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We develop an irregular lattice mass-spring-model (MSM) to simulate and study the deformation
modes of a thin elastic ribbon as a function of applied end-to-end twist and tension. Our simulations
reproduce all reported experimentally observed modes, including transitions from helicoids to
longitudinal wrinkles, creased helicoids and loops with self-contact, and transverse wrinkles to
accordion self-folds. Our simulations also show that the twist angles at which the primary longitudinal
and transverse wrinkles appear are well described by various analyses of the Föppl-von Kármán
(FvK) equations, but the characteristic wavelength of the longitudinal wrinkles has a more complex
relationship to applied tension than previously estimated. The clamped edges are shown to suppress
longitudinal wrinkling over a distance set by the applied tension and the ribbon width, but otherwise
have no apparent effect on measured wavelength. Further, by analyzing the stress profile, we find
that longitudinal wrinkling does not completely alleviate compression, but caps the magnitude of
the compression. Nonetheless, the width over which wrinkles form is observed to be wider than
the near-threshold analysis predictions– the width is more consistent with the predictions of far-
from-threshold analysis. However, the end-to-end contraction of the ribbon as a function of twist is
found to more closely follow the corresponding near-threshold prediction as tension in the ribbon is
increased, in contrast to the expectations of far-from-threshold analysis. These results point to the
need for further theoretical analysis of this rich thin elastic system, guided by our physically robust
and intuitive simulation model.

I. INTRODUCTION

Twisting a thin ribbon under tension generates com-
pression, somewhat counterintuitively, and consequently
longitudinal wrinkles in the center of the ribbon. Larger
twist angles lead to the even more whimsical creased
helicoid phase, sometimes referred to as “ribbon crys-
tals”. These nonintuitive deformation modes hint at deep
physics, and despite twisting being the basis of ancient
textile technologies—from twisting fibers into yarns to
coiling ropes into piles—the mechanics of twisted mor-
phologies remain hazy [1–3]. These mysteries have un-
furled slowly over decades, beginning when Green first
observed buckling and wrinkling patterns in ribbons and
analyzed the development of compression with twist [4].
It was not until nearly fifty years later that the existence
of a buckling transition in twisted plates was confirmed
numerically [5], and it took another twenty years to ver-
ify numerically the longitudinal wrinkling pattern Green
described [6]. Shortly after, the creased helicoid phase
was modeled geometrically in the isometric limit [7, 8].
Next, experimental probes provided a full map of the
twisted ribbon phase space, revealing a sprawling zoo of
helicoids, wrinkles, and loops which are dependent on
twist angle and applied tension [9]; analytical attempts to
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characterize these post-buckling phenomena quickly fol-
lowed [10, 11]. Surprisingly, creased helicoids still formed
in ribbons with tension, developing from the wrinkles
themselves [12] and displaying some amount of stretch-
ing in the ridges (unseating the isometric assumptions of
previous studies) [13]. Ribbons of finite-thickness are ana-
lytically slippery, requiring approximations whose regions
of validity not fully clear [10, 14]. To fully resolve the
limitations of these approximations requires data such as
internal energy and stress distributions, quantities which
are currently difficult to access by experiment or theory.

In general, thin sheets are excellent candidates for com-
putational modeling. Plenty of great work has been
done to simulate thin sheet deformations using finite
element methods (FEM) [15–19], and there are several
mass-spring-models that successfully map regular dis-
crete lattices to the bulk properties of a sheet [20–22].
Less work, however, has been dedicated to mapping a
microscopically random mesh’s parameters to the bulk
properties of the simulated sheet. Some models use a
random mesh to approximate a constant bulk Young’s
modulus [23, 24], and others focus on making discretized
bending realistic [25–27]. But in some cases these models
are inconsistent with analytical descriptions of regular
meshes; what’s more, a combined stretching and bending
model has to our knowledge, not been thoroughly tested.
A discrete mesh model that compares directly to physical
materials is infinitely useful, opening the door to generat-
ing large data sets useful for data-driven discoveries.

In this paper, we develop a simple, computationally
cheap, mechanical mass-spring-model (MSM) to study
twisted thin ribbons. We could equivalently use an FEM
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approach to study thin twisted ribbons. However, we are
compelled by the MSM because it is an intuitive extension
of coupled oscillators; allows local, “microscopic” control
of the mesh topology; and is not tethered to the limitations
of using a partial differential equation for the sheet, such
as describing the post-buckled shapes, or singularities in
the PDE in areas with stress-focusing. It is a simple model
with historical precedence that accurately replicates the
interesting observables of the thin elastic sheet, using only
Hookean springs with small stresses that depend linearly
on deformation. A lattice model like this, with nearest
and next-to-nearest neighbor interactions, also preserves
the possibility of learning about or from other statistical
mechanics lattice models.

Our randomly-seeded MSM maps reliably to a physical
Young’s modulus and bending rigidity, allowing us to
match experimental conditions and generate the various
modes of deformations observed as a function of ribbon
aspect ratio, applied tension and twist (see Fig. 1). We
are able to carefully analyze the onset and growth of
wrinkles in the longitudinally buckled mode using mea-
surements which are also available experimentally, such as
surface curvature. Additionally, the simulations provide
access to the invisible internal dynamics of the ribbon,
including finely resolved spatial and temporal data for
the strain and stress. These new insights are useful for
characterizing the mechanics of the buckling transition,
and probing the relevance of existing near- and far-from-
threshold approximations. Guided by recent rounds of
physical observations and analytical inquiries, we show
that numerics and simulations once again hold the key to
the next stage of discovery about twisted thin ribbons.

II. MASS SPRING MODEL

We model a thin ribbon by defining a mesh with a
set of nodes, arranged either in a regular triangular lat-
tice (where each interior node has six equidistant nearest
neighbors) or a random triangular lattice in which node
coordination number and distance to nearest neighbors
vary. Nodes are connected to their neighbors via in-plane
springs and dashpots, and bending is controlled by pseudo-
springs (a quadratic penalization of bending) across each
edge between adjacent triangles, as shown in Fig. 2. A
full description of this discrete model’s relationship to
continuum elasticity is provided in Appendix A; in this
section we provide a brief history of the model and a
summary of the modifications we employ.
The regular triangular lattice is well-studied and oft-

utilized, with the attractive feature of having an analytical
mapping from the discrete stretching and bending spring
constants (ks and kb) to a continuous two-dimensional
Young’s modulus and bending rigidity for the sheet. The
springs rij connecting pairs of lattice sites, xi and xj

dictate in-plane deformations. Hinges separating two
triangles 4ijk and 4ikl, with normal vectors n̂ijk and
n̂ikl, control out-of-plane motion. Seung and Nelson [20]

showed that for the triangular lattice with unit length
springs, and potentials of the form

Es (rij) =
1

2
ks (1− |xi − xj |)2 , (1)

Eb (n̂ijk, n̂ikl) =
1

2
kb |n̂ijk − n̂ikl|2 , (2)

the equivalent continuous two-dimensional (2D) Young’s
modulus and bending rigidity for the sheet are

Y2D =
2√
3
ks, B =

√
3

2
kb, (3)

respectively. If the rest configuration of the lattice devi-
ates from hexagonal packing of equilateral triangles (such
as at the boundaries of a rectangular sheet or a collection
of randomly placed lattice points), the above relationships
are no longer correct beyond the leading order discrete
approximation of the continuum. To extend this mass-
spring-model to irregular lattice configurations, it is useful
to modify the pre-factor of each energy term.
Each in-plane spring represents an area of continuous

material that resists stretching or compression. Thus
springs adjacent to larger triangular facets should have
stiffer spring constants to reflect the greater amount of
material they represent. We modify the stretching energy
term according to Van Gelder [23] (with typos in the
original model corrected by Lloyd et al. [24]):

Es(rij) =
1

2

(

1

2

A

A0
ks

)

(sij − |xi − xj |)2 ,

=
1

2

(√
3

4

A

A0
Y2D

)

(sij − |xi − xj |)2 ,
(4)

where Y2D is the target Young’s modulus for the sheet,
sij the rest length of a given spring, A the sum of the
facet areas adjacent to edge rij , and A0 the area of an
equilateral triangle with side length sij . When the entire
lattice is composed of equilateral triangles, this expression
reduces to the model in Eq. (1).
With similar physical motivations as given above—

namely that an area of continuous material distributed
over a longer length scale should be floppier, or easier to
bend—we modify the bending energy term to be

Eb (n̂ijk, n̂ikl) =
1

2

(

2
A0

A
kb

)

|n̂ijk − n̂ikl|2

=
1

2

(

4√
3

A0

A
B

)

|n̂ijk − n̂ikl|2 .
(5)

The area dependence of the coefficient is inspired by
Grinspun et al. [25] and adapted such that it reduces
to the Seung and Nelson bending energy (Eq. (2)) when
all triangles are equilateral. Although this quantity is
presented as a ratio of areas, it implicitly accounts for
the shapes of the adjacent triangles through the quantity



3

FIG. 1. Deformation modes of twisted thin sheets, replicated by our simulation whose details are summarized in Fig. 2. Ribbon
(a) is labeled with its dimensions and quantities relevant to the twisting-under-tension procedure. T is the scaled longitudinal
tension applied, which is total applied force F normalized by the width, Young’s modulus, and thickness of the ribbon, and η is
a scaled twist angle: the end-to-end angle θ normalized by the ribbon’s aspect ratio. These quantities are defined in Table I. (a)
The helicoid phase initially present before any buckling transitions occur. (b) Longitudinal buckling occurs at an angle ηlon
and has a fixed wavelength λlon set by the tension T and thickness h. (c) Creased helicoids develop from the longitudinally
buckled ribbons as the buckle ridges “turn” to form triangular facets. (d) At tensions below the crossover tension T ∗, ribbons
will snap-through to form a loop at an angle ηtran. If twisted far enough, ribbons will develop self-contact at an angle ηsc. (e)
Transverse buckling occurs at tensions greater than T ∗, transitioning at angle ηtran. (f) The wavelength of transverse buckling
λtran is set by the aspect ratio of the sheet; sheets with smaller aspect ratios can display several wavelengths of transverse
buckling. (g) At high twists, low aspect ratio sheets display “accordion folding” and approach the yarning transition [28].
Snapshots (a)–(e) fall within the phase diagram presented in Fig. 3.

FIG. 2. Nodes are connected by in-plane springs with stiffness
ks and dashpot damping bint. The ks of each in-plane spring is
set by the local geometry of the mesh and the target Young’s
modulus for the sheet, Y . Out-of-plane stiffness kb is similarly
dictated by the local geometry and the target bending rigidity,
B. Both sets of springs ensure quadratic energy penalization
for stretching and misalignment of the vectors normal to the
triangular mesh facets, Eqs. (4) and (5).

A. Grinspun et al. [25] provide a full explanation of this
shape consideration.

Although our mesh is 2D, the bending rigidity imparts
an effective thickness to the sheet. The bending rigidity
B is related to the Young’s modulus Y by [29]

B =
Y h3

12(1− ν2)
, (6)

where h is the thickness of the material and ν is Poisson’s
ratio. For triangular lattices ν cannot be independently
tuned, so ν = 1/3 always [20, 24], and Y = Y2D/h. Thus
we can rearrange Eq. (6) and use the relationships in
Eq. (3) to define an effective thickness:

heff =

√

8kb
ks

. (7)

This length scale is used to set the sheet’s self-avoidance:
the sheet is not allowed to come within heff of itself. Self-
avoidance is enforced by introducing a repulsive force
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between contact sites within an interaction range heff of
each other [30]. In general, the contact sites are spaced
more closely than the mesh nodes. For example, the
thinnest sheet we consider here (h = 127 µm) has a mesh
spacing about 8 times coarser than heff. Thus we imple-
ment “level 3” refinement (iterative bisection of triangle
edges three times, placing additional contact sites at the
midpoints) such that the spacing of contact sites is on the
order of the sheet’s thickness. Forces between the refined
contact sites are distributed to the nodes of the mesh
nearest to the sites, weighted by proximity to the site.
The site refinement applies only during contact detection
and allows the mesh to remain coarse in all other calcu-
lations. From now on, mentions of the simulated sheet’s
thickness h are in reference to this effective thickness.

Property Symbol Formula

Length L −L/2 < y < L/2

Width W −W/2 < x < W/2

Thickness h

Young’s modulus Y Y2D/h

Poisson’s ratio ν 1/3

Bending rigidity B Y h3

12(1−ν2)

End-to-end twist angle θ

Scaled twist angle η θW
L

Scaled applied tension T F
Y hW

Confinement parameter α η2/T

TABLE I. Definitions of variables and physical parameters.

The equations of motion for a node i in the sheet are

ẋi = vi,

mai = Fi,
(8)

where xi is the three-dimensional position of a node, vi

its velocity, v̇i = ai its acceleration, and Fi the sum of
the forces applied to node i, which is given by

Fi = −
∑

j∈Ni

∇xi
(Es (rij))−

∑

(ijk)∈Ti

(ikl)∈Ti

∇xi
(Eb (n̂ijk, n̂ikl))

+
∑

j∈Ni

F
int
d (xi,xj ,vi,vj) + F

iso
d (vi)

+
∑

j

Fc (xi,xj) + Fext. (9)

Here Ni are the neighbors of node i, and Ti are the
adjacent triangles. The damping term F

int
d is due to the

dashpots pictured in Fig. 2, and F
iso
d is an additional

isotropic, global damping. Fc is the contact force, which
is repulsive and turns on when two nodes come within h
distance of one another [30]. Finally, any external applied
forces are included in Fext.

High-frequency elastic waves dissipate quickly in materi-
als that are of interest to us (e.g. paper, Mylar, aluminum
foil). Instead, wrinkling is characterized by slower defor-
mations on the scale of the system size, with occasional
hysteretic, snap-through events. We therefore assume
the sheet is mostly in a quasistatic regime where the
acceleration of a node is close to zero: ai ≈ 0. The
quasistatic equations of motion constitute a differential-
algebraic system which is well-suited to an implicit numer-
ical integration scheme in time [30]. When the quasistatic
approximation is violated, such as near a snap-through
event accompanied by large changes in node velocities,
the full dynamic equations of motion given in Eq. (8)
are integrated explicitly instead. Further details on the
numerical integration schemes and switching criteria are
provided in Appendix B, and a thorough explanation is
given in Ref. [30].
We note that plasticity can be added to this model

by allowing the rest angle (length) of a hinge (spring) to
change if the hinge (spring) is deformed past a specified
yield threshold. The plastic damage can then accumulate
according to a purely plastic, strain hardening, or even
strain weakening model [30]. In this work, however, we
will discuss only purely elastic sheets which do not fatigue
or accumulate damage.

III. END-TO-END TWISTING

A. Ribbon Setup and Boundary Conditions

Our simulated ribbons correspond to length L =
45.72 cm and width W = 2.54 cm. Three different thick-
nesses are used throughout this paper: 127 µm, 254 µm,
and 508 µm. A single, randomly-seeded ribbon mesh was
used across all simulations, with an average node spacing
of d = 1mm. The random lattice is generated by seeding
the ribbon with nodes using the Voro++ library [31, 32],
then Lloyd’s algorithm [33] is iteratively applied 100 times
to make the mesh more regular. The mesh configuration
at this point is taken as its rest configuration, and all the
springs and facets have differing lengths and areas. The
spring and hinge stiffnesses are set according to the model
in Eqs. (4) and (5), and tuned such that the Young’s
modulus of the sheet is approximately Y = 3.40GPa and
the bending rigidity is approximately B = 0.653mPa ·m3,
B = 5.22mPa ·m3, or B = 41.8mPa ·m3, respectively,
for the three thicknesses. Properties of the thinnest ribbon
are given in physical units in Table II.
For both the regular and randomly seeded meshes we

performed a series of three modulus convergence tests:
stretch, shear, and bend. The average node spacing had
the range d ∈ [0.5mm, 2.5mm]. In Appendix C we see
that the model in Eqs. (4), (5) converges to the expected
values of Young’s modulus (Y ), shear modulus (G), and
bending rigidity (B). While there is some amount of
error in these moduli, it is within the range of variation
expected, for example, from physical material samples.
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Property Symbol Measurement

Length L 45.7 cm

Width W 2.54 cm

Thickness h 127 µm

Young’s modulus Y 3.40GPa

Bending rigidity B 0.653mPa ·m3

Poisson ratio ν 0.333

TABLE II. Properties of the primary test ribbon, in physical
units.

As in most of the twisted ribbon experimental se-
tups [4, 8, 9, 13], the short edges of our ribbon are
clamped such that the nodes are fixed in a rigid line.
The clamped edges then rotate with relative angular ve-
locity θ̇ = 0.15 rad/s (up to time t = 120 s = 2min) to
produce a net end-to-end twist angle θ across the ribbon.
This rate is sufficiently slow for the loading to be con-
sidered quasi-static. This angle is then normalized by
the aspect ratio to give the scaled twist angle η = θW

L .
Additionally, a weight F (in Newtons) is applied longitu-
dinally to the clamped edges. This force is then scaled
by the ribbon’s dimensions and Young’s modulus such
that T = F

Y hW ∈ [1.80 × 10−4, 4.14 × 10−3]. In each
simulation the ribbon was twisted at least until it reached
a transverse buckling point; most of the the final angle
twists were between η ∈ [0.5, 0.9]. The computation time
per simulation ranged from 1–4 days running on 10–14
threads, with the longer runs mostly depending on the
significant contact refinement needed for very thin sheets
that encounter self-contact.

B. Deformation Modes

At least seven distinct deformation modes have been
experimentally observed [9, 10, 28]. Inspired by the va-
riety of these modes, and the careful tuning necessary
to find them all, we set out to test our computational
model’s ability to reproduce all the physically observed
deformations using our simulated ribbons. By adjusting
only the total load applied to the ribbon along the longi-
tudinal axis (T ) and the twist angle (η), we indeed find
all the reported experimentally observed morphologies,
as displayed in Fig. 1.

We initially see the pure helicoid phase, Fig. 1a, which
transitions to the longitudinally buckled ribbon, Fig. 1b,
at an angle ηlon. The creased helicoid, Fig. 1c, develops
from this longitudinally buckled phase. Creased helicoids
can then undergo a looping transition, Fig. 1d, at ηtran
and will eventually develop self-contact at ηsc. At greater
tensions we observe transitions from the helicoid to the
transverse-buckled sheet, Fig. 1e. Transverse-buckled
ribbons can also reach self-contact at ηsc. Sheets with
smaller aspect ratios develop multiple wavelengths of

FIG. 3. A slice of the thin ribbon deformation phase space at
fixed thickness h = 127 µm. Plotted are longitudinal buckling
transitions (blue circles, long-dashed border), transverse buck-
ling transitions (green circles, short-dashed border), and points
of self-contact (red circles, solid border) as a function of scaled
ribbon tension T and scaled twist angle η. At low tensions
the transverse buckling transition often leads immediately to
self-contact, whereas at higher tensions the transverse instabil-
ity occurs before self-contact develops. The blue long-dashed
line corresponds to the theoretical scaling of the longitudinal
buckling angle ηlon (Eq. (14)) with a single fitting parameter
for the coefficient of the finite thickness correction term. The
green short-dashed line is the theoretical scaling of the trans-
verse buckling angle ηtran (Eq. (15)), again with a single fitting
parameter for the coefficient. T ∗, the tension at which the
primary instability switches from longitudinal to transverse
buckling, is indicated by the vertical black dashed line.

transverse buckling, Fig. 1f, and can enter the accordion
folded/yarning regime, Fig. 1g.

Overall we see excellent qualitative and quantitative
agreement of our simulations with experiments, from vi-
sual inspection of the various instabilities to a thorough
recreation of a slice of the twisted ribbon phase space,
in Fig. 3. With these practical tests and the modulus
convergence tests (Young’s, shear, and bend) in Appendix
C, we have full confidence in our simulations’ ability to
replicate physical sheets and the nuances of their defor-
mations. We find that some subtle ambiguities that were
raised in experiments– such as the nature of longitudinal
wrinkling’s onset and spectrum of wrinkling frequencies,
as well as dependence of the buckling wavelength λlon on
h and W– are revealed more clearly through the precise
measurements possible via our simulations.
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1. Phase Space

The ribbon’s deformation modes are arranged in a
three-dimensional (3D) phase space with axes of sheet
thickness h, normalized twist angle η, and normalized
longitudinal load T (note that other dimensional and
physical properties such as aspect ratio and Young’s mod-
ulus are absorbed in the normalized quantities, explained
further in Table I). By fixing the thickness, one can take
a 2D slice of this phase space with the remaining variables
being the applied load and the twist angle.

We have fixed the thickness at h = 127 µm in order to
recreate a slice of the ribbon deformation phase space that
was probed experimentally by Chopin et al. [9]. Through-
out the slow twist, we extract the angles η at which
the primary instability, any secondary instabilities, and
moments of self-contact occur. The primary instability
could be either longitudinal or transverse buckling (ηlon
or ηtran); in the former case the ribbon will undergo a
secondary transverse buckling instability at a higher twist
angle (ηtran). If twisted far enough, ribbons will reach
self-contact (ηsc). All of these transitions are plotted in
Fig. 3, and the longitudinal instability scales with a depen-
dence on T and an offset related to the ribbon’s thickness,
presented in Eq. (14). The transverse instability also
has a dependence on T , and additional dependences on
the dimensions of the ribbon, shown in Eq. (15). The
crossover tension T ∗ indicates the primary instability
switching from longitudinal buckling to transverse buck-
ling. (Modes shown in Fig. 1a-e fall within this slice of the
phase space, whereas the varied aspect ratio and thickness
of modes Fig. 1f,g place these examples in different slices
of the 3D phase space.)

The onset of longitudinal wrinkles is determined by the
out-of-plane displacement along the midline of the ribbon,
as illustrated in Fig. 4a. After the onset of wrinkling,
we observe that the frequency content of the wrinkle
profile is peaked at a characteristic frequency f = 1/λ,
with λ being the dominant wrinkle wavelength (Fig. 4b).
To enhance the detection of wrinkle onset, frequencies
outside a specified range near the characteristic frequency
are removed from the wrinkle profile, as shown in Fig. 4b–
c. The resulting wrinkle amplitude (see Fig. 4 caption
for definition) exhibits a sharp increase at a scaled twist
angle ηlon; this “knee point” of the amplitude curve—
approximately the point of maximum curvature in the
data [34]—is the onset of longitudinal buckling (Fig. 4d).
Transverse buckling and self-contact are detected by

measuring the shortest distance between any two points on
opposing long edges of a ribbon. At η = 0 this distance is
equal to the ribbon width W . However, as η increases, we
continue to track this distance, as shown in Fig. 5a. The
onset of transverse buckling is marked by a pronounced
change in the slope of the edge distance plot. A second
abrupt change in slope marks the point of self-contact
of the ribbon, after which the shortest distance between
opposing long edges is approximately constant near the
ribbon’s effective thickness.

While the transverse buckling and self-contact transi-
tions observed for large twist and tension are rich and
fascinating phenomena [9, 10, 28, 35, 36], for the remain-
der of this work we will focus on the small T , small η
region. Buckling transitions in this corner of the phase
diagram have been well-observed and categorized experi-
mentally [9], but near-threshold and far-from-threshold
analytical efforts to describe these instabilities are chal-
lenged by a lack of closed form solutions to describe the
post-buckling ribbon shapes [5, 6, 10]. The approxima-
tions available are expected to be valid only within a very
narrow window η & ηlon, even in the so called far-from-
threshold analysis, where the analysis is based on a variant
of the FvK equations, which is weakly non-linear in the
small amplitude “out-of-ribbon” displacements [10]. Our
simulations enable a critical examination of the nature of
the transitions.

2. Wavelength Scaling

The primary instability in the small η, small T corner
of the phase space is longitudinal buckling (Fig. 1b). The
spine of the ribbon is plotted as a function of longitudinal
position in Fig. 4a; when the ribbon buckles, a pattern of
wavelength λlon appears along the center of the ribbon.

The scaling of λlon with the initial tension T was de-
rived analytically by Coman and Bassom [6] with singular
perturbation methods of the second-order boundary value
problem, and by Chopin and Kudrolli [9] using energy
scaling arguments. More sophisticated scaling arguments
noting the relation of wavelength to wrinkling width were
also derived later by Chopin, et al [10]. These methods
of obtaining a scaling relation for the wavelength λlon,
gave rise to the same scaling

λlon√
hW

∝ T−1/4 , (10)

where all made use of the near-threshold (NT) approxima-
tion, which assumes a small amplitude for the wrinkles.
The NT analysis makes no claims to describe the wrinkling
pattern as η and the amplitude of the wrinkles increases,
but is a fine reference point for analyzing the onset of the
longitudinal buckling phase.
Figure 6a demonstrates that if the wavelength λlon is

normalized by the width and thickness, the data points
tend to collapse on the curve T−1/4. These simulated
results agree with previous experimental measurements of
wavelength [9]. However, we find that ribbons held at low
tensions deviate from the observed T−1/4 dependence,
indicating other parameters might be subdominant at
moderate tensions but important in the small T limit. A
closer look at the data in log–log space, Fig. 6b, reveals
the points’ scatter systematically depends on the ribbon
thickness. Thus, our simulations show that λlon has a
more complicated dependence on h, and potentially T ,
than previously estimated.
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FIG. 4. Detection of longitudinal wrinkles. (a) The out-of-plane displacement ẑ along the midline of a sample ribbon 127 µm
thick with scaled tension T = 9.00× 10−4, which undergoes longitudinal buckling. Note that due to the clamped boundary
conditions the wrinkles are suppressed a distance Lsup ∼ O (W ). (b) The amplitude spectrum a(f) of the middle third of the
wrinkle profile in (a), computed as the absolute value of the discrete Fourier transform of ẑ. The frequency of the highest peak
is taken to be the reciprocal of the wrinkle wavelength λ. To aid in identifying the precise onset of wrinkling, the amplitude
spectrum is truncated to retain only frequencies in the range (1/λ) ± ∆, and the wrinkle profile is reconstructed from the
inverse Fourier transform of the truncated spectrum. (c) A waterfall plot of reconstructed wrinkle profiles as a function of scaled
twist angle η along the y-axis, for which frequencies (1/λ)± 0.15 cm−1 have been retained, with λ ≈ 1.69 cm. (d) The wrinkle

amplitude (〈H2(r = 0)〉y)1/2 as a function of η, where the average 〈·〉y is computed over the middle third of the wrinkle profiles

in (c). The three identified scaled angles ηlon, η1, and η2 correspond to selected wrinkle profiles in (c) shown in black. The scaled
angle ηlon = 0.203 marks the detected onset of longitudinal wrinkling, identified as the “knee point” [34] of the amplitude curve.
Inset: Amplitude as a function of confinement parameter offset by the wrinkle onset, α− αlon, with scaling β = 0.56 (Eq. (17)).

FIG. 5. Detection of transverse buckling and self-contact. (a) The shortest distance between any two points on opposing long
edges of a ribbon as a function of scaled twist angle, shown for ribbons at three different scaled tensions. At η = 0, the edge
distance is equal to the ribbon width W , while after self-contact, the edge distance equals the effective thickness h. Solid markers
indicate the onset of longitudinal buckling, transverse buckling, and self-contact, mapping out a vertical trajectory through the
phase space plot of Fig. 3 along constant T . (b) Snapshots of the ribbon in (a) (middle) at T = 1.98× 10−3 in each of the four
deformation regimes.
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FIG. 6. Variation of scaled longitudinal wavelength λlon/
√
hW

with scaled tension T . (a) The wavelength λlon of the wrinkles

was estimated in experiments to scale as T−1/4, and good
agreement is obtained by fitting a curve through the data at
all but the two smallest tensions (T < 4 × 10−4), as shown
by the dashed line [9]. Prior experimental results also reveal
deviations from the theoretical scaling at low tensions [9].
(b) Individual fits of scaled wavelength for each of the three
thickness to width ratios h/W (solid lines) shown on a log–
log scale, with the theoretical scaling reproduced from (a)
(dashed line). A closer examination of the data from (a)
reveals that λlon has a lingering dependence on the thickness
h, and could have a more complex relationship to T than
previously estimated.

3. Wrinkle Suppression

The clamped boundary conditions suppress the wrin-
kles by a distance of Lsup ∼ O(W ) from each edge. Lsup

is measured from our simulation data as the distance
from the clamp at which the wrinkle amplitude exceeds
5% of its value at an angle η > ηlon when wrinkles are
well-developed (equivalent to η2 indicated in Fig. 4c–d).
The wrinkle amplitude is defined as in Fig. 4d, and is
reflected over the y = 0 line and averaged to determine
a single average value for Lsup at each tension. Fig. 7a
displays the profile of each longitudinally buckled sample.
The regions shaded blue are defined as the suppression
zone near the clamped boundary. As shown in Fig. 7b,
the suppression distance is very small at low tensions and
increases to nearly 2W at greater tensions, close to T ∗

(the upper bound for longitudinal wrinkling). Despite
this suppression near the edges, the wavelength λlon of
the wrinkles is not otherwise affected by the clamped

FIG. 7. Wrinkle suppression in a ribbon with h = 127 µm due
to clamped boundaries. (a) Profiles of all longitudinally buck-
led samples, highlighting the wrinkle suppression zone near
the ribbon edges in blue. The suppression distance measured
from either clamp is Lsup. (b) Wrinkle suppression length,
Lsup as a function of applied tension T . The suppression near
a clamped edge approaches the value 2W = 5.08 cm as tension
increases toward T ∗. Lsup likely depends on h as well as W .

boundaries. We base this on the fact that the buckled
wavelength is consistent everywhere outside of the sup-
pression zone, both in the middle of the ribbon and near
the clamps.

C. Mechanical Responses

A wide variety of information is accessible to us through
our simulations, such as built-in x-ray vision which allows
us to track the distribution of strain and stress in the
sheet throughout the simulated experiment. These in-
sights allow us to perform powerful analyses of the sheets’
deformations, and examine details of the twisted ribbon
problem which have been previously intractable through
experimental means. In particular, we investigate the
detailed evolution of the ribbon’s stress distribution, wrin-
kling, and the contraction as it deforms and undergoes
the longitudinal buckling instability at low tensions.
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FIG. 8. (a) Stress profile of a ribbon with T = 1.08 × 10−3,
h = 127 µm. The color bar (and color of each stress slice)
indicates the progression of the ribbon’s twist, with blue corre-
sponding to η = 0 and red η = 0.8, which is the fully twisted
state for this sample. The solid black line in the color bar
marks η0, when stress becomes compressive, and the gray
dashed line marks ηlon, the onset of longitudinal buckling.
As the ribbon twists, its longitudinal stress profile is initially
parabolic, crossing over to compressive stress in the center
of the ribbon at η0 (= 0.161). After the longitudinal buck-
ling transition at ηlon (= 0.216, dashed blue-purple line) the
stress profile bottoms out (minimum stress marked by the
horizontal gray, dashed line) and widens. The buckled ribbon
thus continues to support compressive stress, but function-
ally caps the compressive load. (b) At varying thicknesses
(h = 63.5 µm, 127 µm, 254 µm, 508 µm) and degrees of confine-
ment (α = 80, 120, 160, 200), we see that the residual stress
supported by the longitudinally buckled ribbon is linear in
h/(W

√
T ), with a slope of −5.14± 0.05 given by the dashed

line. Regardless of α, as the thickness tends to zero we expect
the stress in the ribbon to also vanish.

1. Primary Instabilities

The transition from pure helicoid to longitudinal or
transverse buckling can be predicted analytically from
the dimensionless stress profile of a twisted ribbon [10]:

σyy(x) = T +
η2

2

(

( x

W

)2

− 1

12

)

(11)

σxx(x) =
η2

2

(

( x

W

)2

− 1

4

)[

T +
η2

4

(

( x

W

)2

+
1

12

)]

.

(12)

The ribbon supports a smooth twist in the form of a
helicoid for small η. However, as η increases, depending
on the applied load T , the longitudinal stress σyy of the
centerline (x = 0) becomes compressive (negative) at an
angle η0:

η0 =
√
24T . (13)

In an infinitely thin ribbon, any amount of compressive
stress would cause the ribbon to buckle, but a ribbon
of finite thickness can withstand an amount of compres-
sion proportional to its thickness, generating a corrective
factor [9],

ηlon =
√
24T + Clon

h

W
. (14)

Here Clon = 11.00 is a fitting parameter extracted from
the longitudinal buckling transitions plotted in Fig. 3,
which is close to the experimentally measured Clon = 9.3
for ribbons with similar dimensions [9].
The expected transverse buckling angle is estimated

by stress balancing scaling arguments [10]. In ribbons
of finite length (i.e. not extremely long), the transverse
buckling angle is

ηtran = Ctran

√

h

L
T−1/4 , (15)

where Ctran is a dimensionless constant. We compare this
form with the transverse buckling transitions we observed
in Fig. 3, and find that Ctran = 4.12 describes transitions
that occur at T > T ∗.

2. Stress Distribution

Moving forward we will discuss only the longitudinal
stress, as the transverse stress components are suppressed
within the small η, small T region we study here. A
quantity that will be useful in forthcoming calculations is
the “confinement parameter” α = η2/T , which allows us
to compare the progression of twist across samples with
different applied tensions. It can also be understood as
the ratio of geometric to tensile strain [10].

For η > η0, the compressive stress occurs in a symmetric
region about the longitudinal center line (i.e. x/W < rwr

with 2rwr being the characteristic width of the compres-
sion zone), as seen by solving Eq. (11). The profile will
remain parabolic until the twist reaches the critical buck-
ling angle, ηlon. This parabolic profile is that of a pure
helicoid; the shape of the stress profile at η > ηlon, how-
ever, will reveal the nature of the longitudinal buckling
transition and which, if either, of the existing analytical
approximations (near-threshold or far-from-threshold) can
describe the post-buckling ribbon [10]. The parameters
of our primary test ribbon (T ∈

[

1.8× 10−4, 2× 10−3
)

and h = 127 µm) place it in a regime which could be
considered near-threshold (NT), or might be in an am-
biguous region between the NT and far-from-threshold
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FIG. 9. Development of the wrinkles that appear in a ribbon with a tension T = 1.08× 10−3, h = 127 µm. Snapshots were taken
at regular intervals, starting at the onset of buckling. The first frame is at η = ηlon, and the frames below show the progression
of the wrinkles as the ribbon goes through the longitudinally buckled phase and begins to cross into the creased helicoid phase.
(a) Contour maps of the mean curvature in the ribbon. Red (blue) corresponds to above(below)-the-plane curvature. Black
(gray) dashed lines mark the near threshold (far-from-threshold) predictions for the width of the wrinkles. At the onset of
wrinkling their width is consistent with the NT prediction, but they soon expand to meet the FT prediction. In the final frame
we also see the wrinkle ridges begin to “turn” and start to form the triangular facets characteristic of the creased helicoid phase.
(b) Contour maps of the longitudinal stress component. Red (blue) corresponds to tensile (compressive) in-plane stress. As
the twist angle increases, the magnitude of the compressive stress remains approximately the same, though the width of the
compressive area broadens. The transition from longitudinal buckling to the angled creased helicoid is also evident in these
stress maps. (c) The stress profile and resultant amplitude (A = (〈H2(r)〉y)1/2) at various values of η.

(FT) zones. If the stress continues to be parabolic for
some time post-buckling, then we would see that the lon-
gitudinally buckled ribbon is well described by the NT
analysis, and within the region of NT validity. On the
other hand, the FT procedure assumes the compressive
stress in the wrinkled zone is zero at a first order ex-
pansion about a compression-free state. Ribbons with
finite thickness are expected to support some compressive
stress, in which case we would expect σyy(x < rwr) = 0,
or at least to decrease substantially, when η > ηlon.

By analyzing the local stress tensors at each facet
of our mesh, we find that for a given applied load T
(= 1.08× 10−3), the stress profile of our simulated ribbon

(Fig. 8a) becomes compressive at precisely the η0 =
√
24T

(= 0.161) that was predicted by Eq. (11). In Fig. 8a the
longitudinal buckling transition occurs at ηlon = 0.216,
after which the stress profile begins to flatten out. The
shape of this profile seems to approach the theoretical
profile for an infinitely thin ribbon in the FT approxima-
tion [10]. Importantly, however, we find that the buckled

ribbon continues to support compressive stress, and the
width of the compressive zone widens as the twist pro-
gresses. This was predicted by Qiu [37], but analytically
computing what the residual stress should be for the
twisted ribbon remains challenging and has not yet been
done in the literature.

In Fig. 8b we plot the residual stress at various values
of α and across ribbons of varying thickness. Regardless
of the degree of confinement, the ribbon’s residual stress
is linear in h/(W

√
T ). Longitudinal buckling functionally

caps the magnitude of stress the ribbon supports– we
can see this clearly by the collapse of data points onto
the same fitted line in Fig. 8b. At a fixed thickness and
tension the residual stress is the same, even when the
value of α increases. As the thickness of the ribbon tends
to zero, we expect the stress to vanish, since an infinitely
thin ribbon cannot support compression. This intuition
is also supported by our data.

Residual stresses are seen in other systems [38–40];
a saturation of residual stress has even been predicted
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for a circular sheet confined to a curved substrate [41].
However, given that the twisted ribbon is not externally
confined or adhered to a substrate, the relation between
the ribbon’s residual stress and these other examples is
not immediately obvious. The residual stress arises for
the same reason ηlon exceeds η0: the non-zero thickness
of the ribbon [9]. Like a beam, a ribbon of finite thickness
can support some amount of compression. Conversely,
some amount of compression seems necessary to maintain
the buckling pattern, as the lack of stress would allow
the ribbon to relax back into a flat state. Despite lack-
ing a precise explanation for the measured phenomenon,
these results are a crucial insight to the nature of the
longitudinal wrinkling transition: namely, this transition
is completely reversible since no hysteresis occurs, and
the longitudinally buckled and creased helicoid phases
support compression in the center of the ribbon.

3. Wrinkle Amplitude and Confinement

Transverse slices of the longitudinal wrinkles can be
extracted from a map of the mean curvature:

A(r) =
√

〈H2(r)〉y . (16)

Note that in this definition of amplitude, the mean cur-
vature H(r) is averaged along the longitudinal (y) axis
in the central third of the ribbon. In Fig. 9a are plots of
H(r), with red (blue) zones indicating above-the-plane
(below-the-plane) curvature. As the twist progresses the
wrinkles store more curvature and also begin to “turn”
into the triangular facets indicative of the creased helicoid
phase. Figure 9b plots Eq. (16) versus the transverse po-
sition, as well as the corresponding stress profile (like the
slices in Fig. 8a) measured at the same η (reminiscent of a
position wavefunction and its potential well). The edges
of the ribbon are in tension, so they remain flat, whereas
the center of the ribbon contains the longitudinal wrinkles
which form to almost fully relieve the compression.

As the twist progresses, the maximum amplitude A(r =
0) gradually increases. We identify ηlon, the onset of
longitudinal wrinkles, as the angle corresponding to the
the “knee points”, the approximate points of maximum
curvature [34], in the η vs amplitude curve, identified in
Fig. 4d. At angles larger than ηlon, the magnitude of the
amplitude continues to grow according to

A ∼ (α− αlon)
β . (17)

(Recall that α = η2/T .) The exponent β is extracted
from the sizeable linear portion of the slope of the ampli-
tude curve in log–log space, shown in the inset of Fig. 4d.
Fig. 10 shows the extracted β from the fits as a function
of T for the three different ribbon thickness probed in our
simulation. We find that β = 0.59±0.05 is approximately
constant, albeit with some scatter which may suggest
some dependence of β on the thickness of the sheet: the

FIG. 10. The maximum amplitude of longitudinal wrinkles
scales like A(r = 0) ∝ (α− αlon)

β . Values of β are extracted
from the amplitude curve in Fig. 4d and are plotted here for
ribbons of varying thickness and applied tension. We find
β = 0.59±0.05 with the average value given by the solid black
line. The horizontal dashed black line is the value Chopin and
Kudrolli [12] experimentally estimated to be β = 2/3.

amplitude of the wrinkles increases more rapidly (larger
value of β) for thicker ribbons. This is most likely be-
cause thicker ribbons have longer buckling wavelengths
λlon, with fewer total ridges fitting along the length of
the ribbon. The β found in our simulations is similar
to that reported by Chopin and Kudrolli [12] based on
experimental measurements which had more limited pre-
cision. While analytical calculations are currently lacking,
we hope that our results will lead to further work in this
direction.
We measure the width of the wrinkled zone rwr by

identifying “knee” of the amplitude profile (Fig. 9b), and
plot this rwr as a function of η in Fig. 11a. Chopin et
al. [10] predicted that for a ribbon of finite thickness,
rwr = 0 until the critical ηlon after which rwr might jump
directly to the NT curve ([10], Eq. (3)),

(

1− 12r2wr

)

=
24

α
, (18)

and eventually progress to following the FT curve ([10]
Eq. (50)),

(1− 2rwr)
2
(1 + 4rwr) =

24

α
(19)

Our simulation agrees with this in spirit, though we ob-
serve that after longitudinal buckling (denoted by the ver-
tical dashed black line) the ribbon jumps directly to the
FT prediction (plotted in solid red), similar to experimen-
tal observations with ribbons with similar thickness [12].
We also find that rwr grows a bit faster than the FT
prediction. Moderate tensions, such as T = 1.08× 10−3,
seem to more closely follow the FT prediction than smaller
tensions. Using a thinner ribbon and a very fine temporal
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FIG. 11. Tests of the NT (red, upper lines) and FT (blue, lower lines) model predictions at h = 127 µm, various ribbon tensions.
(a) At the onset of wrinkling (ηlon, dashed black line) the wrinkled zone emerges at a non-zero width. It widens as the twist
progresses, eventually asymptoting to rwr = 0.5 as α → ∞. This behavior is similar across various applied tensions, though
at moderate tensions (e.g. T = 1.08× 10−3) rwr adheres more closely to the theoretical FT prediction than it does at lower
tensions. (b) Another way to test the NT and FT predictions is by measuring the contraction χ of the ribbon. Here χ is plotted
against the inverse confinement parameter (such that small values of 1/α correspond to the greatest angles η). Across varying
tensions the ribbon tends to contract as a pure helicoid, following the NT prediction, until the onset of wrinkling (ηlon, dashed
black line). Post wrinkling, the contraction proceeds rapidly, at times even faster than the predicted FT slope. This difference
in scaling could be because of the transition to the creased helicoid phase, which is predicted to have a different contraction
scaling than the FT model [7, 13, 14]. The gray dashed line corresponds to the transverse buckling point, after which the ribbon
springs back to a lesser contraction.

resolution might show wrinkles developing at widths near
the NT curve (plotted in solid blue) before widening to
the FT curve.

4. Length Contraction

Another metric that distinguishes the NT from FT
approximations is χ = 1− Lee/L0, the contraction of the
ribbon where Lee is the end-to-end ribbon length at a
given η, and L0 is the ribbon length at η0 =

√
24T [13].

Fig. 11b plot χ/η2 as a function of inverse confinement
(1/α). Chopin et al. further summarize that as a ribbon

is twisted, a pure helicoid will contract as ([10], Eq. (20)),

χNT

η2
=

1

24
− 1

α
, (20)

(plotted in solid blue) whereas a ribbon in the FT approx-
imation would contract according to ([10], Eq. (52)),

χFT

η2
=

r2wr

2
, (21)

(plotted in solid red). For three simulations with various
applied tension, we find that initially the ribbon does
contract as a helicoid. Then immediately after the onset
of wrinkles it begins to contract more quickly, similar to
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the FT predictions. At times, however, the contraction
grows even quicker than the slope of the FT curve, partic-
ularly at low tensions. This difference in scaling could be
because of the ribbon’s transition into the creased helicoid
phase, which contracts more as an isometric packing of
the triangular facets than as an elastic wrinkling problem
(i.e. the FT prediction) [7, 13, 14].

It has been suspected that the NT approximations well
describe the onset of longitudinal buckling, and that the
FT approach is useful at larger twist angles; the transition
between these regimes is admittedly fuzzy [10, 14]. NT
analysis does a great job at predicting λlon [6], and we
show throughout this section that FT analysis is able
to capture much of the post-buckling behavior, such as
the general shape of the stress profile and width of the
wrinkled zone. We find that despite their individual
successes, neither the NT or FT analyses can entirely
capture the onset or development of the longitudinal
wrinkling phase. This deficiency is shown most clearly in
the contraction of the ribbon.

IV. CONCLUSION

We have used simple, computationally cheap, mass-
spring-model simulations to recreate the rich morphology
and phase behavior of twisted ribbons, which were previ-
ously realized experimentally and analyzed theoretically.
The subtleties of studying twisted ribbon morphology
provided the perfect test playground for our mechanical
model of thin sheets. We chose a mass-spring-model as
a simple, nostalgic extension of the ubiquitous coupled
oscillators physical system. The fine spatial control of the
MSM provides intuition for the mesoscopic physics (much
coarser than atomic but still discrete approximation of
the continuum) which drives morphological transitions in
elastic sheets. This particular MSM has a long history,
with analytical mappings for continuous bulk properties
when the underlying lattice is regular [20]. Attempts
have been made in the past to generalize the model to
be useful for a random lattice [23–27], and we propose
a hybrid of these past attempts which we have shown
translates the discrete mesh parameters to the continuous
bulk properties, regardless of underlying mesh topology.

Through precise transition detection and wrinkling anal-
ysis we have thoroughly probed the small twist, small
applied tension regime. We carefully examined the scal-
ing of the longitudinal buckling wavelength, and observed
a region of wrinkle suppression near the clamped edges.
As twist increases, the wrinkle amplitude grows with a
robust scaling constant β = 0.59 ± 0.05. Furthermore,
studying the stress profile of the ribbon revealed that
longitudinal buckling caps the amount of compression the
ribbon supports with its finite thickness. Measurements of
the wrinkled zone width and the ribbon’s net contraction
additionally reveal that the near- and far-from-threshold

approximations are able to capture some, but not all, of
the ribbons’ behavior.
These simulations are useful for probing regimes of

the twisted ribbon phase space which are difficult to
study experimentally. Additional deformation modes are
suspected to theoretically lurk in the low tension and
very thin “corners” of the phase space [10], approaching
the tensionless and isometric limits. These two regimes
are straightforward to study using simulations, since the
applied tension and thickness of the ribbon can be set
arbitrarily small in our framework. A slightly different
computational approach is necessary for the exactly iso-
metric case: a differential-algebraic equation (DAE) solver
is necessary to impose additional algebraic constraints
on the system. Our method already uses a DAE solver,
which could be readily adapted to study isometric sheets
with our methods. One can also imagine treating the
transverse buckling and looping transitions with the same
attention we have devoted to longitudinal buckling, in-
cluding the charming yarning transition [36]. The torque
response of ribbons during the twist procedure could also
be extracted from simulations and compared to exper-
iments [42]. The development of e-cones and d-cones
(highly localized deformation and stress focusing) in the
creased helicoid phase is another topic which could be fur-
ther illuminated through simulations [12, 43, 44]. Deeper
understanding of these myriad fascinating instabilities
remains to be unlocked by computational studies.

Further applications of this simulation framework in-
clude deformations of curved films or shells, wrinkling
on substrates, flat-folding and origami, and crumpling
through various geometries. Meshes can be generated with
any boundary shape or cutouts, and the resultant sheet
can be pre-stressed or plastically deformed (e.g. dimpling).
Our mesh model is well-suited for studying mechanical
responses of a sheet (pre- and post-deformation), and in-
ternal stress and energy measurements allow many modes
of data collection and analysis.

V. ACKNOWLEDGEMENTS

We thank Julien Chopin and Benjamin Davidovitch
for their expert thoughts and discussions. This research
was partially supported by NSF through the Harvard
University Materials Research Science and Engineering
Center DMR-2011754. ML was supported by the Ford
Foundation Predoctoral Fellowship and both ML and
JA were supported by the National Science Foundation
Graduate Research Fellowship Program under grant no.
DGE-1745303. AK was supported by National Science
Foundation grant DMR-2005090. CHR was partially sup-
ported by the Applied Mathematics Program of the U.S.
DOE Office of Science Advanced Scientific Computing
Research under contract number DE-AC02-05CH11231.



14

[1] J. W. S. Hearle, P. Grosberg, and S. Backer. Structural
mechanics of fibers, yarns, and fabrics. Wiley-Interscience,
1969.

[2] N. Pan and D. Brookstein. Physical properties of twisted
structures. ii. industrial yarns, cords, and ropes. Journal
of Applied Polymer Science, 83:610, 2002.

[3] J. Bohr and K. Olsen. The ancient art of laying rope.
Europhysics Letters, 93(6):60004, mar 2011.

[4] Albert Edward Green. The elastic stability of a thin
twisted strip—II. Proceedings of the Royal Society of
London. Series A - Mathematical and Physical Sciences,
161(905):197–220, July 1937. Publisher: Royal Society.

[5] David J. Crispino and Richard C. Benson. Stability of
twisted orthotropic plates. International Journal of Me-
chanical Sciences, 28(6):371–379, January 1986.

[6] C. D. Coman and A. P. Bassom. An asymptotic descrip-
tion of the elastic instability of twisted thin elastic plates.
Acta Mechanica, 200(1-2):59–68, September 2008.

[7] A. P. Korte, E. L. Starostin, and G. H. M. van der Heij-
den. Triangular buckling patterns of twisted inextensible
strips. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 467(2125):285–303,
January 2011. Publisher: Royal Society.

[8] Jakob Bohr and Steen Markvorsen. Ribbon Crystals.
PLoS ONE, 8(10):e74932, October 2013.

[9] Julien Chopin and Arshad Kudrolli. Helicoids, Wrinkles,
and Loops in Twisted Ribbons. Physical Review Letters,
111(17):174302, October 2013.

[10] Julien Chopin, Vincent Démery, and Benny Davidovitch.
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Appendix A: Discretized model of a continuous sheet

1. Stretching

In modeling a continuous sheet, we choose a discretiza-
tion scheme inspired by the Seung and Nelson (SN)
model [20] for a mesh of equilateral triangles. We ex-

tend the SN model to apply to meshes with triangles of
varying shape by modifying the prefactors of the energy
terms. Beginning with the in-plane stretching, the energy
density of a continuous elastic sheet can be written as

us =
1

2
ε · C · ε (A1)

where ε is the in-plane strain tensor and C is the stiffness
tensor. A 2D, isometric material has a stiffness tensor of
the form




C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212



 =





λ+ 2µ λ 0
λ λ+ 2µ 0
0 0 µ



 (A2)

where λ and µ are the Lamé coefficients. From these
we obtain the in-plane Young’s modulus and Poisson
ratio [20]

Y2D =
4µ (µ+ λ)

2µ+ λ
, ν =

λ

2µ+ λ
. (A3)

On the other hand, a discrete lattice has an energy per
spring given by

Es (rij) =
1

2

(

1

2

A

A0
ks

)

(sij − |xi − xj |)2 (A4)

for two nodes at xi, xj connected by a spring of length

sij and spring constant ks. A is the sum of the facet areas
adjacent to edge rij , and A0 is the area of an equilateral

triangle with side length sij . The term A/(2A0) is given
by Van Gelder [23], with typos in the original model
corrected by Lloyd et al. [24].

When every triangle in the mesh is equilateral, i.e. the
nodes are arranged periodically, the energy density can
be written as [21]

us =
1

2V

∑

b

α(b)
(

`(b)
)2

n
(b)
i n

(b)
j n

(b)
k n(b)

m εijεkm (A5)

where V is the volume of a cell surrounding a node, b is
the index of a bond connected to the node, α is the spring
constant of a half-length bond, and ` is the rest length
of a half-length bond. The vectors ni are unit vectors
parallel to the bond b, and i ∈ {1, 2}; εij are components
of the in-plane strain tensor, and Einstein summation
notation is used. Given this definition of energy density,
we can identify that the stiffness tensor is

Cijkm =
1

V

∑

b

α(b)
(

`(b)
)2

n
(b)
i n

(b)
j n

(b)
k n(b)

m . (A6)

In the regular (hexagonal) lattice A/(2A0) reduces to

unity, ` = s/2, and the cell volume V = 2
√
3`2. All the

springs have the same constant α = 2ks. Equating the
continuous and discrete forms of the stiffness tensor gives

λ = µ =

√
3

4
ks (A7)
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as obtained in previous work [20, 21]. Thus the in-plane
Young’s modulus and Poisson ratio for a regular (hexago-
nal) latice are

Y2D =
2√
3
ks, ν =

1

3
. (A8)

Typically for a non-regular lattice, A/(2A0) 6= 1, so the
quantities in Eq. (A8) no longer hold beyond a first order
approximation in the discretization process. Indeed for
non-regular mesh topologies, one cannot write an exact
formula for the in-plane Young’s modulus. Instead, we
choose a target Y2D = 2ks/

√
3 for the sheet so that the

stretching energy has the form

Es (rij) =
1

2

(√
3

4

A

A0
Y2D

)

(sij − |xi − xj |)2 , (A9)

as previously stated in Eq. (4). We show in Appendix C
that as the mesh size decreases, the bulk in-plane modulus
for the sheet converges to the target value for Y2D, and a
Poisson ratio of ν = 1/3. In other words, in the absence
of an exact translation between a continuum model and a
sheet with randomly placed nodes, we can approximate an
isometric sheet with a given modulus and ν = 1/3. This
is done by allocating the stiffness of each spring constant
based on the local topology of the mesh, such that all
calculations are local and still rely only on terms that are
first order in the deformation.

2. Bending

Still following the SN model [20], we begin with the
total bending energy for a continuous sheet with area S,
embedded in R

3:

Ub =
1

2
B

∫

S

H2dA, (A10)

where B is the bending rigidity, and H is the mean cur-
vature (calculated as the sum of principal curvatures at a
point). When the surface is deformed by a small amount
f , the mean curvature is approximately the Laplacian:
H ≈ ∇2f .
For a discrete mesh, we use the bending energy

Eb (n̂ijk, n̂ikl) =
1

2

(

2
A0

A
kb

)

|n̂ijk − n̂ikl|2 , (A11)

where n̂ijk and n̂ikl are the unit normals to triangles with

vertices ijk and ikl respectively; A is the sum of facet
areas adjacent to the edge ik between the two facets, and
A0 is the area of an equilateral triangle with side length
sik. Essentially this bending energy is a penalization of
misaligned normals for neighboring facets. The prefactor
2A0/A is inspired by Wardetzky et al. [26], who chose
it as a quantification of the shape (and thereby mass
distribution) of the triangle facets adjacent to the edge

in question. Although we present it as a ratio of areas,
the quantity encodes the local topology of the mesh.
In the case of a mesh composed entirely of equilateral

triangles, the prefactor 2A0/A again reduces to unity, so
the discrete bending energy is

Eb (n̂ijk, n̂ikl) =
1

2
|n̂ijk − n̂ikl|2 , (A12)

in agreement with the SN model. By rolling a mesh of
equilateral triangles into a cylinder, Seung and Nelson
related the continuous bending rigidity B to the discrete
bending constant kb [20]:

B =

√
3

2
kb. (A13)

This relationship does not hold for non-regular mesh
topologies, but as in the stretching case, we choose a target
B =

√
3/(2kb) for the sheet, which gives the bending

energy the form

Eb (n̂ijk, n̂ikl) =
1

2

(

4√
3

A0

A
B

)

|n̂ijk − n̂ikl|2 , (A14)

previously stated in Eq. (5), which we call the modified
Grinspun (mG) model. Appendix C demonstrates that
as the mesh size tends to zero, the bulk bending modulus
of the sheet converges to the target value for B. By
allocating the stiffness of each hinge spring according to
the surrounding mesh topology, we can use this local
deformation-based model to approximate a continuous
sheet with rigidity B.

There have been critiques of Seung and Nelson’s treat-
ment of the Gaussian rigidity in mapping the continuous
bending model to the discrete one [45]. However, in spite
of this critique of the SN bending model, we find that both
the SN model (Eq. (A12)) and the mG model (Eq. (A14))
perform well numerically and demonstrate convergence
as a function of mesh size, as discussed in Appendix C.

Appendix B: Numerical details

Here, we briefly summarize the numerical approach
used to model the twisting of thin ribbons in this work.
Simulations of twisted ribbons are performed using a cus-
tom code developed previously to study the crumpling of
thin sheets [30]. The code is implemented in C++ and
multithreaded using OpenMP [46]. As noted in the main
text, the mesh topology of the ribbons is generated by
randomly seeding a rectangular domain with nodes and
constructing a Delaunay triangulation via the Voro++
library [31, 32]. The random triangulation is regularized
using Lloyd’s algorithm, an iterative method that incre-
mentally steers the triangles to a more uniform shape and
size [33].

To evolve the dynamics of the ribbon in time under ap-
plied tension and twist, the equations of motion (Eq. (8))
are solved numerically using a hybrid integration scheme,
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as presented in Ref. [30]. In this approach, we recog-
nize that the ribbon deforms slowly and smoothly for the
majority of the simulation, which permits a quasistatic ap-
proximation of the equations of motion such that ai ≈ 0

for a node i in the sheet. The resulting equations of
motion,

ẋi = vi,

Fi = 0,
(B1)

describe a differential-algebraic system of equations, or
DAE, which contains both differential equations (ẋi = vi)
and algebraic constraints (Fi = 0) that must be simulta-
neously satisfied. Due to the presence of algebraic con-
straints, DAEs are typically solved using implicit methods,
and a backward differentiation formula (BDF) is used to
discretize and integrate this system. The solution vector
(xi,vi) at each new timestep is computed iteratively using
Newton’s method, and each Newton iteration entails a
solving a linear system. The linear systems are solved
using the conjugate gradient method, which is well-suited
for large, sparse, symmetric, positive-definite systems as
occur in our problem. Small performance boosts are also
obtained through preconditioning of the linear system
and are described in greater detail in Ref. [30].
While a majority of the deformations during twisting,

such as the onset of longitudinal wrinkles, are smooth, a
rapid deformation occurs during transverse buckling of
the sheet, and possibly self-contact. In these cases, the
local velocity at any point in the ribbon may be large,
and the quasistatic approximation no longer holds. The
breakdown of the quasistatic approximation is detected
by monitoring the maximum rate of change in velocity
at each timestep and identifying if it exceeds a specified
threshold. When the threshold is exceeded, the fully
dynamic equations of motion (Eq. (8)) are solved instead
using a standard explicit Runge–Kutta method. Both
the implicit and explicit methods employ adaptive step
control by measuring the discrepancy between a lower and
higher order solution at each step. We refer to Ref. [30]
for complete details on this method.

Appendix C: Model validation

Three modulus tests are employed to probe the re-
sponse of both types of spring models under different
loading conditions across various mesh resolutions: uniax-
ial stretching; uniformly loaded, simply supported bend-
ing; and pure shearing. In all tests the sheet is loaded
with an appropriate stress to produce a deformation well
within the Hookean regime for the sheet (i.e. well-modeled
by an analytical solution linear in ε); in every test the
target strain is ε = 2.5 × 10−5. These tests probe the
small-deformation stress–strain response of our sheet and
demonstrate convergence as a function of mesh resolution
for both spring models.

To test how well our MSM produces the expected bulk
material properties, we track the displacement of each

node in the mesh. Ideally the discretized mesh will deform
exactly as a continuous sheet would under the specified
loading conditions. We compare the actual position of
each node to the final homogeneous-deformation position.
The error of the entire mesh is then calculated as a scaled
L2 norm using the formula

E =

√

√

√

√

1

3A

N
∑

i=1

At
i‖xi − x

h
i ‖22 (C1)

where A is the area of the entire sheet, the sum is over
each node i, At

i is the area of the undeformed triangles
adjacent to a node, xi is the position of a node, and x

h
i is

the position the node should have under a homogeneous
deformation. The pre-factor of 1/3 counteracts the triple
counting of At

i.
We fit the error to the form

E = adb (C2)

where d is the characteristic length scale of the mesh
(mean spacing of the nodes, or exact spacing in the case of
a regular lattice) and a and b are fitting parameters. The
value of b tells us the order of convergence of the numerical
method with the chosen spring model. Two types of
meshes were tested: a regularly packed triangular lattice,
and a randomly seeded triangular lattice. The regular
meshes were generated to have similar non-equilateral
triangles at each corner, to reduce the errors contributed
by non-regular spring lengths at the boundary. Five sets
of random meshes with different seeds were generated to
fit the convergence across the random-type mesh.

Mesh type Aspect Ratio Node spacing range (mm)

Regular A 0.996 [0.500, 2.50]

Random A 1.00 [0.577, 2.24]

Regular B 8.66 [0.600, 5.00]

Random B 10.0 [0.707, 3.16]

TABLE III. Dimensions of the four test meshes used to per-
form the three types of modulus tests. All meshes had Young’s
modulus Y = 1.00GPa and thickness h = 1.00mm. The theo-
retically predicted value of Poissson ratio for any triangular
lattice is ν = 1/3 [20, 24]. Square test meshes (type A) were
used for the stretching and shearing tests, whereas long, thin
test meshes (type B) were used in the bending tests.

Table III gives the dimensions of the test meshes used.
“A” type meshes were used for the stretch and shear tests,
“B” types were used in the bend test. All sheets had
a Young’s modulus of Y = 1.00GPa and thickness of
h = 1.00mm (with corresponding bending rigidty B =
3.00N ·m).

The stretching and shearing effects are dependent only
on the sheets’ in-plane springs. In Figs. 12–14, we test
the SN model for stretching (Eq. (1)) versus the modified
Van Gelder (mVG) model (Eqs. (4) & (A9)).
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FIG. 12. Uniaxial stretching errors in the regular (left, trian-
gular markers) and random (right, X markers) meshes as a
function of mesh resolution. For both meshes the mVG model
(blue, lower point clouds) error has a smaller magnitude than
the SN model (red, upper point clouds).

The expected deformation of the sheet under uniaxial
stretching in the y direction is

Fstretch (x0, y0, z0) → ((1− νεst)x0, (1 + εst) y0, z0)
(C3)

where εst =
∆L
L is the target strain. The stress applied to

the edges of the sheet is thus σst = Y εst. Figure 12 plots
the error, Eq. (C1), across a range of mesh resolutions.
On the left, in triangular markers, are the errors for a
regular mesh, and on the right, with cross markers, are
the random mesh errors across all five random sheets.
For both mesh topologies the mVG model has smaller
magnitude of error than the SN model, and for the regular
mesh, the mVG model also converges at a slightly greater
order.
As an additional metric, during the stretch test we

also measure the percent error in the actual Poisson ratio
compared to the analytically dictated value of ν = 1/3 [20,
24]. Here the percent error of ν is calculated from bulk
measurements of the sheets’ width and length. Figure 13
shows that in all cases the mVG model more consistently
reproduces a mesh with ν = 1/3.
A sheet subjected to pure shear along all four edges

should deform as

Fpure shear (x0, y0, z0) → (x0 + εshy0, εshx0 + y0, z0)
(C4)

where εsh = 1
2

(

∆W
L + ∆L

W

)

is the target strain. The shear
stress applied to the edges is therefore σsh = 2Gεsh, with
G the shear modulus. In this case we see in Fig. 14 that the
SN model has errors of smaller magnitude than the mVG
model and also converges at a greater order. However, in

FIG. 13. Percent errors in the measured Poisson ratio com-
pared to the expected value of ν = 1/3 in the regular (left,
triangular markers) and random (right, cross markers) meshes.
The mVG model (blue, lower point clouds) more reliably pro-
duces the expected Poisson ratio than the SN model (red,
upper point clouds).

FIG. 14. Pure shearing errors in the regular (left, triangu-
lar markers) and random (right, cross markers) meshes as a
function of mesh resolution. For both meshes the SN model
(red, lower point clouds) has smaller magnitude of errors and
converges at a higher order than the mVG model (blue, upper
point clouds).
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FIG. 15. Uniformly loaded, simply supported plate bending
errors in the regular (left, triangular markers) and random
(right, X markers) meshes as a function of mesh resolution.
For the regular mesh the mG model (blue, lower point clouds)
has a smaller magnitude of error and greater order of con-
vergence than the SN model (red, upper point clouds). The
random meshes converge at the same order, but in general the
magnitude of the error is smaller when using the mG model.

the regular mesh case (left, triangular markers), the mVG
model performs more consistently than the SN model.

Throughout this paper we implemented the mVG model
for stretching because of its advantages in reproducing
the expected Young’s modulus and Poisson effect. Al-
though the mVG model has a disadvantage under shear

deformations, shear is not particularly relevant for our
twisted ribbon studies. Further, the differences between
the models are slight for the random meshes, so we con-
cede one less-relevant disadvantage to employ two salient
advantages.
The bending effects are dependent only on the sheets’

out-of-plane rigidity, from the hinge edge pseudo-springs.
As shown in Fig. 15, we test the SN model for bending
(Eq. (2)) versus the mG model (Eqs. (5) & (A14)).

A uniformly loaded, simply supported plate (rotation
is allowed at the free edges, but edges are fixed in the z
direction) has a bent profile of

zss (y) = − εb
5L3

(

5L4 − 24L2y2 + 16y4
)

(C5)

where y ∈ [−L/2, L/2] and εb = ∆zmax

L is the target strain.

The stress applied across the sheet is σb = 1024
15

B
L3 εb,

with B the bending rigidity. Therefore the expected
deformation of the sheet is

Fss bend (x0, y0, z0) → (x0, y0, zss (y0)) . (C6)

Figure 15 shows that the mG model performs better in
the regular mesh than the SN model. For random meshes
the models converge at the same order, but generally the
mG error has a smaller magnitude. Thus we implement
the mG model for bending in this paper because its error
is generally less than the SN bending model.

While we find the definition of error in Eq. (C1) to most
thoroughly quantify the amount of error across the sheet,
we can also calculate the percent error of the modulus of
interest. The average node spacing of our ribbon meshes
is d = 1mm. For a test mesh of similar node spacing, the
mVG/mG models give average error ≈ 4.5% for Young’s
modulus, ≈ 1.5% for shear modulus, and ≈ 1.9% for
bending modulus.


