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Norms on complex matrices induced by
random vectors II: extension of weakly
unitarily invariant norms

Angel Chavez, Stephan Ramon Garcia, and Jackson Hurley

Abstract. Weimprove and expand in two directions the theory of norms on complex matrices induced
by random vectors. We first provide a simple proof of the classification of weakly unitarily invariant
norms on the Hermitian matrices. We use this to extend the main theorem in Chévez, Garcia, and
Hurley (2023, Canadian Mathematical Bulletin 66, 808-826) from exponent d > 2to d > 1. Our proofs
are much simpler than the originals: they do not require Lewis’ framework for group invariance
in convex matrix analysis. This clarification puts the entire theory on simpler foundations while
extending its range of applicability.

1 Introduction

A norm |- | on M, the space of n x n complex matrices, is unitarily invariant if
|UAV | = ||A|| forall A € M,, and unitary U, V € M,,. A norm on R” which is invariant
under entrywise sign changes and permutations is a symmetric gauge function. A
theorem of von Neumann asserts that any unitarily invariant norm on M, is a
symmetric gauge function applied to the singular values [10, Theorem 7.4.7.2]. For
example, the Schatten norms are unitarily invariant and defined for d > 1 by

d d d\/d
14lls, = (|orl” + oo + -+ oul*) ",
in which 01 > 0, > --- > 0,, > 0 are the singular values of A € M,,.
A norm || - | on the R-vector space H,, of n x n complex Hermitian matrices is
weakly unitarily invariant if |U* AU| = |A| for all A € H,, and unitary U € M,,. For
example, the numerical radius

AXx,x
r(A) = sup (4xx)

xeCr\{0} (% X)
is a weakly unitarily invariant norm on H,, [12]. Lewis proved that any weakly unitarily
invariant norm on H, is a symmetric vector norm applied to the eigenvalues [11,
Section 8].
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Our first result is a short proof of Lewis’ theorem that avoids his theory of group
invariance in convex matrix analysis [11], the wonderful but complicated framework
that underpins [1, 7]. Our new approach uses more standard techniques, such as
Birkhoff’s theorem on doubly stochastic matrices [6].

Theorem 1.1 A norm | - | on H,, is weakly unitarily invariant if and only if there is
a symmetric norm f : R" — R such that |A| = f(A1, A2,...,Ay) for all A € H,. Here,
M 2 Ay > 2 A, are the eigenvalues of A.

The random-vector norms of the next theorem are weakly unitarily invariant norms
on H,, that extend to weakly unitarily invariant norms on M, (see Theorem 1.3).
They appeared in [7], and they generalize the complete homogeneous symmetric
polynomial norms of [1, Theorem 1]. The original proof of 7, Theorem 1.1(a)] requires
d > 2 and relies heavily on Lewis’ framework for group invariance in convex matrix
analysis [11]. However, Theorem 1.2 now follows directly from Theorem 1.1. Moreover,
Theorem 1.2 generalizes [7, Theorem 1.1(a)] to the case d > 1.

Theorem 1.2 Let d > 1 be real and X be an independent and identically distributed
(iid) random vector in R", that is, the entries of X = (X1, X2, . .., X,,) are nondegenerate
iid random variables. Then

E|(X, )| )‘/"

(L1) l|Allx,4 = ( rd+1)

is a weakly unitarily invariant norm on H,,. Here, T'(-) denotes the gamma function and
A= (A, As, ..., Ay,) denotes the vector of eigenvalues Ay > A, > -+ > A, of A. Moreover,
if the entries of X each have at least m moments, then for all A € H, the function f :
[1,m] - R defined by f(d) = |A|x,4 is continuous.

The simplified proof of Theorem 1.1 and the extension of Theorem 1.2 from d > 2 to
d > 1 permit the main results of [7], restated below as Theorem 1.3, to rest on simpler
foundations while enjoying a wider range of applicability. The many perspectives
offered in Theorem 1.3 explain the normalization in (1.1).

Theorem 1.3 Let X = (X1, X,,...,X,), in which X}, X, ..., X, € LY(Q,T,P) are
nondegenerate iid random variables. Let A = (A1, A,,...,4,) denote the vector of
eigenvalues \y > Ay > - > A, of A€ H,.

E|(X, A)|1
r'(d+1)

(2) If the X; admit a moment generating function M(t) = E[e*] = X732, E[Xk]%
and d > 2 is an even integet, then HAH;l(’d is the coefficient of t¢ in Mx(t) for
all A€ H,, in which M (t) = [1i2; M(A;t) is the moment generating function
for the random variable A = (X, A(A)) = L Xq + L, X, + -+ + A, X, In particular,
| Allx,q is a positive definite, homogeneous, symmetric polynomial in the eigenval-
ues of A.

1/d
(1) Forreald 21, |A|x,a = ( ) is a norm on H,, (now by Theorem 1.2).
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(3) Letd > 2 be an even integer. If the first d moments of X; exist, then

1 A
HAH?M = EBd(Hl trA, kptr A%, kg tr A%) = > finpn(2) for AeH,,

w—d Yn
in which:
(a) m=(m,m,...,n,) €N is a partition of d; that is, my >y > --- > 7, and
T + Ty + - + 7, = d [13, Section 1.7]; we denote this w + d;
() pa(X1 X253 Xn) = Py Py Py i1 Which pr(x1, X2, ..., X,) = XK + x5 +

-+ xX is a power-sum symmetric polynomial;

(¢) By is a complete Bell polynomial, defined by .2, Bg(xl,xz,...,xg)%

=exp(X75 xj%) [2, Section I1];

(d) The cumulants k1, Ka, ..., k4 are defined by the recursion y, = Zz;é (721)
Yekir—g forl < r < d, in which y, = E[ X[ ] is the rth moment of X, [5, Section
9]; and

(€) Kp=EKmbn K, and yp =11 (i)™ m;), in which m; = m;(w) is the
multiplicity of i in 7.

(4) For real d > 1, the function A(A) — ||Alx,4 is Schur convex; that is, it respects
majorization < (see (3.1)).

(5) Let d > 2 be an even integer. Define T, : M, - R by setting T,(Z) to be 1/({;;2)

times the sum over the ( d‘jz) possible locations to place d 2 adjoints * among the
d copies of Zin (tt ZZ---Z)(tx ZZ---Z)---(tr ZZ---Z). Then
N—— ~—— ~——

m 5 ,
1/d
kxlz(Z
(L2) 1Z]x.a = ( > ””())
m—d Y

is a norm on M, that restricts to the norm on H, above. In particular, | Z|% , is
a positive definite trace polynomial in Z and Z*.

The paper is structured as follows. Section 2 provides several examples afforded by
the theorems above. The proofs of Theorems 1.1 and 1.2 appear in Sections 3 and 4,
respectively. Section 5 concludes with some brief remarks.

2 Examples

The norm | - |x,4 defined in (1.1) is determined by its unit ball. This provides one way
to visualize the properties of random vector norms. We consider a few examples here
and refer the reader to [7, Section 2] for further examples and details.

2.1 Normal random variables

Suppose d > 2 is an even integer and X is a random vector whose entries are
independent normal random variables with mean y and variance o2. The example
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Figure I: (Left) Unit circles for | - |x,4 with d =1,2,4,20, in which X; and X, are standard
normal random variables. (Right) Unit circles for | - |x,10, in which X; and X, are normal
random variables with means ¢ = -2, -1, 0,1, 6 and variance dt=1

in [7, equation (2.12)] illustrates

zk(trA)zk gd—zkHAHg—zk

d
Al S H
” HX,d ,;) (Zk)' 2%"‘(% _ k)'

for AeH,,

in which | - | is the Frobenius norm. For d = 2, the extension to M,, guaranteed by
Theorem 1.3is | Z|% , = 202 tr(Z*Z) + > (tr Z*) (tr Z) [7, p. 816).

Now, let n=2. If y =0, the restrictions of |- |x.4 to R? (whose elements are
identified with diagonal matrices) reproduce multiples of the Euclidean norm. If
y # 0, then the unit circles for | - |x, 4 are approximately elliptical (see Figure 1).

2.2 Standard exponential random variables

If d > 2 is an even integer and X is a random vector whose entries are independent
standard exponential random variables, then | A| ;l(’ 4 equals the complete homogeneous
symmetric polynomial hy(A, Az, ..., An) = Y1k <o <kyn Ak Ak, Ak, in the eigenval-
ues Ay, Az, ..., A, [1]. For d = 4, the extension to M,, guaranteed by Theorem 1.3 is [1,
equation (9)]

|1Z|3 = i((trZ)2 tr(Z*)? +tr(Z*)* tr(Z2%) + 4tr(2) tr(Z2*) (27 Z)
+2tr(Z*2)* + (tr 2)* t0(Z2*%) + tr(Z22) tr(Z27*?) + 4tr(Z27) tr (27 Z%)
+4tr(Z) te(Z2*2Z) +2t0(Z7 2Z* Z) + Ate(Z272 27)).
The unit balls for these norms are illustrated in Figure 2 (left) .

2.3 Bernoulli random variables

A Bernoulli random variable is a discrete random variable X defined according to
P(X = k) = q*(1-q)"*fork = 0,1and 0 < q < 1. Suppose d is an even integer and X
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Figure 2: (Left) Unit circles for || - |x 4 with d =1,2,3, 4,20, in which X, and X; are standard
exponentials. (Right) Unit circles for | - ||x,4 with d = 2, 4, 20, in which X; and X, are Bernoulli

with g = 0.5.
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Figure 3: Unit circles for || - |x,4, in which X and X5 are Bernoulli with varying parameter q
and with d = 2 (left) and d = 10 (right) .

is a random vector whose entries are independental Bernoulli random variables with
parameter q.

Remark 2.1  An expression for |A||4 ; appears in [7, Section 2.7]. However, there is
a missing multinomial coefficient. The correct expression for || A4 _ is given by

1 d o
d I n
Ala-5 2 (0 Jamasa,
iy tigtetiy=d V0D P2 > tn
in which |I] is the number of nonzero iy; that is, I = {k: ix + 0}. We thank the
anonymous referee for pointing out the typo in [7, Section 2.7]. Figures 2 (right) and
3 illustrate the unit balls for these norms in a variety of cases.
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Figure 4: (Left) Unit circles for | - |x,2, in which X; and X; are independent Pareto random
variables with a = 2.1, 3,4,10 and x,, = 1. (Right) Unit circles for | - ||x,4, in which X; and X,
are independent Pareto random variables with &« = 5and p = 1,2, 4.

2.4 Pareto random variables

Suppose «,x,, > 0. A random variable X distributed according to the probability
density function

o

ax,, .
fX(t): W, 1ft2xm,
0, if t < x,,

is a Pareto random variable with parameters « and x,,. Suppose X is a random vector
whose entries are Pareto random variables. Then ||Alx 4 exists whenever a > d [7,
Section 2.10].

Suppose d =2 and X is a random vector whose entries are independent Pareto
random variables with & > 2 and x,,, = 1. If n = 2, then

oc( A2 2aMd, A2 )

Al:, == + +
4l 2la-2 (a-12 a-2

Figure 4 (left) illustrates the unit circles for | - | x,» with varying a. As & — oo, the unit

circles approach the parallel lines at A, = +1/2 — A;; that s, | tr A]?> = 2. Figure 4 (right)
depicts the unit circles for | - | x,4 with fixed a and varying d.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from Propositions 3.1 and 3.5.

Proposition 3.1 I || - | is a weakly unitarily invariant norm on H,,, then there is a
symmetric norm f on R" such that |A|| = f(A(A)) for all A € H,,.
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Proof Hermitian matrices are unitarily diagonalizable. Since | - || is weakly unitar-
ily invariant, |A| = | D|, in which D is a diagonalization of A. Consequently, | A| must
be a function in the eigenvalues of A. Moreover, any permutation of the entries in D
is obtained by conjugating D by a permutation matrix, which is unitary. Therefore,
|A| is a symmetric function in the eigenvalues of A. In particular, |A| = f(1(A))
for some symmetric function f. Givena = (ay, a, ..., a,) € R", define the Hermitian
matrix

a1

diaga = @
an

Then A(diaga) = Pa for some permutation matrix P. Symmetry of f implies

f(a) = f(Pa) = f(A(diaga)) = | diaga].

Consequently, f inherits the defining properties of a norm on R”. [ ]

Let X = (X1, X2, .., X, ) denote the nondecreasing rearrangement of x = (x1, x5,
.., X, ) € R". Then y majorizes x, denoted x <y, if

=

n n k
(3.1) Z%i:27i and ZFC’,-S yi forl<k<n-1
i=1 i=1 i=1 i

1

Il
—

Recall that a matrix with nonnegative entries is doubly stochastic if each row and
column sums to 1. The next result is due to Hardy, Littlewood, and Pélya [9].

Lemma 3.2 Ifx <y, then there exists a doubly stochastic matrix D such that y = Dx.
The next lemma is Birkhoff’s [6]; n* — n + 1works in place of n? [10, Theorem 8.7.2].

Lemma 3.3 If D € M, is doubly stochastic, then there exist permutation matrices
2
Py, P,,..., P € M, and nonnegative numbers cy, ¢z, . . ., ¢,z satisfying >, ¢; = Lsuch
2
that D = Z?:l C,'Pi.

Foreach A € H,, recall that A(A) = (1;(A), A,(A), ..., A,(A)) denotes the vector
of eigenvalues A;(A) > 1,(A) > -+ > 1,,(A). We regard 1(A) as a column vector for
purposes of matrix multiplication.

Lemma 3.4 If A, B € H,, then there exist permutation matrices Py, P,, ..., P,z € M,
and c1, €3, ..., Cp2 > 0 such that

AM(A+B) = iz:c,-P,»(A(A) +A(B)) and f:c,- =1

Proof  The Ky Fan eigenvalue inequality [8] asserts that

k k
(32) S Ai(A+B) <> (Ai(A) +1;(B)) foralll<k<n.
i=1

i=1
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The sum of the eigenvalues of a matrix is its trace. Consequently,

ZA (A+B)=tr(A+B) =trA+trB= Z(A (A) +1:(B)),

i=1

so equality holds in (3.2) for k = n. Thus, A(A+ B) <A(A) + A(B). Lemma 3.2
provides a doubly stochastic matrix D such that A (A + B) = D(A(A) + A(B)). Lemma
3.3 provides the desired permutation matrices and nonnegative scalars. ]

The following proposition completes the proof of Theorem L.1.

Proposition 3.5  Iffis a symmetric normon R”, then | A| = f(A(A)) defines a weakly
unitarily invariant norm on H,,.

Proof  The function |A| = f(A(A)) is symmetric in the eigenvalues of A, so it is
weakly unitarily invariant. It remains to show that | - | defines a norm on H,,.
Positive definiteness. A Hermitian matrix A = 0 if and only if A(A) = 0. Thus, the
positive definiteness of f implies the positive definiteness of | - ||.
Homogeneity. If ¢ > 0, then 1(cA) = cA(A). If ¢ < 0, then

1
A(cA) =¢ A(A).
1

Then the homogeneity and symmetry of f imply that

leal = F(A(cA)) = f(cA(4)) = [clf(A(A)) = Icl|A].

Triangle inequality. Suppose that A, B € H,. Lemma 3.4 ensures that there exist
permutation matrices Py, Ps, ..., P2 € M, and nonnegative numbers ¢y, ¢2,. .., Cy2

satisfying 27:1 ¢; =1suchthat D = Z?:l ¢; P;. Thus,

|A+B] = f(A(4+B)) - f( > eP(A(4) +A<B>))-

i=1
The triangle inequality and homogeneity of f yield

nZ

(33) |A+B| <Y cif(Pi(A(A) + A(B))).

i=1

2
Since f is permutation invariant and }.}_; ¢; = 1,

2 2
n

cif (Pi(A(A4) +A(B))) = X" cif (A(4) + A(B)) = £(A(A) + A(B)).

i=1

=

]
—

Thus, the triangle inequality for f and (3.3) yield
|A+B] < f(A(A) +A(B)) < f(A(4)) + f(A(B)) = Al + | B. m
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4 Proof of Theorem 1.2
Let X be an iid random vector and define fx ; : R” - R by

E|(X, )|’

1/d
f >1.
F(d+1)) ord >

(4.1) fxa(A) = (
Since the entries of X are iid, fx 4 is symmetric. In light of Theorem 1.1, it suffices to
show that fx 4 is a norm on R”; the continuity remark at the end of Theorem 1.2 is
Proposition 4.2.

Proposition 4.1  The function fx 4 in (4.1) defines a norm on R" forall d > 1.

Proof  The proofs for homogeneity and the triangle inequality in [7, Section 3.1] are
valid for d > 1. However, the proof for positive definiteness in [7, Lemma 3.1] requires
d > 2. The proof below holds for d > 1 and is simpler than the original.

Positive definiteness. If fx 4(1) =0, then E|(X,A)|¢ = 0. The nonnegativity of
|(X,1)|? ensures that

(42) Ale +A2X2+"'+)Lan =0

almost surely. Assume (4.2) has a nontrivial solution A with nonzero entries
AipsAigs o5 A, If k=1, then X;, =0 almost surely, which contradicts the nonde-
generacy of our random variables. If k > 1, then (4.2) implies that

(4.3) Xi, = anXi, +a;, Xiy +--+a;, X,

almost surely, in which a;; = —/\ij/)til. The independence of X; , Xj,, ..., X;, contra-
dicts (4.3). Relation (4.2) therefore has no nontrivial solutions.

Homogeneity. This follows from the bilinearity of the inner product and linearity
of expectation:

Ejc(X, A)| )‘/‘* ) (|c|dE|<x,A

4\
uatem - (B )~ el

Triangle inequality. For A, y € R", define random variables X = (X,A) and Y =
(X, u). Minkowski’s inequality implies

(B + @)) " = (B1x + v < (mIx)4) + ()"

The triangle inequality for fx 4 follows. ]

Proposition 4.2 Suppose X is an iid random vector whose entries have at least m
moments. The function f : [1,m] — R defined by f(d) = |Al|x,4 is continuous for all
AeH,.

Proof Define the random variable Y = (X, 1), in which A denotes the vector of
eigenvalues of A. The random variable Y is a measurable function defined on a
probability space (Q, F, P). The pushforward measure of Y is the probability measure
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py on R defined by uy (E) = P(Y'(E)) for all Borel sets E. Consequently,
d
r(d+)(f(d))" =By = [ |+l du.

The bound |x|? < |x| + |x|™ holds for all x € R and 1 < d < m. Therefore,

[t duy < [ dpy+ [ 1" dpy.

If d; - d, then [ |x|“duy — [ |x|*duy by the dominated convergence theorem.
Consequently, I'(d; +1)(f(d;))% — T'(d +1)(f(d))? whenever d; - d. The func-
tion I'(d +1)(f(d))? is therefore continuous in d. The continuity of the gamma
function establishes continuity for f¢ and f. |

5 Remarks

Remark 5.1 A norm || - | on M, is weakly unitarily invariant if |A|| = |U* AU| for
all A € M,, and unitary U € M,,. A norm @ on the space C(S) of continuous functions
on the unit sphere S ¢ C" is a unitarily invariant function norm if ©(f o U) = ®(f)
for all f € C(S) and unitary U € M,,. Every weakly unitarily invariant norm || - | on
M,, is of the form |A| = ®(f4), in which f4 € C(S) is defined by f4(x) = (Ax,x) and
® is a unitarily invariant function norm [4], [3, Theorem 2.1].

Remark 5.2 Remark 3.4 of [7] is somewhat misleading. We state there that the
entries of X are required to be identically distributed but not independent. To clarify,
the entries of X being identically distributed guarantee that |- |x 4 satisfies the
triangle inequality on H,,. The additional assumption of independence guarantees that
| - [Ix,q is also positive definite.

Acknowledgment We thank the referee for many helpful comments.

References

[1] K. Aguilar, A. Chévez, S. R. Garcia, and J. Vol¢i¢, Norms on complex matrices induced by complete
homogeneous symmetric polynomials. Bull. Lond. Math. Soc. 54(2022), no. 6, 2078-2100.

[2] E. T. Bell, Exponential polynomials. Ann. Math. 35(1934), no. 2, 258-277.

[3] R. Bhatia, Matrix analysis, Graduate Texts in Mathematics, 169, Springer, New York, 1997.

[4] R. Bhatia and J. A. R. Holbrook, Unitary invariance and spectral variation. Linear Algebra Appl.
95(1987), 43-68.

[5] P. Billingsley, Probability and measure. 3rd ed., Wiley Series in Probability and Mathematical
Statistics, Wiley, New York, 1995.

[6] G. Birkhoff, Three observations on linear algebra. Univ. Nac. Tucuman. Revista A 5(1946),

147-151.

[7] A. Chévez, S. R. Garcia, and J. Hurley, Norms on complex matrices induced by random vectors.
Canad. Math. Bull. 66(2023), no. 3, 808-826.

[8] K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Natl.

Acad. Sci. USA 35(1949), 652-655.

[9] G. H. Hardy, J. E. Littlewood, and G. Pélya, Some simple inequalities satisfied by convex functions.
Messenger Math. 58(1929), 145-152.

[10] R.A.Hornand C. R. Johnson, Matrix analysis. 2nd ed., Cambridge University Press, Cambridge,
2013.

https://doi.org/10.4153/50008439523000875 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439523000875

Norms on complex matrices induced by random vectors 11 1

[11]  A.S.Lewis, Group invariance and convex matrix analysis. SIAM J. Matrix Anal. Appl. 17(1996),
no. 4, 927-949.

[12]  C.-K. Li, Inequalities relating norms invariant under unitary similarities. Linear Multilinear
Algebra 29(1991), nos. 3-4, 155-167.

[13]  R.P Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics,
49, Cambridge University Press, Cambridge, 1997. With a foreword by Gian-Carlo Rota,
Corrected reprint of the 1986 original.

Mathematics Department, Regis University, 3333 Regis Boulevard, Denver, CO 80221 D-16, United States
e-mail: chave360@regis.edu

Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA
91711, United States
e-mail: stephan.garcia@pomona.edu jacksonwhurley@gmail.com

https://doi.org/10.4153/50008439523000875 Published online by Cambridge University Press


mailto:chave360@regis.edu
mailto:stephan.garcia@pomona.edu
mailto:jacksonwhurley@gmail.com
https://doi.org/10.4153/S0008439523000875

	1 Introduction
	2 Examples
	2.1 Normal random variables
	2.2 Standard exponential random variables
	2.3 Bernoulli random variables
	2.4 Pareto random variables

	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	5 Remarks

