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Norms on complex matrices induced by
random vectors II: extension of weakly
unitarily invariant norms
Ángel Chávez, Stephan Ramon Garcia, and Jackson Hurley

Abstract. We improve and expand in two directions the theory of norms on complex matrices induced
by random vectors. We first provide a simple proof of the classification of weakly unitarily invariant
norms on the Hermitian matrices. We use this to extend the main theorem in Chávez, Garcia, and
Hurley (2023, Canadian Mathematical Bulletin 66, 808–826) from exponent d ≥ 2 to d ≥ 1. Our proofs
are much simpler than the originals: they do not require Lewis’ framework for group invariance
in convex matrix analysis. This clarification puts the entire theory on simpler foundations while
extending its range of applicability.

1 Introduction

A norm ∥ ⋅ ∥ on Mn , the space of n × n complex matrices, is unitarily invariant if∥UAV∥ = ∥A∥ for all A ∈Mn and unitary U , V ∈Mn . A norm on Rn which is invariant
under entrywise sign changes and permutations is a symmetric gauge function. A
theorem of von Neumann asserts that any unitarily invariant norm on Mn is a
symmetric gauge function applied to the singular values [10, Theorem 7.4.7.2]. For
example, the Schatten norms are unitarily invariant and defined for d ≥ 1 by

∣∣A∣∣Sd = (∣σ1∣d + ∣σ2∣d +⋯ + ∣σn ∣d)1/d ,

in which σ1 ≥ σ2 ≥ ⋯ ≥ σn ≥ 0 are the singular values of A ∈Mn .
A norm ∥ ⋅ ∥ on the R-vector space Hn of n × n complex Hermitian matrices is

weakly unitarily invariant if ∥U∗AU∥ = ∥A∥ for all A ∈ Hn and unitary U ∈Mn . For
example, the numerical radius

r(A) = sup
x∈Cn/{0}

⟨Ax, x⟩
⟨x, x⟩

is a weakly unitarily invariant norm on Hn [12]. Lewis proved that any weakly unitarily
invariant norm on Hn is a symmetric vector norm applied to the eigenvalues [11,
Section 8].
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2 Á. Chávez, S. R. Garcia, and J. Hurley

Our first result is a short proof of Lewis’ theorem that avoids his theory of group
invariance in convex matrix analysis [11], the wonderful but complicated framework
that underpins [1, 7]. Our new approach uses more standard techniques, such as
Birkhoff ’s theorem on doubly stochastic matrices [6].

Theorem 1.1 A norm ∥ ⋅ ∥ on Hn is weakly unitarily invariant if and only if there is
a symmetric norm f ∶ Rn → R such that ∥A∥ = f (λ1 , λ2 , . . . , λn) for all A ∈ Hn . Here,
λ1 ≥ λ2 ≥ ⋯ ≥ λn are the eigenvalues of A.

The random-vector norms of the next theorem are weakly unitarily invariant norms
on Hn that extend to weakly unitarily invariant norms on Mn (see Theorem 1.3).
They appeared in [7], and they generalize the complete homogeneous symmetric
polynomial norms of [1, Theorem 1]. The original proof of [7, Theorem 1.1(a)] requires
d ≥ 2 and relies heavily on Lewis’ framework for group invariance in convex matrix
analysis [11]. However, Theorem 1.2 now follows directly from Theorem 1.1. Moreover,
Theorem 1.2 generalizes [7, Theorem 1.1(a)] to the case d ≥ 1.

Theorem 1.2 Let d ≥ 1 be real and X be an independent and identically distributed
(iid) random vector in Rn , that is, the entries of X = (X1 , X2 , . . . , Xn) are nondegenerate
iid random variables. Then

∣∣A∣∣X,d = (E∣⟨X, λ⟩∣d
!(d + 1) )

1/d
(1.1)

is a weakly unitarily invariant norm on Hn . Here, !(⋅) denotes the gamma function and
λ = (λ1 , λ2 , . . . , λn) denotes the vector of eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ λn of A. Moreover,
if the entries of X each have at least m moments, then for all A ∈ Hn the function f ∶[1, m]→ R defined by f (d) = ∥A∥X,d is continuous.

The simplified proof of Theorem 1.1 and the extension of Theorem 1.2 from d ≥ 2 to
d ≥ 1 permit the main results of [7], restated below as Theorem 1.3, to rest on simpler
foundations while enjoying a wider range of applicability. The many perspectives
offered in Theorem 1.3 explain the normalization in (1.1).

Theorem 1.3 Let X = (X1 , X2 , . . . , Xn), in which X1 , X2 , . . . , Xn ∈ Ld(Ω, F, P) are
nondegenerate iid random variables. Let λ = (λ1 , λ2 , . . . , λn) denote the vector of
eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ λn of A ∈ Hn .

(1) For real d ≥ 1, ∥A∥X,d = (E∣⟨X, λ⟩∣d
!(d + 1) )

1/d
is a norm on Hn (now by Theorem 1.2).

(2) If the X i admit a moment generating function M(t) = E[e t X] = ∑∞k=0 E[Xk] tk

k!
and d ≥ 2 is an even integer, then ∥A∥d

X,d is the coefficient of td in MΛ(t) for
all A ∈ Hn , in which MΛ(t) =∏n

i=1 M(λ i t) is the moment generating function
for the random variable Λ = ⟨X, λ(A)⟩ = λ1 X1 + λ2 X2 +⋯ + λn Xn . In particular,∥A∥X,d is a positive definite, homogeneous, symmetric polynomial in the eigenval-
ues of A.
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Norms on complex matrices induced by random vectors II 3

(3) Let d ≥ 2 be an even integer. If the first d moments of Xi exist, then

∥A∥d
X,d = 1

d!
Bd(κ1 tr A,κ2 tr A2 , . . . ,κd tr Ad) = ∑

π⊢d

κπ pπ(λ)
yπ

for A ∈ Hn ,

in which:
(a) π = (π1 , π2 , . . . , πr) ∈ Nr is a partition of d; that is, π1 ≥ π2 ≥ ⋯ ≥ πr and

π1 + π2 +⋯ + πr = d [13, Section 1.7]; we denote this π ⊢ d;
(b) pπ(x1 , x2 , . . . , xn) = pπ1 pπ2⋯pπr , in which pk(x1 , x2 , . . . , xn) = xk

1 + xk
2 +⋯ + xk

n is a power-sum symmetric polynomial;
(c) Bd is a complete Bell polynomial, defined by ∑∞ℓ=0 Bℓ(x1 , x2 , . . . , xℓ) tℓ

ℓ!= exp(∑∞j=1 x j
t j

j! ) [2, Section II];
(d) The cumulants κ1 ,κ2 , . . . ,κd are defined by the recursion µr = ∑r−1

ℓ=0 (r−1
ℓ
)

µℓκr−ℓ for 1 ≤ r ≤ d, in which µr = E[X r
1 ] is the rth moment of X1 [5, Section

9]; and
(e) κπ = κπ1κπ2⋯κπr and yπ =∏i≥1(i!)m i m i !, in which m i = m i(π) is the

multiplicity of i in π.
(4) For real d ≥ 1, the function λ(A)↦ ∥A∥X,d is Schur convex; that is, it respects

majorization ≺ (see (3.1)).
(5) Let d ≥ 2 be an even integer. Define Tπ ∶Mn → R by setting Tπ(Z) to be 1/( d

d/2)
times the sum over the ( d

d/2) possible locations to place d/2 adjoints ∗ among the
d copies of Z in (tr ZZ⋯Z8999999:999999;

π1

)(tr ZZ⋯Z8999999:999999;
π2

)⋯(tr ZZ⋯Z8999999:999999;
πr

). Then

∥Z∥X,d = ( ∑
π ⊢ d

κπTπ(Z)
yπ

)1/d
(1.2)

is a norm on Mn that restricts to the norm on Hn above. In particular, ∥Z∥d
X,d is

a positive definite trace polynomial in Z and Z∗.

The paper is structured as follows. Section 2 provides several examples afforded by
the theorems above. The proofs of Theorems 1.1 and 1.2 appear in Sections 3 and 4,
respectively. Section 5 concludes with some brief remarks.

2 Examples

The norm ∥ ⋅ ∥X,d defined in (1.1) is determined by its unit ball. This provides one way
to visualize the properties of random vector norms. We consider a few examples here
and refer the reader to [7, Section 2] for further examples and details.

2.1 Normal random variables

Suppose d ≥ 2 is an even integer and X is a random vector whose entries are
independent normal random variables with mean µ and variance σ 2. The example

4  :�
  195�9�3 �����	� ��������	������
	��!0�5�421�98�582�0#��/70�5132�.85"2��5 #���2��

https://doi.org/10.4153/S0008439523000875


4 Á. Chávez, S. R. Garcia, and J. Hurley

Figure 1: (Left) Unit circles for ∥ ⋅ ∥X,d with d = 1, 2, 4, 20, in which X1 and X2 are standard
normal random variables. (Right) Unit circles for ∥ ⋅ ∥X,10, in which X1 and X2 are normal
random variables with means µ = −2,−1, 0, 1, 6 and variance σ 2 = 1.

in [7, equation (2.12)] illustrates

∥A∥d
X,d =

d
2∑

k=0

µ2k(tr A)2k

(2k)! ⋅ σ d−2k∥A∥d−2k
F

2 d
2 −k( d

2 − k)! for A ∈ Hn ,

in which ∥ ⋅ ∥F is the Frobenius norm. For d = 2, the extension to Mn guaranteed by
Theorem 1.3 is ∥Z∥2

X,2 = 1
2 σ 2 tr(Z∗Z) + 1

2 µ2(tr Z∗)(tr Z) [7, p. 816].
Now, let n = 2. If µ = 0, the restrictions of ∥ ⋅ ∥X,d to R2 (whose elements are

identified with diagonal matrices) reproduce multiples of the Euclidean norm. If
µ ≠ 0, then the unit circles for ∥ ⋅ ∥X,d are approximately elliptical (see Figure 1).

2.2 Standard exponential random variables

If d ≥ 2 is an even integer and X is a random vector whose entries are independent
standard exponential random variables, then ∥A∥d

X,d equals the complete homogeneous
symmetric polynomial hd(λ1 , λ2 , . . . , λn) = ∑1≤k1≤⋯≤kd≤n λk1 λk2⋯λkd in the eigenval-
ues λ1 , λ2 , . . . , λn [1]. For d = 4, the extension to Mn guaranteed by Theorem 1.3 is [1,
equation (9)]

∥Z∥4
4 = 1

24
((tr Z)2 tr(Z∗)2 + tr(Z∗)2 tr(Z2) + 4 tr(Z) tr(Z∗) tr(Z∗Z)
+ 2 tr(Z∗Z)2 + (tr Z)2 tr(Z∗2) + tr(Z2) tr(Z∗2) + 4 tr(Z∗) tr(Z∗Z2)
+ 4 tr(Z) tr(Z∗2Z) + 2 tr(Z∗ZZ∗Z) + 4 tr(Z∗2Z2)).

The unit balls for these norms are illustrated in Figure 2 (left) .

2.3 Bernoulli random variables

A Bernoulli random variable is a discrete random variable X defined according to
P(X = k) = qk(1 − q)1−k for k = 0, 1 and 0 < q < 1. Suppose d is an even integer and X
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Norms on complex matrices induced by random vectors II 5

Figure 2: (Left) Unit circles for ∥ ⋅ ∥X,d with d = 1, 2, 3, 4, 20, in which X1 and X2 are standard
exponentials. (Right) Unit circles for ∥ ⋅ ∥X,d with d = 2, 4, 20, in which X1 and X2 are Bernoulli
with q = 0.5.

Figure 3: Unit circles for ∥ ⋅ ∥X,d , in which X1 and X2 are Bernoulli with varying parameter q
and with d = 2 (left) and d = 10 (right) .

is a random vector whose entries are independental Bernoulli random variables with
parameter q.

Remark 2.1 An expression for ∥A∥d
X,d appears in [7, Section 2.7]. However, there is

a missing multinomial coefficient. The correct expression for ∥A∥d
X,d is given by

∥A∥d
X,d = 1

d! ∑
i1+i2+⋯+in=d

( d
i1 , i2 , . . . , in

)q∣I∣λ i1
1 λ i2

2 ⋯λ in
n ,

in which ∣I∣ is the number of nonzero ik ; that is, I = {k ∶ ik ≠ 0}. We thank the
anonymous referee for pointing out the typo in [7, Section 2.7]. Figures 2 (right) and
3 illustrate the unit balls for these norms in a variety of cases.
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6 Á. Chávez, S. R. Garcia, and J. Hurley

Figure 4: (Left) Unit circles for ∥ ⋅ ∥X,2 , in which X1 and X2 are independent Pareto random
variables with α = 2.1, 3, 4, 10 and xm = 1. (Right) Unit circles for ∥ ⋅ ∥X,d , in which X1 and X2
are independent Pareto random variables with α = 5 and p = 1, 2, 4.

2.4 Pareto random variables

Suppose α, xm > 0. A random variable X distributed according to the probability
density function

fX(t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αxα
m

tα+1 , if t ≥ xm ,
0, if t < xm ,

is a Pareto random variable with parameters α and xm . Suppose X is a random vector
whose entries are Pareto random variables. Then ∥A∥X,d exists whenever α > d [7,
Section 2.10].

Suppose d = 2 and X is a random vector whose entries are independent Pareto
random variables with α > 2 and xm = 1. If n = 2, then

∥A∥2
X,2 = α

2
⎛
⎝

λ2
1

α − 2
+ 2αλ1 λ2(α − 1)2 + λ2

2
α − 2

⎞
⎠.

Figure 4 (left) illustrates the unit circles for ∥ ⋅ ∥X,2 with varying α. As α →∞, the unit
circles approach the parallel lines at λ2 = ±√2 − λ1; that is, ∣ tr A∣2 = 2. Figure 4 (right)
depicts the unit circles for ∥ ⋅ ∥X,d with fixed α and varying d.

3 Proof of Theorem 1.1

The proof of Theorem 1.1 follows from Propositions 3.1 and 3.5.

Proposition 3.1 If ∥ ⋅ ∥ is a weakly unitarily invariant norm on Hn , then there is a
symmetric norm f on Rn such that ∥A∥ = f (λ(A)) for all A ∈ Hn .

4  :�
  195�9�3 �����	� ��������	������
	��!0�5�421�98�582�0#��/70�5132�.85"2��5 #���2��

https://doi.org/10.4153/S0008439523000875


Norms on complex matrices induced by random vectors II 7

Proof Hermitian matrices are unitarily diagonalizable. Since ∥ ⋅ ∥ is weakly unitar-
ily invariant, ∥A∥ = ∥D∥, in which D is a diagonalization of A. Consequently, ∥A∥must
be a function in the eigenvalues of A. Moreover, any permutation of the entries in D
is obtained by conjugating D by a permutation matrix, which is unitary. Therefore,∥A∥ is a symmetric function in the eigenvalues of A. In particular, ∥A∥ = f (λ(A))
for some symmetric function f. Given a = (a1 , a2 , . . . , an) ∈ Rn , define the Hermitian
matrix

diag a =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

a1
a2 ⋱

an

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Then λ(diag a) = Pa for some permutation matrix P. Symmetry of f implies

f (a) = f (Pa) = f (λ(diag a)) = ∥diag a∥.
Consequently, f inherits the defining properties of a norm on Rn . ∎

Let x̃ = (x̃1 , x̃2 , . . . , x̃n) denote the nondecreasing rearrangement of x = (x1 , x2 ,
. . . , xn) ∈ Rn . Then y majorizes x, denoted x ≺ y, if

n∑
i=1

x̃ i = n∑
i=1

ỹ i and
k∑

i=1
x̃ i ≤ k∑

i=1
ỹ i for 1 ≤ k ≤ n − 1.(3.1)

Recall that a matrix with nonnegative entries is doubly stochastic if each row and
column sums to 1. The next result is due to Hardy, Littlewood, and Pólya [9].

Lemma 3.2 If x ≺ y, then there exists a doubly stochastic matrix D such that y = Dx.

The next lemma is Birkhoff ’s [6]; n2 − n + 1 works in place of n2 [10, Theorem 8.7.2].

Lemma 3.3 If D ∈Mn is doubly stochastic, then there exist permutation matrices
P1 , P2 , . . . , Pn2 ∈Mn and nonnegative numbers c1 , c2 , . . . , cn2 satisfying∑n2

i=1 c i = 1 such
that D = ∑n2

i=1 c i Pi .

For each A ∈ Hn , recall that λ(A) = (λ1(A), λ2(A), . . . , λn(A)) denotes the vector
of eigenvalues λ1(A) ≥ λ2(A) ≥ ⋯ ≥ λn(A). We regard λ(A) as a column vector for
purposes of matrix multiplication.

Lemma 3.4 If A, B ∈ Hn , then there exist permutation matrices P1 , P2 , . . . , Pn2 ∈Mn
and c1 , c2 , . . . , cn2 ≥ 0 such that

λ(A+ B) = n2

∑
i=1

c i Pi(λ(A) + λ(B)) and
n2

∑
i=1

c i = 1.

Proof The Ky Fan eigenvalue inequality [8] asserts that
k∑

i=1
λ i(A+ B) ≤ k∑

i=1
(λ i(A) + λ i(B)) for all 1 ≤ k ≤ n.(3.2)
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8 Á. Chávez, S. R. Garcia, and J. Hurley

The sum of the eigenvalues of a matrix is its trace. Consequently,
n∑

i=1
λ i(A+ B) = tr(A+ B) = tr A+ tr B = n∑

i=1
(λ i(A) + λ i(B)),

so equality holds in (3.2) for k = n. Thus, λ(A+ B) ≺ λ(A) + λ(B). Lemma 3.2
provides a doubly stochastic matrix D such that λ(A+ B) = D(λ(A) + λ(B)). Lemma
3.3 provides the desired permutation matrices and nonnegative scalars. ∎

The following proposition completes the proof of Theorem 1.1.

Proposition 3.5 If f is a symmetric norm on Rn , then ∥A∥ = f (λ(A)) defines a weakly
unitarily invariant norm on Hn .

Proof The function ∥A∥ = f (λ(A)) is symmetric in the eigenvalues of A, so it is
weakly unitarily invariant. It remains to show that ∥ ⋅ ∥ defines a norm on Hn .

Positive definiteness. A Hermitian matrix A = 0 if and only if λ(A) = 0. Thus, the
positive definiteness of f implies the positive definiteness of ∥ ⋅ ∥.

Homogeneity. If c ≥ 0, then λ(cA) = cλ(A). If c < 0, then

λ(cA) = c

⎡⎢⎢⎢⎢⎢⎢⎣
1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎦
λ(A).

Then the homogeneity and symmetry of f imply that

∥cA∥ = f (λ(cA)) = f (cλ(A)) = ∣c∣ f (λ(A)) = ∣c∣∥A∥.
Triangle inequality. Suppose that A, B ∈ Hn . Lemma 3.4 ensures that there exist

permutation matrices P1 , P2 , . . . , Pn2 ∈Mn and nonnegative numbers c1 , c2 , . . . , cn2

satisfying∑n2

i=1 c i = 1 such that D = ∑n2

i=1 c i Pi . Thus,

∥A+ B∥ = f (λ(A+ B)) = f
⎛
⎝

n2

∑
i=1

c i Pi(λ(A) + λ(B))⎞⎠.

The triangle inequality and homogeneity of f yield

∥A+ B∥ ≤ n2

∑
i=1

c i f (Pi(λ(A) + λ(B))).(3.3)

Since f is permutation invariant and∑n2

i=1 c i = 1,

n2

∑
i=1

c i f (Pi(λ(A) + λ(B))) = n2

∑
i=1

c i f (λ(A) + λ(B)) = f (λ(A) + λ(B)).
Thus, the triangle inequality for f and (3.3) yield

∥A+ B∥ ≤ f (λ(A) + λ(B)) ≤ f (λ(A)) + f (λ(B)) = ∥A∥ + ∥B∥. ∎
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Norms on complex matrices induced by random vectors II 9

4 Proof of Theorem 1.2

Let X be an iid random vector and define fX,d ∶ Rn → R by

fX,d(λ) = (E∣⟨X, λ⟩∣d
!(d + 1) )

1/d
for d ≥ 1.(4.1)

Since the entries of X are iid, fX,d is symmetric. In light of Theorem 1.1, it suffices to
show that fX,d is a norm on Rn ; the continuity remark at the end of Theorem 1.2 is
Proposition 4.2.

Proposition 4.1 The function fX,d in (4.1) defines a norm on Rn for all d ≥ 1.

Proof The proofs for homogeneity and the triangle inequality in [7, Section 3.1] are
valid for d ≥ 1. However, the proof for positive definiteness in [7, Lemma 3.1] requires
d ≥ 2. The proof below holds for d ≥ 1 and is simpler than the original.

Positive definiteness. If fX,d(λ) = 0, then E∣⟨X, λ⟩∣d = 0. The nonnegativity of∣⟨X, λ⟩∣d ensures that

λ1 X1 + λ2 X2 +⋯ + λn Xn = 0(4.2)

almost surely. Assume (4.2) has a nontrivial solution λ with nonzero entries
λ i1 , λ i2 , . . . , λ ik . If k = 1, then X ik = 0 almost surely, which contradicts the nonde-
generacy of our random variables. If k > 1, then (4.2) implies that

X i1 = a i2 X i2 + a i3 X i3 +⋯ + a ik X ik(4.3)

almost surely, in which a i j = −λ i j/λ i1 . The independence of X i1 , X i2 , . . . , X ik contra-
dicts (4.3). Relation (4.2) therefore has no nontrivial solutions.

Homogeneity. This follows from the bilinearity of the inner product and linearity
of expectation:

fX,d(cλ) = (E∣c⟨X, λ⟩∣d
!(d + 1) )

1/d = (∣c∣dE∣⟨X, λ⟩∣d
!(d + 1) )1/d = ∣c∣ fX,d(λ).

Triangle inequality. For λ, µ ∈ Rn , define random variables X = ⟨X, λ⟩ and Y =⟨X, µ⟩. Minkowski’s inequality implies

(E∣⟨X, λ + µ⟩∣d)1/d = (E∣X + Y ∣d)1/d ≤ (E∣X∣d)1/d + (E∣Y ∣d)1/d .

The triangle inequality for fX,d follows. ∎
Proposition 4.2 Suppose X is an iid random vector whose entries have at least m
moments. The function f ∶ [1, m]→ R defined by f (d) = ∥A∥X,d is continuous for all
A ∈ Hn .

Proof Define the random variable Y = ⟨X, λ⟩, in which λ denotes the vector of
eigenvalues of A. The random variable Y is a measurable function defined on a
probability space (Ω, F, P). The pushforward measure of Y is the probability measure
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10 Á. Chávez, S. R. Garcia, and J. Hurley

µY on R defined by µY(E) = P(Y−1(E)) for all Borel sets E. Consequently,

!(d + 1)( f (d))d = E∣Y ∣d = ∫ ∣x∣d dµY .

The bound ∣x∣d ≤ ∣x∣ + ∣x∣m holds for all x ∈ R and 1 ≤ d ≤ m. Therefore,

∫ ∣x∣d dµY ≤ ∫ ∣x∣ dµY +∫ ∣x∣m dµY .

If d i → d, then ∫ ∣x∣d i dµY → ∫ ∣x∣d dµY by the dominated convergence theorem.
Consequently, !(d i + 1)( f (d i))d i → !(d + 1)( f (d))d whenever d i → d. The func-
tion !(d + 1)( f (d))d is therefore continuous in d. The continuity of the gamma
function establishes continuity for f d and f. ∎

5 Remarks

Remark 5.1 A norm ∥ ⋅ ∥ on Mn is weakly unitarily invariant if ∥A∥ = ∥U∗AU∥ for
all A ∈Mn and unitary U ∈Mn . A norm Φ on the space C(S) of continuous functions
on the unit sphere S ⊂ Cn is a unitarily invariant function norm if Φ( f ○U) = Φ( f )
for all f ∈ C(S) and unitary U ∈Mn . Every weakly unitarily invariant norm ∥ ⋅ ∥ on
Mn is of the form ∥A∥ = Φ( fA), in which fA ∈ C(S) is defined by fA(x) = ⟨Ax, x⟩ and
Φ is a unitarily invariant function norm [4], [3, Theorem 2.1].

Remark 5.2 Remark 3.4 of [7] is somewhat misleading. We state there that the
entries of X are required to be identically distributed but not independent. To clarify,
the entries of X being identically distributed guarantee that ∥ ⋅ ∥X,d satisfies the
triangle inequality on Hn . The additional assumption of independence guarantees that∥ ⋅ ∥X,d is also positive definite.

Acknowledgment We thank the referee for many helpful comments.

References

[1] K. Aguilar, Á. Chávez, S. R. Garcia, and J. Volčič, Norms on complex matrices induced by complete
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