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Abstract. The transport of particles in cells is influenced by the properties of intracellular
networks they traverse while searching for localized target regions or reaction partners. Moreover,
given the rapid turnover in many intracellular structures, it is crucial to understand how temporal
changes in the network structure affect diffusive transport. In this work, we use network theory
to characterize complex intracellular biological environments across scales. We develop an efficient
computational method to compute the mean first passage times for simulating a particle diffusing
along two-dimensional planar networks extracted from fluorescence microscopy imaging. We first
benchmark this methodology in the context of synthetic networks, and subsequently apply it to
live-cell data from endoplasmic reticulum tubular networks.

Key words. intracellular transport, mean-first passage time, Sherman--Morrison formula, dy-
namic networks, endoplasmic reticulum
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1. Introduction. Previous experimental and theoretical studies reveal how the
diffusive exploration of objects relates to the morphological properties of intracellular
environments [19, 9, 2, 7]. One particularly important category of intracellular diffu-
sive transport emerges on network-like structures used to describe the morphologies
of subcellular organelles [17]. Lipids and proteins are synthesized in the endoplasmic
reticulum (ER), and their rate and direction of transport from their site of synthesis
to other points in the ER network, where they can be delivered to other organelles,
remain poorly understood. Objects traversing along the edges of a network exhibit a
broad range of transport behaviors dependent on the properties of the network. For
example, previous work has demonstrated the importance of the edge-length distri-
bution in overall search times on networks through analyzing the mean first passage
time (MFPT) on planar networks [4]. Motivated by the rapid turnover observed in
subcellular structures, in this work we develop an efficient computational method to
compute how changes in network morphology affect the diffusive MFPT.

Changes in the structure of confined networks have been shown to have a sig-
nificant impact on transport in a broad variety of biological problems, including cy-
toskeletal intracellular transport [1] and cargo trafficking along the tubules of the ER
[11]. In this work, we use a coarse-grained model of random walks on networks to
simulate the diffusion on networks. By developing an efficient approach based on the
Sherman--Morrison (SM) formula, we are able to calculate how changes in the network
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FAST SOLVER FOR DIFFUSION ON DYNAMIC NETWORKS S477

affect transport. In particular, we focus on ER networks obtained from experiments
and apply the method to show how the properties of the network influence the MFPT
of particles diffusing along ER tubules. We find that changes in the ER network
structure within dense and highly connected regions (e.g., in a neighborhood around
the nucleus) tend to speed up the diffusive search of a particle. On the other hand,
the loss of tubules that bridge together different components of the network tends to
slow down the search process.

An open-source repository with implementations of the methods described here
is available at https://github.com/Lanlach1/SIAM-Diffusive-Transport-Time-Solver.

2. Mathematical model.

2.1. Transition probabilities along edges of a static network. The net-
works that we consider are a system of nodes connected by edges with each node
having Ni (Ni \geq 1) connections and particles searching along a network via transiting
from nodes. Assuming particles undergo an unbiased random walk along the edges of
the network, the transition probabilities satisfy [8, 4, 12]

Pi,j =
1

lj

1\sum Ni

j=1
1
lj

,(2.1)

where Pi,j , j = 1,2, . . . ,Ni, denote the transition probabilities from Xi to its jth
connected node, Xj , and lj is the length of the edge between Xi and Xj .

Similarly, we define Qi as the average time spent at node i prior to stepping to
one of its neighbors, which from [4] satisfies

Qi =
1

2D

\sum Ni

j=1 lj\sum Ni

j=1 l
 - 1
j

,(2.2)

where D is the diffusion coefficient. In this work, we take D = 1 µm2/s throughout,
which gives an order of magnitude estimate for typical proteins diffusing in cells [10].

We define the stationary distribution z \in Rn from the transition matrix P such
that zTP = zT . As defined, P is a row stochastic matrix; therefore we may compute
z by solving for the left eigenvector of P associated with eigenvalue 1. Each node i
will have steady state probability zi.

2.2. Mean first passage time. We quantify the number of nodes visited on
average during diffusion between any two nodes across the network using the MFPT,
which can be computed from the transition matrix P with entries given by (2.1). It
follows from the Markov property of the random walk that the transition probability
of reaching node Xi from Xj in two steps is given by

P 2
i,j =

\sum 
k

PikPkj = P [Transition to Xi| Current Node =Xj and2 steps] .

We may further generalize this property to obtain the transition probability of reach-
ing node i from node j in three steps:

P 3
i,j =

\sum 
h

Pih

\sum 
k

PhkPkj = P [Transition toXi | Current Node =Xj and3 steps] .

It follows by induction that

PN
i,j = P[Transition toXj | Current Node =Xi andN steps].(2.3)
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S478 ELAM, QUI\~NONES-FR\'IAS, ZHANG, RODAL, AND FAI

Equation (2.3) gives us the general formula for the probability of a particle to
travel diffusively from node i to node j in N steps.

To compute the expected value of the average number of steps taken during
diffusion between nodes i and j using (2.3), we must specify a new transition matrix
in which there is zero probability of leaving the target node once the particle has
arrived. We denote by Pr \in R(n - 1)\times (n - 1) the new transition matrix obtained by
removing the rth row and column of the original matrix P , where r is our target
node. Pr is constructed as follows:

(2.4) Pr =

\biggl( 
P1:r - 1,1:r - 1 Pr+1:n,1:r - 1

P1:r - 1,r+1:n Pr+1:n,r+1:n

\biggr) 
.

From here we may generate an expected value of the amount of time spent on node
j given initial condition i and target node r:\Biggl[ \infty \sum 

k=0

P k
r

\Biggr] 
i,j

= [I + Pr + Pr
2 + Pr

3 . . .]ij = [(I  - Pr)
 - 1]ij

=E[\# of visits to j | Initial Node = i] =: (Nr)i,j ,

(2.5)

where the matrix Nr denotes the fundamental matrix for target condition r. The
(i, j)th element of Nr represents the average number of steps a particle will take to
node j while diffusing from i to r. Note that the formula for Nr requires a matrix
inversion, for which we will consider efficient computational strategies later on.

The MFPT is then obtained by summing over row i of Nr to find the average
amount of time spent diffusing over the entire network given initial condition i and
target condition r:

Mir := (Nr \cdot Q)i =
\sum 
j

E[\# of visits to j | Initial Node = i] \cdot E[time at j],(2.6)

which yields the MFPT matrix M \in Rn\times n. The (i, r)th entry of M gives the MFPT
to go from node i to node r.

2.3. Mean transit time. The MFPT matrix may be used to assess the average
time required to reach a given node. To compute the mean transit time, or global
mean first passage time (GMFPT), to a node, we average the MFPT to that node
with equal weight over all initial conditions, following [20, 21, 15, 4]. In particular,
to compute the mean transit time to node r, we set it as the target condition as
described above. Letting \widehat Mi denote the ith row of the MFPT matrix, the GMFPT
to node r is given by

Cr :=
1

n

\sum 
i

E[travel time to r | Initial Node = i] =
1

n
\cdot \widehat MT

r \cdot 1.(2.7)

To provide intuition for this formula, note that the GMFPT is simply the average
of the MFPT of all possible initial conditions to arrive at node r. The Cr values at
different nodes give a measure of their relative integration within the network, i.e.,
smaller values of Cr correspond to nodes that are easily reached from the rest of the
network, whereas larger values of Cr correspond to nodes that take longer times to
reach.
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FAST SOLVER FOR DIFFUSION ON DYNAMIC NETWORKS S479

2.4. Edge importance. In addition to the mean transit time, we may use the
MFPT to evaluate the importance of a given connection between two nodes. To
obtain a quantity that characterizes the overall network, we average Cr over all nodes
r. This quantity was introduced previously in [8], where it is referred to as the target
averaged global mean first passage time (TAGMFPT). In the notation of this article,
the TAGMFPT is defined as

TAGMFPT :=
1

n

\sum 
r

Cr =
1

n2

\sum 
r

\widehat MT

r \cdot 1.(2.8)

We may recompute the TAGMFPT for the same network but after removing the
connection between nodes i and j. We shall call this new value TAGMFPT \star 

i,j , as it is
derived using N \star 

r described in (2.13), where N \star 
r is the given fundamental matrix for

target condition r for our network with one connection removed. We can look at the
difference between these two values to assess the importance of the connection should
it be removed from the network:

Ei,j := TAGMFPT \star 
i,j  - TAGMFPT,(2.9)

where Ei,j is the importance of the connection between nodes i and j. For intuition,
if Ei,j > 0 we can assume that removing the i, jth edge makes the average amount of
steps taken for any path increase.

2.5. Synthetic networks. To benchmark the method, we first applied it to
various synthetic networks. We created simple networks using Delaunay triangulation
of a random distribution of points within a rectangular domain, and then took the
Voronoi network (the dual graph). These networks bear some similarities to biological
ER networks in that the majority of junctions within the network have degree three.
Moreover, the large porous areas created by rings of junctions are reminiscent of the
ER morphology. These properties make them a useful benchmark for our purposes.
In Figure 1 we show an example of these synthetic networks.

We begin by testing our method on networks with a fixed number of connections
per node to quantify how the degree of a given junction affects MFPTs across the
network. The Voronoi network as shown in Figure 1(A) is very close to having all
degree three nodes, except for nodes on the boundary that may have fewer edges.

As a benchmark comparison similar to that reported in [8, 4], we generated an
augmented, nonsymmetric honeycomb structured network through randomly remov-
ing connections from its corresponding symmetric form (see Figure 1(B)). These hon-
eycomb networks have a propensity to form long and isolated branches, which are
significant when testing nodes for GMFPT. The honeycomb networks are created by
first generating the centroid of each hexagon within the network. The middle row of
hexagons is always made odd to preserve symmetry of the network.

To analyze the list of synthetic networks described above, we make use of the
MPFT described in subsection 2.2. For the Voronoi network (Figure 1(A)), we quan-
tified its GMFPT using (2.7) and found that the GMFPT of a given node is most
dependent on centrality (distance from the center of network). This is due to the
fact that these networks are mainly composed of degree three nodes and do not form
isolated branches extending from the main network.

The augmented honeycomb network (Figure 1(B)) has a feature that distinguishes
it from the other synthetic networks. For this particular type of network, all features
are the same as the original honeycomb except edges were removed with a probability
of 0.2. This means that a node within the interior of the network has a 0.2 probability

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Fig. 1. GMFPT and edge importance of synthetic networks. (A) and (B) The GMFPT for the
Voronoi network (A) and the augmented honeycomb network (B). (C) and (D) Edge importance for
the Voronoi network (C) and the augmented honeycomb network (D). Critical edges in panels (C)
and (D) are labeled in black. The length scale for each network is chosen so that the mean edge
length is 1 µm. Here and throughout the manuscript, times are given in units of seconds.

to have two connections and a 0.22 = 0.04 probability to have only one connection.
This creates large isolated branches within the network, which heavily influence the
GMFPT per node (see Figure 1(B)), while maintaining overall network properties
such as the TAGMFPT.

To further investigate the importance of an edge, we repeat the centrality analysis.
For the Voronoi network we find that the importance of an edge is mainly influenced
by two traits: (1) how central the connection is, and (2) whether removing that
connection will increase the minimum path between any two nodes greatly (see Figure
1(C)).

The augmented honeycomb network is unique from the synthetic Voronoi network.
This is because there exist connections within the network such that if they were to be
removed, two disconnected networks would be created. We shall call these connections
critical edges. We can check for these critical edges by solving for the condition (2.16)
as described in subsection 2.6. In Figure 1(D) we label these edges in black (color
online).

2.6. The Sherman--Morrison formula. To study the effect of temporal
changes in the network, such as removal of an edge, in practice one needs an effi-
cient method to compute the MFPT matrix (2.6). The SM formula is a well-known
formula for the inverse of a matrix with a rank 1 update. Using this formula we may ef-
ficiently invert perturbations of the MFPT matrix, e.g., for swapped target conditions.
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FAST SOLVER FOR DIFFUSION ON DYNAMIC NETWORKS S481

In particular, given vectors u, v \in Rn and an invertible matrix A \in Rn\times n with
(A+ uvT ) - 1 invertible, the SM formula yields the inverse of A+ uvT as

\bigl( 
A+ uvT

\bigr)  - 1
=A - 1  - A - 1uvTA - 1

1 + vTA - 1u
.(2.10)

Note the assumption that (A+ uvT ) - 1 is invertible, or equivalently 1 + vTA - 1u \not = 0
upon taking the determinant. We will discuss the importance of this criterion later
on.

We denote by Nr the fundamental matrix of our original network and N \star 
r the

fundamental matrix of a network with one edge removed. Using (2.5) we can make a
series of rank 1 updates to Pr to create P  \star 

r , and then using the vectors of the rank 1
updates, we can apply the SM formula to compute the same rank 1 updates on the
inversion Nr to create N \star 

r = (I  - P  \star 
r )

 - 1. For a simple change like an edge removal,
our transition matrices for each network, Pr and P  \star 

r , are very similar. If an edge was
removed between nodes i and j, then the difference between Pr and P  \star 

t would only
be in the ith and jth rows and columns. We let ek \in Rn - 1 be the kth standard basis
vector and pi, p

 \star 
i \in Rn - 1 be the ith column of Pr and P  \star 

r , respectively. Similarly,
we denote by bi, b

 \star 
i \in Rn - 1 the ith rows of Pr and P  \star 

r , respectively. Given that the
only difference between Pr and P  \star 

r is the rows and columns associated with the nodes
connected to the edge we wish to remove, we can easily equate the two. This is
accomplished by swapping out the necessary columns and rows:

P  \star 
r = Pr + (p \star i  - pi)e

T
i + (p \star j  - pj)e

T
j + ei(b

 \star 
i  - bi)

T + ej(b
 \star 
j  - bj)

T .(2.11)

We subsequently introduce two vectors \rho i = p \star i  - pi and \beta i = b \star i  - bi to rewrite (2.11)
in a simpler form:

P  \star 
t = Pt + \rho ie

T
i + \rho je

T
j + ei\beta 

T
i + ej\beta 

T
j .(2.12)

We note that (2.12) is now a series of rank 1 updates on Pr and the fundamental
matrix N \star 

r may be calculated by

N \star 
r =

\bigl( 
I  - Pr  - \rho ie

T
i  - \rho je

T
j  - ei\beta 

T
i  - ej\beta 

T
j

\bigr)  - 1
.(2.13)

We can then apply the SM formula to extract N \star 
r from Nr in a computationally

efficient manner, using the vectors provided. From here we may easily compute M \star ,
which is our MFPT matrix for the same network except with our desired edge removal.

When dealing with inverting a matrix we must also check that the matrix is indeed
invertible. We must check that the determinant of our new matrix satisfies

det
\bigl( 
A+ uvT

\bigr) 
=
\bigl( 
1 + vTA - 1u

\bigr) 
det(A).(2.14)

Given that N \star 
r is a series of rank 1 updates on Nr as described in (2.13), we may

compute the determinant:

det (I  - P  \star 
r ) =

\bigl( 
1+eTi Nr

1\rho i
\bigr) \bigl( 

1+eTj Nr
2\rho j

\bigr) \bigl( 
1 + \beta T

i Nr
3ei

\bigr) \bigl( 
1 + \beta T

j Nr
 \star ej

\bigr) 
det(I  - Pr).

(2.15)

Note that Nr
1,Nr

2,Nr
3,Nr

 \star define the fundamental matrix after each rank 1 update
to I  - Pr. We assume that Nr is invertible, which is equivalent to det(I  - Pr) \not = 0,
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S482 ELAM, QUI\~NONES-FR\'IAS, ZHANG, RODAL, AND FAI

meaning that the original network is irreducible. This simplifies the condition of
checking if the new N \star 

r is invertible as we only need to show that\bigl( 
1 + eTi Nr

1\rho i
\bigr) \bigl( 

1 + eTj Nr
2\rho j

\bigr) \bigl( 
1 + \beta T

i Nr
3ei

\bigr) \bigl( 
1 + \beta T

j Nr
 \star ej

\bigr) 
\not = 0.(2.16)

Given that we only need to check the rank 1 updates individually for invertibility, we
may simplify (2.16) by replacing Nr

1,Nr
2,Nr

3,Nr
 \star with Nr:\bigl( 

1 + eTi Nr\rho i
\bigr) \bigl( 

1 + eTj Nr\rho j
\bigr) \bigl( 

1 + \beta T
i Nrei

\bigr) \bigl( 
1 + \beta T

j Nrej
\bigr) 
\not = 0.(2.17)

We note that (2.17) does not hold in general. If the criterion (2.17) is not satisfied, we
deduce that the connection removed to create N \star 

r results in a reducible network with
two disconnected subnetworks. However, there is one exception: if a connection is
removed that only separates one node from the rest of the network, then the deduction
is false because in the case of a disconnected network (2.17) does not hold. However,
we may account for this special case by first testing if removing a given edge results
in a degree zero node. This is computationally inexpensive, and the combination of
checking if (2.17) is true and that no nodes are degree zero is sufficient to conclude
that the new network is irreducible.

The SM formula may also be used to efficiently compute all possible target con-
ditions of the fundamental matrix. This is explained in detail in Appendix A.

Using these two applications of the SM formula, we now only need to directly
invert a single matrix, and from this single matrix inverse we can compute any target
condition or simple network change without having to directly invert a new matrix.
To demonstrate the efficiency of this method, we compared the cost of computing
the MFPT matrix using both the original and optimized methods on networks of
increasing size. In Figure 2(A), we show that the computation time increases signif-
icantly using the original method as the number of nodes is increased for both the
Voronoi and the augmented honeycomb networks, whereas the computation time re-
mains small using the optimized method. To further quantify the difference between
the two methods, we calculated the speed-up factor for each network complexity. Here

A B

Fig. 2. Computation time and efficiency comparison of the original method and the optimized
method using the SM formula. (A) Computation time of both methods for the Voronoi network (blue)
and the augmented honeycomb network (red) with varying complexity. The solid lines with triangle
markers correspond to the original method without using the SM formula. The solid lines with circle
markers correspond to the optimized method using the SM formula. (B) The corresponding speed-up
factor for the Voronoi network (blue circle) and the augmented honeycomb network (red triangle)
calculated using data shown in (A).
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FAST SOLVER FOR DIFFUSION ON DYNAMIC NETWORKS S483

the speed-up factor is defined to be the ratio of the slower to the faster computation
time. For both network types, we see a significant increase in the computation speed
using the optimized method (Figure 2(B)) as the network becomes more complex.

3. Application to ER networks. To explore the importance of network prop-
erties in dynamic biological organelles, we applied MFPT analysis to a series of ER
networks. These networks expand over an entire cell and consist of hundreds of nodes
and thousands of connections. Instead of attempting to accurately model the network
remodeling dynamics, here we extract the network dynamics directly from data and
compare the observed dynamics to an extremely simple version of remodeling in which
only single edge deletion is allowed. Recall that the difference in diffusive transport
time upon edge deletion is precisely the quantity measured by the edge importance
introduced previously.

We used two separate sets of data obtained from experiments on D. melanogaster.
First, we examined a series of experimental ER images from an S2 cell obtained as
described in subsection B.1. We demonstrate an example of the ER network extracted
from a snapshot (Figure 3(A)). Figure 3(B) shows that the S2 cell has a complicated
ER network consisting of different types of regions. The region around the center
of the ER network is dense with nodes highly connected to each other, whereas the
region close to the boundary of the network is relatively sparse. As a result, nodes in
the inner region have a smaller impact on the MFPT compared to those in the outer
region (Figure 3(C)). We observe a similar trend in changes in edges in the inner
region. That is, removing edges in the highly connected region would have a minimal
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Fig. 3. Diffusive transport analysis of an S2 cell. (A) The original cell image and the corre-
sponding (B) extracted network, (C) GMFPT, and (D) edge importance. A 5 micron scale bar is
plotted at the right bottom corner in panel (A). The critical edges in panel (D) are shown in black
(see also Appendix C).
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effect on the calculated MFPT. However, in contrast to the nodes, edges with the
highest importance correspond to those that bridge the gap between regions (see the
left bottom corner in Figure 3(D)).

To further quantify the structural properties of the S2 cell ER network, we per-
formed a centrality analysis, which relates the distance of a node or an edge from
the center of the network to its impact on the MFPT. In comparing centrality of
a node in the S2 cell ER network to the synthetic networks, we found that the S2
cell ER network (Figure 4(E)) is most similar to the Voronoi network (Figure 4(A)),
which is designed to maximize the degree of each node. It is also similar due to the
large clusters of porous areas across each network. For all networks there is a positive
relationship between Cr, GMFPT, and the distance from the center of the network.
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Fig. 4. Centrality analysis of individual node or edge. (A), (C), (E) Centrality of individual
node compared to its GMFPT Cr for the Voronoi network with 188 nodes (A), the augmented
honeycomb network with 92 nodes (C), and an S2 cell (E). (B), (D), (F) Centrality of individual
edge compared to its relative importance for the Voronoi network with 188 nodes (B), the augmented
honeycomb network with 92 nodes (D), and an S2 cell (F).
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In examining the structure of each network, we see that there are fewer edges con-
nected to nodes on the periphery of the network (i.e., located far from the center of
the network) than nodes close to the center of the network. As a result, it takes a
longer time to reach nodes closer to the boundary.

Repeating the centrality analysis for individual edges for all three types of net-
works (Figures 4(B), (D), and (F)), we find that the S2 cell ER network demonstrates a
unique relationship between edge importance and distance from center (Figure 4(F)).
In contrast to the Voronoi and the augmented honeycomb networks, we see that the
edge importance for the S2 cell ER network is more heterogeneous, in that edges
closer to the center have a lower importance on average. We observe that the region
around the center/nucleus of the ER network is a densely connected area with short
edges; therefore, we hypothesize that removing one edge would not have a significant
effect in the transport process of a particle. As the distance from the center of the
network is increased, we start to see an increasing number of edges that have high
importance. We note that most of these edges serve as bridges that connect the dense
central region of the network to its sparse boundary region. Removing such an edge
could completely separate the ER network into two disconnected pieces.

The second set of ER network data we examined is taken from a D. melanogaster
neuron at the neuromuscular junction (NMJ), with the experimental protocol de-
scribed in subsection B.2. We apply the same routine to the NMJ ER network. We
use the NMJ image of Figure 5(A) and show the corresponding extracted network
in Figure 5(B). The overall size of the NMJ ER network is significantly smaller and
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Fig. 5. Diffusive transport analysis of the NMJ. (A) Original microscopy image. (B) The
corresponding extracted network. (C) GMFPT. (D) Edge importance. A 2 micron scale bar is
plotted at the right bottom corner in panel (A). In panel (D) the critical edges are plotted in black
(see also Appendix C).
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Fig. 6. The TAGMFPT of the S2 cell as a function of time, with 95\% confidence intervals for
each data point calculated by averaging over total number of nodes.

less dense than the S2 networks. Analyzing the GMFPT we find a similar trend in
relation to the distance to the center as for the S2 cell ER network. We see from
Figure 5(C) that nodes that are close to the center have smaller GMFPTs compared
to those close to the boundary.

To investigate the effect of changes over time on diffusive transport in the ER
network, we extracted the ER network from timelapse data for both the S2 cell and
NMJ (Video S1.mp4 [local/web 3.47MB] and Video S2.mp4 [local/web 1.45MB], re-
spectively). We repeated the calculations of subsection 2.5 frame-by-frame to compute
the changes over time in TAGMFPT for the S2 cell (Figure 6).

In addition, we analyze the changes in the edge importance over time computed
for the NMJ by comparing the 1st, 10th, 50th, and 100th frames of Video S2.mp4
(Figure 7). We see that most edges, except the boundary edges, have a low importance
value initially (Figures 7(A) and (B)). In this particular example, as time increases
the ER network becomes more fragmented and edge importance increases as indicated
by the additional black edges that appear in Figures 7(C) and (D). This is due to the
fact that removing any of those edges would disconnect one or more nodes from the
rest of the network.

4. Discussion. In this work we have developed a coarse-grained model via ran-
dom walks along with an optimized method to simulate the diffusive transport on
networks that are evolving over time. We describe how the MFPT may be used to
quantify the influence of the changing network morphologies on diffusive transport.
Whereas on a static network our approach in calculating the MFPT is similar to
several past studies of transport on spatial networks [4, 22], we describe an efficient
computational method that allows us to study how the diffusive transport is affected
by the evolving network structure.

After benchmarking our method using various synthetic networks, we apply it to
ER network data from S2 cells and the NMJ in D. melanogaster. We find that the
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A B

DC

Fig. 7. Edge importance over time corresponding to different snapshots from Video S2.mp4
[local/web 1.45MB] of the NMJ. (A) 1st frame, (B) 10th frame, (C) 50th frame, and (D) 100th
frame. In all panels the critical edges are shown in black.

GMFPT appears to demonstrate a similar trend in both cases: (1) nodes that are
closer to the center tend to be more connected and therefore have a lower GMFPT;
(2) nodes that are closer to the boundary tend to have a higher GMFPT as they are
much harder to reach by diffusion. The edge importance reveals more information
about the effect of the overall network properties of the ER on diffusion. The S2 cell
network has two regions with different node densities that are bridged by relatively
few edges. As a result, these edges have a higher edge importance as deleting one will
separate the whole network into disconnected components with some inaccessible to
the particle.

In reviewing the time evolution of the centrality of the NMJ networks, we re-
port an interesting relation between edges with negative edge importance and their
locations. Figure 7 shows that these edges tend to form small loops and are con-
nected to critical edges with high edge importance. The observation of negative edge
importance is an instance of Braess's paradox [3], the counterintuitive finding that
decreasing network capacity can under certain conditions lead to faster average tran-
sit times. Braess's paradox has been observed to occur in road networks [18] as well
as physics systems such as electronic circuits [5], and given that similar modeling
assumptions (e.g., Kirchoff's laws) are used in the present study, it is not altogether
surprising that it may occur in the present context as well. However, studying the
prevalence with which Braess's paradox occurs in biological networks and analyzing
its consequences for transport efficiency would be an interesting avenue for further
study.
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Whereas the GMFPTs discussed above are obtained by averaging with equal
weight over the MFPT, one could alternatively average with respect to the stationary
distribution (Figure 8). This yields the expected MFPT for initial conditions chosen
according to the stationary distribution, i.e., the steady state distribution for particles
diffusing over the network (Figure 9). As shown in Figure 10, the qualitative features
of the edge importance are not significantly changed by this choice of weighting.

We remark that although here we apply the edge importance to biological net-
works that change over time, the method is not inherently tied to dynamics and may
be applied to other contexts as well, e.g., to identify critical edges within transport
networks. This is because the principle of using the SM formula to efficiently compute
the edge importance by removing one edge at a time applies more generally and is not
limited to time-dependent networks. In addition, because the edge importance is com-
puted independently for each edge, the algorithm may be parallelized in a relatively
straightforward manner to further accelerate the computation.

There are a number of different directions that this research could take, including
introducing drift to the transport process. Recent experiments have revealed that
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Fig. 8. Stationary distribution of the MFPT for each node in ER networks. (A) 1st frame
from Video S1.mp4 [local/web 3.47MB] of the S2 cell. (B) 1st frame from Video S2.mp4 [local/web
1.45MB] of the NMJ.
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Fig. 9. GMFPT of ER networks obtained using a nonuniform stationary distribution weight-
ing. (A) 1st frame from Video S1.mp4 [local/web 3.47MB] of the S2 cell. (B) 1st frame from
Video S2.mp4 [local/web 1.45MB] of the NMJ. Each node is weighted by its corresponding station-
ary distribution shown in Figure 8.
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A

C D

B

Fig. 10. Comparison of edge importance of ER networks using different weightings. (A) 1st
frame from Video S1.mp4 [local/web 3.47MB] of the S2 cell using the uniform weighting. (B)
1st frame from Video S1.mp4 using the nonuniform stationary weighting. (C) 1st frame from
Video S2.mp4 [local/web 1.45MB] of the NMJ using the uniform weighting. (D) 1st frame from
Video S2.mp4 using the nonuniform stationary weighting. The critical edges are plotted in black.

transport of particles on ER networks is affected by microtubule dynamics and is
not purely diffusive [14]. Generalizing the methods presented here to nondiffusive
transport would be a promising avenue for future research.

Appendix A. Sherman--Morrison formula. The SM formula may be used
to compute the fundamental matrices for different target conditions. That is to say,
we can go from Nr to Ni \forall i \in \{ 1,2,3, . . . , n\} . If we choose r = n we can use Nr as
our base matrix, upon which we can switch to any new target through a series of the
SM formula applications. This process is slightly more complicated than the method
for computing N \star 

r because Pr \in R(n - 1)\times (n - 1) requires an extra row and column in
order to swap in the probabilities of the new target condition. We define \widetilde Pr \in Rn\times n

to be identical to the original P except the rth row and column will be all zeros, but
(\widetilde Pr)r,r = 1. For r= n we have

(A.1) \widetilde Pn =

\biggl( 
Pn \bfzero 
\bfzero 1

\biggr) 
.

For r \not = n, the rows and columns removed will split the Pr matrix into four block
matrices along the rth row and column as follows:

(A.2) \widetilde Pr =

\left(  PUL
r \bfzero PUR

r

\bfzero 1 \bfzero 
PLL
r \bfzero PLR

r

\right)  ,
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where PUL
r , PLR

r \in R(r - 1)\times (r - 1) and PUR
r , PLL

r \in R(n - r)\times (n - r). We let Pr \in 
R(n - 1)\times (n - 1) denote the original probability matrix without the rth row and column
and is defined as

(A.3) Pr =

\biggl( 
PUL
r PUR

r

PLL
r PLR

r

\biggr) 
.

Having defined the \widetilde Pr matrices, we may form rank 1 updates of \widetilde Pn to obtain\widetilde Pr \forall r \in \{ 1,2,3 . . . , n\} . We define vectors ui and vi to be the ith row and column of
our original P except for the ith element: (ui)i, (vi)i =

1
2 (1 - Pi,i); this is to account

for the 1 in the zero rows. The updates go as follows:

\widetilde Pr = \widetilde Pn  - eru
T
r  - vre

T
r + enu

T
n + vne

T
n .(A.4)

From here we may define \widetilde Nr, which is the original fundamental matrix except split
across the same row and vector as \widetilde Pr:

(A.5) \widetilde Nr =

\left(  NUL
r \bfzero NUR

r

\bfzero 1 \bfzero 
NLL

r \bfzero NLR
r

\right)  =

\left(  (I  - Pr)
 - 1
UL \bfzero (I  - Pr)

 - 1
UR

\bfzero 1 \bfzero 

(I  - Pr)
 - 1
LL \bfzero (I  - Pr)

 - 1
LR

\right)  ,

and from this matrix one may derive Nr through the same process used to obtain Pr

from \widetilde Pr.
We may now compute \widetilde Nr as a series of rank 1 updates on \widetilde Pn given by the vectors

provided above:

\widetilde Nr = (I  - (\widetilde Pn  - eru
T
r  - vre

T
r + enu

T
n + vne

T
n ))

 - 1.(A.6)

Using \widetilde Nn = (I - \widetilde Pn)
 - 1 as a base inversion, we may now apply the four rank 1 updates

through the SM formula to compute \widetilde Nr, and by removing the rth row and column we
get the matrix Nr, from which we can derive the rth row of our matrix M . Iterating
over all r\leq n we can derive the entire MFPT matrix.

It is important to note that the order of the rank 1 updates matters. If one first
adds enu

T
n +vne

T
n before subtracting eru

T
r +vre

T
r , it will create a noninvertible matrix

halfway through the process and not be able to generate \widetilde Nr. The intuition behind
this is that you are removing the old target condition before adding the new one, and
thus with no target condition you cannot have MFPTs, resulting in a noninvertible
matrix.

Appendix B. Experimental materials and methods.

B.1. S2 cell imaging. To generate pQUAST-BiP sfGFP HDEL, the sequence
for BiP sfGFP HDEL was obtained by Dr. James McNew at Rice University and was
cloned into pQUAST-attB (Addgene\# 104880) by Vector Builder (Chicago, Illinois).

S2 cells were maintained at 28 degree Celsius in Schneider's Drosophila Medium
(Thermo Fisher) with 10\% heat inactivated fetal bovine serum and 50 units of
penicillin-streptomycin per mL. Cells were transfected using Effectene (Qiagen, Hilden,
Germany) following the manufacturer's instructions, with pAC-7-QFBDAD
(Addgene\# 46096) to drive expression of QUAS-BiP sfGFP HDEL for 24 hours.
Cells were transferred to coverglass chambers (Thermo Scientific, Waltham, Massa-
chusetts), coated with 0.5 mg/ml Concanavalin A and left to settle for 1 hour at room
temperature. Cells were then imaged at room temperature with a 63X (NA1.4) oil
immersion objective, using an Airyscan LSM 880 microscope in superresolution mode
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and Zen Black software. To record ER dynamics of Drosophila S2 cells, 100 frames of
a single slice were obtained at a frame rate of 0.65 seconds. For analysis, images were
corrected for photobleaching using the histogram matching method with the imaging
software FIJI [13].

B.2. Drosophila larval neuromuscular junction. Drosophila melanogaster
were cultured on standard medium at 25 degrees Celsius. To label neuronal ER,
Vglut-Gal4 (Bloomington Drosophila Stock Center (BDSC) \#24635) flies were crossed
with UAS BiP sfGFP HDEL (BDSC \#64748) flies. 3rd instar wandering larvae were
dissected in Ca 2+-free HL3.1 [6] and axons were severed from the central nervous
system. Larvae were dissected in glass slides with Press To Seal Silicone Isolators
(Grace Bio-labs; CQS-13R-2.0) filled at their centers with Krayden Dow Sylgard 184
Silicone (Thermo Fisher Scientific). Small metal pins cut with nail clippers were used
to stretch the larvae and the pins were pressed into the cured Sylgard 184 Silicone.
Finally, a coverslip was placed on top of the dissected larvae and excess HL3.1 was
removed before imaging. Larvae were then imaged at room temperature with a 63X
(NA1.4) oil immersion objective, using an Airyscan LSM 880 microscope in superres-
olution mode and Zen Black software. To record ER dynamics of Drosophila nerve
terminals, imaging was performed by taking Z-stacks of 8 slices with 0.5 micron spac-
ing for 100 frames at a frame rate of 0.73 seconds. Next, images were corrected for
photobleaching and muscle contraction with FIJI using histogram matching and the
``StackReg"" plugin [16], respectively.

Finally, maximum projections of images were generated for analysis. The nodal
and edge information is extracted using MATLAB. To extract the network informa-
tion for individual frames, we begin by denoising the individual image through gridded
interpolation followed by a background subtraction and guided filtering. An aniso-
tropic diffusion filter and a threshold adjustment are applied to the denoised image to
enhance the tubular structure. To obtain the corresponding image skeleton, we make
use of the MATLAB functions bwmorph and bwconncomp to extract the maximum
connected component of the skeleton. The resulting binary skeleton is converted to a
graph to obtain the nodal and edge information for each image.

Appendix C. Critical edges of ER networks. Critical edges, defined as
the edges whose removal would disconnect the network into multiple components, are
shown for two representative ER networks in Figure 11.

A B

Fig. 11. Critical edges of ER networks. (A) 1st frame from Video S1.mp4 [local/web 3.47MB]
of the S2 cell. (B) 1st frame from Video S2.mp4 [local/web 1.45MB] of the NMJ. The critical edges
are shown in red.
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