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We construct a new version of the dual Gromov–Hausdorff propinquity that 
is sensitive to the strongly Leibniz property. In particular, this new distance 
is complete on the class of strongly Leibniz quantum compact metric spaces. 
Then, given an inductive limit of C*-algebras for which each C*-algebra of 
the inductive limit is equipped with a strongly Leibniz L-seminorm, we provide 
sufficient conditions for placing a strongly Leibniz L-seminorm on an inductive 
limit such that the inductive sequence converges to the inductive limit in this new 
Gromov–Hausdorff propinquity. As an application, we place new strongly Leibniz 
L-seminorms on AF-algebras using Frobenius–Rieffel norms, for which we have 
convergence of the Effros–Shen algebras in the Gromov–Hausdorff propinquity with 
respect to their irrational parameter.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction and background

What is the analogue of a Lipschitz seminorm in noncommutative geometry? Interest in this question 
stems from the observation that the Lipschitz seminorm defined by the metric of a compact metric space 
encodes the underlying metric at the level of its C*-algebra of C-valued continuous functions. Thus, an 
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appropriate notion of a noncommutative Lipschitz seminorm is the core ingredient in a noncommutative 
metric space. A good definition of a noncommutative Lipschitz seminorm should be flexible enough to 
include many interesting examples and strong enough to enable the development of an interesting theory. 
For our purposes, an interesting theory is a theory of convergence which extends the Gromov–Hausdorff 
distance [9] between compact metric spaces to noncommutative geometry.

The origin of the theory of quantum compact metric spaces is found in Connes’ work on spectral triples, 
which provide noncommutative generalizations of Riemannian manifolds [5,6]. Rieffel then addressed the 
question of defining noncommutative analogues of metric spaces without reference to a differential structure 
[24,25], designed to be flexible while still enabling him to define the quantum Gromov–Hausdorff distance 
between such spaces [26]. Quantum compact metric spaces were given by ordered pairs (A, L) of an order 
unit space A and a seminorm L that induces a metric on the state space S (A) of A that metrizes the weak* 
topology, called the Monge–Kantorovich metric, denoted mkL. The metric mkL generalizes the Monge–
Kantorovich distance [11], built from the usual Lipschitz seminorm, and Connes distance [5], built from 
spectral triples.

The study of Rieffel’s quantum Gromov–Hausdorff distance leads to two natural questions. One concerns 
the coincidence property. If A and B are two unital C*-algebras such that (sa(A), LA) and (sa(B), LB), 
where sa(A) is the order unit space of self-adjoint elements of A, are Rieffel’s quantum compact metric 
spaces which are at distance zero with respect to Rieffel’s distance, then it is not clear that A and B are *-
isomorphic. Attempts at strengthening Rieffel’s construction to get this desirable property typically involve 
restricting the notion of a quantum compact metric spaces, for example, to a class of operator systems [12]
or to C*-algebras [16]. The other question is whether one can extend Rieffel’s distance to encompass more 
structures than the quantum metrics. For example, when working with quantum compact metric spaces of 
the form (sa(A), L) with A a unital C*-algebra, we are interested in convergence for modules, group actions, 
and other such higher structures over the underlying C*-algebras. The two matters are related: they require 
an analogue of the Gromov–Hausdorff distance which is well adapted to C*-algebras. For instance, Rieffel’s 
work on convergence of modules [27,28,30,31,33,34] highlighted that a relationship between L-seminorms and 
the multiplicative structure of the underlying C*-algebra of a quantum compact metric space was desirable. 
Rieffel introduced the notion of a strongly Leibniz L-seminorm and used the strongly Leibniz property to 
obtain results in [31] and more recently in [34]. However, the quantum Gromov–Hausdorff distance is not 
well adapted to working with such seminorms (see the discussion of the proximity in [30]).

A possible answer to the search for a noncommutative analogue of the Gromov–Hausdorff distance 
adapted to C*-algebras and Leibniz seminorms was proposed by the fourth author, with the introduction of 
the propinquity [13,14,16,17] on a class of quantum compact metric spaces constructed out of C*-algebras 
and L-seminorms satisfying some form of Leibniz inequality. Moreover, the dual Gromov–Hausdorff propin-
quity [14] is complete on the class of Leibniz quantum compact metric spaces. However, the strongly Leibniz
property has not been addressed. Thus, in Section 2, we introduce a form of the dual Gromov–Hausdorff 
propinquity on the class of strongly Leibniz quantum compact metric spaces and show that it is complete on 
this class. In Section 3, we apply this to construct strongly Leibniz L-seminorms on certain inductive limits 
of C*-algebras for which the inductive sequence converges to the inductive limit in the Gromov–Hausdorff 
propinquity. To do this, we assume there exist strongly Leibniz L-seminorms on the C*-algebras of the 
inductive sequence that satisfy natural assumptions, as done in [1]. Moreover, we find strongly Leibniz 
L-seminorms on all unital AF-algebras equipped with a faithful tracial state using Frobenius–Rieffel norms 
[2,23] following a suggestion from Rieffel. These new seminorms still preserve the convergence results of [3], 
including the convergence of Effros–Shen algebras with respect to their irrational parameters.

We begin with the following notion of quantum compact metric spaces.

Notation 1.1. We denote the norm of a normed vector space E by ∥·∥E .



K. Aguilar et al. / J. Math. Anal. Appl. 529 (2024) 127572 3

Definition 1.2. For (A, B) ∈ [1, ∞) × [0, ∞), an (A, B)-quantum compact metric space (A, L) is a unital 
C*-algebra A and a seminorm L defined on a dense Jordan-Lie subalgebra dom(L) of sa(A) that satisfies 
the following.

(1) {a ∈ dom(L) : L(a) = 0} = R1A.
(2) The Monge-Kantorovich distance mkL defined on the state space S (A) of A by:

∀ϕ,ψ ∈ S (A) mkL(ϕ,ψ) = sup {|ϕ(a) − ψ(a)| : a ∈ dom(L), L(a) ! 1}

metrizes the weak* topology of S (A).
(3) For all a, b ∈ dom(L),

max
{

L
(
ab + ba

2

)
, L

(
ab− ba

2i

)}
! A (L(a) ∥b∥A + ∥a∥A L(b)) + BL(a)L(b).

(4) {a ∈ dom(L) : L(a) ! 1} is closed in A.

We call L an (A, B)-L-seminorm or an L-seminorm when context is clear.

To ease our notation, we adopt the following convention.

Convention 1.3. We fix a class of (A, B)-quasi-Leibniz quantum compact metric spaces for some A " 1 and 
B " 0. All quantum compact metric spaces belong to this class without further mention.

The class of quantum compact metric spaces can be turned into the objects of a category [18]; for our 
purpose, quantum isometries, defined below, will provide us with an adequate notion of morphisms.

Definition 1.4. A quantum isometry π : (A, LA) → (B, LB) between two quantum compact metric spaces 
(A, LA) and (B, LB) is a surjective *-morphism π : A → B such that π(dom(LA)) ⊆ dom(LB) and

∀b ∈ dom(LB) LB(b) = inf {LA(a) : a ∈ dom(LA),π(a) = b} .

A full quantum isometry π : (A, LA) → (B, LB) is a quantum isometry such that π is a *-isomorphism 
and π−1 is a quantum isometry as well.

Full quantum isometries provide an adequate notion of isomorphism since the dual map π∗ : ϕ ∈ S (B) )→
ϕ ◦ π ∈ S (A) is a surjective isometry with respect to the associated Monge-Kantorovich metrics (see [26, 
Theorem 6.2]).

The propinquity is a metric, up to full quantum isometry, between quantum compact metric spaces, 
defined as follows.

Definition 1.5. Let (A1, L1) and (A2, L2) be quantum compact metric spaces. A tunnel τ = (D, LD, π1, π2)
from (A1, L1) to (A2, L2) is a quantum compact metric space (D, LD) and quantum isometries πj : (D, LD) →
(Aj , Lj) for j = 1, 2.

The extent χ (τ) of the tunnel τ is defined as

χ (τ) = max
j∈{1,2}

HausmkLD
(S (D),π∗

j (S (Aj))),

where π∗
j was defined before this definition.
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Notation 1.6. Let (A, LA) and (B, LB) be two quantum compact metric spaces. The class of all tunnels from 
(A, LA) to (B, LB) is denoted by

Tunnels [(A, LA) −→ (B, LB)].

We emphasize that, by Convention (1.3), if

τ = (D, LD, . . .) ∈ Tunnels [(A, LA) −→ (B, LB)]

then (D, LD) is an (A, B)-quantum compact metric space where A and B are fixed throughout the con-
struction of the propinquity.

Definition 1.7. The propinquity between two quantum compact metric spaces (A, LA) and (B, LB) is:

Λ∗((A, LA), (B, LB)) = inf
{
χ (τ) : τ ∈ Tunnels [(A, LA) −→ (B, LB)]

}
.

By exploiting the Leibniz property, the Gromov–Hausdorff propinquity provides an analogue of the 
Gromov–Hausdorff distance to noncommutative geometry [13,14,16,17], namely, a complete metric over the 
class of quantum compact metric spaces which is zero between isometrically isomorphic quantum compact 
metric spaces. Moreover, it induces the same topology as the usual Gromov–Hausdorff distance of the class 
of compact metric spaces (with the identification between a compact metric space (X, d) and the quantum 
compact metric space (C(X), L) with L the usual Lipschitz seminorm).

Definition 1.2 has proven helpful, and was the foundation for new metrics between certain higher struc-
tures over quantum compact metric spaces [18–20], including spectral triples [21].

However, Rieffel’s work on convergence of modules over quantum compact metric spaces required a 
strengthening of the Leibniz property by requiring, in addition, that Lip norms be well behaved with 
respect to the inverse map [29], as follows.

Definition 1.8 ([31, Definition 2.1]). A quantum compact metric space (A, L) is C-strongly Leibniz, for some 
C " 1, if for all a ∈ dom(L) ∩ GL(A);

(1) a−1 ∈ dom(L), and
(2) L 

(
a−1) ! C

∥∥a−1∥∥2
A

L(a).

We say that L is C-strongly Leibniz when it meets these conditions.

As seen above, even when estimating the propinquity between two strongly Leibniz quantum compact 
metric spaces, the tunnels involved in the computation of the propinquity need not themselves use strongly 
Leibniz quantum compact metric spaces. However, the propinquity is defined with some flexibility, which 
enables one to restrict the class of quantum compact metric spaces involved in its construction. Thus, if one 
wishes to only work with strongly Leibniz quantum compact metric spaces, then we may apply the methods 
of [16] to obtain such a “strongly Leibniz propinquity,” which provides a natural framework, for example, 
for Rieffel’s work on modules.

Notation 1.9. Let C " 1 and let (A, LA) and (B, LB) be two C-strongly Leibniz quantum compact metric 
spaces. The class of all tunnels from (A, LA) to (B, LB) of the form (D, LD, πA, πB), where (D, LD) is also 
C-strongly Leibniz, is denoted

Tunnels
[
(A, LA) SLC−→ (B, LB)

]
.
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Definition 1.10. The C-strongly Leibniz propinquity Λ∗
SLC

on the class SLC of all C-strongly Leibniz quantum 
compact metric spaces is defined by setting

Λ∗
SLC

((A1, L1), (A2, L2)) = inf
{
χ (τ) : τ ∈ Tunnels

[
(A1, L1) SLC−→ (A2, L2)

]}

for any two (A1, L1), (A2, L2) in SLC . If C = 1, we denote Λ∗
SLC

by Λ∗
SL.

Of course, for any (A, LA), (B, LB) in SLC , the following inequality holds:

Λ∗
SLC

((A, LA), (B, LB)) " Λ∗((A, LA), (B, LB)). (1.1)

Thus, it is clear that the strongly Leibniz property is a symmetric function which is zero exactly between 
fully quantum isometric quantum compact metric spaces. We prove in this paper that the strongly Leibniz 
propinquity is indeed a complete metric up to full quantum isometry.

We then provide an application of the completeness of the strongly Leibniz propinquity to inductive limits 
of strongly Leibniz quantum compact metric spaces. As discussed in [1], a natural question in noncommu-
tative metric geometry is to relate the important categorical notion of the limit of inductive sequences of 
C*-algebras with the notion of convergence for the propinquity. The first work in this direction, found in 
[3], constructed a (2, 0)-Leibniz Lip-norm on unital AF algebras with a faithful tracial state: starting from a 
unital AF algebra A with some choice of a faithful trace t and some sequence (An)n∈N of finite-dimensional 
C*-subalgebras of A such that A is the closure of 

⋃
n∈N An, we use the existence of a unique surjective 

t-preserving conditional expectation En : A → An for each n ∈ N to define Lip-norms by

∀a ∈ sa (A) L(a) = sup {dim An ∥a− En(a)∥A : n ∈ N} ,

allowing for the value ∞. In [3], the authors prove that

lim
n→∞

Λ∗((An, L), (A, L)) = 0,

and then establish continuity results for the propinquity of the classes of Effros–Shen algebras and UHF 
algebras, naturally parametrized by the Baire space.

However, it is natural to try to construct Lip-norms on inductive limits of quantum compact metric spaces 
(not necessarily finite dimensional), under appropriate conditions, without starting with an L-seminorm on 
the limit, but rather, by exploiting the completeness of the propinquity. We refer to [1] for examples. In 
this paper, we use the completeness of the strongly Leibniz propinquity to construct strongly Leibniz L-
seminorms on certain inductive limits of strongly Leibniz quantum compact metric spaces and apply these 
results to AF algebras, thus obtaining new quantum metrics on some AF algebras. These new quantum 
metrics inherit their strong Leibniz properties from the work of Rieffel on the strongly Leibniz property of 
seminorms built from the standard deviations [32], which we call Frobenius–Rieffel seminorms, and their 
careful study in finite dimensions in [2]. We obtain continuity results for the Effros–Shen algebras and the 
UHF algebras, as parametrized by the Baire space, in the spirit of [3], but with our new, strongly Leibniz 
L-seminorms.

2. The strongly Leibniz Gromov–Hausdorff propinquity

The dual Gromov–Hausdorff propinquity [13,15,17] is defined in a flexible manner and permits one to 
restrict the choice of tunnels in the construction in order to work in a specific class of quantum compact 
metric spaces. We apply this flexibility to define a specialization of the propinquity to the class of strongly 
Leibniz quantum compact metric spaces [30], whose definition we recalled in Definition 1.8. As it dominates 
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the propinquity, it has the desired coincidence property, and it is obviously symmetric. We begin by proving 
that it satisfies the triangle inequality.

Lemma 2.1. Let (A, LA), (B, LB) and (D, LD) be in SLC, and let πA : (A, LA) # (D, LD) and πB : (B, LB) #
(D, LD) be quantum isometries. For all ε > 0, if we set, for all (a, b) ∈ dom(LA) ⊕ dom(LB),

T(a, b) = max
{

LA(a), LB(b), 1
ε
∥πA(a) − πB(b)∥D

}
,

then T is a C-strongly Leibniz L-seminorm on A ⊕ B.

Proof. By [17, Theorem 3.1], (A ⊕ B, T) is a quantum compact metric space. It is thus sufficient to prove 
that T is C-strongly Leibniz.

Let (a, b) ∈ dom(LA)⊕dom(LB) = dom(T) such that (a, b) ∈ GL(A ⊕B). Thus a ∈ dom(LA)∩GL(A) and 
b ∈ dom(LB) ∩ GL(B). Since LA and LB are C-strongly Leibniz, we conclude that (a, b)−1 = (a−1, b−1) ∈
dom(T) and

LA(a−1) ! C
∥∥a−1∥∥2

A
LA(a) and LB(b−1) ! C

∥∥b−1∥∥2
B

LB(b).

On the other hand,
∥∥πA(a−1) − πB(b−1)

∥∥
D

=
∥∥πA(a−1)(πB(b) − πA(a))πB(b−1)

∥∥
D

!
∥∥a−1∥∥

A
∥πA(a) − πB(b)∥D

∥∥b−1∥∥
B

!
∥∥a−1∥∥

A

∥∥b−1∥∥
B
εT(a, b)

! ε
∥∥(a−1, b−1)

∥∥2
A⊕B

T(a, b).

Therefore, T(a−1, b−1) ! C
∥∥(a−1, b−1)

∥∥2
A⊕B

T(a, b), as needed. !

Thus, as discussed in [13,15,17], we deduce the following lemma. In particular, we can see in [17, Definition 
3.6] that the definition of the C-strongly Leibniz propinquity only differs from the propinquity by adding 
the strongly Leibniz property to our quantum compact metric spaces. Thus, following [17, Section 3], only 
Lemma 2.1 needs to be established to deduce the following.

Lemma 2.2. For all C " 1, the C-strongly Leibniz propinquity Λ∗
SLC

is a metric on SLC.

Our purpose is to prove that the C-strongly Leibniz propinquity is complete as well. Since the propin-
quity is complete by Equation (1.1), we already have a description of the limit of any Cauchy sequence in (
SLC ,Λ∗

SLC

)
from [15]. What remains to be shown is that the limit for the metric Λ∗ of a Cauchy sequence 

for the metric Λ∗
SLC

is indeed C-strongly Leibniz; moreover, we have to check the tunnels constructed in 
[15] are C-strongly Leibniz in the current setting.

In this section, we fix C " 1, and we assume that we are given a sequence (An, Ln)n∈N of C-
strongly Leibniz quantum compact metric spaces such that for each n ∈ N, there exists a tunnel 
(τn)n∈N = (Dn, Tn, πn, ρn)n∈N from (An, Ln) to (An+1, Ln+1) such that χ (τn) ! 1

2n and Tn is C-strongly 
Leibniz.

Following [15, Section 6], we set

S =
{

(dn)n∈N ∈
∏

n∈N

Dn : ∀n ∈ N ρn(dn) = πn+1(dn+1) and sup
n∈N

∥dn∥Dn
< ∞

}
,
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and

F = S
/
{(dn)n∈N ∈ S : limn→∞ dn = 0} .

Let q : S # F be the canonical surjection, which is a *-epimorphism.
We record the following well-known computation for the quotient norm on F.

Lemma 2.3. For all a ∈ F and for all (dn)n∈N ∈ S, if q((dn)n∈N) = a, then

∥a∥F = lim sup
n→∞

∥dn∥Dn
.

Proof. Note that ∥a∥F ! ∥d∥S whenever q(d) = a. Thus, if N ∈ N and dN = (0, . . . , 0
N times

, dN , dN+1, . . .), then 

q(dN ) = a, and thus

∥a∥F !
∥∥dN

∥∥
S

= sup
n!N

∥dn∥Dn
.

Therefore, ∥a∥F ! lim supn→∞ ∥dn∥Dn
.

Now, let ε > 0. By definition of the norm on the quotient C*-algebra F, there exists e = (en)n∈N ∈ S

such that q(e) = a and ∥e∥S − ε ! ∥a∥F ! ∥e∥S. Also limn→∞ ∥en − dn∥Dn
= 0. Thus, there exists N ∈ N

such that ∥en − dn∥Dn
< ε for all n " N .

Therefore,

lim sup
n→∞

∥dn∥Dn
! lim sup

n→∞
∥en∥Dn

+ ε ! ∥e∥S + ε ! ∥a∥F + 2ε.

As ε > 0 is arbitrary, we conclude:

lim sup
n→∞

∥dn∥Dn
! ∥a∥F . !

For any d = (dn)n∈N ∈ sa (S), we let

S(d) = sup
n∈N

Tn(dn),

allowing for the value ∞. For all a ∈ sa (F), we define

Q(a) = inf {S(d) : q(d) = a} ,

again, allowing ∞. By [15, Lemma 6.24], the seminorm Q is a Leibniz L-seminorm on F. The key fact 
established in [15] is that (An, Ln)n∈N converges to (F, Q) for the propinquity. We now show that, under 
our conditions, Q is also C-strongly Leibniz.

Lemma 2.4. The L-seminorm Q is C-strongly Leibniz.

Proof. Let a ∈ dom(Q) ∩ GL(F) and ε > 0. There exists d = (dn)n∈N ∈ dom(S) such that q(d) = a, and 
S(d) − ε ! Q(a) ! S(d).

Let e = (en)n∈N ∈ sa (S) such that q(e) = a−1. By definition, since q(ed) = q(de) = 1F, we conclude 
that
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lim
n→∞

∥dnen − 1n∥Dn
= 0,

and thus, there exists N ∈ N such that ∥dnen − 1n∥Dn
< 1 for all n " N . Therefore, dnen is invertible 

in Dn for all n " N . Consequently, if n " N , then dn(en(dnen)−1) = 1n. Since d and e are self-adjoint, 
∥endn − 1n∥Dn

< 1, and thus endn ∈ GL(Dn) for n " N ; moreover ((endn)−1en)dn = 1n. Thus, for all 
n " N , dn ∈ GL(Dn).

Now let h = (hn)n∈N ∈ S be defined by setting, for all n ∈ N:

hn =
{

1n if n < N ,
dn if n " N .

By construction, h ∈ GL(S) and q(h) = a. Moreover, q(h−1) = a−1 and

h−1 =
(
10, . . . , 1N−1, d

−1
N , d−1

N+1, . . .
)
.

Since Tn is C-strongly Leibniz, h−1
n ∈ dom(Tn) for all n ∈ N, and

Tn(h−1
n ) ! C

∥∥h−1
n

∥∥2
Dn

Tn(hn).

Moreover, S(h) ! S(d) (since Tn(1n) = 0), so S(h) ! Q(a) + ε. By Lemma (2.3), 
∥∥a−1∥∥

F
=

lim supn→∞
∥∥h−1

n

∥∥
Dn

. Thus, there exists N ′ ∈ N such that, if n " N ′, then

sup
n!N ′

∥∥d−1
n

∥∥
Dn

− ε !
∥∥a−1∥∥

F
! sup

n!N ′

∥∥d−1
n

∥∥
Dn

.

Let N ′′ = max{N, N ′} and define g ∈ S by g = (gn)n∈N with

∀n ∈ N gn =
{

1n if n < N ′′,
dn if n " N ′′.

Once again, note that q(g) = a and S(g) ! S(h) ! Q(a) + ε. Moreover, g ∈ GL(S), with q(g−1) = a−1.
Thus,

Q(a−1) ! S(g−1)
! sup

n∈N
Tn(g−1

n )

! sup
n!N ′′

Tn(d−1
n )

! C sup
n!N ′′

∥∥d−1
n

∥∥2
Dn

sup
n!N ′′

Tn(dn)

! C
(∥∥a−1∥∥

F
+ ε

)2
S(g)

! C
(∥∥a−1∥∥

F
+ ε

)2
(Q(a) + ε) .

Since ε > 0 is arbitrary,

Q(a−1) ! C
∥∥a−1∥∥2

F
Q(a).

Thus, Q is strongly Leibniz. !
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We now deduce the following theorem.

Theorem 2.5. Let C " 1. The C-strongly Leibniz propinquity on SLC is complete.

Proof. We maintain the notations introduced above. We have seen that (F, Q) is a C-strongly Leibniz 
quantum compact metric space.

For each N ∈ N, let

SN =

⎧
⎨

⎩(dn)n!N ∈
∏

n!N

Dn : ∀n " N ρn(dn) = πn+1(dn+1), sup
n!N

∥dn∥Dn
< ∞

⎫
⎬

⎭ .

We also let ΠN ((dn)n!N ) = πN (dN ) ∈ AN for all (dn)n!N ∈ SN . The C*-algebra F is naturally *-isomorphic 
to

SN

/
{(dn)n!N ∈ SN : limn→∞ dn = 0} ;

we let qN : SN # F be the associated canonical surjection.
We also let SN : (dn)n!N )→ supn!N Tn(dn) (allowing the value ∞). By [15], (SN , SN ) is a quantum 

compact metric space.
In [15], the fourth author proved that

∀a ∈ sa (F) Q(a) = inf {SN (d) : d ∈ sa (SN ), qN (d) = a}

and ΠN is a quantum isometry to (AN , LN ). In other words, (SN , SN , ΠN , qN ) is a tunnel from (AN , LN )
to (F, Q) with extent at most 1

2N .
It suffices to prove that SN is C-strongly Leibniz. This is immediate by definition: if d = (dn)n!N ∈

GL(SN ) ∩ dom(SN ), then

Tn(d−1
n ) ! C

∥∥d−1
n

∥∥2
Dn

Tn(dn)

for all n " N , and thus

SN (d−1) ! C
∥∥d−1∥∥2

SN
SN (d).

This completes our proof. !

3. Inductive limits of strongly Leibniz quantum compact metric spaces

In [1, Section 2], the first author constructed quantum compact metric spaces on inductive limits such that 
the given inductive sequence converged to the inductive limit in propinquity. In this section, we specialize 
these results to strongly Leibniz quantum compact metric spaces using the results of the previous section. 
As a main application of this section and article, we find strongly Leibniz L-seminorms on AF-algebras that 
allow for explicit estimates in the strongly Leibniz propinquity and convergence of the Effros–Shen algebras 
now in the class of strongly Leibniz compact quantum metric spaces.

Theorem 3.1. Fix C " 1. Let A = ∪n∈NAn
∥·∥A be a unital C*-algebra such that (An)n∈N is a non-decreasing 

sequence of unital C*-algebras of A. Assume that (An, Ln)n∈N is a C-strongly Leibniz quantum compact 
metric space for all n ∈ N. Let (β(j))j∈N be a summable sequence in (0, ∞).

If for all n ∈ N
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(1) Ln+1(a) ! Ln(a) for all a ∈ An, and
(2) for all a ∈ An+1, Ln+1(a) ! 1, there exists b ∈ An, Ln(b) ! 1 such that

∥a− b∥A < β(n),

then there exists a C-strongly Leibniz seminorm L on A such that (A, L) is a quantum compact metric space 
where

Λ∗
SLC

((An, Ln), (A, L)) ! 4
∞∑

j=n

β(j)

for all n ∈ N, and thus

lim
n→∞

Λ∗
SLC

((An, Ln), (A, L)) = 0.

Proof. Since the tunnels of (1) from [1, Theorem 2.15] are C-strongly Leibniz by Lemma 2.1, this result 
follows immediately from [1, Theorem 2.15] and Lemma 2.4. !

We turn our attention to the AF setting.

Definition 3.2 ([4, Definition 1.5.9 and Tomiyama’s Theorem 1.5.10]). Let A be a unital C*-algebra and let 
B ⊆ A be a unital C*-subalgebra. A linear map E : A → B is a conditional expectation if E(b) = b for all 
b ∈ B, ∥E(a)∥A ! ∥a∥A for all a ∈ A, and E(bab′) = bE(a)b′ for all a ∈ A, b, b′ ∈ B.

A conditional expectation is faithful if E(a∗a) = 0 implies a = 0.

Theorem-Definition 3.3 ([32, Section 5] and [23]). Let A be a unital C*-algebra and let B ⊆ A be a unital 
C*-subalgebra. If E : A → B is a faithful conditional expectation, then

∥a∥E =
√

∥E(a∗a)∥A

defines a norm on A called the Frobenius–Rieffel norm associated to E.

A quick application of the C*-identity shows that ∥ · ∥E ! ∥ · ∥A. We now place strongly Leibniz 
L-seminorms on all unital AF-algebras equipped with a faithful tracial state that allow for explicit ap-
proximations from the finite-dimensional C*-subalgebras. The following construction in Theorem 3.4 is 
motivated by the first and last author’s work in [3], where they used seminorms defined by

a ∈ A )→ ∥a− E(a)∥A,

where E is a conditional expectation onto some unital C*-subalgebra of A. However, these seminorms are 
only known to be quasi-Leibniz with A = 2 and B = 0 (see [3, Lemma 3.2]), and we do not know if they 
are strongly Leibniz for any C " 1. Yet, if we consider the seminorm

a ∈ A )→ max{∥a−E(a)∥E , ∥a∗ − E(a∗)∥E},

using the Frobenius–Rieffel norms defined above, then these seminorms are C-strongly Leibniz with A =
1, B = 0, C = 1 (see [32, Proposition 5.4 and Theorem 5.5]), which appear in the following result. The first 
author thanks Marc Rieffel for suggesting to use these seminorms at the Fall 2016 AMS Western section at 
University of Denver.
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Theorem 3.4. Let A = ∪n∈NAn
∥·∥A be a unital AF algebra equipped with a faithful tracial state τ such that 

A0 = C1A. Set U = (An)n∈N and let (β(n))n∈N be a summable sequence of positive real numbers. For each 
n ∈ N, let

Eτ
n : A → An

be the unique τ -preserving faithful conditional expectation. For n ∈ N \ {0}, let κn > 0 such that

κn∥a∥A ! ∥a∥Eτ
n

for all a ∈ An+1, and set κ = (κn)n∈N. For each n ∈ N \ {0}, let

Lτ,κ
Un,β

(a) = max
m∈{0,1,...,n−1}

max
{
∥a− Eτ

m(a)∥Eτ
m
, ∥a∗ − Eτ

m(a∗)∥Eτ
m

}

κmβ(m)

for all a ∈ An, and let Lτ,κ
U0,β

= 0.
Then (An, Lτ,κ

Un,β
) is a strongly Leibniz quantum compact metric space (with (A, B, C) = (1, 0, 1)) for all 

n ∈ N, and there exists a seminorm Lτ,κ
U,β such that (A, Lτ,κ

U,β) is a strongly Leibniz quantum compact metric 
space (with (A, B, C) = (1, 0, 1)) where

Λ∗
SL((An, Lτ,κ

Un,β
), (A, Lτ,κ

U,β)) ! 4
∞∑

j=n

β(j)

for all n ∈ N, and thus

lim
n→∞

Λ∗
SL((An, Lτ,κ

Un,β
), (A, Lτ,κ

U,β)) = 0.

Proof. Let n ∈ N. By construction, for a ∈ An, Lτ,κ
Un,β

(a) = 0 if and only if a = µ1An for some µ ∈ C. Hence, 
since An is finite-dimensional, Lτ,κ

Un,β
is an L-seminorm on An. Furthermore, (An, Lτ,κ

Un,β
) is a strongly Leibniz 

compact quantum metric space (with A = 1, B = 0, C = 1) by [32, Proposition 5.4 and Theorem 5.5].
By construction, for all n ∈ N and a ∈ An, we have that

Lτ,κ
Un+1,β

(a) = Lτ,κ
Un,β

(a)

since En(a) = a for all a ∈ An. Thus, (1) of Theorem 3.1 is satisfied.
For (2) of Theorem 3.1, let a ∈ An+1 such that Lτ,κ

Un+1,β
(a) ! 1. Consider Eτ

n(a) ∈ An. We will show that 
Lτ,κ
Un,β

(Eτ
n(a)) ! 1 and ∥a −Eτ

n(a)∥A ! β(n). First, we have that ∥a −Eτ
n(a)∥En ! κnβ(n). Thus,

κn∥a−Eτ
n(a)∥A ! ∥a− Eτ

n(a)∥En ! κnβ(n),

so ∥a −Eτ
n(a)∥A ! β(n).

Next, if n = 0, then Lτ,κ
Un,β

(Eτ
n(a)) = 0 ! 1. Finally, consider n " 1. Note that

Lτ,κ
Un,β

(Eτ
n(a))

= max
m∈{0,1,...,n−1}

max
{
∥Eτ

n(a) − Eτ
m(Eτ

n(a))∥Eτ
m
, ∥Eτ

n(a∗) −Eτ
m(Eτ

n(a∗))∥Eτ
m

}

κmβ(m) .

Let m ∈ {0, 1, . . . , n}. Now Eτ
m ◦Eτ

n = Eτ
m by the proof of [3, Theorem 3.5], Em is positive by [4, Theorem 

1.5.10 (Tomiyama)], and Em(A) ⊆ En(A). Thus,
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Eτ
m([Eτ

n(a) − Eτ
m(Eτ

n(a))]∗[Eτ
n(a) − Eτ

m(Eτ
n(a))])

= Eτ
m([Eτ

n(a∗) − Eτ
m(Eτ

n(a∗))][Eτ
n(a) −Eτ

m(Eτ
n(a))])

= Eτ
m(Eτ

n(a∗)Eτ
n(a) − Eτ

n(a∗)Eτ
m(Eτ

n(a)) −Eτ
m(Eτ

n(a∗))Eτ
n(a)

+ Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a)))
= Eτ

m(Eτ
n(a∗)Eτ

n(a)) − Eτ
m(Eτ

n(a∗)Eτ
m(Eτ

n(a))) −Eτ
m(Eτ

m(Eτ
n(a∗))Eτ

n(a))
+ Eτ

m(Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a)))
= Eτ

m(Eτ
n(a∗)Eτ

n(a)) − Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a)) −Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a))
+ Eτ

m(Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a)))
= Eτ

m(Eτ
n(a∗)Eτ

n(a)) − Eτ
m(a∗)Eτ

m(a) − Eτ
m(a∗)Eτ

m(a)
+ Eτ

m(Eτ
m(Eτ

n(a∗))Eτ
m(Eτ

n(a)))
= Eτ

m(Eτ
n(a∗)Eτ

n(a)) − 2Eτ
m(a∗)Eτ

m(a) + Eτ
m(Eτ

m(Eτ
n(a∗))Eτ

m(Eτ
n(a)))

= Eτ
m(Eτ

n(a∗)Eτ
n(a)) − 2Eτ

m(a∗)Eτ
m(a) + Eτ

m(a∗)Eτ
m(a).

Similarly,

Eτ
m((a−Eτ

m(a))∗(a−Eτ
m(a)))

= Eτ
m(a∗a) − 2Eτ

m(a∗)Eτ
m(a) + Eτ

m(a∗)Eτ
m(a)

= Eτ
m(Eτ

n(a∗a)) − 2Eτ
m(a∗)Eτ

m(a) + Eτ
m(a∗)Eτ

m(a).

By [4, Proposition 1.5.7], Eτ
n(a∗a) −Eτ

n(a∗)Eτ
n(a) " 0 and hence

Eτ
m(Eτ

n(a∗a)) −Eτ
m(Eτ

n(a∗)Eτ
n(a)) " 0

since Eτ
m is a conditional expectation. Thus,

Eτ
m([Eτ

n(a) −Eτ
m(Eτ

n(a))]∗[Eτ
n(a) −Eτ

m(Eτ
n(a))])

! Eτ
m((a−Eτ

m(a))∗(a− Eτ
m(a))).

Since Eτ
m([Eτ

n(a) −Eτ
m(Eτ

n(a))]∗[Eτ
n(a) −Eτ

m(Eτ
n(a))]) " 0, we gather

∥Eτ
n(a) − Eτ

m(Eτ
n(a))∥2

Eτ
m

= ∥Eτ
m([Eτ

n(a) − Eτ
m(Eτ

n(a))]∗[Eτ
n(a) −Eτ

m(Eτ
n(a))])∥A

! ∥Eτ
m((a− Eτ

m(a))∗(a− Eτ
m(a)))∥A

= ∥a− Eτ
m(a)∥2

Eτ
m
.

Therefore, repeating this process with a∗ in place of a, we conclude that

Lτ,κ
Un,β

(Eτ
n(a)) ! Lτ,κ

Un+1,β
(a) ! 1.

The proof is complete by Theorem 3.1. !

In [2], some equivalence constants κn were obtained explicitly on direct sums of matrix algebras. The 
next results ensure that equivalence constants obtained in this way translate to the inductive limit.

Proposition 3.5. Let (An, αn)n∈N be an inductive sequence of C*-algebras (see [22, Section 6.1]) such that:
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(1) A0 = C and An =
⊕nn

k=1 Mdn,k(C) for all n ∈ N \ {0}, where dn,k ∈ N \ {0} for each n ∈ N \ {0} and 
k ∈ {1, 2, . . . , nn};

(2) αn : An → An+1 is a unital *-monomorphism for all n ∈ N;
(3) the inductive limit A = lim−→ (An, αn)n∈N is equipped with a faithful tracial state τ .

For each n ∈ N, let α(n+1), α(n) : An → A be the canonical unital *-monomorphisms satisfying

α(n+1) ◦ αn = α(n). (3.1)

Note that A = ∪n∈Nα(n)(An)
∥·∥A and α(n)(An) ⊆ α(n+1)(An+1) and α(0)(A0) = C1A (see [22, Section 6.1]). 

For each n ∈ N, let

Eτ
n : A → α(n)(An)

denote the unique τ -preserving faithful conditional expectation onto α(n)(An). For each n ∈ N, let

τn = τ ◦ α(n), (3.2)

which is a faithful tracial state on An, and let

Eτn+1
n+1,n : An+1 → αn(An)

be the unique τn+1-preserving faithful conditional expectation onto αn(An). Let κn > 0 such that

κn∥a∥An+1 ! ∥a∥Eτn+1
n+1,n

for all a ∈ An+1.
Then, for all n ∈ N,

Eτ
n ◦ α(n+1) = α(n+1) ◦ Eτn+1

n+1,n,

and moreover,

κn∥a∥A ! ∥a∥Eτ
n

for all a ∈ α(n+1)(An+1).

Proof. Let n ∈ N and let Bn denote the set of matrix units for An. By [3, Expression (4.1)] for both 
conditional expectations Eτ

n and Eτn+1
n+1,n, we have for all a ∈ An+1

Eτ
n(α(n+1)(a)) =

∑

e∈Bn

τ(α(n+1)(a)α(n)(e∗))
τ(α(n)(e∗)α(n)(e)) α(n)(e)

=
∑

e∈Bn

τ(α(n+1)(a)α(n)(e∗))
τ(α(n)(e∗)α(n)(e)) α(n+1)(αn(e))

= α(n+1)

(
∑

e∈Bn

τ(α(n+1)(a)α(n)(e∗))
τ(α(n)(e∗)α(n)(e)) αn(e)

)
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= α(n+1)

(
∑

e∈Bn

τ(α(n+1)(a)α(n+1)(αn(e∗)))
τ(α(n+1)(αn(e∗)αn(e)) αn(e)

)

= α(n+1)

(
∑

e∈Bn

τn+1(aαn(e∗))
τn+1(αn(e∗)αn(e))αn(e)

)

= α(n+1)(Eτn+1
n+1,n(a))

and so

Eτ
n ◦ α(n+1) = α(n+1) ◦ Eτn+1

n+1,n.

Let a ∈ α(n+1)(An+1). Thus, there exists a unique an+1 ∈ An+1 such that a = α(n+1)(an+1). We have

∥a∥2
Eτ

n
=

∥∥∥Eτ
n

(
α(n+1)(an+1)∗α(n+1)(an+1)

)∥∥∥
A

=
∥∥∥Eτ

n

(
α(n+1)(a∗n+1an+1)

)∥∥∥
A

=
∥∥∥α(n+1) (Eτn+1

n+1,n(a∗n+1an+1)
)∥∥∥

A

=
∥∥Eτn+1

n+1,n(a∗n+1an+1)
∥∥

An+1

" κ2
n∥an+1∥2

An+1

= κ2
n∥a∥2

A.

Therefore,

κn∥a∥A ! ∥a∥Eτ
n

as desired. !

The convergence of the Effros–Shen algebras in [3] relied on a continuous field of L-seminorms on the 
finite-dimensional subalgebras of the inductive sequence and, although the L-seminorms of Theorem 3.4
have a similar structure to those of [3, Theorem 3.5], we need two important facts to ensure that the 
L-seminorms of Theorem 3.4 also form a continuous field of L-seminorms in an appropriate sense. The 
first, Proposition 3.6, takes care of the fact that we switch the C*-norm for Frobenius–Rieffel norms and 
the second fact takes care of the continuity of the equivalence constants, which was already proven in [2, 
Theorem 5.2] for particular equivalence constants that were calculated explicitly.

Proposition 3.6. Let N ∈ N, n1, n2, . . . , nN ∈ N \ {0}, and A = ⊕N
k=1Mnk(C). Let M ∈ N \

{0}, m1, m2, . . . , mM ∈ N \{0}, and B = ⊕M
k=1Mmk(C). Assume that there exists a unital *-monomorphism 

α : B → A. For each n ∈ N ∪ {∞}, let vn ∈ (0, 1)N and let τvn be the faithful tracial state defined for all 
a = (a1, a2, . . . , aN ) ∈ A by

τvn(a) =
N∑

k=1

vnk
nk

Tr(ak),

where Tr denotes the trace of a matrix. Let Eτvn : A → α(B) denote the unique τvn-preserving faithful 
conditional expectation onto α(B).

If (vn)n∈N converges to v∞ coordinate-wise, then (∥ · ∥Eτvn )n∈N converges to ∥ · ∥Eτv∞ uniformly on any 
compact set of (A, ∥ · ∥A) and thus converges pointwise on A.
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Proof. Let B be the set of matrix units for B. Fix a = (a1, a2, . . . , aN ) ∈ A. By [3, Expression (4.1)], for 
each n ∈ N ∪ {∞},

Eτvn (a) =
∑

e∈B

τvn(aα(e∗))
τvn(α(e)α(e∗))α(e).

The condition that (vn)n∈N converges to v∞ coordinate-wise is equivalent to weak* convergence of (τvn)n∈N

to τv∞ . Thus, by continuity of addition and scalar multiplication, (Eτvn (a))n∈N converges to Eτv∞ (a) with 
respect to ∥ · ∥A.

Now, we prove uniform convergence on any compact set of (A, ∥ ·∥A). Let C ⊂ A be compact with respect 
to ∥ · ∥A. Let ε > 0. By compactness, there exist N ∈ N and a1, a2, . . . , aN ∈ C such that

C ⊆
N⋃

k=1
{a ∈ A : ∥a− ak∥A < ε/3}.

By pointwise convergence, choose N ′ ∈ N such that ∥Eτvn (ak) − Eτv∞ (ak)∥A < ε/3 for all n " N ′ and 
k ∈ {1, 2, . . . , N}. Let n " N ′ and let a ∈ C. Then there exists k ∈ {1, 2, . . . , N} such that ∥a −ak∥A < ε/3. 
Thus,

∥Eτvn (a) − Eτv∞ (a)∥A ! ∥Eτvn (a) − Eτvn (ak)∥A + ∥Eτvn (ak) −Eτv∞ (ak)∥A

+ ∥Eτv∞ (ak) − Eτv∞ (a)∥A

< ∥Eτvn (a− ak)∥A + ε

3 + ∥Eτv∞ (a− ak)∥A

! ∥a− ak∥A + ε

3 + ∥a− ak∥A

< ε,

where Definition 3.2 is used in the penultimate inequality.
Hence, by the reverse triangle inequality and uniform continuity of the square root function,

(
√
∥Eτvn (·)∥A)n∈N converges to 

√
∥Eτv∞ (·)∥A uniformly on any compact set of (A, ∥ · ∥A). As singletons 

are compact, we have pointwise convergence on A. !

We now focus on the Effros–Shen algebras and begin with their definition found in [8]. Let θ ∈ R be 
irrational. There exists a unique sequence of integers (rθn)n∈N with rθn > 0 for all n ∈ N \ {0} such that

θ = lim
n→∞

rθ0 +
1

rθ1 +
1

rθ2 +
1

rθ3 +
1

. . . +
1
rθn

.

When θ ∈ (0, 1), we have that rθ0 = 0. The sequence (rθn)n∈N0 is the continued fraction expansion of θ [10].
Next, we define the finite-dimensional C*-subalgebras of the Effros–Shen algebras. For each n ∈ N, define

pθ0 = rθ0, pθ1 = 1 and qθ0 = 1, qθ1 = rθ1,

and set



16 K. Aguilar et al. / J. Math. Anal. Appl. 529 (2024) 127572

pθn+1 = rθn+1p
θ
n + pθn−1

and

qθn+1 = rθn+1q
θ
n + qθn−1.

The sequence 
(
pθn/q

θ
n

)
n∈N0

of convergents pθn/q
θ
n converges to θ. In fact, for each n ∈ N,

pθn
qθn

= rθ0 +
1

rθ1 +
1

rθ2 +
1

rθ3 +
1

. . . +
1
rθn

.

We now define the C*-algebras with which we endow Frobenius–Rieffel norms. Let Aθ,0 = C and, for 
each n ∈ N0, let

Aθ,n = Mqθn
(C) ⊕ Mqθn−1

(C).

These form an inductive sequence with the maps

αθ,n : a⊕ b ∈ Aθ,n )→ diag (a, . . . , a, b) ⊕ a ∈ Aθ,n+1, (3.3)

where there are rθn+1 copies of a on the diagonal in the first summand of Aθ,n+1. This is a unital *-
monomorphism by construction. For n = 0,

αθ,0 : λ ∈ Aθ,0 )→ diag(λ, . . . ,λ) ⊕ λ ∈ Aθ,1.

The Effros–Shen algebra associated to θ is the inductive limit (see [22, Section 6.1])

Aθ = lim−→ (Aθ,n,αθ,n)n∈N.

There exists a unique faithful tracial state τθ on Aθ such that for each n ∈ N \ {0}, τθ,n (see Expression 
(3.2)) is defined for each (a, b) ∈ Aθ,n by

τθ,n(a, b) = t(θ, n) 1
qθn

Tr(a) + (1 − t(θ, n)) 1
qθn−1

Tr(b),

where

t(θ, n) = (−1)n−1qθn(θqθn−1 − pθn−1) ∈ (0, 1)

(see [3, Lemma 5.5]).
For each n ∈ N \ {0}, define

κθ,n =
√

θqθn − pθn(
θqθn−2 − pθn−2

)
rθn(rθn + 1)2

(3.4)
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as in [2, Theorem 5.2] and let κθ = (κθ,n)n∈N,

βθ(n) = 1
dim(Aθ,n) = 1

(qθn)2 + (qθn−1)2
, (3.5)

Uθ
n = α(n)

θ (Aθ,n)

as in Expression (3.1). For each a ∈ α(n)
θ (Aθ,n), let

Lθ,n(a) = Lτθ,κθ

Uθ
n,βθ

(a) = max
m∈{0,1,...,n−1}

max
{
∥a− Eτθ

m (a)∥Eτθ
m
, ∥a∗ − Eτθ

m (a∗)∥Eτθ
m

}

κθ,mβθ(m) (3.6)

as in Theorem 3.4.

Theorem 3.7. Let θ ∈ (0, 1) \Q. Let Lθ be the strongly Leibniz L-seminorm Lθ on Aθ with A = 1, B = 0, C = 1
given by Theorem 3.4 along with (κθ,n)n∈N of Expression (3.4), βθ of Expression (3.5) and (Lθ,n)n∈N of 
Expression (3.6).

For every n ∈ N, it holds that

Λ∗
SL((Aθ, Lθ), (Aθ,n, Lθ,n)) ! 4

∞∑

j=n

βθ(j)

for all n ∈ N, and thus

lim
n→∞

Λ∗
SL((Aθ, Lθ), (Aθ,n, Lθ,n)) = 0.

Proof. Let n ∈ N. By [2, Theorem 5.2] and Proposition 3.5,

κθ,n∥a∥Aθ ! ∥a∥Eτθ
n

for all a ∈ α(n+1)
θ (Aθ,n+1), where κθ,n is defined in Expression (3.4). The proof is complete by Theorem 3.4

and the fact that βθ is summable by [10]. !

We now prove our main result about the Effros–Shen algebras.

Theorem 3.8. The map

θ ∈ (0, 1) \Q )−→ (Aθ, Lθ),

where Lθ is given by Theorem 3.7, is continuous with respect to the usual topology on (0, 1) \ Q and the 
topology induced by Λ∗

SL.

Proof. Let (θ(n))n∈N be a sequence in (0, 1) \ Q that converges to θ(∞) ∈ (0, 1) \ Q. Let ε > 0. By [10], 
(1/qθm)m∈N is square summable for all θ ∈ (0, 1) \ Q. Moreover, if Φ = φ − 1, where φ is the golden ratio, 
then qθ(n)

m " qΦ
m for all m ∈ N and n ∈ N ∪ {∞}. Choose N1 ∈ N such that

4
∞∑

j=N1

1
(qΦ

j )2 + (qΦ
j−1)2

<
ε

3 .

Then Theorem 3.7 ensures that
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Λ∗
SL((Aθ(n), Lθ(n)), (Aθ(n),N1 , Lθ(n),N1)) ! 4

∞∑

j=N1

1
(qΦ

j )2 + (qΦ
j−1)2

<
ε

3

for all n ∈ N ∪ {∞}.
By [3, Proposition 5.10], choose N2 ∈ N such that

qθ(n)
N1

= qθ(∞)
N1

and qθ(n)
N1−1 = qθ(∞)

N1−1

for all n " N2. Therefore, Aθ(n),N1 = Aθ(∞),N1 for all n " N2. By the proof of [3, Lemma 5.12] along with 
Proposition 3.6 and [2, Theorem 5.2], we have for all a ∈ Aθ(∞),N1 that

lim
m→∞

Lθ(N2+m),N1 ◦ α
(N1)
θ(N2+m)(a) = Lθ(∞),N1 ◦ α

(N1)
θ(∞)(a).

Thus, by the same proof as [3, Lemma 5.13]

lim
n→∞

Λ∗
SL((Aθ(n),N1 , Lθ(n),N1), (Aθ(∞),N1 , Lθ(∞),N1)) = 0.

Therefore, we may choose N3 " N2 such that

Λ∗
SL((Aθ(n),N1 , Lθ(n),N1), (Aθ(∞),N1 , Lθ(∞),N1)) <

ε

3

for all n " N3. Hence, if n " N3, then

Λ∗
SL((Aθ(n), Lθ(n)), (Aθ(∞), Lθ(∞)))
! Λ∗

SL((Aθ(n), Lθ(n)), (Aθ(n),N1 , Lθ(n),N1))
+ Λ∗

SL((Aθ(n),N1 , Lθ(n),N1), (Aθ(∞),N1 , Lθ(∞),N1))
+ Λ∗

SL((Aθ(∞),N1 , Lθ(∞),N1), (Aθ(∞), Lθ(∞)))

<
ε

3 + Λ∗
SL((Aθ(n),N1 , Lθ(n),N1), (Aθ(∞),N1 , Lθ(∞),N1)) + ε

3
<

ε

3 + ε

3 + ε

3 = ε

by the triangle inequality. !

Thus, we see that the equivalence constants found in [2] were vital in this continuity result. There is 
nothing that guarantees that any equivalence constant would provide the same result. However, Proposi-
tion 3.10 shows that we can also obtain continuity of the map in Theorem 3.8 using the sharpest equivalence 
constants, which are guaranteed to exist for finite-dimensional spaces. Now, we do not know if the equiv-
alence constants of [2, Theorem 5.2] are sharp, but we chose to present the proof of Theorem 3.8 using 
these constants since they provided continuity with explicit L-seminorms rather than L-seminorms that are 
built using unknown sharp constants. Thus, the purpose of Proposition 3.10 is to show that if one cannot 
calculate explicit equivalence constants that provide continuity, then at least, one can achieve continuity 
with the existence of sharp equivalence constants. First, we prove a lemma.

Lemma 3.9. Let (C, d) be a compact metric space. Let (fn)n∈N be a sequence of real-valued continuous 
functions on X, and let f : X → R be continuous.

If (fn)n∈N converges to f uniformly, then (minx∈C fn(x))n∈N converges to minx∈C f(x) and
(maxx∈C fn(x))n∈N converges to maxx∈C f(x).
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Proof. Since C is compact, infx∈C f(x) = minx∈C f(x) = min f and infx∈C fn(x) = minx∈C fn(x) = min fn
for all n ∈ N. Let ε > 0. There exists an N ∈ N such that for n " N , we have |fn(x) − f(x)| < ε/2 for all 
x ∈ C. Then for n " N ,

f(x) − ε/2 < fn(x) < f(x) + ε/2

for all x ∈ C. We take the infimum of this inequality to obtain

min f − ε/2 ! min fn ! min f + ε/2,

which implies | min f − min fn| ! ε/2 < ε.
A similar argument establishes the result for min replaced with max. !

Proposition 3.10. Let (V, ∥ · ∥) be a finite-dimensional normed vector space. Let (∥ · ∥n)n∈N be a sequence of 
norms on V converging uniformly on the unit ball of (V, ∥ · ∥) to a norm ∥ · ∥∞ on V .

If for each n ∈ N ∪ {∞} we have

κn∥ · ∥ ! ∥ · ∥n ! λn∥ · ∥

where κn > 0, λn > 0 are sharp, then (κn)n∈N converges to κ∞ and (λn)n∈N converges to λ∞.

Proof. Let n ∈ N ∪{∞}. First, note that a ∈ V )→ ∥a∥n is continuous with respect to ∥ ·∥ since the norms are 
equivalent. Thus, since {a ∈ V : ∥a∥ = 1} is compact by finite dimensionality, {∥a∥n ∈ R : a ∈ V, ∥a∥ = 1}
is compact. Hence

inf{∥a∥n ∈ R : a ∈ V, ∥a∥ = 1} = min{∥a∥n ∈ R : a ∈ V, ∥a∥ = 1} > 0

as ∥a∥ = 1 implies that a ̸= 0 and thus ∥a∥n > 0. Since κn is sharp,

κn = min{∥a∥n ∈ R : a ∈ V, ∥a∥ = 1}.

Therefore, by Lemma 3.9, (κn)n∈N converges to κ∞ since the unit sphere of (V, ∥ · ∥) is compact by finite 
dimensionality. The remaining result follows similarly. !

Thus, combining this result with Proposition 3.6, we also have a proof of Theorem 3.8 using the sharp 
constants for κθ

n in Expression (3.6) rather than the explicit ones of [2, Theorem 5.2].
For our final result, we present convergence of UHF algebras with respect to convergence of their mul-

tiplicity sequences. Unlike the Effros–Shen case, where the continuity result relied on continuity of the 
equivalence constants in some appropriate sense, convergence in UHF algebras occurs regardless of which 
equivalence constants are chosen. First, we detail the metric space that we use to describe convergence of 
the multiplicity sequences and the standard construction of the class of UHF algebras.

Definition 3.11. The Baire space N is the set (N \ {0})N endowed with the metric d defined, for any two 
(x(n))n∈N, (y(n))n∈N in N , by

dN ((x(n))n∈N, (y(n))n∈N) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x(n) = y(n) for all n ∈ N,

2−min{n∈N:x(n) ̸=y(n)} otherwise.
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Next, we define UHF algebras in a way that suits our needs. Given (β(n))n∈N ∈ N , let

$β(n) =
{

1 if n = 0,
∏n−1

j=0 (β(j) + 1) otherwise.

For each n ∈ N, define a unital *-monomorphism by

µβ,n : a ∈ M"β(n)(C) )−→ diag(a, a, . . . , a) ∈ M"β(n+1)(C),

where there are β(n) + 1 copies of a in diag(a, a, . . . , a). Set uhf((β(n))n∈N) = lim−→ (M"β(n)(C), µβ,n)n∈N. 
The map

(β(n))n∈N ∈ N )−→ uhf((β(n))n∈N)

is a surjection onto the class of all UHF algebras up to *-isomorphism by [7, Chapter III.5].
For each n ∈ N, let

γβ(n) = 1
dim(M"β(n)(C)) ,

and let

ρβ

be the unique faithful tracial state on uhf((β(n))n∈N), and set

Vβ
n = µ(n)

β (M"β(n)(C))

as in Expression (3.1).
Next, let ρβ,n+1 denote the unique faithful tracial state on M"β(n+1)(C). Fix λβ

n > 0 such that

λβ
n∥a∥M!β(n+1)(C) ! ∥a∥Eρβ,n (3.7)

for all a ∈ M"β(n+1)(C), where Eρβ,n : M"β(n+1)(C) → µβ,n(M"β(n)(C)) is the unique faithful ρβ,n+1-
preserving conditional expectation onto µβ,n(M"β(n)(C)). Here we note that λβ

n is neither explicit nor 
necessarily the sharp constant and we assume that λβ

n only depends on M"β(n+1)(C), which is allowed since 
ρβ,n+1 is the unique faithful tracial state on M"β(n+1)(C). Let λβ = (λβ

n)n∈N.
For each a ∈ µ(n)

β (M"β(n)(C)), let

LN
β,n(a) = Lρβ ,λ

Vβ
n ,γβ

(a) (3.8)

as in Theorem 3.4.

Theorem 3.12. The map

β ∈ N )−→ (uhf((β(n))n∈N), LN
β ),

where LN
β is defined in Theorem 3.4 using the L-seminorms defined in Expression (3.8), is continuous with 

respect to the Baire space and the topology induced by Λ∗
SL.
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Proof. The majority of this proof is complete by the proof of [3, Theorem 4.9]. All that remains is continuity 
of the equivalence constants, but this follows similarly as the proof of [3, Theorem 4.9]. Indeed, if dN (β, η) <
1
2n , then for all k ! n, we have λβ

k = λη
k since

(1) ρβ,k+1 = ρη,k+1,
(2) M"β(k+1)(C) = M"η(k+1)(C),
(3) µβ,k(M"β(k)(C)) = µη,k(M"η(k)(C)), and
(4) Eρβ,k = Eρη,k ,

which is all the information required to fix λβ
k and λη

k. !
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