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Abstract Chronic myeloid leukemia (CML) is a blood cancer characterized by dysregulated
production of maturing myeloid cells driven by the product of the Philadelphia chromosome, the
BCR-ABL1 tyrosine kinase. Tyrosine kinase inhibitors (TKls) have proved effective in treating CML,
but there is still a cohort of patients who do not respond to TKI therapy even in the absence of
mutations in the BCR-ABL1 kinase domain that mediate drug resistance. To discover novel strate-
gies to improve TKI therapy in CML, we developed a nonlinear mathematical model of CML hema-
topoiesis that incorporates feedback control and lineage branching. Cell-cell interactions were
constrained using an automated model selection method together with previous observations and
new in vivo data from a chimeric BCR-ABL1 transgenic mouse model of CML. The resulting quan-
titative model captures the dynamics of normal and CML cells at various stages of the disease and
exhibits variable responses to TKI treatment, consistent with those of CML patients. The model
predicts that an increase in the proportion of CML stem cells in the bone marrow would decrease
the tendency of the disease to respond to TKI therapy, in concordance with clinical data and
confirmed experimentally in mice. The model further suggests that, under our assumed similarities
between normal and leukemic cells, a key predictor of refractory response to TKI treatment is an
increased maximum probability of self-renewal of normal hematopoietic stem cells. We use these
insights to develop a clinical prognostic criterion to predict the efficacy of TKI treatment and design
strategies to improve treatment response. The model predicts that stimulating the differentiation of
leukemic stem cells while applying TKI therapy can significantly improve treatment outcomes.

Editor's evaluation

This is an important study that investigates the impact of tyrosine kinase inhibitors (TKls) in chronic
myeloid leukemia. Through a combination of preclinical in vivo measurements, clinical data, and
computational modeling, the authors present solid evidence regarding the heterogeneous effects
of TKls in patients and how the response to treatment may be improved. This study is of interest to
those working in the fields of mathematical oncology and cancer biology.
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Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm of the hematopoietic system, which
normally produces billions of mature myeloid and erythroid cells on a daily basis, is tightly regulated,
and accommodates massive increases in the production of individual cell types in response to physio-
logical and pathological stresses. The hematopoietic system is organized hierarchically as a collection
of progressively more differentiated cells starting from a hematopoietic stem cell (HSC) located in the
bone marrow (BM) and ending with postmitotic terminally differentiated myeloid and lymphoid cells
(Rieger and Schroeder, 2012; Liggett and Sankaran, 2020).

CML is characterized by an overproduction of myeloid cells including mature granulocytes (neutro-
phils, basophils, and eosinophils) and their immediate precursors (metamyelocytes, myelocytes,
and promyelocytes), and of myeloid progenitors (Jamieson et al., 2004) including multipotential
progenitors (MPPs) and committed progenitors (common myeloid progenitors [CMP], granulocyte-
macrophage progenitors [GMPs], and megakaryocyte-erythroid progenitors [MEPs]). Untreated, the
disease has three distinct phases (Chereda and Melo, 2015). In the initial ‘chronic’ phase, the differ-
entiation of myeloid progenitors is essentially normal, resulting in excessive levels of mature postmi-
totic neutrophils and their immediate precursors. In later stages of the disease (accelerated phase and
blast crisis), differentiation is reduced and expansion of immature progenitors is observed. Additional
clonal karyotypic abnormalities are typically only observed during the accelerated and blast crisis
phases (Hehlmann et al., 2020).

CML has one of the simplest cancer genomes. It is driven by a single genetic abnormality arising
somatically in an HSC, the Philadelphia (Ph) chromosome, the result of a balanced translocation
between chromosomes 9 and 22 that creates a fusion of the genes for BCR and ABL1. The product
of the BCR-ABL1 fusion gene is a dysregulated cytoplasmic protein-tyrosine kinase, BCR-ABL1. CML
thus represents a natural model of dysregulated granulocytopoiesis (Quintas-Cardama and Cortes,
2009).

Cell biological studies have shown that Ph* cells expressing markers of normal HSC are capable of
engrafting immunodeficient mice (Sirard et al., 1996; Lewis et al., 1998), implying that these cells
are leukemia-initiating or leukemic ‘stem’ cells (LSCs). More mature committed progenitors in CML,
like normal progenitors, lack sustained self-renewal capacity and cannot stably engraft immunodefi-
cient mice nor generate hematopoietic colonies in vitro upon serial replating (Huntly et al., 2004).
The proportion of LSCs in the BM is highly variable across CML patients at diagnosis and can range
from a few percent to nearly 100% (Petzer et al., 1996; Diaz-Blanco et al., 2007, Abe et al., 2008;
Thielen et al., 2016), perhaps reflecting different periods of time patients spend in chronic phase
before they are diagnosed, different rates of disease progression, or both.

There is persuasive experimental evidence of significant feedback regulation of different cell
compartments in the dynamics of myeloid cell production in both normal and CML hematopoiesis,
including signaling between the normal and CML cells (Jiang et al., 1999; Devireddy et al., 2005;
Vicente-Dueiias et al., 2009, Naka et al., 2010; Reynaud et al., 2011; Zhang et al., 2012; Krause
et al., 2013; Walenda et al., 2014; Welner et al., 2015). For instance, experiments in a mouse model
of CML provided evidence that IL-6, produced by leukemic neutrophils, blocked MPP differentiation
toward a lymphoid fate, implying feedback from the myeloid lineage onto MPPs (Reynaud et al., 2011).
Surprisingly, our knowledge of the details of feedback regulation in hematopoiesis is still incomplete,
especially for granulopoiesis, where even late-stage feedback interactions are poorly understood. For
example, two cytokines, granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage
colony-stimulating factor (GM-CSF), can pharmacologically increase neutrophil production, but mice
lacking both cytokines maintain baseline neutrophil levels and can still increase neutrophil produc-
tion in response to infection (Basu et al., 2000). In many cases, it is not known which cell types are
providing and receiving the feedback, what signals are used, and what aspects of proliferative cell
behavior they influence (i.e., proliferation rates, renewal probability, or progeny fate choice).

In spite of this knowledge deficit, CML can be treated quite effectively using selective small-
molecule tyrosine kinase inhibitors (TKls) of the BCR-ABL1 kinase. TKls such as imatinib, dasatinib,
and nilotinib, which inhibit proliferation and increase apoptosis of Ph* cells, have dramatically lowered
CML death rates (Gambacorti-Passerini et al., 2011). The response to TKI therapy in CML is moni-
tored primarily by determining the level of BCR-ABLT mRNA transcripts in peripheral blood, normal-
ized to a control RNA and expressed as a percentage on an International Scale (Arora and Press,
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2017). BCR-ABL1 transcript levels, an approximation of the proportion of circulating malignant cells
at any given time, generally decrease exponentially in patients responding to TKI therapy resulting
in at least two distinct slopes when plotted semi-logarithmically—an initial rapid decline attributed
to TKl-induced killing of more mature myeloid cells, and a subsequent slower decline postulated to
represent lower death rates of more primitive leukemic stem/progenitor cells (Michor et al., 2005).
Clinical resistance to TKI therapy in CML is a significant problem and is classified as acquired resistance
(increasing BCR-ABLT transcript levels following a substantial decrease) or primary resistance (lack of
an adequate initial response). Many patients with acquired resistance have developed mutations in
the BCR-ABL1 kinase domain that mediate pharmacological resistance to the TKI (Ernst and Hoch-
haus, 2012). By contrast, 10-15% of newly diagnosed CML patients fail to achieve an ‘early molec-
ular response,” defined as the level of BCR-ABLT transcripts being less than 10% at 3 mo (Hanfstein
et al.,, 2012; Marin et al., 2012). Clinical data indicate that switching TKls may not benefit these
patients (Yeung et al., 2012, Yeung et al., 2015), suggesting that this group is destined to do poorly
regardless of the specific inhibitor used. BCR-ABL1 mutations are generally not present in this group
of patients (Zhang et al., 2009; Pietarinen et al., 2016), and thus the mechanism(s) underlying this
primary resistance is unclear. We hypothesized that these variable patient responses to TKI therapy
arise from nonlinearity introduced by non-cell-autonomous interactions between normal and CML
cells. To test this hypothesis, we developed a novel mathematical model of CML hematopoiesis and
TKI treatment that incorporates lineage branching and interactions between normal and CML cells
through feedback and feedforward regulation.

Mathematical modeling of leukemia has a long history aimed at understanding disease progres-
sion and improving treatment response using single and combination targeted therapies and immu-
notherapy (Whichard et al., 2010, Pujo-Menjouet, 2015; Brunetti et al., 2021, Kuznetsov et al.,
2021; Roeder and Glauche, 2021). Further, recent efforts have been made to integrate mathematical
modeling in clinical decision-making to design personalized therapies (Hoffmann et al., 2020; Engel-
hardt and Michor, 2021). Many models of leukemia have utilized simplified lineage architectures
and minimal feedback (Roeder et al., 2006, Komarova and Wodarz, 2007; Horn et al., 2008; Foo
et al., 2009; Hihnel et al., 2020; Pedersen et al., 2021). While these models can be made to fit the
multiphasic disease response data of CML to TKI treatment, the simplicity of the models can make
these fitted parameters of limited clinical value. More physiologically accurate, nonlinear models that
account for cell-cell signaling and lineage branching are expected to improve clinical relevance. Math-
ematical models that incorporate feedback signaling have been developed in normal (Engel et al.,
2004; Marciniak-Czochra et al., 2009, Mahadik et al., 2019, Mon Pére et al., 2021) and diseased
(Wodarz, 2008; Sachs et al., 2011; Krinner et al., 2013; Stiehl et al., 2014; Stiehl et al., 2015;
Crowell et al., 2016, Woywod et al., 2017; Jiao et al., 2018, Stiehl et al., 2018; Zenati et al., 2018;
Park et al., 2019, Sharp et al., 2020) hematopoiesis. Because of the vast number of possible ways
in which feedback models of normal hematopoiesis and leukemia can be configured, mathematical
models tend to greatly simplify the lineage architectures and the feedback interactions among the
cell types. For example, Manesso et al., 2013 developed a hierarchical ordinary differential equation
(ODE) model of normal hematopoiesis containing multiple cell types and branch points (16 cell types
and 4 branch points) in the lineage tree. Limiting the feedback loops to involve only local, negative
regulation (e.g., regulation by self and immediate progenitor/progeny in the lineage tree) results in
about 10° models, which enabled the use of a stochastic optimization algorithm to obtain parameters
consistent with homeostasis and a requirement for a rapid return to equilibrium following system
perturbations.

In the context of leukemia, the model architectures are typically much simpler. Generally, models of
leukemia introduce a parallel mutant lineage with the same structure as that used to model the normal
hematopoietic cells but with different parameters. For example, Wodarz developed an unbranched
lineage ODE model of normal and leukemia stem and differentiated cells in which feedback from the
differentiated cells controlled whether the stem cells divided symmetrically or asymmetrically, and
demonstrated this provides a mechanism for blast crisis in CML to occur without additional mutations
(Wodarz, 2008). Krinner et al. incorporated positive and negative feedback regulation of differentia-
tion and proliferation in an unbranched lineage model that combined a discrete agent-based model
for the stem cell compartment with an ODE system for the progenitor and differentiated cells to
provide a detailed view of the stem cell dynamics and to test the effect of therapies (Krinner et al.,
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2013). Stiehl et al., 2015 developed an unbranched lineage ODE model of normal and leukemic
cells in which only negative feedback regulation of stem and progenitor cell self-renewal fractions was
considered, and this was further limited to arise only from factors produced by the postmitotic, mature
normal and leukemic cells. Later work extended this approach to investigate clonal selection and
therapy resistance (Stiehl et al., 2014), the role of cytokines on leukemia progression (Stiehl et al.,
2018), combination treatment strategies (Banck and Gérlich, 2019), and niche competition (Stiehl
et al., 2020). Clonal competition was also considered in an ODE feedback model of CML (Woywod
et al., 2017) and a stochastic model with feedback (Dinh et al., 2021). Simpler unbranched lineage
models of normal and leukemic cells in which only the normal cells respond to feedback but normal
and leukemic cells compete for space in the BM have been used to investigate regimes of coexistence
of normal and leukemic cells (Crowell et al., 2016; Jiao et al., 2018) and design combination thera-
pies using optimal control algorithms (Sharp et al., 2020).

Here, we develop a nonlinear ODE model of normal and CML hematopoiesis using a general
approach that integrates an automated method, design space analysis (DSA; Fasani and Savageau,
2010), with data gleaned from previously published experiments, and from two new in vivo exper-
iments presented here that separately decrement the number of stem cells and terminally differ-
entiated myeloid cells in the BM of mice. This approach enables us to systematically select among
plausible model architectures and signaling interactions without a priori knowledge of which cells
are providing and receiving signaling stimuli. We start with a model for normal hematopoiesis that
accounts for stem, multipotent progenitor cells, and two types of terminally differentiated cells repre-
senting the myeloid and lymphoid lineage branches. This approach allows us to reduce the potential
model space from about 60,000 models to a single model class and reveals the existence of feed-
forward and feedback mechanisms. We then extend the model to incorporate CML hematopoiesis
by introducing a parallel lineage of CML cells with the same model architecture but with different
parameters. The model captures the dynamics of CML at various stages of the disease and exhibits
variable response to TKI treatment consistent with that observed in clinical data. The model suggests
biomarkers of primary resistance, identifies the underlying mechanisms governing the response to TKI
therapy, and suggests new treatment strategies.

Results

Model of normal hematopoiesis

The primary challenge in developing mathematical models of normal and CML hematopoiesis is
sorting through the combinatorial explosion of models that occurs when cell-cell signaling interac-
tions are taken into account. Consider the model hematopoietic system shown in Figure 1A, which
accounts for hematopoietic stem (HSC; S), multipotent progenitor (MPP; P), and two types of post-
mitotic, terminally differentiated cells—myeloid (TD,,) and lymphoid (TD)). The HSC self-renew with
fraction (e.g., probability) p, or differentiate with fraction 1-p,. That is, the fraction of HSC that remain
as HSC after division is po. The MPPs self-renew with fraction p; and differentiate into either lymphoid
or myeloid cells with fractions g; and 1-p;-qy, respectively. The HSC and MPPs divide with rates #;
and 7, and the myeloid and lymphoid cells die at rates d,, and d, respectively. The ODEs that govern
the dynamics of the cells are given in ‘Methods.” Assuming that there is either positive or negative
regulation of the self-renewal and differentiation probabilities and division rates of any cell type from
any other cell type results in 59,049 models, counting each combination of regulated signaling as a
separate model.

To select the most physiologically accurate models, we first filtered the models using an auto-
mated approach (DSA) developed by Savageau and co-workers (Savageau et al., 2009; Fasani and
Savageau, 2010; Lomnitz and Savageau, 2016) that enables models to be distinguished based on
their range of qualitatively distinct behaviors, without relying on knowledge of specific values of the
parameters. This method relies on identifying boundaries in parameter space that separate qualita-
tive behaviors of a particular model, which is much more efficient than searching for model behaviors
directly. The boundaries can be approximated from a sequence of inequalities that identify regions
where one term on the right-hand side of each ODE (e.g., the rate of change) dominates all others
in the sources (positive terms) and another dominates the sinks (negative terms). This is known as a
dominant subsystem (S-system) of the model. The number of S-systems in each model depends on the
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| 729 Models |

Figure 1. Branched lineage model of normal hematopoiesis with feedback regulation. (A) Branched lineage model consisting of hematopoietic stem
cells (HSC; S), multipotent progenitor cells (MPP; P), and postmitotic, terminally differentiated myeloid (TD,,) and lymphoid (TD)) cells. Modulation of
the HSC and MPP self-renewal fractions (p, and py), division rates (1, and 7 ,), and fate switching probability (g;) through feedback can arise from any
cell type. The different line styles correspond to regulation by a particular cell type (dashed for S, solid for P, dot-dashed for TD,, and dotted for TD,).
(B) Using Design Space Analysis, four candidate model classes are identified that differ in how HSCs are regulated. (C) Using biological data from the
literature as discussed in the text, we reduced the model space by hypothesizing that factors secreted by terminally differentiated myeloid cells direct
the fate of MPPs (e.g., IL-6) and those by MPPs suppress HSC self-renewal (e.g., CCL3).

number of combinations of positive and negative terms in the rates of change. If the equilibria of the
S-systems, which are determined analytically, are not self-consistent (e.g., consistent with the assumed
dominance of terms reflected in the inequalities) or the equilibria are not stable, then the S-system
is rejected. If all the S-systems of a particular model are rejected, then that model is removed from
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further consideration. Models with at least one self-consistent and stable S-system are viable candi-
dates for further analysis. DSA can be easily automated to make the analysis of very large numbers
of equations feasible. Details are provided in ‘Methods’ and ‘Appendix 1’ (Section 1). The result of
this procedure is the elimination of all but the four model classes shown in Figure 1B, which require
negative regulation of the stem cell self-renewal fraction but differ by where this regulation arises. The
models within the classes share at least one S-system and have common qualitative behaviors. The
differences between models in a class lie in whether or not there is positive, negative, or no regulation
on the rest of the parameters from any of the cell types. This reduces the number of possible models
to 26,244,

Previous work has implicated several feedback mechanisms active in both normal and malignant
hematopoiesis. Interleukin-6 (IL-6) is produced by differentiated myeloid cells and acts to bias MPPs
toward a myeloid fate (Reynaud et al., 2011, Welner et al., 2015). Such negative feedback circuits,
known as fate control, have been shown to provide an effective strategy for robust control of cell prolif-
eration and reduction of oscillations in branched lineages (Buzi et al., 2015). The chemokine CCL3
(also known as macrophage inhibitory protein o [MIP-1a]), produced in BM by basophilic myeloid
progenitors (Baba et al., 2016), acts to inhibit the proliferation and self-renewal of normal HSC (Brox-
meyer et al., 1989; Staversky et al., 2018), but CML HSC are relatively resistant to its action (Eaves
et al.,, 1993, Baba et al., 2013). In hypothesizing these regulatory networks, we arrived at a single
model class as shown in Figure 1C. In this class, there are 729 model candidates, which differ only
in how the HSC and MPP cell division rates and the MPP self-renewal fraction are regulated. These
above results suggest that IL-6 is a candidate feedback factor expressed in the myeloid compartment
(TD,,) with the ability to negatively regulate the fraction g, of MPPs that differentiate into lymphoid
cells. CCL3 is a candidate factor mediating negative feedback from the MPP population onto HSC
self-renewal. To further constrain the remaining models, we performed cell biological experiments
in mice to glean information about cell-cell interactions by separately perturbing the stem cell and
myeloid cell compartments.

Depletion of HSC increases HSC and MPP proliferation

As described in ‘Methods,” healthy C57BL6/J (B6) mice were treated with low-dose (50 cGy) ionizing
radiation, previously shown to be selectively toxic to HSC in the BM (Stewart et al., 1998). The BM
stem/progenitor compartment was analyzed by flow cytometry in untreated mice, and on days 1, 3,
and 7 post-irradiation, using the gating strategy in Figure 2A. These time points and the number of
mice analyzed at each time point were informed by a Bayesian hierarchical framework for optimal
experimental design of mathematical models of hematopoiesis (Lomeli et al., 2021). In particular, the
Bayesian framework suggests combining early time points (soon after radiation was applied) with late
time points because the early time points provide more information about division rates, while the late
time points provide more information about the feedback parameters. One day after treatment, we
observed an acute approximately twofold decrease in the relative size of the HSC compartment in the
irradiated mice (Figure 2B), accompanied by approximately threefold increase in proliferation rates
for both HSC and MPPs (Figure 2C). There was no significant change in MPP population, however,
and the system returned to equilibrium by day 7. These results suggest that the HSC population exerts
negative feedback on their own division rate (7 ) and inhibits the division of MPPs through a negative
feedforward loop on 1 ,.

Depletion of mature myeloid cells increases the MPP population

Bé mice were treated with the anti-granulocyte antibody RB68C5 (50 pg), and their BM was analyzed 1
d after treatment (see ‘Methods’). This treatment resulted in an ~20% decrease in mature BM myeloid
cells, as measured by CD11b expression (Figure 2D and E), and was accompanied by a concomitant
increase in the size of the phenotypic MPP compartment (Figure 2E) and a decrease in the HSC
compartment (Figure 2E). These results suggest that there is a negative feedback loop from the
myeloid cells onto the MPP self-renewal fraction p;.

Taking all these results into consideration, we arrive at the feedback-feedforward model shown in
Figure 2F. The negative feedback loops shown in blue correspond to those suggested by previous
experimental data, while the negative feedback and feedforward loops in red are suggested by the cell
depletion experiments presented here. See ‘Methods’ for a detailed description of the corresponding
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Figure 2. Fluorescence-activated cell sorting (FACS) analysis of mouse Lin-Sca-1+c-Kit+ (LSK) bone marrow stem/progenitor cells and the proposed
branched lineage hematopoiesis model. (A) Gating schema for phenotyping hematopoietic stem cells (HSC, defined as LSK CD34-CD48-) and
multipotential progenitors (MPP, defined as LSK CD34+ CD48+), and BrdU incorporation in their respective compartments. (B) Distributions of HSC
(blue), MPP (orange), and other (purple) compartments on days 1, 3, and 7 in the bone marrow (BM) of control (CTRL) B6 mice and mice that received 50
cGy radiation. (C) Frequency of HSC and MPP proliferation in CTRL (gray bars) and irradiated (blue bars) mice measured by BrdU incorporation on days
1,3, and 7. Data are shown as mean + SEM. *p<0.05. (D) Representative histograms depicting the frequency of myeloid cells as measured by CD11b
expression in mice 24 hr after intravenous administration of isotype control (iso) or RB68C5 (50 pg) antibody. (E) Left panel: bar graph showing the
frequency of CD11b+ cells in BM of mice that were treated with isotype control antibody (Iso; orange bar, n = 3)) or RB468C5 antibody (50 pg; blue bars,

Ys

Figure 2 continued on next page
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Figure 2 continued

n = 3). Right panel: HSC (blue), MPP (orange), and other cell type (purple) frequencies from mice that received isotype or RB6-8C5 antibody. Data are
shown as mean + SEM. *p<0.05. (F) Proposed feedforward-feedback model of hematopoiesis with associated feedback strengths denoted with y;-ys.
The negative feedback loops shown in blue correspond to those suggested by previous experimental data (Reynaud et al., 2011, Staversky et al.,

2018), while the negative feedback and feedforward loops in red are supported by our cell depletion experiments in (A-E).

ODEs. Although these validation data were derived from mice, we hypothesize that similar cell-cell
signaling occurs in humans.

Parameter estimation for feedback-feedforward model of
hematopoiesis

To determine biologically relevant parameters for the feedback-feedforward model in Figure 2F, a
grid-search algorithm was employed. The full ODE model is given in ‘Methods’ and Appendix 1
(Section 2). The 12 model parameters (proliferation and death rates, self-renewal and branching
fractions, feedback/feedforward gains) were sampled using a random uniform distribution for each
parameter. See ‘Methods,” Appendix 1 (Section 3), and Appendix 1—tables 2 and 3 for details
and a full parameter list. Once parameter values were chosen, the model was simulated for long
times. If a parameter set resulted in steady state values consistent with the range of values previously
reported for a dynamic human hematopoiesis model (Manesso et al., 2013), that parameter set
was accepted. Out of ~10° possible parameter combinations, a total of 1493 parameter sets were
accepted (Appendix 1—figure 4). We further restricted the candidate parameter sets by considering
only those with sufficiently large feedforward gains on the MPP division rate (ys > 0.01) in order to
focus on the novel feedforward dynamics. This reduced the number of eligible parameter sets to
563, and their distributions are shown in Appendix 1—figure 5. Each of these parameter sets can be
thought of as representing the ‘normal’ condition of a virtual patient by having different individual
parameters, for example, due to genetic, epigenetic or environment factors, that nevertheless result
in a ‘normal’ homeostatic hematopoietic system. The different parameter sets thus model a range of
variability across individual CML patients. The values of the parameters used are given in Appendix
1, Section 3.

Sensitivity analyses of hematopoiesis model

DSA can be used to determine qualitative model behaviors and how sensitive the model is to pertur-
bations of key parameters. Here, we focused on the feedback gains y, and y; on the HSC and MPP
self-renewal probabilities, respectively (see Appendix 1, Section 1.3 for details, and for sensitivity
analyses for other parameters, see Figure 3—figure supplement 1). As indicated in Figure 3A, DSA
identifies four regions (design space) in the y; and y; plane which the dynamics are governed by
different S-systems. Using a parameter set in each design space region (indicated by white dots) as
a base value, we performed a parameter sweep in which we vary y; and y; in a range within 0.9-1.1
times the magnitude of their original values. In Figure 3B, the evolution of each of the cell popula-
tions is shown, starting from an initial condition in which there are only a small number of HSC. The
different graphs correspond to the parameter sets (Appendix 1—table 4) in the four regions of the
design space although the dynamics are shown for the full ODE solutions. The solid curves denote
results from the original (white dot) parameter set, and the shading denotes the range of behaviors
when the parameters are varied. The black and blue curves correspond to the HSC and MPPs, respec-
tively, while the dark-green and light-green correspond to the terminally differentiated myeloid and
lymphoid cells. While the system tends to equilibrium for all parameter combinations, the approach
to equilibrium is different. The dynamics in regions i and ii are monotonic while those in regions iii
and iv are not (e.g., the equilibria in regions i and ii are stable nodes, while those in regions iii and
iv are stable spirals). Further, the larger the y;, the faster the approach toward equilibrium. The cell
numbers and proportions in each design space region are different as well. In regions i and ii, the
HSC dominate while in regions iii and iv the differentiated myeloid cells dominate the population.
Further, the number of cells in regions i and iii is larger than those in regions ii and iv. The equilibrium
cell populations in region iii correspond more closely to the physiological populations identified by
Manesso et al., 2013. Figure 3—figure supplement 2 depicts the effective parameters in region iii
as it develops toward the physiological steady state.
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Figure 3. Qualitative behavior of feedforward-feedback model and parameter sensitivity. (A) The colored regions
(i-iv) represent areas of design space in which there are distinct qualitative behaviors as a function of the feedback
gains y; and y; of the hematopoietic stem cell (HSC) and multipotential progenitor (MPP) self-renewal fractions,
respectively. White dots denote specific parameter combinations. (B) The dynamics for each cell compartment

Figure 3 continued on next page
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Figure 3 continued

within each of the four design space regions (i—iv). Solid lines represent ordinary differential equation (ODE)
solutions using the specific parameter combinations (black dots in A) while the lightly colored regions represent
the range of ODE solutions resulting from perturbations in y; and ys in a range within 0.9-1.1 times their original
values. The blue and black curves correspond to the HSC and MPPs, respectively, the green and turquoise curves
correspond to the myeloid and lymphoid cells. (C) The return to equilibrium following partial depletion of mature
myeloid cells (10%, 50%, 90%) using the parameter combination (white dot) in region iii.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The dynamics from the steady state with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value from Appendix 1—table 4.

Figure supplement 2. Effective parameters for proliferation, self-renewal, and branching as the solutions to the
model for the normal hematopoietic system approach steady state.

We next investigated the sensitivity of the model to perturbations about the equilibrium cell popu-
lation. In Figure 3C, we present the results obtained by reducing the number of terminally differen-
tiated myeloid cells from their equilibrium value by 10% (dot-dashed), 50% (dashed), and 90% (solid)
and with parameters from design space region iii (Appendix 1—table 4). By initially depleting the
myeloid cells, which is similar to the experiment in Figure 2D and E, the hematopoietic system is
shifted away from its steady state. While the presence of the negative feedback loops introduces
small magnitude oscillations of the HSC, MPPs, and lymphoid cells, the myeloid cell dynamics are
monotonic and the system robustly returns to its steady state over times that are consistent with those
established in previous experiments (Reynaud et al., 2011) for similar perturbation studies.

Extension of the hematopoiesis model to CML

Following previous modeling studies, we modeled CML by introducing a parallel lineage of mutant
leukemic cells (denoted by the superscript L) but with the behavior of that lineage coupled at
many points to the behavior of non-mutant cells, and vice versa. In particular, the model for normal
and CML cells shares the same lineage structure and feedback architecture with both normal and
mutant cell types providing a source of regulating factors, and although all the leukemic parameters
(Appendix 1—table 3) could be different from their normal counterparts (Appendix 1—table 2),
we begin by assuming the only difference between the two lineages is a decrease in the feedback
strength for leukemic HSC (HSC"; SY), as indicated by p," in the schematic in Figure 4A. This makes the
leukemic cells less responsive to negative feedback and enables leukemic cells to gain a competitive
advantage for growth. One candidate mediator of this negative feedback is CCL3, previously shown
to inhibit self-renewal and division of normal HSC but HSC" are less sensitive to its inhibitory regula-
tion (Eaves et al., 1993, Diirig et al., 1999, Baba et al., 2016, Staversky et al., 2018). An example
of CML hematopoiesis is shown in Figure 4B, where it is seen that, after the introduction of a few HSC*
at equilibrium of the normal hematopoietic system, the CML cells (dashed curves) repopulate the BM
at the expense of normal cells (solid curves). Because of negative feedback, the system will eventually
reach a new equilibrium consisting solely of leukemic cells. See Appendix 1—table 5 for the leukemic
parameter values, and Figure 4—figure supplements 1-5 for parameter sensitivity studies of systems
containing both normal and CML cells.

We then perturbed each of the leukemic parameters within 10% of the values in Appendix 1—
table 5 and found that only the leukemic stem cell self-renewal parameters—the maximal HSC" self-
renewal fraction pé,max and the feedback gain ¥ on the HSC' self-renewal fraction—have the potential
to significantly influence the results. The results are insensitive to changes in the other leukemic cell
parameters (see Appendix 1, Section 9, Figure 6—figure supplements 2-4). These results are char-
acteristic of even larger changes in the base parameters.

In this and subsequent parameter investigations, we constrained pé,max to be less than or equal to
Pomax » the maximal self-renewal fraction of the normal HSC, motivated by the paucity of evidence
that pé,max is larger than pg ey . coupled with experimental data suggesting that pé,max is less than or
equal to pomax - For example, CML long-term culture initiating cells (LTC-IC; thought to be phenotyp-
ically similar to stem cells) decrease significantly in in vitro cultures while the number of normal LTC-IC
is unchanged, consistent with a relative decrease in self-renewal probability of the CML cells (Udom-
sakdi et al., 1992). In vivo, HSC self-renewal can be assessed directly through transplantation studies.
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Figure 4. Extension of the model of hematopoiesis to chronic myeloid leukemia (CML). (A) Schematic of two branched lineages consisting of normal
and CML cell compartments. The two lineages share the same feedback architecture. The difference between the two lineages is the leukemic
hematopoietic stem cell (HSC) self-renewal is less affected by negative feedback, denoted by po* (see text). (B) Dynamics of hematopoiesis upon
introduction of CML cells. We begin with having normal hematopoiesis at equilibrium. At time 0, 10* leukemic stem cells (HSC", SY cells are introduced
to the system and subsequently expand over time at the expense of the normal cells, which decrease. (C) Sensitivity analyses of the outcomes of CML

hematopoiesis with values corresponding to the proportion of parameter sets where less than 50% of terminal cells are leukemic. (D) The fitness of the
L

leukemic stem cells relative to the normal stem cells, as measured by the ratio of their characteristic self-renewal fractions (p(, / p) determines whether

CML will progress and leukemic cells will take over the system after CML stem cells are introduced.
The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 2. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 3. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 4. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure supplement 5. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each parameter, as labeled,
ranging from 90% to 110% of the original parameter value in Appendix 1—table 5.

Figure 4 continued on next page
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Figure 4 continued

Figure supplement 6. Variations in the other leukemic parameters and their associated gammea for all eligible parameter sets.

In this regard, CML HSC engraft immunodeficient mice variably and inefficiently compared to normal
human HSC (Wang et al., 1998) while HSC from BCR-ABL1 transgenic mice exhibit an engraftment
defect upon secondary transplantation into syngeneic recipients (Schemionek et al., 2010). Both
results are suggestive of a relative decrease in self-renewal capacity of BCR-ABL T+ stem cells.

Next, we performed a sweep through leukemic stem cell self-renewal parameters pé’max and ~F for
each of the eligible parameter sets for normal hematopoiesis (see below). We found that for the termi-
nally differentiated cell proportion to be at least 50% leukemic (darker regions), there are biological
constraints upon the combination of pé,max and ~F (Figure 4C). As the heat map shows, in order for
CML to dominate hematopoiesis (e.g., terminally differentiated cell proportion >50% leukemic), the
CML stem cells should have p&max sufficiently close to pomax and 7F should be sufficiently small. As the
ratio pl(;’max / Pomax decreases from 1, the system requires smaller feedback gains ++ to compensate
and allow for CML to develop. Further, there are threshold values of the parameters required for CML
hematopoiesis to prevail. Namely, the system is dominated by normal cells (CML cells do not ‘take
over’) when pé’max / Pomax is sufficiently large or when ~¥/4; is sufficiently small.

To further examine these biological constraints, we calculated characteristic effective self-

L _
renewal fractions for normal and leukemic stem cells, defined as p, = pé,max/ (1 + 'ny) and
Po = Poumax! (1 + 71;]>, where N = 10°, a characteristic value for the size of the MPP population based
on MPP steady state values (Manesso et al., 2013). The relative fitness of the CML cells defined by

the ratio of characteristic values of the HSC" and HSC self-renewal fractions: ;_73 / pg - Here, all eligible
parameter sets representing the states of the normal system are considered and the leukemic param-
eters pé’max ! Po.max and vF1v; are varied from 0.6 to 1.0 and 0.1-0.6, respectively. In Figure 4D, we
examined the relative fitness of leukemic cells through the distribution of the ratio of characteristic
values colored by leukemic cells outcompeting normal (orange) and normal cells maintaining majority
(blue). As expected, the larger the relative fitness, the more likely that CML will take over the system
and dominate hematopoiesis. For further analysis of the leukemic parameter combinations for CML
hematopoiesis and under treatment, see Figure 4—figure supplement 6, Figure 6—figure supple-
ments 2-4, Figure 7—figure supplement 2, Figure 8—figure supplement 2, Appendix 1, Sections
9-11, and Appendix 1—figures 11-17 for details.

Validation of the CML model

To test whether our mathematical model recapitulates known features of CML biology, we simu-
lated a published transplant experiment in a transgenic mouse model of CML that recapitulates the
main features of human CML (Reynaud et al., 2011). In this experiment, either HSC" or leukemic
MPPs (MPPY) were implanted into sublethally irradiated mice (Figure 5A). Transplantation of HSC"
enables engraftment and myeloid cell production that leads to CML. On the other hand, trans-
planting MPP's does not allow for long-term engraftment but results in a larger fraction of donor-
derived lymphoid cells after 35 d (Figure 5B). This study presented evidence that IL-6 produced by
differentiated myeloid cells reprograms these MPP" progenitors toward a myeloid fate (Reynaud
et al., 2011). As described in ‘Methods’ and Appendix 1, Section 4, we modeled this experiment by
reducing the number of cells in equilibrium to mimic the effects of sublethal radiation. We explored
a range of possible reductions of HSC', MPP", and differentiated myeloid and lymphoid cells and
tracked the outcomes when 4000 HSC" or MPP" were introduced after the decrements from equi-
librium. We then discarded those parameter sets that did not yield results consistent with a simple
majority of myeloid cells for HSC" transplant and a simple majority of lymphoid cells for MPP" trans-
plant (Reynaud et al., 2011). In particular, 85 parameter sets were discarded, leaving a total of
478 parameter sets remaining. Characteristic results are presented in Figure 5C and D when the
reductions for HSC", MPP', and terminally differentiated cells were 55, 35, and 10%, respectively,
from their equilibrium values. See Figure 5—figure supplement 1 for results using other decre-
ments, the removed parameter set criteria (Figure 5—figure supplement 2), and Figure 5—figure
supplement 3 for the final parameter distributions. When HSC" are transplanted (solid curves), the
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Figure 5. Validation of model through simulated transplant. Results of a transplant experiment from Reynaud et al., 2011. Schematic (A) depicting
the experimental pipeline and results (B), adapted from Figure 2A-C in Reynaud et al., 2011. When HSC" are transplanted into sublethally irradiated
mice, chronic myeloid leukemia (CML)-like leukemia is induced and the myeloid cells expand. When leukemic multipotent progenitor cells (MPP*, P4
are transplanted, they do not stably engraft and transiently produce a larger fraction of differentiated lymphoid cells. (C) Simulated time evolutions

of donor-derived HSCY, MPP", and terminally differentiated lymphoid (TD)), and myeloid (TD,,) cells when HSC" (solid) or MPP* (dashed) cells are
transplanted. (D) Bar chart showing model predictions of the percentages of donor-derived myeloid and lymphoid cells after 35 d when HSC" or MPP*
are transplanted, which is consistent with the experimental data in (B; see text).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Heat map depicting the outcomes of transplant experiments in the presence of decrements of 50-70% HSC" and 30-50% MPP*
from their equilibrium values (see text for details).

Figure supplement 2. The dynamics of each parameter set that does not match the experimentally observed behavior of the transplant experiments
from Reynaud et al., 2011.

Figure supplement 3. Distributions of the remaining 478 parameters after removal determined through the depletion sweep.

donor-derived MPP" (Figure 5C, left) rapidly increased as did the terminally differentiated myeloid
and lymphoid cells (Figure 5C, right). Consistent with the experiments, there is a larger fraction of
donor-derived myeloid cells than lymphoid cells after 30 d (Figure 5D). In contrast, when MPP" are
introduced (dashed curves), their population decreases (Figure 5C, right) because the MPP" do not
stably engraft. Concomitantly, there is burst of donor-derived myeloid and lymphoid cells at early
times (Figure 5C, right) as the transplanted MPP" differentiate.

The early time dynamics of the myeloid and lymphoid cells depend on the specific values of the
MPP* self-renewal (p;) and fate control (q;) fractions, whose values in turn depend on the number of
myeloid cells through negative feedback regulation. In particular, if 1 — p; > 2¢;, then more myeloid
than lymphoid cells will be produced at early times, as in Figure 5C (right), whereas more lymphoid
cells will be produced if 1 — p; < 2g; . In both cases, because the MPP's do not stably engraft and
instead differentiate into lymphoid and myeloid cells, we observe that there is a larger fraction of
donor-derived lymphoid cells after 30 d (Figure 5D), consistent with the experiments. This occurs
because there is a decreasing flux of differentiating cells since there is no stable engraftment and the
lymphoid cells are longer-lived (smaller death rate) than the shorter-lived myeloid cells, which have a
larger death rate.
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Leukemic stem cell load influences TKI therapy outcomes

We next explored the effects of TKI therapy on CML in the model. While the overall size of the pheno-
typic HSC compartment is not increased in CML patients (Jamieson et al., 2004), the proportion of
HSC" in the BM can vary widely across newly diagnosed CML patients from a few percent to nearly
100% (Petzer et al., 1996; Diaz-Blanco et al., 2007; Abe et al., 2008; Thielen et al., 2016). We
therefore investigated how the HSC" load in the BM affects therapy outcomes. We used one eligible
parameter set (see Appendix 1—table 4), out of all 478 parameter sets all of which are capable of
characterizing the normal state of our simplified model of the hematopoietic system and one choice
of leukemic parameters (see Appendix 1—table 4) in which the only difference between normal and
leukemic cells is that the HSC" are one half as sensitive to negative feedback regulation compared

to the normal HSC (’% = 0.5). The initial condition was obtained by simulating the development of
CML, analogous to that shown in Figure 4B, prior to initiating therapy. TKI treatment was initiated
at three different times to achieve varying leukemic stem cell load (6, 18, and 36 mo) and was simu-
lated by introducing a death rate of HSC" and MPP" proportional to their proliferation rates, with the
HSC" proliferation rate lower than that of normal HSC (Jergensen et al., 2006). While some studies
have shown that primitive CML stem/progenitor cells are relatively resistant to killing by TKIs in vitro
(Graham et al., 2002; Corbin et al., 2011), clinical studies suggest that long-term TKI therapy can
decrement the CML stem cell compartment, at least in some patients (Etienne et al., 2017, Chen
et al., 2019), consistent with mathematical modeling of patient BCR-ABL1 transcript data (Tang et al.,
2011). This supports the concept that TKls possess a measure of leukemia stem cell killing ability,
and we therefore included this effect in our model. The TKI treatment parameters were the same
across the three cases. See ‘Methods’ and Appendix 1 for details and Appendix 1—tables 4 and 5
for parameter values. Thus, these cases can be thought of as representing the response of one virtual
patient to TKI therapy implemented at different times after disease initiation.

At an early treatment time with lower (<90%) initial HSC" fractions (HSC', Figure 6A), the numbers
of MPP" (blue-dashed), leukemic terminally differentiated lymphoid (light-green-dashed), and myeloid
(dark-green-dashed) decrease rapidly at the early stages of treatment and are accompanied by a rapid
increase in HSC' due to the loss of negative feedback from the MPP". This loss of negative feedback
from the MPP" also results in a rapid increase in the number of normal HSC (black solid curves) that
subsequently drives an increase in the normal MPPs (blue solid). The increased number of HSC and
HSC" decreases their division rates due to the autocrine negative regulatory loop as well as the divi-
sion rates of the MPPs and MPP" through feedforward negative regulation. This decreases the flux
into the terminally differentiated cell compartments (both normal and leukemic), thereby decreasing
their numbers at early times. At later times, both the HSC" and MPP" gradually decrease in response
to TKI-induced cell death, which drives an accompanying decrease in the leukemic differentiated cells.
A small, transient increase in MPP" is observed before the gradual decline. This is driven primarily by
the increase in flux into the MPP" compartment by differentiating HSC", although there is also a small
contribution from the feedforward regulation of the MPP" division rate, which lowers the effectiveness
of TKI therapy on the MPP". Both of these effects are reduced as the HSC" numbers are decreased by
TKI therapy. This in turn increases the effectiveness of TKl therapy in killing leukemic cells at later times
and enables the normal cells (solid curves) to rebound toward their pre-leukemic equilibrium values.

At intermediate treatment time with larger (90-99%) HSC" fractions (Figure 6B), the responses
of the leukemic and normal cells to TKI treatment at early times are qualitatively similar to those
observed in the previous case although the effects are more pronounced. The increase in HSC" is
much larger than the previous case because there are fewer normal cells to compete with in the BM.
This significantly decreases the HSC/HSC" and MPP/MPP" division rates through the negative feed-
back/feedforward regulation and correspondingly the rates of TKl-induced cell death. Accordingly, at
later times the MPP" population rebounds, driven by the flux of differentiating HSC", and eventually
the system reaches a state in which both normal and leukemic cells coexist. The stem cell compart-
ment is dominated by HSC" which are largely quiescent, while the multipotent progenitor and termi-
nally differentiated cell compartments have a higher fraction of normal cells. This is consistent with
experimental results from mouse models (Reynaud et al., 2011) and our own unpublished data. In
this scenario, BCR-ABLT1 transcript levels in the peripheral blood are ~1-9%, but the patient would not
respond further to TKI treatment and hence would not reach MR3; this has been observed clinically
including one of the patients in our study (see below). The small flux of differentiating normal and
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Figure 6. The response of chronic myeloid leukemia (CML) to tyrosine kinase inhibitor (TKI) therapy. (A-C) Simulated cell dynamics of normal and
leukemic cells in response to TKI therapy that is started at different time points in CML development (A, early times; B, intermediate times; C, late
times). See text. (D) Simulated molecular response curves corresponding to the application of TKls for each of simulations in (A=C). The simulated
molecular response from (A) (blue) compares well with clinical data (symbols) measuring treatment responses to two different TKls (imatinib, dasatinib)
averaged across a cohort of patients (Glauche et al., 2018). The simulated molecular responses from (B) and (C) (orange solid and dashed curves)

are indicative of primary resistance. (E-G) Experiments in chimeric mice (see text) that show that the size of the leukemic stem cell clone correlates
with decreased response to TKI therapy. Peripheral blood (PB) leukocyte counts (E), percentage of PB granulocytes (F), and PB BCR-ABL1" (leukemic)
granulocyte chimerism (G) are shown in cohorts of mice treated with dasatinib. Blue symbols are chimeras bearing >90% BCR-ABL1* HSC", red-orange
symbols are chimeras bearing 46-75% BCR-ABL1* HSC".

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Effective parameters for proliferation, self-renewal, and branching after leukemic stem cells are added to the normal system at
steady state, and after tyrosine kinase inhibitor (TKI) therapy begins for the cases shown in Figure 6 in the main text.

Figure supplement 2. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells),
except for Plﬁ,max' which is never varied above the pgmqy value.

Figure supplement 3. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells).
Figure supplement 4. The dynamics from steady state upon introduction of leukemic stem cells with perturbations of each leukemic parameter, as
labeled, ranging from 90% to 110% of the original parameter value (Appendix 1—table 4 for normal cells, Appendix 1—table 5 for leukemic cells).

leukemic stem and progenitor cells, combined with the negative feedback loops on the self-renewal
and branching fractions, supports nearly steady populations of differentiated cells.

When given years to develop and a late time to treatment, the HSC" fraction is nearly 100%
(Figure 6C), and there are so few normal stem cells that the leukemic cells easily maintain nearly 100%
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of each cellular compartment even in the presence of TKI therapy. Aside from a short-lived, transient
decrease in MPP" (and differentiated leukemic cell) numbers, the leukemic cells are largely unrespon-
sive to TKI therapy because the feedback/feedforward negative regulation of stem and progenitor
cell division rates makes these rates so low that the TKls are largely ineffective in killing the leukemic
stem and progenitor cells. As in the previous case, the negative feedback regulation and the small
fluxes of differentiating leukemic stem and progenitor cells enables the system to approach a steady
state containing only leukemic cells.

In Figure 6D, we plot the simulated BCR-ABLT transcript levels over time for the three scenarios.
As described in ‘Methods,’ the transcripts are modeled using a relative ratio of leukemic and normal
terminally differentiated myeloid and lymphoid cell numbers. The solid blue curve corresponds to
CML using the treatment time from Figure 6A, which responds to TKI therapy. Just as in the clinical
data (symbols), the response to TKI therapy produces a biphasic exponential decrease in BCR-ABL1
transcripts, which decreases below 107", representing a so-called major molecular response (MMR or
MR3), which represents a major goal of therapy in CML as the risk of relapse and leukemia-related
death is virtually nonexistent once this milestone is achieved (Hochhaus et al., 2017). Consistent with
previous interpretations, the rapid initial decrease in BCR-ABL1 transcripts is due to TKl-induced cell
death of MPP" and the increase in normal HSC and MPPs, which induce corresponding changes in
the myeloid and lymphoid cells (Figure 6A). The long-term, slower depletion of leukemic cells and
the stable normal cell populations result in the second phase of the biphasic response. The simu-
lated results compare well with clinical data from the DAISISON study of imatinib versus dasatinib
in patients with newly diagnosed CML (Cortes et al., 2016) where the data corresponds to mean
BCR-ABL1 transcripts, with standard deviations, adapted from Glauche et al., 2018 for patients who
received imatinib (blue) or dasatinib (red).

The two other curves in Figure 6D correspond to the treatment times from Figure 6B (solid
orange) and C (dashed orange). In these cases, the BCR-ABL1 transcripts do not decrease below the
MR3 threshold, indicating that neither of these virtual patients responds adequately to TKI therapy.
There is a partial response in patient from Figure 6B as the transcripts initially decrease due to TKI-
mediated death of MPP!, but this effect soon saturates because the leukemic stem cells are able to
drive the regrowth and persistence of leukemic progenitor and differentiated cells. For the virtual
patient with parameters from Figure 6C, there is essentially no change in the BCR-ABLT transcripts
when therapy is applied. These behaviors are consistent with those observed in CML patients with
primary resistance to TKl therapy (Zhang et al., 2009; Yeung et al., 2012; Pietarinen et al., 2016).

HSC" load influences the response to TKI therapy in a mouse CML
model

The fundamental difference between these three virtual patients is the number of leukemic stem cells at
the start of therapy, which occurs because treatment is initiated at different times following the devel-
opment of CML (early—6 mo after CML initiation ~93% initial HSC" fraction, intermediate—18 mo
after CML initiation ~99% initial HSC" fraction, late—36 mo after CML initiation ~99.99% initial HSC"
fraction). Our results suggest that the higher the HSC" fraction at the start of therapy, the less effec-
tive the therapy. This follows from the feedback/feedforward regulation where increased numbers
of HSC and HSC" decrease their own proliferation rates as well as those of the MPPs and MPP" (see
Figure 6—figure supplement 1 and Appendix 1—figure 6 for further explorations of feedback/
feedforward regulation of parameters). This reduces the effectiveness of TKI therapy as evidence
suggests TKls preferentially target dividing leukemic cells (Graham et al., 2002; Corbin et al., 2011)
and suggests a mechanism why some patients are destined to do poorly with TKI therapy.

To test this hypothesis, we created BM chimeric mice containing both normal and leukemic (BCR-
ABL1*) HSC by transplantation of BM from conditional BCR-ABL1 transgenic mice (Koschmieder
et al., 2005) into unirradiated congenic recipient mice. Following stable engraftment, BCR-ABL1
expression is induced in transgenic HSCs by withdrawal of doxycycline (see ‘Methods’). These
chimeras represent a novel and physiologically accurate in vivo model of early CML development that
reflects interactions between normal and CML cells in a BM microenvironment unperturbed by radia-
tion (Rodriguez et al., 2022). Two cohorts of chimeric mice bearing either a high HSC" burden (94 +
1.5% of the HSC population) or an intermediate HSC" burden (58 + 12%) were treated with dasatinib
(25 mg/kg daily by oral gavage). Both cohorts showed a hematological response to TKI therapy, with
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decreased peripheral blood leukocyte counts (Figure 6E) and a decreased percentage of circulating
granulocytes (Figure 6F). By contrast and consistent with the predictions of the quantitative model,
while mice bearing smaller populations of HSC" showed a decrease in the percentage of circulating
BCR-ABL1* granulocytes in response to TKI therapy, mice with the highest HSC' burden showed virtu-
ally no decrease in circulating leukemic cells (Figure 6H). Because the level of circulating granulocytes
reflects the proportion of BM HSC (Wright et al., 2001; data not shown), these results demonstrate
that TKI therapy is unable to decrement the HSC" compartment in mice with predominantly BCR-
ABLT* HSC at the start of treatment.

HSC self-renewal as an additional determinant of TKI response

While analyses of clinical data also show that patients with lower leukemic stem cell burden are more
likely to respond to TKI treatment (Thielen et al., 2016), some patients with a high percentages of
leukemic stem cells at the start of treatment are nonetheless still capable of responding to TKI therapy
(e.g., see Figure 3 in Thielen et al., 2016). This suggests that leukemic stem cell burden alone does
not predict the molecular response to TKis. To investigate this further, we tested the response to TKI
treatment for each of our 478 parameter sets. In Figure 7A, we present the results using only one
choice of leukemic parameters (see Appendix 1—table 5). Other choices of leukemic parameters give
similar results (see Appendix 1—figure 13). The model outcomes bear a striking resemblance to the
clinical data of Thielen et al., 2016. The leukemic stem cell fraction does influence TKI response, but
treatment outcomes are seen to vary among virtual patients within the same initial leukemic stem cell
load. We then asked what characteristics (e.g., parameter sets) distinguish whether a virtual patient
achieves a MR3 response within 50 mo. We also varied the HSC" parameters, taking into account
several studies suggesting that CML stem cells are at least 5-10 times less sensitive to CCL3-mediated
inhibition of self-renewal (Eaves et al., 1993, Chasty et al., 1995, Wark et al., 1998; Diirig et al.,

1999); for example, f’y—f should be less than 0.2. Further, since 10-15% of patients do not respond to
TKI treatment even in the absence of BCR-ABL1T mutations (Hanfstein et al., 2012; Marin et al.,
2012), we estimate pé,max ! po.max = 0.8 from Appendix 1—figure 11 to roughly match this proportion
of nonresponding patients. Taken together, this suggests that the effective leukemic stem cell fitness

would be p"
»m

~ 0.7. We thus varied the HSC" parameters accordingly. In Figure 7B, we plot the

results for pﬁ[:n > 0.7 as a bivariate histogram for ppﬂ and pgmax With proportion of response (blue)
and nonresponse (orange) for every parameter set. Surprlsmgly, we found that although the fitness
p’;‘l’m impacts response, the parameter that clearly distinguished responders from nonresponders was
the maximal self-renewal fraction py, ... for normal stem cells, shown in Figure 7B (marginal y-axis). See
Figure 7—figure supplement 1 for the distributions as a function of the other parameters using the
single leukemic parameter set from Figure 7A (see Appendix 1—table 5), and Appendix 1—figures

15-16 in Appendix 1, Section 10 for different bivariate distributions corresponding to different

choices of the minimum fitness pf"L In particular, larger values of py.. and y; are correlated with a
decreased response to TKI therapy after leukemia develops Although these parameters are associ-
ated with normal HSC, the self-renewal fraction py- of HSC" and feedback strength 7/ depends on
these parameters since we assumed the fitness of the CML stem cells p" is larger than a minimum
threshold. Therefore, increasing the self-renewal fraction of the normal stem cells has the effect of also
increasing the fitness of the CML stem cells.

To understand further the differences between response and nonresponse to TKI therapy, we took
the parameter set from Figure 6A as a representative patient for response and selected an arbitrary

nonresponsive parameter set (Appendix 1—table 6) to be a representative patient for nonresponse.
In Figure 7C, we show that the effective p,* (the fraction of HSC" self-renewal after feedback) for
nonresponders (orange) is larger after TKI therapy is applied than for responders (blue). In partic-
ular, as TKI treatment kills the leukemic progenitors, this increases the effective self-renewal fraction
for both normal and leukemic stem cells because of the release of negative feedback. When the
maximum self-renewal pg ... is larger, the leukemic stem cells experience an acute increase in self-
renewal, resulting in their dominance over normal stem cells that then leads to a decreased response
to TKis.

Clinical data provide support for this mechanism of resistance. Patients with clonal hematopoiesis,
in which there is a dominant clone driving hematopoiesis, exhibit predominantly normal hematopoiesis
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Figure 7. Leukemic stem cell load alone does not predict response to tyrosine kinase inhibitor (TKI) therapy. (A) Scatter plot of the distribution of
simulated BCR-ABL1 transcripts at 18 mo after start of treatment as a function of the HSC" proportion at the start of TKI therapy for each of the 478
parameter sets. The time to reach MR3 (BCR-ABL1 transcripts less than 0.1%) is indicated by the color. (B) The proportion of parameter sets that

achieve MR3 within 50 mo (responders, blue) and those that do not (nonresponders, orange) shown as a joint distribution of the parameters p jqx and
p—oL
Pomax

distribution), distinguishes response across parameter combinations. (C) Dynamics of the effective leukemic stem cell self-renewal fraction for the
parameter set used in Figure 6A-D (blue) and an arbitrary representative non-responsive parameter set (orange) during chronic myeloid leukemia
(CML) development and before initiation of therapy (t < 0), and after application of TKl therapy (t > 0). (D) Early time dynamics (e.g., t = 0-3 mo; left of
the vertical line) of the transcript levels reveal that it is difficult to distinguish responders (blue) from nonresponders (orange). At later times (e.g., t =
3-6 mo; right of the vertical line), the two populations are easier to distinguish. (E) Receiver operating curves (ROC) obtained from the 478 parameter
sets using our new prognostic criterion based on the relative changes in transcript levels (solid) and the transcript halving time (dashed) for the first 3
mo (blue) and the second 3 mo (orange) after therapy. The prognostic thresholds (symbols) are identified by optimizing true and false positives rates.
Early molecular response (EMR) at 3 mo (10% transcript levels) and 6 mo (1% transcript levels) are shown by the blue square and orange diamond,
respectively. Inset: expanded view of the ‘elbow’ region of the ROC curves to display differences between the prognostic tests. Accuracy is improved
using the 3-6 mo time window, and our new prognostic criterion outperforms the EMR and halving time prognostics in this time window. (F) The
accuracy of the prognostic criteria applied to CML patient data (n = 7) treated using the same TKI dosing for the 6-month period after therapy is started.

PoL/po.max Using the minimum fitness threshold > 0.7, which reveals the maximal self-renewal fraction of the normal HSC, pg sy (y-axis marginal

Figure 7 continued on next page
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Figure 7 continued

The results are consistent with the synthetic data in (E). (G) The prognostic criteria applied to patient data (n = 7) in which therapy could be changed
but those changes were maintained for 6 mo (see text). Although the data are limited, the results are consistent with those in (E) and (F) suggesting
increased accuracy using the 3-6-month window, and that the prognostic criterion based on relative change may yield more accurate predictions than
EMR and halving time in the 3-6-month time frame.

The online version of this article includes the following figure supplement(s) for figure 7:
Figure supplement 1. Parameter distributions by response to tyrosine kinase inhibitor (TKI) treatment using synthetic data.

Figure supplement 2. Comparison of the proportion of cases that successfully respond to therapy as a function of the ratio of characteristic values of
leukemic and normal stem cells: pk/po.

but frequently have mutations in the genes, such as TET2, DNMT3A, and ASXL1, that are known to
increase stem cell self-renewal (Steensma, 2018). Clinical data shows that CML patients whose blood
cells have mutations in TET2 and ASXL1, some of which may exist prior to development of CML,
frequently exhibit a poor response to TKI therapy (Kim et al., 2017, Marum et al., 2017). Taken
together, these data suggest that patients with higher stem cell self-renewal fare worse when their
CML is treated using TKIls than patients with lower stem cell self-renewal.

Predicting long-term response to TKI treatment

Several measures of the response of CML patients to TKI therapy have been developed, based
on BCR-ABL1 transcript levels in peripheral blood. Here we test a new, model-driven criterion for
predicting patient response and compare the results with several other criteria currently used in the
clinic. A major focus has been on the predictive value of the decline in transcripts over the first 3 mo
of treatment, principally the so-called ‘early molecular response’ or EMR (defined as BCR-ABLT tran-
scripts <10% at 3 mo and <1% at 6 mo), where patients with >10% transcripts had significantly lower
probability of achieving cytogenetic remission and decreased overall survival (Hanfstein et al., 2012;
Marin et al., 2012). Subsequently, there was an effort to improve the predictive power by focusing on
the velocity of reduction in transcripts (Branford et al., 2014, Hanfstein et al., 2014; Pennisi et al.,
2019). Because the best predictor of patient response to TKis, the self-renewal fraction of normal stem
cells, is very difficult to measure clinically, we searched for an alternative criterion that could accurately
predict patient response and could still be measured using the data collected in standard practice.
Therefore, we focused on alternative time frames and calculation methods for assessing BCR-ABL1
transcript levels (Figure 7D). It is important to be able to predict the long-term TKI response early
after starting treatment in order to enable changes in therapy. However, since both responders (blue)
and nonresponders (orange) may show significant decreases in the transcript levels in the first months
of treatment, it was difficult to distinguish between the two at relatively early time points. By contrast,
responses in the 3-6-month time frame make it easier to identify the different behaviors of responders
and nonresponders (Figure 7D).

By calculating the relative changes of the transcript levels from 3 to 6 mo, we developed a prog-
nostic formula: PF (3, 6) = (BCRABL1 (6) — BCRABL1 (3)) /BCRABLI1 (6). We found that optimizing
for sensitivity (TPR, the true positive rate) and specificity (1-FPR, with FPR being the false positive
rate) resulted in a prognostic threshold of PF =~ —3.2, with sensitivity of & 0.91 and specificity of &~ 0.91
(Figure 7E, orange curves) compared to the optimal sensitivity and specificity of the velocity-based
prognostic (=~ 0.89 and ~ 0.88, respectively) and & 0.77 and = 0.98 for EMR 1% with our parameter
sets. This demonstrates that this prognostic tool had higher sensitivity and specificity than previously
developed predictive criteria in separating responders (< —3.2) from nonresponders (> —3.2), where
response is defined as achievement of MR3 within a clinically relevant timeframe of 18 mo. We also
tested the various prognostics at the 0-3-month interval as is the current clinical practice, but that
resulted in lower predictive power (Figure 7E, blue curves). These results highlight the importance
of including the 3-6-month TKI response in predicting the long-term outcome of treatment, instead
of considering only the first 3 mo. See Appendix 1—figures 7 and 17 in Sections 8 and 12, respec-
tively, for further discussion, comparison of additional prognostic criteria, and the effect of leukemic
parameters.

We then applied our prognostic criterion to anonymized CML patient data (see ‘Methods’) to
determine clinical significance and utility. The prognostic tests shown in Figure 7E were calculated for
both the first 3 mo and the subsequent 3-6-month period after the start of therapy, for the patients
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who were treated with the same TKI and dosage for the full 6 mo. All the prognostic tests achieved
a more accurate prediction of patient outcome using the 3-6-month data compared to the same test
applied to the first 3 mo (Figure 7F). To expand clinical utility, the prognostics were calculated for
cases where TKI therapy was changed (due either to toxicity or an inadequate response) but then
maintained for a subsequent 6-month period, which were added to the data from Figure 7F. The
aggregated data (Figure 7G) reaffirms the improved accuracy in prediction using the 3—-6-month tran-
script data compared to that from 0 to 3 mo. Over the first 3 mo, all the prognostic criteria performed
similarly. Although the number of patients was small, the results suggest that our prognostic criteria
may perform better than the EMR and velocity-based prognostics that are in current clinical use. For
comparisons between the prognostic criteria and time frames with patient data, see Appendix 1,
Section 7, Appendix 1—figures 8-10.

Improving response to therapy: Combining TKils with interventions that
promote differentiation

Our model suggests that combination therapy to modulate the stem cell self-renewal rate, in addition
to directly targeting the leukemic HSC and MPPs with TKI therapy, might counteract TKI treatment
resistance mediated by high stem cell self-renewal. Such pro-differentiation therapy could be accom-
plished through either direct stimulation of differentiation or through suppression of self-renewal.
In our modeling experiments, we explored the impact of this approach through the suppression of
self-renewal (see ‘Methods’ for details). To begin the exploration of the combined TKI-differentiation
therapy, we performed this combination therapy on each of our 478 parameter sets, which represents
a population of CML patients with person-to-person variability. We then recorded which parameter
sets achieved MR3 within 50 mo for each strength of the differentiation therapy (4), where A is a
dimensionless constant greater than 0 that constantly suppresses stem cell self-renewal (both normal
and CML) in the setting of combination therapy (see ‘Methods’ and Appendix 1, Equations 40 and
41). Using these data, Figure 8A depicts the proportion of parameter sets achieving MR3 given a
strength of differentiation therapy of A. As differentiation therapy strength increases from zero, the
proportion of parameter sets that achieve MR3 increases before leveling off between A = 0.2-0.3,
with maximum efficacy occurring at a strength of differentiation A of about 0.24. The efficacy of
combination therapy then begins to decline rapidly, and with too great a strength of differentiation
treatment, the combination therapy becomes inferior to TKI therapy alone.

To investigate how combination therapy effectively targets resistance, and the mechanism of the
decreased efficacy of combination therapy in achieving MR3 when A is large, we returned to exam-
ining parameter distributions. Figure 8B depicts the same distribution of py ... as in Figure 7B, but
overlaid with a second histogram (hatched regions) to denote the effect of the differentiation therapy
at the point of maximum efficacy (see Figure 8—figure supplement 1 for all the parameter distri-
butions). The two types of hatching reveal important factors that determine under which conditions
combination therapy improves or impairs response. The orange hatching represents transition from
response to nonresponse by combination therapy; this occurs in individuals with the lowest pg ... In
these cases where stem cell self-renewal is already close to the ideal effective self-renewal fraction
of 0.5, differentiation therapy pushes too many normal cells into differentiation, causing the normal
cell populations to deplete themselves and decreasing the efficacy as A increases beyond 0.24. In
contrast, the blue hatching shows the desired scenario of nonresponding individuals with high pg, .
becoming responders and achieving MR3 within 50 mo due to the combination therapy.

To understand further the mechanisms underlying the efficacy of combination therapy, we explored
treatment dynamics (changes in BCR-ABL1 transcript levels) and the rates of change of both normal
and leukemic stem cell populations for the nonresponsive individual from Figure 7D. By applying
two different strengths of differentiation therapy (A = 0.24 and 0.5) in combination with TKI therapy,
for this individual both strengths are able to achieve MR3 at ~18 mo (Figure 8C) in contrast to TKI
monotherapy, which resulted in a failure to reach MR3 (Figure 7B, orange). Figure 8D and E show
how the rates of change in the size of the normal and leukemic stem cell compartments vary with
respect to time for the three different A values. For TKI therapy alone (A = 0), rates of growth of both
the normal and leukemic stem cell populations show an increase as a result of the loss of negative
feedback due to TKl-induced killing of MPP", but the leukemic stem cells experience a much greater
numerical increase and outcompete normal cells, resulting in a system that exhibits resistance to
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Figure 8. Combining tyrosine kinase inhibitor (TKI) therapy with differentiation promoters enhances response to treatment. (A) The proportion
of the 478 parameter sets that achieve MR3 under combined TKI and differentiation therapy depends nonmonotonically on the strength A of the
L

differentiation therapy, with the peak response (86.8%) occurring at A = 0.24. (B) The maximum stem cell self-renewal fraction for a single Eolpo,mw{

in Figure 7B (marginal y) with hatching indicating the effects of the combination of TKI and differentiation therapy with A = 0.24. Blue hatching
indicates nonresponders (who did not achieve MR3) that become responders (achieve MR3) while orange hatching indicates responders that become
nonresponders upon combined treatment. Differentiation promoters allow nonresponders to TKI therapy with large self-renewal fractions to reach
MR3. The opposite outcome, loss of MR3 in a TKI responder, primarily occurs only at the smallest self-renewal fractions. (C) Time evolution of BCR-
ABLT transcripts during combination therapy, with A = 0.24 (black) and A = 0.5 (blue), using the parameter set from Figure 5B that does not achieve
MR3 using TKI monotherapy (red). (D, E) The time derivatives of the number of normal (D) and leukemic (E) stem cells during combination therapy.
The differentiation promoter attenuates the rapid increases in the rates of change at early times after therapy starts in both normal and leukemic cells,
but the attenuation is much larger in the leukemic cells. This results in the growth of normal cells, while leukemic cells experience restricted growth or
outright depletion depending upon the differentiation therapy strength. (F) Simplified diagram representing the key interactions between the cells and
the impact on outcomes of TKl and combination therapy. Green: chronic myeloid leukemia (CML) hematopoiesis depicting the loss of normal stem cells
and progenitors and the increase in leukemic stem cells and progenitors. Red fill: TKI treatment failure. The TKl-induced death of leukemic progenitors

Figure 8 continued on next page
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relieves negative feedback and increases stem cell self-renewal, resulting in increases in both normal and leukemic stem cells, and eventually their

progeny (panel 2). The increases are larger for the leukemic cells because their self-renewal fraction is bigger. Increases in the leukemic progenitor

compartment (panel 3) drive down the self-renewal fraction of normal stem cells proportionally more than for the leukemic stem cells. The increases
in HSC" also drive down proliferation rates, which makes the leukemic cells less responsive to TKI treatment. Altogether, this makes the leukemic cells
more fit than the normal cells and results in therapy failure. Blue fill: treatment by combined TKI and pro-differentiation therapy reduces stem cell
self-renewal relative to TKI monotherapies, equalizes the normal and leukemic self-renewal fractions, which limits leukemic stem cell growth and limits
decreases in proliferation rates, making the HSC" and MPP" more susceptible to TKl-induced death (panel 2). This allows repopulation of the bone

marrow by normal stem cells and progenitors to occur (panel 3).

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Changes in the parameter distributions from Figure 7—figure supplement 1 when combined differentiation and tyrosine kinase
inhibitor (TKI) therapy is administered.

Figure supplement 2. Variations in

L L
Pomar 50 g 771 for all parameter sets with combination therapy show improvement of response with combination

P0.max 1
therapy compared to Appendix 1—figure 11 (bottom right).

the TKI therapy. Under conditions of maximum efficacy (A = 0.24), the normal stem cell population
rate of change still increases rapidly but to a maximum level below that for TKI monotherapy before
decreasing more rapidly to zero as the system re-equilibrates. In contrast, under the same conditions
the rate of change of the leukemic stem cell population is greatly reduced and becomes negative
after normal stem cells begin to outcompete the leukemic stem cells. Under conditions of stronger
differentiation therapy (A = 0.5), although the accumulation rate of the normal stem cells is substan-
tially reduced, the growth rate of the HSC" is immediately negative. This enables the normal HSC to
easily outcompete the leukemic cells and restore the system to the normal state. Effectively, for large
values of HSC self-renewal and corresponding feedback gains, the differentiation promoter acts to
bring the self-renewal fraction of the normal HSC closer to that of the HSC", which then enables the
TKI therapy to disadvantage the leukemic cells, and allow for repopulation and dominance by normal
cells. For the effect of combination therapy on different combinations of leukemic parameters, see
Figure 8—figure supplement 2 and Appendix 1, Section 11 for further analysis.

Discussion

In this work, we developed a nonlinear mathematical model of normal and CML hematopoiesis that
incorporated feedback control, lineage branching, and signaling between normal and CML cells.
Using ODEs, we modeled the dynamics of the stem, multipotent progenitor, and terminally differen-
tiated cell populations. To filter through the combinatorial explosion of models that occurs when cell-
cell signaling interactions are taken into account, we focused first on normal hematopoiesis. We used
DSA (Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013; Lomnitz
and Savageau, 2016), an approach that enables models to be distinguished based on their range of
qualitatively distinct behaviors without relying on knowledge of specific values of the parameters, to
perform an automated search for regions of stability in thousands of proposed models and efficiently
eliminate unphysiological, unstable models. When combined with previous observations and new in
vivo data to further constrain cell-cell interactions, we arrived at a new feedback-feedforward model
(Figure 2F).

Using cell perturbation experiments in mice, we validated several features of the model, including
feedback from differentiated myeloid cells on MPP self-renewal, and feedforward regulation by stem
cells on proliferation of stem and MPP compartments. We postulate that these regulatory loops may
also regulate human blood cell production. While there are some known differences between mouse
and human hematopoiesis (Parekh and Crooks, 2013), many signaling pathways are conserved
between species. For example, the role of IL-6 in regulating lymphoid differentiation (e.g., v, in
Figure 2F) has been validated in mice (Reynaud et al., 2011) and human samples (Welner et al.,
2015), while CCL3 mediates negative feedback from progenitors onto stem cell self-renewal (e.g.,
Y: in Figure 2F) in both mice (Staversky et al., 2018) and humans (Broxmeyer et al., 1989). TGF-B,
produced by HSC, differentiated myeloid cells, and BM stroma, is a candidate factor regulating nega-
tive feedback of HSC onto their own division rate and that of the MPPs (Zhao et al., 2014b; Naka
and Hirao, 2017), while IL-6 may inhibit MPP self-renewal and increase myeloid differentiation (Zhao
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et al., 2014a), at least under stress conditions. The role of these candidate hematopoietic regula-
tors could be tested directly in our mouse model via a genetic approach. Moving forward, it will be
important to validate results from mouse model systems in human studies whenever possible.

We used a grid-search algorithm to determine a set of approximately 500 biologically relevant
parameter sets for our new model. While we could have used other approaches such as the Latin
hypercube algorithm to sample our multidimensional parameter space (Read et al., 2018), we chose
to perform a gridsearch because of the ease of implementation and the fact that our goal was not to
exhaustively search the full parameter space, but rather to obtain a set of biologically relevant param-
eter values consistent with normal hematopoietic homeostasis. In particular, using each parameter
set in the model yields steady states that are consistent with normal ranges of hematopoietic cells.
These parameter sets model a population of individuals with normal cell counts but person-to-person
variability of parameters due, for example, to genetic, epigenetic and/or environmental differences.

We then extended the model to incorporate CML hematopoiesis by introducing a mutant
lineage with the same structure as the normal system. We incorporated one of the central features
of CML pathophysiology, that the leukemic stem cell clone, hypothesized to arise from a single
HSC that acquires a Ph chromosome, has a competitive advantage over normal HSC and with
time comes to dominate the stem cell compartment (Dingli et al., 2010; Thielen et al., 2016;
Holyoake and Vetrie, 2017, Majeti et al., 2022). This competitive advantage could be a conse-
quence of positive feedback (autocrine or paracrine) on the HSC" population or negative feed-
back with different strengths for normal and leukemic stem cells. Candidate mediators of such
positive and negative feedback include interleukin-3 (Jiang et al., 1999) and CCL3 (Baba et al.,
2016), respectively. Our current model incorporated differential negative feedback of MPPs on
HSC (Figure 4A) with the HSC" being less sensitive to the negative feedback than are the normal
HSC, which is consistent with CCL3 (Eaves et al., 1993, Baba et al., 2013). This one difference
provided leukemic cells with a competitive advantage for growth, and in the absence of treatment,
the leukemic cells will take over the BM at the expense of normal cells (Figure 4B). Upon explo-
ration of the leukemic parameter space, we found that only the leukemic cell parameters for the
leukemic stem cells (HSCH—the maximal HSC" self-renewal fraction pé’max , the feedback gain 'y]L
on the HSC" self-renewal fraction, and the TKl-induced HSC" death rate TKIysc;—have the poten-
tial to significantly influence the results. The results are insensitive to changes in the other leukemic
cell parameters (see Figure 4—figure supplement 6, Figure 6—figure supplements 2-4, and
Appendix 1—figure 11).

When combined with TKI therapy, the feedback/feedforward model exhibited variable responses
to TKI treatment, consistent with those observed in CML patients. That is, although our 500 param-
eter sets were consistent with normal hematopoietic cell counts, the responses to TKI treatment were
highly variable, with some sets responding to treatment while others did not. The model predicted
that a contributor to primary TKI resistance is the overall proportion of HSC that are leukemic, consis-
tent with experimental data in mice (Figure 6G) as well as patient data (Thielen et al., 2016). However,
leukemic stem cell burden alone does not predict the molecular response to TKls, as observed both
clinically (Thielen et al., 2016) and in our data (Figure 7A), since some patients with high HSC" frac-
tions in their BM nonetheless still respond to TKiIs.

The model suggested that a key predictor of reduced response to TKI treatment is an increased
tendency of normal hematopoietic stem cells to self-renew, which in turn influences self-renewal of
the leukemic stem cells since they were estimated to be sufficiently fit with respect to the normal
stem cells. This is also consistent with clinical data that suggest that CML patients whose normal and
leukemic cells share mutations in genes such as TET2 and ASXL1, which are known to increase stem
cell self-renewal (Steensma, 2018), tend to have inferior outcomes under TKI therapy (Kim et al.,
2017; Marum et al., 2017). This is illustrated in Figure 8F (red panel), where the high initial HSC"
population and the subsequent decline of progenitor cells reveals the effect that high stem cell self-
renewal has on driving TKl resistance. In our model, the presence of a TET2 or ASXL1 mutation in both
normal and leukemic stem cells that led to a proportional increase in self-renewal in both populations
would tend to cause resistance to TKI therapy, provided that the HSC" are sufficiently fit in the pres-
ence of the mutations, which we would expect. The self-renewal-driven resistance we describe herein
challenges the prevailing paradigm that TKI resistance is proliferation-driven and a consequence of
HSC" quiescence (Graham et al., 2002; Corbin et al., 2011).
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Because stem cell self-renewal is hard to quantify experimentally, we developed a clinical prog-
nostic criterion to predict TKI response based on the relative changes in the BCR-ABL1 transcripts
over a 3-month period. Using the synthetic data from our normal and leukemic parameter sets, we
found that using changes in transcripts from 3 to 6 mo was very effective in predicting the long-term
outcome of treatment (e.g., reaching MR3 within 18 mo). In contrast, using transcript data from 0 to 3
mo resulted in less accurate predictions. This observation also holds for prognostic criteria based on
EMR and transcript halving time, which are currently used in the clinic. We then tested the prognostic
criteria on data obtained from small number of anonymized CML patients and found the same conclu-
sions hold. Our results suggest that the relative change prognostic criterion more accurately predicts
patient response than EMR and the halving time, although more data are needed to confirm this. Our
cohort of patients was small due to the variable nature of patient treatment and inconsistent data
collection, for example, patients were frequently switched from one TKI to another or one dosage
to another (sometimes multiple times), and the patients’ BCR-ABLT transcript levels were not always
consistently recorded. However, we believe that this pilot study demonstrates the feasibility of our
approach. Moving forward, we aim to apply our approach to larger datasets and hope to convince
others to do the same.

Two strategies can be postulated to overcome TKI resistance. One approach could be to decrease
stem cell self-renewal either by inhibiting self-renewal directly (e.g., by augmenting TET2 function
using ascorbate; Agathocleous et al., 2017, Cimmino et al., 2017) or by promoting differentia-
tion (e.g., using retinoids; Drumea et al., 2008). By applying combined TKI| and pro-differentiation
therapy, the self-renewal fractions of the normal and leukemic stem cells can be decreased and
brought closer together, which ultimately disadvantages the leukemic cells because of TKl-induced
cell death (Figure 8F, blue panel). An alternative or complementary approach would be to increase
stem cell proliferation via pro-proliferative stimuli such as IFN-alpha (Essers et al., 2009) to increase
efficacy of TKis in killing HSC.

It is apparent that the feedback/feedforward interactions incorporated in our model, which are
necessarily somewhat restricted, may be further constrained by spatial characteristics of the BM
microenvironment. Nonetheless, our model still displays consistent and biologically relevant behav-
iors, and although further refinement of the model behaviors is possible, based upon our findings the
key behaviors (feedback mechanisms and importance of stem cell self-renewal) would be expected to
remain much the same. To explore experimentally observed phenomena not captured by our current
model such as treatment-free remission, where a low level of HSC" persists in the absence of TKI pres-
sure without myeloid cell expansion, improvement of the model is necessary. For example, it may be
necessary to incorporate features of the BM microenvironment such as stem cell-niche interactions
(MacLean et al., 2014; Lai et al., 2022) and interactions with immune cells (Hdhnel et al., 2020).
The inclusion of a quiescent stem cell state and additional cellular compartments (such as committed
progenitors) coupled with appropriately constrained cell-cell signaling would also make the model
more physiologically accurate.

In summary, the feedback/feedforward model we have presented here, while a simplified version
of normal and CML hematopoiesis, makes novel and testable predictions regarding the origins of
non-genetic primary resistance, which patients will respond to TKI treatment and suggests a combi-
nation therapy that can overcome primary resistance. Although preliminary evidence was presented
to support model predictions, future work should focus on designing targeted experiments and
collecting patient outcomes to generate data to more thoroughly test the model.

Methods

Mathematical model of hematopoiesis

The classical depiction of hematopoiesis is a hierarchy of cell types starting with the hematopoi-
etic stem cell at the top, followed by progenitors and ultimately ending with mature cells located
in the peripheral blood. Therefore, we model hematopoiesis using a lineage ODE model (Roeder
et al., 2006; Komarova and Wodarz, 2007; Horn et al., 2008; Foo et al., 2009; Lander et al.,
2009: Marciniak-Czochra et al., 2009; Manesso et al., 2013; Buzi et al., 2015; Hihnel et al., 2020;
Pedersen et al., 2021) to describe cellular growth dynamics. The modeling allows us to follow the
similar hierarchical structure by creating an order of differentiation. Our branched lineage model of
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hematopoiesis is simplified and only models HSCs, progenitor cells (MPPs), and two types of termi-
nally differentiated cells (myeloid and lymphoid cells). The model can easily include additional cell
types, such as committed progenitor cell types, which will provide an additional level of detail. The
model consists of two dividing cell types consisting of S (HSC) and P (MPP) cells with a division rate
associated to the cells (7, and 7 , respectively). The S cells have the ability to self-renew with frac-
tions (p) or differentiate (1 py). The P cells have the ability to self-renew with fraction (p;) or differen-
tiate into either TD, (lymphoid) or TD,, (myeloid) cells (g, or 1-p;-q, respectively). Both S and P cells
do not die within the model. The terminal cells form the majority of the hematopoietic system and
consist of TD, and TD,, cells. TD,, and TD, cells are postmitotic and die at rates d,, and d,, respectively.
The following equations (Equations 1-4) describe the dynamics of the system:

X = (2po — Dy xs
xp =2(1 = po)m xs + (2p1 — Dy xp
Xp, = 2q1mxp — dixrp,

x7p,, =2 (1 = p1 — q1) mxp — dmxmp,

Further expanded forms of the equations are shown in Appendix 1, Equations 26-29, with the
addition of feedback regulation for each of the parameters.

Design space analysis

We use an automated method developed by Savageau and collaborators (Savageau et al., 2009,
Fasani and Savageau, 2010, Lomnitz and Savageau, 2013; Lomnitz and Savageau, 2016) that
separates models by distinct qualitative behaviors at steady state. The strategy is to deconstruct the
model of interest at steady state to focus on cases where one production term and one loss term
dominate, which gives a dominant subsystem (S-System). This implies that particular inequalities hold
in order to ensure the production and loss terms chosen are larger than the others. The inequalities
are evaluated at the S-system'’s steady state to assess self-consistency. If the inequalities are satisfied,
the system is self-consistent and the regions where equality holds form boundaries that pertain to a
particular qualitative behavior associated with the system. The interior region (where strict inequality
holds) is termed a domain in design space. If all the S-systems associated with a model do not have
any equilibria that are self-consistent or equilibria that are stable, then the model is rejected. The
benefits of this method are that it does not require prior knowledge about parameter values, and it
can enumerate the different types of qualitative dynamics a certain system may have. By eliminating
subsets of parameters for which the equilibrium is unstable, this approach will automatically select
models that are robust to parameter variation due to stability. When we applied this method to the
ODE system in Figure 2F (Appendix 1, Equations 26-29), we found that only the four model classes
shown in Figure 1B were accepted. See Appendix 1, Section 1, for further details.

Parameter estimation

To approximate biologically relevant parameters for the model a grid-search algorithm was employed.
Parameters were sampled using a random uniform distribution for each parameter (see Appendix
1, Section 3.1). Once parameter values were chosen, the model was simulated to steady state. If a
parameter set resulted in steady-state values consistent with the order of magnitude in Manesso
et al., 2013, the parameter set was accepted, otherwise it was rejected. Specifically, these inequal-
ities had to be satisfied 10* < HSC < MPPs with MPPs fixed at 10° and MPPs < TD, < Tp,.. For 10°
iterations, a sample of 1493 parameter sets were accepted. The distribution for these parameter sets
is shown in Appendix 1—figure 4. To further explore the effect of the feedforward interaction, these
parameter sets were reduced to the 563 sets with ys > 0.01. The distribution for these sets is shown in
Appendix 1—figure 5. The parameter sets used in Figures 3-7 are provided in Appendix 1—table
4.

Modeling CML development

To model CML development in the presence of normal hematopoietic cells, we introduce a new
leukemic cell type for each compartment. Each compartment is then composed of both normal and
leukemic subcompartments, which exhibit feedback together as a single compartment. We assume
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the only difference between the two cell lineages is the feedback strength for leukemic HSC self-
renewal. This small difference gives the leukemic lineage a competitive advantage for growth, consis-
tent with the ability for leukemic HSC to initiate CML (Reynaud et al., 2011, Holyoake and Vetrie,
2017) and the differential response of the normal and leukemic cells to CCL3 (Eaves et al., 1993,
Baba et al., 2013), which negatively regulates stem cell self-renewal. The full equations used in the
model are shown in Appendix 1, Equations 30-37.

Modeling transplant experiments

The model was tested by simulating the transplant experiments (Figure 4C and D) of Reynaud et al.,
2011 where HSC" or MPP" were implanted into sublethally irradiated mice and terminal cell counts
were measured after 35 d. We used two parallel lineages of leukemic cells with identical parameters
to mirror the two leukemic cell populations of the experiment. To mimic the effects of sublethal
radiation, we reduced the cell populations from their equilibrium values by variable amounts. The
HSC" depletions varied between 50 and 70% and the MPP" depletions varied between 30 and 50%
while both terminal cells were depleted by 10%. After depletion, an additional 4000 cells of either
stem or progenitor types were transplanted in accordance with the experiment. We then discarded
the 85 parameter sets that were not consistent with the results from Reynaud et al., 2011, leaving
478 eligible parameter sets. The results shown in Figure 4 used depletions of 55% for HSC', 35% for
MPP's. See Appendix 1, Section 4 and Figure 5—figure supplements 1-3 for results using other
decrements, the discarded parameter sets, and the final parameter distributions.

Modeling TKI therapy

To account for the treatment by TKls, additional proliferation-dependent death terms are added to
the equations for leukemic stem cells and leukemic progenitor cells shown in Appendix 1, Equations
38 and 39 (parameter values are given in Appendix 1—figure 5). These represent the ability of TKls
to induce cell death in the leukemic cells. Both cell types have unique death rates, to reflect TKls
having different efficacy in killing stem cells and progenitors. The death rates were selected using a
single parameter set to ensure a reasonable biphasic curve for BCR-ABL1 transcript levels compared
to patient transcript levels from Glauche et al., 2018. The same death rates were then used across
every parameter set to ensure consistency. In addition to these changes upon initiation of TKI therapy,
the leukemic stem cell division rate is reduced. This reduction models the ability of TKls to drive
leukemic stem cells to quiescence (Jorgensen et al., 2006).

To approximate the BCR-ABL1 transcript levels, we used a method based upon (Michor et al.,
2005). We use the cell counts of both normal and leukemic terminal cells for both myeloid and
lymphoid lineages. The terminal cells are used as in our model they are the closest to peripheral blood

in which transcript levels are measured clinically. This results in the following measure for BCR-ABL1

; . BCR—ABL1 _ TDi+TDY,
transcript levels: 2= z02= = TDI+TDL +2 (1D, ¥7Dy) °

Modeling combined TKI and differentiation therapy

Combination therapy consists of simultaneously employing TKI therapy, described in ‘Methods’ and
Appendix 1, Sections 2-3, and the addition of a new differentiation therapy. To model differentiation
therapy, we altered the form of p, by including a new constant repressive force that affects both normal

Plmar
I+yfP+A’
A is the differentiation therapy strength. We then performed combination therapy using our existing
parameters, swept through differentiation therapy strengths and recorded which parameter sets
achieved MR3 within 50 mo. We then determined that a differentiation therapy strength of D = 0.24
resulted in the highest proportion of parameter sets that achieved MR3 response. The full equations
for combined TKI and differentiation therapy are shown in Appendix 1, Equations 40 and 41.

and leukemic self-renewal, resulting in po new = 1+’f;’1"1";‘j_A and p§,pw =

where P = xp. + xp and

CML patient data
Data from newly diagnosed CML patients (n = 21) treated with TKI therapy at UCI Health were
obtained under an honest broker mechanism from the electronic health record under Exemption 4 for
human subjects research.
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Mice

C57BL/6J female mice (Jackson Laboratories), 6-12 wk of age were used for irradiation and myeloid
depletion experiments. Conditional BCR-ABLT double transgenic mice (Koschmieder et al., 2005)
were obtained from Dr. Emmanuel Passegue (Columbia University). All protocols in mice were
approved by the Institutional Animal Use and Care Committee of University of California, Irvine.

Irradiation of mice

To achieve selective depletion of HSCs, a 50 cGy dose of irradiation from X-ray source (Precision X-rad
320) was applied. Control mice did not receive irradiation. The distribution of time points at which
observations were made (days 1, 3, and 7 post-irradiation), and the number of mouse replicates to use
at each time point (between 2 and 7, totaling 13 mice), were informed by our Bayesian hierarchical
framework for optimal experimental design (Lomeli et al., 2021).

Myeloid cell depletion
RB6-8C5, an anti-Gr1 antibody (catalog # BE0075, BioXCell) or isotype control (catalog # BEO0Y0,
BioXCell) was injected intravenously, 50 ug per mouse, and mice sacrificed 24 hr later.

BrdU injections

In irradiation experiments, mice were pulsed with BrdU by IP injection of 200 pl of 10 mg/ml BrdU in
DPBS. BrdU flow kit (552598) from BD Biosciences was used for detection of BrdU labeling in hema-
topoietic cells by flow cytometry.

Flow cytometry analysis of cell populations

BM cells from femur and tibia of control and dosed mice were isolated by flushing bones. Following
lysis of red blood cells (RBC lysis buffer, eBiosciences), leukocytes were stained with CD34 antibody
for 1 hr and subsequently incubated with a cocktail of biotinylated antibodies directed against lineage
markers (CD3, Gr-1, B220, Ter119) and stem/progenitor markers (c-Kit, Sca-1, CD48) for 30 min.
Streptavidin (SA)-conjugated fluorochrome was utilized to detect biotinylated antibodies. Following
fixation, permeabilization, and DNase digestion, anti-BrdU antibody was used to assess BrdU incorpo-
ration. Events were acquired on FACS Arial Il and analyzed with Flowjo v.10 software.

Antibodies

Monoclonal antibodies for flow cytometry were biotinylated mouse lineage panel (559971, BD Biosci-
ences), PE-CF594 Streptavidin (562318, BD Biosciences), anti-mouse CD48 (561242, BD Biosciences),
anti-mouse CD34 eFluord50 (48-0341-82, eBiosciences), anti-mouse Sca-1-PE (108108, BioLegend),
anti-mouse c-Kit-APC (17-1171-82, eBiosciences), and FITC BrdU flow kit (559619, BD Biosciences).

Generation and TKI treatment of chimeric BCR-ABL1 mice

The full details of the CML mouse model will be published elsewhere (Jena et al., in preparation).
Briefly, BM cells from conditional BCR-ABL1 double transgenic mice (CD45.2*) (Koschmieder, Gott-
gens et al. 2005) (40 million cells) were transplanted intravenously into unirradiated C57BL/6J recip-
ients (CD45.1"CD45.2%) maintained on doxycycline to suppress BCR-ABL1T expression. Two months
post-transplant, doxycycline was removed to allow induction of CML-like leukemia. Chimerism was
assessed by percentage of CD45.1- CD45.2* granulocytes in peripheral blood. To generate chimeric
mice with high (>90%) leukemic stem cell burden, the donor and recipient pair was reversed, with
double transgenic mice transplanted with normal B6 BM. In mice with established CML-like leukemia
(peripheral blood leukocytes > 20,000/ul and >40% circulating granulocytes), TKI treatment was initi-
ated with dasatinib (25 mg/kg daily by oral gavage).

Data availabality
Code used to generate the figures, determine the S-Systems and files containing parameter sets

are found at the following GitHub: https://github.com/jonatdr/CML_Treatment (copy archived at
Jonatdr, 2023).
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Appendix 1

1 Design space analysis

1.1 Introduction

In this section, we provide details on the application of design space analysis (DSA), developed in
Savageau et al., 2009; Fasani and Savageau, 2010; Lomnitz and Savageau, 2013; Lomnitz and
Savageau, 2016 for chemical reaction networks, to a simplified version of the cell lineage model
considered in the main text (see Figure 1). This enables us to analyze nonlinear dynamical systems
near steady state to identify the regions in parameter space where common qualitative behaviors
occur. Applying this analysis allows us to (1) ignore specific parameter values, (2) obtain analytical
steady states, (3) reduce the search area in parameter space by searching boundaries separating
regions of common behaviors, and (4) easily automate this process. In this section, we review how
one can construct a design space given an ODE model. We then apply this analysis to an ODE model
of cell lineages and show how this model can be used to define regions of stability in parameter
space.

1.2 Boundaries of design space for general models

In order to apply DSA, the ODE must be a generalized mass action system, shown below in Equations
1 and 2,

n+m r n+m

:
G = o I - [[6 0
k=1 j=1 k=1 j=1

X; (0) = Xjo, )

for i =1, n. Here, n corresponds to the number of dependent variables and m corresponds to the
number of independent variables. The «; and S;; parameters correspond to rate constants of the
differential equation and r corresponds to the number of associated rate constants.

DSA takes advantage of the above form by creating a system of deconstructed ODEs where
one source term and one sink term in the differential equation dominate, known as a subsystem (S-
system). The following is the generalized form of an S-system:

dX n+m n+m

“a = L1 =5, [T ®
=1 =1
X: (0) = Xpo (4)

where p and g correspond to the number of positive and negative terms of the differential equation,
respectively. We are interested in solving these solutions at steady state, and therefore solve the
system by setting the time derivative to zero. We take advantage of the form shown in Equation 3
and take the log of the system:

n+m n+m

log (aip) + Y gijp log (X;) =1log (Big) + Y _ hijq log (X;) 5)

J=1 J=1

thus, making this a linear solve in log space. In defining the S-systems, we must make assumptions
about the model and its parameters. To satisfy the S-systems, we impose inequality constraints to
satisfy the dominating source and sink terms of the S-systems by the following:

n+m n+m
aip HXf"j” > wjp H)(f”ﬁfori= 1,..n;p=1,...,p-1,p+1,...,r (6)
=1 j=1

n+m n+m
Big H X]h’” > Big H Xf’ﬁ’for i=1,.mg5=1,..,q9-1,g+1,...;r
j=1 j=1 (7)

We can then log transform these inequalities to obtain

Rodriguez, Iniguez et al. eLife 2023;12:e84149. DOI: https://doi.org/10.7554/eLife.84149 36 of 57


https://doi.org/10.7554/eLife.84149

ELlfe Cancer Biology | Computational and Systems Biology

n+m n+m

log (ctip) + > gijp log (X;) > log (aip) + > gip log (X)) ®)
=1 =1
n+m n+m

log (Big) + ) _ hijqlog (X;) > log (Big) + > _ hijg log (X)) ©)
j=1 Jj=1

These inequalities become our boundaries in parameter space in which qualitative behavior is shared
once the X; 's are evaluated at steady state, where the steady states are obtained from solving the
log-linear S-system. Not all S-systems will have a unique solution or satisfy the inequality constraints.
The S-systems that do not satisfy these constraints will be discarded. The analysis is summarized in
Appendix 1—figure 1.

Evaluate

—> [S-system 1] >{Steady state soln.| )

> Dominance condition 1@ E&T&'i?i%?ncf T
: Evaluate

ODE Model [ [S-system k|-»Steady state soln) — | pominance Assemble ODE

Dominance condition k condition k model Design space

—> [S-system NJ->-{Steady state soln] chza\r/r?ilrllj:;%e

L>[Dominance condition N}—"_> Condition N

Appendix 1—figure 1. Flow chart for design space analysis (DSA). Given an ordinary differential equation (ODE),

we can obtain the design space by obtaining all S-systems, steady states, and evaluated dominance conditions.
S-systems that do not satisfy the dominance condition are not included in the design space.

1.3 Analysis of a four-cell lineage model

We next apply this analysis to a lineage model with four cell types (see Appendix 1—figure 2).
The model consists of two dividing cell types consisting of S (HSC) and P (MPP) cells with a division
rate associated to the cells () and 7, respectively). The S cells have the ability to self-renew with
fraction (pg) or differentiate (1 — pg). The P cells have the ability to self-renew with fraction (p;) or
differentiate into either TD; (lymphoid) or TD:, (myeloid) cells (g; or 1 — p; — ¢y, respectively). TDy,
and TD; cells only have the ability to die at rates d,» and d; , respectively. We add negative feedback
on the self-renewal fraction of the stem cells from the differentiated cells. Appendix 1—figure 2
shows a schematic of the lineage with the parameters. The corresponding differential equations are

x5 = (2po — 1) mixg (10)

xp =2 (1= po) mxs+ (2p1 — 1) mxp (11)
X7p, = 2q1mxp — dix1p, (12)

xrp, =2 (1= p1 — q1) mxp — duxrp, (13)

where py = po/ (1 +~xp), and py is defined as the maximum stem cell self-renewal fraction and ~ is
the feedback strength.
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Po P1 a @
ret )

Appendix 1—figure 2. Lineage schematic depicting a stem cell and terminally differentiated cell with negative
feedback onto stem cell self-renewal probability pg .

We begin by rewriting the equations in the form shown in Equation 1.

X = (Zpoxnew - 1) N1Xs (14)

xp=2 (1 _ﬁoxn_e}/v) nxs+ (2p1 — 1) mxp (15)
Xrp, = 2q1mxp — dixrp, (16)

x7p, =2 (1= p1 — q1) mxp — dmxmp, 17)
0=1+vxp — Xnew- (18)

Note that we introduce a new variable xzew =1 +~vxp , which is necessary to achieve the form of
Equation 1. We next find all combinations in which one source term and one sink term dominates
the system of differential equations.

From Equations 14-18, we obtain 24 S-system combinations, a subset of which is shown in
Appendix 1—table 1. We continue the analysis with S-system 2 from Appendix 1—table 1. Using
S-system 2, we set the time derivatives to zero and rearrange the equations such that we obtain

Ax=bh:
[0 00 0 o0 1] log(s) | log (2po)
1 -1 0 0 log (xp) log (2771 )
0 1 -l 0 | | tog(m) | =] log(z%5)
0 1 1 0 || log(%m,) log ( )
0 -1 0 0 1 || log(Fuew) | log (+)

such that Xy , Xp , Xrp, , and Xpp, are the steady-state solutions for the S-system and Xpew is the
solution of the newly defined variable at steady state. Solving the linear equation gives us

[ log (x"s) 1 [ log (P(mz) ]
log (x’P) log (2170)
log (xp,) | = | log (4p°q”72)
log (¥7p,,) log (4”""2)
| log (Tnew) | | log (2)
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We can now construct the boundaries for this S-system. We substitute our steady-state solutions
obtained above into the logged inequality constraints from Appendix 1—table 1. Thus, the
inequalities in log space become

0 < log (2p0) (19)
0> log (2p1) (20)
0> log (q1) (21)

Out of the 24 possible S-systems, only S-system 2 has a unique steady state that satisfies the
constraints. We can plot the design space by varying py and « (see Appendix 1—figure 3). The
design space shows one region where py > 0.5, a requirement for a positive steady state in the full
system. The domain in parameter space corresponds to S-system 2 in Appendix 1—table 1.

Appendix 1—table 1. A sample of S-systems from Equations 14-18.

S-system 1 S-system 2 S-system 3 S-system 4

-1
2P0XnewmMXs — M1Xs

-1
2P0XnewmMXs — M1Xs

-1
2P0XnewmXs — M1Xs

-1
2p0XnewMXs — M1Xs

_
2n1xs — 2P0XnewN1Xs

2n1xs — MoXs

_
2p1maxs — 2P0Xnewn1Xs

2p1mXxs — MXs

/
XTD,

2q1mxp — dixrp,

2q1mxp — dixrp,

2q1mxp — dixrp,

2q1mxp — dixrp,

/
*TD,,

2mpxp — dmXTD,,

2mpxp — dmXTD,,

2mpxp — dmXTD,,

2mxp — dmxTp,,

0

YXP — Xnew

YXP — Xnew

YXP — Xnew

YXP — Xnew

Boundary 1

2mxs > 2p1mXs

2mxs > 2p1mXxs

2mxs < 2p1mXxs

2mxs < 2p1mXxs

Boundary 2

T
2D0XnewMXs > ThXs

T
2P0XnewmMXs < TXs

-1
2D0XnewMXs > ThXs

N
2P0 Xnewn1Xs < MmaXs
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Appendix 1—figure 3. Design space for four-cell lineage model. The design space is showing a slice of
parameter space varying the max self-renewal probability (pg) and feedback gain for stem cells (). If we are to
sample parameters sets (shown by points), we observe oscillatory behavior in the full system, as shown by the time
evolution plots.

It is possible to relate the S-system back to the true ODE system with classical techniques.
For example, it was shown in Savageau et al., 2009, Fasani and Savageau, 2010; Lomnitz and
Savageau, 2013; Lomnitz and Savageau, 2016 that the S-system and full ODE system have the
same linear stability behavior in the parameter regime appropriate for the S-system. Thus, parameter
sensitivity analyses of the S-system provide insight on the behavior of the full system.

Performing a linear stability analysis on the S-system that corresponds to the region in parameter
space shown in Appendix 1—figure 3, we obtain the following eigenvalues:

0.1257/(d(—64 + 16d)50")/72
o | osg 01257V 4+ 160D 22)

Po

N 0.125v+/(d(—64 + 16d)po*)/+?

—0.5d -
Po?

(23)

which suggests a stable spiral or stable node depending on the value of d. We also perform the
linear stability analysis on the full system and obtain the following eigenvalues:

_ | =0.25dpy — 0.125 Vdpo2(4d + (32 — 64po)po) (24)
= — ,
Po

A

—0.25dpy + 0.125 \/dp_02(4d + (32 — 64po)po)
52
Po (25)
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and in the parameter space for the S-system, we obtain the same behavior. Using the full system,
we can also plot the dynamics in the domain, which are shown as insets in Appendix 1—figure 3.
When plotting the full system in Appendix 1—figure 3, we observe that the stem and progenitor
populations oscillate before reaching steady state, characteristics of a stable spiral. The S-system
and the true system eigenvalues are not identical, but using the same parameters in the appropriate
S-system parameter space, the systems will have the same behavior. However, outside of the domain
of validity of the S-system, we cannot conclude anything about the full system’s dynamics from the
S-system. In fact, from Appendix 1—figure 3, we observe being outside of the domain of validity of
S-system 2 (e.g., pp < 0.5) yields to solutions that tend to the zero steady state.

We use DSA to select among all possible ODE models for normal hematopoiesis consistent with
the lineage diagram shown in Figure 1A in the main text in which each parameter py, p1, g1, 71,
and 1, is either unregulated (constant) or is subject to positive or negative regulation from most one
cell type in the lineage. As described in the main text, there are 59,049 possible models, counting
each combination as a model. We implement an automated implementation of DSA that enables an
efficient exploration of this large space of models. Eliminating models with no valid S-systems and
those with unstable equilibria, we eliminate all but the four model classes shown in Figure 1B in the
main text.

2 Mathematical model
The complete ODE model of normal hematopoiesis is composed of the following equations:

/ P0,max M ,max
=12 ’ —1 ’
s ( L+ yixp ) T+ yoxs (26)
/ P0,max 1, max P1,max 2, max

=2(1-— - : +(2 - —1 :

i ( 1+ 'y]xP> 1+ Y2Xs *$ ( 1+ Y3XTD,, ) 1+ Y5XS§ P (27)
o =2 q1,max 12,max xp — dixm
Dy 1+ Y4XTD,, 1+ Y5Xs L (28)
/ P1,max q1,max T12,max
X =2(1-— : — : : xp — dmXTD, .

O < L+ vyxrp,  1+xm, ) Ut ysxg D (29)

The ODE model for CML hematopoiesis tracks the dynamics of both the normal and CML cells
(superscript L), and assumes that both cell types provide and respond to feedback signaling,
although the CML stem cells are slightly less responsive to negative feedback regulation, which
gives them a fitness advantage. The complete system is given by

X{g — <2 PO0,max _ 1> M ,max xs (30)

1+ (xP +XPL) 14+v (xs +xSL)

x}) —2(1- P0,max M ,max xo+ [ 2 P1,max _1 2, max x
L+ (xp+xp) ) 1+ (x5 +x52) 1+ (xmm + xTDg,) 1+ s (x5 +x5)
31
/ _ q1,max T12,max
Xrp, =2 1 xp — drxrp,

1494 (xTDm +xrpL ) +75 (xs +xg) (32)

XS" o =211 P1,max q1,max T2, max xp — dm1p

m T - - - tm m
1+ 3 (XTDm + 'xTD'Ln) 1+ Y4 (.XTDm +xTD£,) I+ V5 (.Xs +'XSI‘) (33)
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L L
xéL = (2 pO,mwc 1 nl,max Xqt
1+’ylL (xp +xPL) 1+’y§“ (xs +xSL) (34)
L L L L
X/L —2(1 pO,max nl,max xgt 2 pl,max 1 772,max
- _ _
+~b (xp+xpe) ) 1+E (xs+x5) 1444 (XTD,,, +xTD’~) L+ ~kys (xs +2
(35)
L L
/ 91, max 2, max dL
Xppr =2 3 xpr — dj XppL
- 1+~% (xTDm +xTD,L”) 1+ % (s + x5 . 36)
L L
/ p 1,max q{‘,max nZ,max L
XTDL =2 1— — L XpL — deTDﬁ.
L 1+~% (XTD,,, + xTDfﬂ) 1+~% (XTD,,, + xTD’Ln) 1+~ (x5 + x0) a7
When TKI therapy is applied, Equations 34 and 35 are replaced with
L L
/ P0,max M, max
Xqg = | 2———F—— — 1 — TKlysc —F———XgL
N < 1+ ’ylL (xp +xpL) 1+ ’y% (xs +XSL) (38)
L L L
wp =2 (1= —Dmax Tmax o+ (2 P1max 1~ TKlypp | ——
L+Ab (xp+xpe) ) 1T+% (xs+x5) 1444 (XTD,,, +xTDL) 1419
(39)

where TKIysc and TKIypp denote TKl-induced death rates of the CML stem and MPP cells. With the
introduction of differentiation therapy, Equations 30 and 38 instead become

x{; _ P0,max 1 "1,max Xg
L+ (xp +xpe) + A 1+, (x5 +x5) (40)
L L
/ Po,max M, max
xg = |2 > — 1 —=TKlysc | ———F—xgt.
5 ( 1+’ylL (xp +xp.) + A 1+’y§ (x5 + xsz.) 41)

3 Parameter estimation

The parameters for the model of normal hematopoiesis, and their descriptions, are listed in
Appendix 1—table 2. The additional parameters needed to model the CML cell population, and
the application of TKI therapy are given in Appendix 1—table 3.

Appendix 1—table 2. Parameter values used to model the normal hematopoietic system.

Parameter  Description

P0,max Maximal self-renewal fraction of HSC

P1,max Maximal self-renewal fraction of MPP

91,max Maximum branching fraction from MPP
to TDy,

Appendix T—table 2 Continued on next page
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Appendix T—table 2 Continued

Parameter

Description

M ,max

Maximum HSC proliferation rate

T12,max

Maximum MPP proliferation rate

!

Feedback gain on HSC self-renewal
fraction

72

Feedback gain on HSC proliferation
rate (from HSC)

73

Feedback gain on MPP self-renewal
fraction

Y4

Feedback gain on MPP branching
fraction

s

Feedforward gain on MPP proliferation
rate

dy,

Death rate of TDy,

dm

Death rate of TDyy

HSC: hematopoietic stem cell; MPP: multipotential

progenitor.

Cancer Biology | Computational and Systems Biology

Appendix 1—table 3. Additional parameter values used to model the chronic myeloid leukemia
(CML) cell population dynamics and effect of tyrosine kinase inhibitor (TKI) therapy.

Parameter

Description

L
pO,max

Maximal self-renewal fraction of HSC L

L
Plmax

Maximal self-renewal fraction of MPP L

L
ql,max

Maximum branching fraction from MPP
L to TDr,

L
M max

Maximum HSC L proliferation rate

L
772,max

Maximum MPP L proliferation rate

L
M

Feedback gain on HSC L self-renewal
fraction

v

Feedback gain on HSC L proliferation
rate (from HSC L)

Feedback gain on MPP L self-renewal
fraction

Feedback gain on MPP L branching
fraction

L
5

Feedforward gain on MPP L
proliferation rate

df

Death rate of TDLL

ds

Death rate of TDML

TKIgsc

Death rate of HSC L due to TKI therapy

TKIvpp

Death rate of MPP L due to TKI therapy

HSC: hematopoietic stem cell; MPP: multipotential

progenitor.
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3.1 Parameter distributions

A grid-search algorithm was used to find parameter values that demonstrate steady-state cell counts
consistent with Manesso et al., 2013 and time of recovery to steady state from cellular perturbations
consistent with Reynaud et al., 2011. The resulting distributions of the 1493 parameters are
displayed along the diagonal of Appendix 1—figure 4. In the distributions, the feedback gain of the
feedforward regulation is skewed toward smaller values across all parameter sets. To investigate the
observed feedforward loop, we selected only the parameter sets with sufficiently large feedforward
gain ~s > 0.01. This resulted in a reduced distribution of 563 parameter sets and is shown in
Appendix 1—figure 5. The parameter ranges for the gridsearch were found using the method
shown in the following pseudo-Python.

for i in range(leo6):

param gridsearch dist = dict (pOmax = np.random.uniform(0.5, 1.0),

plmax = np.random.uniform(0.0,0.5), glmax = np.abs(np.random.uniform(0.0,0.
49)),

etalmax = np.random.uniform(0,0.5), etaZmax = 10**np.random.uniform (-
2,1.5),gam2=10**np.random.uniform(-6,0), gam3=10**np.random.uniform(-6,0),
gam4=10**np.random.uniform(-6,0), gam5=10**np.random.uniform(-6,0),dL =
10**np.random.uniform(-4,1), dM = 10**np.random.uniform(-4,1))
y=hematopoiesis (param gridsearch dist)

if y[0,-1]>.01 and y[0,-11<y[1l,-1]<y[2,-1]<y[3,-1]:master params.append (
param gridsearch dist)

The specific parameters used to model the normal hematopoietic system in Figures 3-7A, C
and D in the main text are given in Appendix 1—table 4. When CML cells are introduced, the
additional parameters of a representative responder associated with the leukemic cell ODEs are
given in Appendix 1—table 5. A representative parameter set for a nonresponder is shown in
Appendix 1—table 6.
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Appendix 1—figure 4. Pairwise parameter distributions for all 1493 parameter sets found from the gridsearch.
The overall distributions for each parameter are shown along the diagonal.
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Appendix 1—figure 5. Pairwise parameter distributions for the 563 parameter sets from Appendix 1—figure 4
that have feedforward gain s > 0.01. The overall distributions for each parameter are shown along the diagonal.
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Appendix 1—figure 6. A spaghetti plot showing the dynamics of the effective proliferation, self-renewal, and

branching parameters for 50 parameter sets under tyrosine kinase inhibitor (TKI) treatment started at early times.

Appendix 1—table 4. Parameter values used to model the normal hematopoietic system in
Figures 3-7A, C and D in the main text.

Parameter Value

PO,max 0.756641
Plmax 0.357913
q1,max 0.032241
M1, max 0.197639

Appendix 1—table 4 Continued on next page
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Appendix T—table 4 Continued

Parameter Value
2,max 0.47088
M 0.513281
"2 0.197639
73 0.47088
Y4 0.513281
75 0.543987
dr. 0.000165
dm 0.000428

Cancer Biology | Computational and Systems Biology

Appendix 1—table 5. Additional parameter values used to model the chronic myeloid leukemia
(CML) cell population dynamics in Figures 4A ,B, 5-7A, C and D in the main text.

Parameter Value
L 0.756641
14 0,max
L 0.357913
P 1,max
L 0.032241
q1 Jmax
0.197639
Ui ,max
L 0.47088
772,max
L 0.2566405
M
0.197639
1
0.47088
%
L 0.2566405
V4
L 0.543987
s
L 0.000165
dL
0.000428
dy,
TKlgsc 0.201311
TKIypp 0.024757

Appendix 1—table 6. Secondary parameter values used as a representative case to model
nonresponsive chronic myeloid leukemia (CML) cell population dynamics in Figures 7C, D and 8 in

the main text.

Parameter Value

PO,max 0.838481
Plmax 0.009776
q1,max 0.418627
M1, max 0.226025
12,max 0.247591

Appendix T—table 6 Continued on next page
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Appendix T—table 6 Continued

Parameter Value

i 0.676962

72 0.000219

73 0.000326

V4 0.367564

Vs 0.168132

dr, 0.071273

dm 0.155649
L

Plmax 0.838481
L

P 0.009776

‘h,max 0.418627
L

0 ma 0.226025

15 ma 0.247591
L

A 0.338481

V5 0.000219

V5 0.000326
L

o 0.367564

~k 0.168132
L

dk 0.071273

dt 0.155649
L )

TKIgsc 0.25

TKIypp 30

4 Simulations of transplant experiment

As described in the main text, we simulated a transplant experiment in a transgenic mouse model of
CML performed in Reynaud et al., 2011. In this experiment, either leukemic stem HSC 1. or leukemic
MPP 1 cells were implanted into sublethally irradiated mice. Transplantation of HSC 1. enables
engraftment and myeloid cell production that leads to CML. On the other hand, transplanting
MPP v cells does not allow for long-term engraftment but results in a larger fraction of donor-
derived lymphoid cells after 35 d. We modeled this experiment by reducing the number of cells in
equilibrium to mimic the effects of sublethal radiation (see ‘Methods’). Here, we present results of a
range of possible reductions of HSC L and MPP L cells, and tracked the outcomes when 4000 HSC
L or MPP L were introduced after the decrements from equilibrium. We then determine which of
our parameter sets are consistent with the experimental outcomes found in Reynaud et al., 2011
using a simple majority of myeloid cells for HSC L transplant and a simple majority of lymphoid
cells for MPP L transplant as consistency criteria. The results are summarized in Figure 5—figure
supplements 1-2. The pairwise parameter distributions of the 478 remaining parameter sets are
shown in Figure 5—figure supplement 3.

5 Effective parameters

Here, we present the effective proliferation rates and self-renewal and branching factors—that
is, the values of these parameters that takes the feedback regulation into account. That is,
the effective stem cell proliferation rate 7 =7y ma/ (1 +72xs) in normal hematopoiesis and

Rodriguez, Iniguez et al. eLife 2023;12:e84149. DOI: https://doi.org/10.7554/eLife.84149 49 of 57


https://doi.org/10.7554/eLife.84149

eLife

Cancer Biology | Computational and Systems Biology

M = Nimar! (1 + 72 (xs +xs)) when CML stem cells are present. The other effective parameters are
defined analogously.

In Figure 3—figure supplement 2, the effective HSC and MPP proliferation rates (n; , m), the
effective HSC and MPP self-renewal fractions (py , p1) and branching fraction ¢; are shown. The
corresponding effective parameters are shown in Figure 6—figure supplement 1 when CML cells
are introduced when the normal hematopoietic model system is at steady state and in response
to treatment by TKis (starts at the time labeled 7 = 0, as indicated by the vertical line) for the cases
shown in Figure 6 in the main text. In Appendix 1—figure 6, we plot the effective proliferation, self-
renewal, and branching parameters for 50 parameter sets under treatment at early times.

6 Distributions of model parameters grouped by response to TKI

treatment using synthetic data (478 parameter sets)

In Figure 7—figure supplement 1, we plot the distributions of all the unregulated proliferation,
self-renewal, and branching parameters, as well as the feedback gains, grouped by response to TKI
therapy. In particular, the blue color indicates achievement of MR3 by 50 mo (termed as responders)
while orange indicates that MR3 is not achieved within 50 mo (termed as nonresponders). The
only parameters that clearly delineate the responders from nonresponders are pguq; and =i , with
responders occurring at the lower values and nonresponders at the higher values.

7 Comparisons of prognostic criteria for predicting response to TKI
therapy
7.1 Performance of prognostic criteria using synthetic data (478 parameter

sets)

Using data generated from our 478 parameter sets, we tested whether prognostic criteria could
correctly identify patients who achieve MR3 within 18 mo after therapy starts. We tested the
performance of our prognostic criterion (relative change of transcript levels) against two existing
clinical prognostics: halving time (the time it takes for the BCR-ABL1 transcripts to reach one-half
of their pretreatment value) and early molecular response (EMR) in which the fraction of BCR-ABL1
transcripts are 10% or less after 3 mo of treatment. We also tested a prognostic criterion based on
the ratio of transcript levels. These different prognostic criteria were calculated for both the first and
second 3 mo after the start of therapy (e.g., 0-3 mo and 3-6 mo). We calculated the corresponding
receiving operating characteristic (ROC) curves and found the optimal threshold by maximizing the
difference between true and false positive rates. The results are presented in Appendix 1—figure
7 and reveal that generally the ratio and relative change prognostics offer similar performance, but
that both demonstrate somewhat better performance compared to the traditional prognostics. In
addition, all the prognostic criteria are more accurate when applied 3-6 mo after the start of therapy
than when applied during the 0-3-month period. We did not calculate the ROC curves for EMR but
rather we only plotted the point that corresponds to 10% transcript levels at 3 mo (black circle) and
1% at 6 mo (open black circle). The EMR prognostic criterion has fewer false positives but also fewer
true positives than the other prognostics.

1.0 pid
/,,
e —— Rel. Change 0-3 Months
0-81 ’ —--- Ratio 0-3 Months
—-- Halving Time 0-3 Months
0.6 - e Optimal Threshold 0-3 Months
o Rel. Change 3-6 Months
& —--- Ratio 3-6 Months
0.4 - —-= Halving Time 3-6 Months
¢ Optimal Threshold 3-6 Months
e EMR 10%
0-21 o EMR1%
0.0 -

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Appendix 1—figure 7. Comparison between our prognostic and alternate prognostics, as labeled, at the first and
second 3 mo after the start of therapy.
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7.2 Performance of prognostic criteria using patient data

The prognostic criteria were tested on anonymized patient data obtained from Dr. Van Etten’s clinical
practice, again asking whether MR3 at 18 mo after treatment could be correctly predicted. We used
data in which patients were kept on the same therapy for 6 mo either from the start of therapy or
after a change of therapy. For patients that achieved MR3 within 3 mo, we did not include their
data at 6 mo. In Appendix 1—figure 8, the first two columns correspond to results when the same
therapy is applied for 6 mo after patient diagnoses. The last two columns correspond to patients who
have had a change of therapy, but the new therapy is maintained for 6 mo. We do not use the EMR
as a prognostic in the cases when therapy is changed. The figure demonstrates that the prognostics
are more accurate for the 3—6-month period, as predicted from the synthetic data. Although the
numbers of patients are small, the relative ratio prognostic criterion is at least as accurate as, or more
accurate than, the other criteria. In Appendix 1—figure 9, the predictions of the prognostic criteria
are grouped by whether the patients achieve or do not achieve MR3 by 18 mo and by time period. In
Appendix 1—figure 10, the prognostic criteria data are aggregated into 3-month windows, where
0-3 mo contains both 0-3 mo after start of therapy and after a therapy change. The 3-6-month data
is similarly aggregated. It is clear that the predictions using the 3-6-month data are more accurate
than those using the 0-3-month window.

Time = 0-3 Months Time = 3-6 Months Time = 0-3 Months Therapy Change Time = 3-6 Months Therapy Change

Prognostic
== Relative Change
== Halving Time
- EMR

== Ratio

Proportion

Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate Accurate Inaccurate
Prediction Prediction Prediction Prediction Prediction Prediction Prediction Prediction

APR APR APR APR

Appendix 1—figure 8. The ability of prognostic criteria to predict MR3 by 18 mo is evaluated using anonymized
patient data (n = 11) in which patients received the same therapy for 6 mo either from the start of therapy or after
a change in therapy. The first two columns correspond to results when the same therapy is applied for é mo after
patient diagnoses. The last two columns correspond to patients who have had a change of therapy, but the new
therapy is maintained for 6 mo. The Early molecular response (EMR) prognostic criterion is not used when the
patients have had a therapy change.

Patient Outcome = Nonresponse Patient Outcome = Nonresponse Patient Outcome = Nonresponse Patient Outcome = Nonresponse
| Time = 0-3 Months. | Time = 3-6 Months. | Time = 0-3 Months Therapy Change | Time = 3-6 Months Therapy Change

Proportion

Patient Outcome = Response Patient Outcome = Response Patient Outcome = Response Patient Outcome = Response = g T

| Time = 0-3 Months. | Time = 3-6 Months. | Time = 0-3 Months Therapy Change | Time = 3-6 Months Therapy Change - EMR
= Ratio

Proportion

Accurate Inaccurate Accurate Inaccurate
Prediction Prediction Prediction Prediction

APR APR

Appendix 1—figure 9. The predictive ability of each prognostic criterion from Appendix 1—figure 8 but
grouped based upon patient (n = 11) outcome (blue, responder; and yellow, nonresponder) and the time frame for
prediction.
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Appendix 1—figure 10. Aggregating the accuracy of prognostic criteria predictions with patient data (n = 11)
from Appendix 1—figure 8 where a general time of 0-3 mo contains both 0-3 mo after start of therapy and after
therapy change. The 3-6-month data is aggregated similarly.

8 Combination therapy parameter distributions by response

Finally, in Figure 8—figure supplement 1, we show how the distributions of model parameters
from Figure 7—figure supplement 1 change when TKI therapy is combined with a differentiation
promoter. The blue hatching indicates a nonresponder that becomes a responder while the yellow
hatching indicates that a responder becomes a nonresponder. Here, response is defined as achieving
MR3 in 50 mo. We observe that differentiation therapy is very effective in driving nonresponders at
large pomax and 7y to become responders, but also drives parameter sets that responded to TKI
monotherapy at small values of pg 4 and 71 to no longer achieve MR3 at 50 mo (nonresponders).

9 Impact of intrinsic differences between normal and leukemic cells

In Figure 4—figure supplements 2-4, we explored perturbations ranging from 90 to 110% of
the original parameter values from Appendix 1—tables 4 and 5 to explore the effect of intrinsic
differences between normal and leukemic cells. One exception is Pé,max , which is limited to a
perturbation range of 90-100% due to biological constraints as described in the main text. For the
single parameter set for normal cells from Appendix 1—table 4, perturbations in most leukemic
parameters yielded insignificant differences at the cellular and response dynamics levels. The three
parameters that did see significant sensitivity to perturbation were the leukemic stem cell-specific

parameters pé,max , %f , and TKIysc . To determine whether this sensitivity applies to the entire
population of parameter sets, we explored sweeps of the newly added leukemic parameters and
their associated feedback gain shown in the heat maps of Appendix 1—figure 11 and Figure 4—
figure supplement 6. For a parameter combination to be considered useful, there must be a
region of the left plots that is of a lower value, such that in a majority of cases leukemic cells can
dominate the system. Along the bottom right plot, the region should be neither fully light or fully
dark to give regions where there are both responsive parameter sets and nonresponsive parameter
sets. Through these parameter combination studies, we find that even on the broader parameter

set population pO maxe @nd 71 are the only cases with S|gn|f|cant differences in overall qualitative
outcomes. Addltlonally, we find that the domains of pO max @nd 71 are relatively restricted W|th the
only viable values of pO max P€INg roughly equivalent with pg jnax W|th necessary decreases in 1- o for

pO max

lower e “ values to ensure parameter combination viability.
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Appendix 1—figure 11. Variations in and I for the individual parameter set from Figure 6 (top) and all
eligible parameter sets (bottom). Left heat maps display the proportion of parameter sets that maintain dominance
of normal cells in the system in the lighter regions and the proportion that possess leukemic cell dominance in the
darker regions. The right heat maps indicate proportion of cases where parameter sets achieve MR3 within 50 mo
with lighter values associated with a higher proportion of response. Biologically relevant parameter combinations
exist within darker regions on the bottom left and regions within orange to purple on the bottom-right plot.

10 Effect of leukemic stem cell parameters on response to TKI therapy
By finding similar qualitative regions of the leukemic stem cell self-renewal heat map in Appendix 1—
figure 11 (lower right), we examined the distributions of response for a few combinations of
parameters shown in Appendix 1—figure 12. We found that it is possible to achieve similar
distributions with different combinations of parameters. When pj, b i POmax = 0.8 and Yy =02, in
33% of the cases the treatment is unsuccessful in achieving MR3 in 50 mo. When pj b e PO.max = 0.8
and ~f/y = 0.1, in 20% of the cases the treatment is unsuccessful in achieving MR3 in 50 mo. When
Pé,max/l’o,max = 0.9 and v¥/y; = 0.3, in 30% of the cases the treatment is unsuccessful in achieving MR3
in 50 mo. When p(%,max/po’max = 1.0 and 'ylLlyl = 0.5, in 39% of the cases the treatment is unsuccessful
in achieving MR3 in 50 mo.

When we analyzed the role of the pretreatment leukemic stem cell proportion on response to
TKI therapy (Figure 7A), we find the results to agree qualitatively across the leukemic parameter
combinations (Appendix 1—figure 13). From this, to determine whether the py or p§ is the true
predictor of response to TKI therapy pg, we first calculated a quantity we termed a characteristic
effective self-renewal fraction to attempt to group these combinations by similarity. The characteristic
self-renewal fractions for leukemic and normal stem cells are defined as pj =p6,max/ (1 +'ylLN)
and Py = pomar! (1 +v1N) . We take N = 10° to be a characteristic value of the size of the MPP
population. We then analyzed the behavior as a function of the maximal HSC self-renewal fraction
PO.max and pé,max/po,mﬂ . The results are shown in Appendix 1—figure 14 where all 478 parameter
sets representing the states of the normal system are considered and the leukemic parameters
Pé,max/po,mwc and ~k/v, are varied from 0.6 to 1.0 and 0.1-0.6, respectively, using blue and yellow
colors to denote responders and nonresponders. We observe that when the fitness of the HSCE
(as measured by f’émwf/l?o,max) is sufficiently low (e.g., pé,mgx/pﬂ,mw < 0.65), all the systems respond
to TKI therapy. When the HSCL increase in fitness, the number of nonresponders increases but
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Appendix 1—figure 12. Combinations of leukemic values with similar overall response rates to tyrosine kinase
inhibitor (TKI) therapy (see text) yield similar distributions of response.
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Appendix 1—figure 13. Simulated distributions of response to tyrosine kinase inhibitor (TKI) therapy as a
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Appendix 1—figure 14. Comparison of trajectories of response as functions of ﬁl(j/po,max and po max - For each
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branches. Dot color denotes whether a parameter set responds (blue) or does not respond (orange).
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The overall fitness of the leukemic stem cells relative to that of the normal cells determines
whether CML will develop and whether treatments will succeed or fail. This is shown in Figure 7—
figure supplement 2. The relative fitness of the CML cells is measured by the ratios of characteristic
values of the HSCL and HSC self-renewal fractions: p5/py . Here, all 478 parameter sets representing
the states of the normal system are considered and the leukemic parameters P&max/Po,max and ~Fry
are varied from 0.6 to 1.0 and 0.1-0.6, respectively. The larger the relative fitness, the more likely
that CML will develop and take

over the system (Figure 4D) and that the system will be refractory to TKI treatment (Figure 7—
figure supplement 2).

As we described in the main text, we estimated the relative fitness of HSCL as p§/po ~ 0.70 . In
Appendix 1—figures 15-16 and Figure 7B, we plot the bivariate histogram for response to TKI
treatment for combinations of leukemic stem cell parameters such that p5/5y > 0.50 (Appendix 1—
figure 15), p5/py > 0.60 (Appendix 1—figure 16), and p5/py > 0.7 (Figure 7B). Through exploration
of bivariate and marginal distributions, we find that pg .y is capable of separating response, while
the fitness pé/po,max does not have a clear delineation (Appendix 1—figures 15-16 and Figure 7B).
Additionally, in our virtual patient population we consider variations of pg .y for individual biological
variation with CML cells operating in a similar capacity across virtual patients to be more meaningful.
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Appendix 1—figure 15. Bivariate histogram for response to tyrosine kinase inhibitor (TKI) therapy where the
relative fitness of HSC is ﬁ{j/ﬁo > 0.50. Individual variable marginal distributions are shown along the sub-axes.
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Appendix 1—figure 16. Bivariate histogram for response to tyrosine kinase inhibitor (TKI) therapy where the
relative fitness of HSC is ﬁé/ﬁo > 0.60. Individual variable marginal distributions are shown along the sub-axes.

11 The effect of leukemic stem cell parameters on combination therapy

and prognostic criterion

L L
We checked the combinations of i"'—’““" and % to ensure that the effectiveness of combination therapy

0,max

and the accuracy of our prognostic criterion are largely unchanged by varying the leukemic stem
cell parameters. In Figure 8—figure supplement 2, we see combination therapy is still successful at
improving the proportion of responders. We find that the optimal values from Figure 7E, where a
single set of leukemic parameters was used, need to be modified when all the leukemic parameter
combinations that have significant takeover proportions (> 60%) are considered. Nevertheless, using
synthetic data we find that the 3-6-month time frame has a better predictivity of TKI response than

does the 0-3-month time frame (Appendix 1—figure 17).
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Appendix 1—figure 17. Prognostic value sweep applied to combinations of Do
predominance > 60%. Optimal values from Figure 7E are no longer the optimal across all combinations, but the

L
and 1—1 with leukemic

3-6-month time frame still outcompetes 0-3-month time frame.

Rodriguez, Iniguez et al. eLife 2023;12:e84149. DOI: https://doi.org/10.7554/eLife.84149

57 of 57


https://doi.org/10.7554/eLife.84149

	Predictive nonlinear modeling of malignant myelopoiesis and tyrosine kinase inhibitor therapy
	Editor's evaluation
	Introduction
	Results
	Model of normal hematopoiesis
	Depletion of HSC increases HSC and MPP proliferation
	Depletion of mature myeloid cells increases the MPP population
	Parameter estimation for feedback-feedforward model of hematopoiesis
	Sensitivity analyses of hematopoiesis model
	Extension of the hematopoiesis model to CML
	Validation of the CML model
	Leukemic stem cell load influences TKI therapy outcomes
	HSC﻿L﻿ load influences the response to TKI therapy in a mouse CML model
	HSC self-renewal as an additional determinant of TKI response
	Predicting long-term response to TKI treatment
	Improving response to therapy: Combining TKIs with interventions that promote differentiation

	Discussion
	Methods
	Mathematical model of hematopoiesis
	Design space analysis
	Parameter estimation
	Modeling CML development
	Modeling transplant experiments
	Modeling TKI therapy
	Modeling combined TKI and differentiation therapy
	CML patient data
	Mice
	Irradiation of mice
	Myeloid cell depletion
	BrdU injections
	Flow cytometry analysis of cell populations
	Antibodies
	Generation and TKI treatment of chimeric ﻿BCR-ABL1﻿ mice
	Data availabality

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References
	﻿Appendix 1﻿
	1 Design space analysis
	1.1 Introduction
	1.2 Boundaries of design space for general models
	1.3 Analysis of a four-cell lineage model


	2 Mathematical model
	3 Parameter estimation
	4 Simulations of transplant experiment
	5 Effective parameters
	6 Distributions of model parameters grouped by response to TKI treatment using synthetic data (478 parameter sets)
	7 Comparisons of prognostic criteria for predicting response to TKI therapy
	7.1 Performance of prognostic criteria using synthetic data (478 parameter sets)
	7.2 Performance of prognostic criteria using patient data

	8 Combination therapy parameter distributions by response
	9 Impact of intrinsic differences between normal and leukemic cells
	10 Effect of leukemic stem cell parameters on response to TKI therapy
	11 The effect of leukemic stem cell parameters on combination therapy and prognostic criterion



