) fates, respectively. (c) and (d) Cells are
ordered in pseudotime (i.e., abscissa) plotted against expression of HAND1 and SOX17. Each cell is clas-
sified into one cell fate from pseudotime calculation denoted by blue (fate HAND1) and red (fate SOX17),
respectively. Solid lines show the fitted curves from smoothing spline interpolation for gene expression
data against pseudotime axis for both fates.
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for mesodermal and endodermal lineages, respectively, where each cell fate only has one highly
expressed gene [Fig. 3(b)] (Bargaje et al., 2017).

Although the dataset consists of data from multiple physical time points, the physical time
may not present the real differentiation due to the stochasticity in gene expression and experi-
mental errors. We reconstructed the time for the data, utilizing Slingshot (Street et al., 2018), a
pseudotime reconstruction method, by assigning and ordering cells along two distinct lineages
[Fig. 3(a)]. We selected day 2.5, day 3, day 4, and day 5 cells and processed them together.
Cells are assigned to one of two lineages with an index, pseudotime, indicating its relative de-
velopmental time in the entire dataset. Specifically, we first preprocessed the dataset using full
quantile normalization to scale each cell to the same distribution of expression values. Then,
principal components analysis (PCA) was used to project the data to a lower dimensional space
for preparation of Slingshot, where top three PCs were used. Last, Slingshot integrating with
the default clustering method, Gaussian mixture modeling (Scrucca et al., 2016), reconstructed
pseudotime. The iPSCs cluster was used as the root of lineages, and the lineages with two bi-
furcation fates were recovered correspondingly. After obtaining the pseudotime, the smoothing
spline interpolation was used to fit the expression curve for HAND1 and SOX17 for two distinct
trajectories [Figs. 3(c) and 3(d)]. The two smoothed trajectories were taken as the training data
for NeuralGene, where we picked data at 21 uniformly distributed pseudotime points.

To learn the dynamics of gene expression, the autonomous system can be used as we did
before in Eq. (1). DNN was used to approximate the entire right-hand side due to no available
prior knowledge: f(x) ~ R(z;0) = N(x; 0). However, the interactions between HAND1 and
SOX17 may depend on other genes. Alternatively, their interactions can also be written as a non-
autonomous system where the right-hand side depends on the variable ¢ implicitly indicating the
temporal dynamics of other genes:

dx
dt

DNN for the non-autonomous system takes gene-state variable x and an additional time vari-
able ¢ as input: f(x,t) =~ R((x,t);0) = N((x,t);0). We performed both autonomous (Fig. 4)
and non-autonomous (Fig. 5) systems to compare their performance in predicting dynamics of
gene expression and cell fate.

In the autonomous system, NeuralGene successfully learns the temporal dynamics of gene
expression with training error MSE = 1.40 [Figs. 4(a) and 4(b)], which fails to capture the two
waves in HAND1 expression for SOX17 fate. The model was then used to reconstruct gene
expression maps at final time (i.e., t = 10) with respect to initial expression levels [Figs. 4(c) and
4(d)]. The bifurcation regions can be distinguished from gene expression maps by the location
with sharp expression changes. However, the boundary between two regions (i.e., blue and red)
has a complicated non-linear geometry. Since the training data only scatter at two points in the
map, the complicated non-linear geometry may indicate an overfitting issue.

In the non-autonomous system, we performed identical calculations as the autonomous sys-
tem (Fig. 5). NeuralGene has better training accuracy with MSE = 0.75 [Figs. 5(a) and 5(b)].
The two waves in HAND1 expression for SOX17 fate can also be captured from the model.
The gene expression maps also identify the bifurcation regions with distinct expression levels
[Figs. 5(c) and 5(d)]. Especially, a sharp boundary with a simple linear geometry can be ob-
served for HANDI1 expression [Fig. 5(c)]. Since HANDI and SOX17 interact with each other
in a toggle-switch manner, the boundary for distinguishing bifurcation regions is supposed to be
sharp with respect to gene expression (Zhang et al., 2012) [also see Figs. 1(c) and 1(d)]. Our

=f(x,t), x(t =0)=x. 8)
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FIG. 4: HAND1-SOX17 fate predictions from autonomous system for single-cell qQPCR data. (a) and (b)
Temporal dynamics of expression for (a) HANDI and (b) SOX17 where solid lines show training data and
dashed lines show predictions for training data given the identical initial conditions. (c) and (d) Expression

map for (¢) HANDI and (d) SOX17 given by different initial expression levels.
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FIG. 5: HAND1-SOX17 fate predictions from non-autonomous system for single-cell gPCR data. (a) and
(b) Temporal dynamics of expression for (a) HANDI1 and (b) SOX17 where solid lines show training
data and dashed lines show predictions for training data given the identical initial conditions. (c) and (d)
Expression map for (c¢) HANDI and (d) SOX17 given by different initial expression levels.
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predicted gene expression maps from the model using non-autonomous system comply with this
prior knowledge, which indicates the model may have better generalizability in predicting gene
expression dynamics and cell-fate decisions.

Furthermore, we imputed gene expression dynamics and predicted cell fate at the final time
for cells in the single-cell qPCR dataset. For cells with pseudotime ¢ > 9.9, we assume cells
have committed their fates and they are excluded from the imputation experiment. Indeed, 1209
cells are selected where 710 and 499 of them belong to fate HAND1 and SOX17, respectively.
Gene expression dynamics for all cells can be imputed along the time axis up to the final time
(i.e., t = 10). Then, cell-fate decisions can be determined by expression levels of HAND1 and
SOX17 at the final time, where a cell has the fate of a marker gene if this gene has higher level
than the other. Indeed, a boundary for distinguishing cell fates can be drawn on the expression
graph with a linear function (i.e., y = x) [Figs. 6(a) and 6(b)]. For both autonomous and non-
autonomous systems, most cells locate sufficiently away from the cell-fate boundary, indicating
their clear commitment to one fate. Particularly, the model using non-autonomous system shows
more clear separation to the cell-fate boundary. Using the lineage inferred from pseudotime as
the ground truth, we can quantify the fate classification accuracy achieved by each model. The

312 autonomous system b non-autonomous system
. QL accuracy=0.84
10 ‘Q'tgo'\ 20 F1=0.80
8 7\
R | 3.4
é 6 2 // & 2 AT
n ~ b
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0.4 0.4
0.2 0.2
0.0 0.0

autonomous non-autonomous autonomous non-autonomous

FIG. 6: Comparisons for NeuralGene using autonomous and non-autonomous systems for single-cell
qPCR data. (a) and (b) NeuralGene imputes the dynamics of gene expression for cells from the single-cell
qPCR dataset, and predictions of gene expression at final time are plotted for HAND1 and SOX17 genes.
The ground-truth cell fate from pseudotime calculation is denoted by blue (fate HAND1) and red (fate
SOX17) in the scatter plot. The plots are generated for (a) autonomous system and (b) non-autonomous
system. (c) and (d) Violin plots and scatter plots show cell-fate classification performance from n = 100
independent repeats for both autonomous system and non-autonomous systems using metrics (¢) ACC and
(d) F1 score. The inner box in the violin plot shows five-number summary of the n = 100 data, where
center of box shows median; upper and lower limits of box show upper and lower quartiles; and upper
and lower whiskers show the maximum and the minimum by excluding “outliers” outside the interquartile
range.
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non-autonomous system has clear better accuracy and F1 score than the autonomous system
with 3.7% and 11.1% improvement, respectively. We further trained each model with n = 100
independent repeats with different random seeds. The statistics of accuracy and F1 score show
consistent results from the comparison in single repeat, where the five-number summary (i.e.,
median, lower and upper quartile, and maximum and minimum) is shown in the inner boxes
in the violin plots [Figs. 6(c) and 6(d)]. The non-autonomous system achieves 0.80 and 0.70
for average accuracy and average F1 score, respectively. The autonomous system achieves 0.70
and 0.61 for average accuracy and average F1 score, respectively. Indeed, the non-autonomous
system shows significant improvement over autonomous system with 14.3% and 14.8% average
improvement on accuracy and F1 score, respectively. Interestingly, the autonomous system is
more sensitive than the non-autonomous system, where many repeats have blow-up solutions
along with the extremely low accuracy and F1 score.

In building complicated gene interaction model, it may be reasonable to consider only a few
critical genes for simplification. However, many other genes may be involved in the interac-
tions. The non-autonomous systems permit a solution to include these genes implicitly via the
time-dependent right-hand side. As a result, the non-autonomous systems provide more accurate
predictions in gene expression dynamics and cell-fate predictions than the autonomous systems.

5. CONCLUSIONS AND DISCUSSION

We present a DNN-based dynamical model in learning temporal dynamics of gene interactions
from expression data. NeuralGene successfully recapitulates the cell-fate decision from a simu-
lated toggle-switch model. It has a strong flexibility to integrate with arbitrary prior knowledge
to improve its accuracy. We further applied it to a single-cell gPCR dataset. Despite the fact
that each cell only provides the gene expression at a static time point, NeuralGene can accu-
rately impute the temporal dynamics of gene expression and consequently predict its cell fate.
Furthermore, we explored different formation of ODEs in modeling the dynamics, concretely,
autonomous and non-autonomous systems. Since we only investigated the interactions among a
small number of genes, additional unknown genes may be critical to the interactions. The non-
autonomous systems with time-dependent right-hand sides provide better description regarding
these unknown genes in the complex interactions. As a result, a non-autonomous system may be
a better candidate in studying complex gene regulation.

In single-cell data, cells collected at the same physical time point may have different devel-
opmental stages. Our NeuralGene provides an approach using pseudotime to infer the intrinsic
developmental stages of cells. However, this may lead to limited training data; for examples,
two sets of training data are obtained for HAND1 and SOX17 fates in the qPCR data. To handle
this problem, it may be possible to utilize the physical time for dynamics inference by using
single-cell data collected at various time points. This is challenging for a direct application of
NeuralGene or other similar approaches using neural ODEs, since no paired data are provided.
For unpaired data, optimal transport is an alternative to link cells from different snapshots for
inferring cell transition, such as Waddington OT (Schiebinger et al., 2019). Moreover, it is pos-
sible to formulate a density-based model to deal with the unpaired data (Tong et al., 2020), but
this may be more computationally expensive with partial differential equations involved.

NeuralGene provides a proof of principal by approximating the right-hand side of ODEs
using DNNSs. In principle, this framework could be extended to the general case by using more
sophisticated architectures in DNNs or different types of neural networks due to its property
for universal approximation (Hornik, 1991). For example, one may consider different activation
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functions such as Tanh that is widely used in PINN. One may add dropout and batch normal-
ization layers in DNNs to have better generalizability for noisy data, limited training set, etc.
Furthermore, more advanced layers such as convolutional layers, attention layers, etc., can be
used to approximate the right-hand side with possible better accuracy. When prior knowledge
for gene regulation is available, it is also possible to truncate the connections between differ-
ent genes in the neural network; for example, one can remove the edges in neural networks if
two genes are not interacting. In addition, it is possible to infer dynamics of gene regulation
by considering a system with more genes involved. The computational cost of NeuralGene is
linearly proportional to the number of genes being considered. The utilization of GPUs could
potentially offer superior scalability, possible resulting in computational costs that are sublinear
to the number of genes being evaluated.
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APPENDIX A. EVALUATING METRICS

In this study, mean-squared error (MSE) was used to quantify the accuracy from the predicted
temporal dynamics of gene expression comparing to the ground-truth data. The MSE is defined
as

J
1
MSE = = [ly; — ;)" (A1)
j=1

where x; and y; are, respectively, ground truth and predicted gene expression vector including
all genes at time ¢;.

Another task is to classify cell-fate decisions, particularly, it is a binary classification in our
work with two cell fates determined by two toggle-switch genes. In this work, we determine cell
fate by comparing expression levels of two genes at the final time point. The cell commits to
the fate marked by one gene if its level is higher than the other gene. We denote one cell fate
as positive state and the other as negative state. Specifically, we take state A in simulation data
as the positive state and fate HANDI in real data as the positive state. A confusion matrix can
be constructed by comparing testing results from NeuralGene and the ground-truth cell fates
over all cells in the testing set. True positive (TP) and false negative (FN) are occurrences where
testing results correctly indicate the ground-truth positive and negative states, respectively. False
positive (FP) and false negative (FN) are occurrences where testing results wrongly indicate
the ground-truth positive and negative states, respectively. We used accuracy and F1 score (F1)
to quantify the performance for the binary classification. Specifically, accuracy quantifies the
frequency that predictions correctly predict the cell fates:

TP + TN
TP + TN + FP + FN’
Accuracy = 0 indicates none of predictions is correct, Accuracy = 1 indicates all predictions
are correct, and random classification can lead to Accuracy = 0.5. Indeed, a classifier is effective
when Accuracy > 0.5.
Furthermore, precision determines the proportion of positive identifications was correct, and
recall determines the proportion of actual positive was identified correctly:

Precision = l, Recall = l
TP + FP TP +FN

Then F1, score is taken as the harmonic mean of precision and recall quantifying the classifica-
tion accuracy:

Accuracy = (A2)

(A3)

2 2TP
Fl = — — = . (A.4)
Precision™ + Recall 2TP + FP 4 FN
The range of F1 is between 0 and 1, where 1 indicates the best performance and 0 indicates the

worst performance.
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APPENDIX B. NEURAL ODES IMPLEMENTATION AND HYPERPARAMETER
SELECTION

We used the adaptive checkpoint adjoint method along with their package to implement neural
ODEs (Zhuang et al., 2020). The neural network in neural ODEs was implemented by PyTorch
(Paszke et al., 2017). DOPRIS (Dormand and Prince, 1980), a Runge-Kutta method, was used
as the ODEs solver to perform forward propagation for neural ODEs. The adjoint method pro-
posed by neural ODEs is a memory-efficient method to update gradients, while it requires longer
computational time. Due to the small size of neural network architecture which requires small
memory, we used the naive auto-differentiation in PyTorch for backward propagation to update
gradients during training. The neural network is fully connected, and its architecture is given in
Eq. (6).

To find the appropriate hyperparameters, we performed a grid search to find the optimal
hyperparameters. For simulating toggle-switch model, we searched for hyperparameters for the
case inferring both regulation of gene A and gene B, and the identical hyperparameters were
used to the other two models in inferring regulation of either gene A or gene B (as shown in
Fig. 2). For the single-cell qPCR dataset, we searched hyperparameters independently for both
autonomous and non-autonomous systems. In each round of search, a set of hyperparameters
was explored in ranges: number hidden layers ranged from 1 to 7, dimension of hidden layers
ranged from 22 to 2°, learning rate ranged from 1073 to 3 x 1072, and batch size ranged from
22 to 27. Model with each set of hyperparameters can generate a plot for the training results
[like Figs. 4(a) and 4(b)]. We manually select the best-fit curves for the optimal hyperparame-
ters. Then, n = 100 independent repeats with different random seeds were performed using the
optimal hyperparameters to investigate the statistics of performance.

Particularly, for the single-cell qPCR, there are only two time-series training datasets and
batch size is then taken as 2. Other hyperparameters used in the model are listed in Table B1.

TABLE B1: Hyperparameters of NeuralGene

. . | Single-cell qPCR data| Single-cell qPCR data
Simulation
(autonomous system) |(non-autonomous system)
Number of hidden layers 1 3 7
Dimension of hidden layers 16 32 64
Learning rate 0.001 0.007 0.001
Batch size 32 2 2
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