
Canad. Math. Bull. Vol. 66 (3), 2023, pp. 808–826
http://dx.doi.org/10.4153/S0008439522000741
© The Author(s), 2022. Published by Cambridge University Press on behalf of
The Canadian Mathematical Society

Norms on complex matrices induced
by random vectors
Ángel Chávez, Stephan Ramon Garcia, and Jackson Hurley

Abstract. We introduce a family of norms on the n × n complex matrices. These norms arise from a
probabilistic framework, and their construction and validation involve probability theory, partition
combinatorics, and trace polynomials in noncommuting variables. As a consequence, we obtain a
generalization of Hunter’s positivity theorem for the complete homogeneous symmetric polynomials.

1 Introduction

This paper introduces norms on the space Mn of n × n complex matrices that are
induced by random vectors in Rn . Specifically, we construct a family of norms for
each random vector X whose entries are independent and identically distributed
(iid) random variables with sufficiently many moments. Initially, these norms are
defined on complex Hermitian matrices as symmetric functions of their (necessarily
real) eigenvalues. This contrasts with Schatten and Ky-Fan norms, which are defined
in terms of singular values. To be more specific, our norms do not arise from the
machinery of symmetric gauge functions [13, Section 7.4.7]. The random vector norms
we construct are actually generalizations of the complete homogeneous symmetric
(CHS) polynomial norms introduced in [1].

1.1 Preliminaries

Our main result (Theorem 1.1 on page 4) connects a wide range of topics, such as
cumulants, Bell polynomials, partitions, and Schur convexity. We briefly cover the
preliminary concepts and notation necessary to state our main results.

1.1.1 Numbers and matrices

In what follows, N = {1, 2, . . .}; the symbols R and C denote the real and complex
number systems, respectively. Let Mn denote the set of n × n complex matrices and
Hn ⊂Mn the subset of n × n Hermitian complex matrices. We reserve the letter A for
Hermitian matrices (so A = A∗) and Z for arbitrary square complex matrices. The
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Norms on complex matrices induced by random vectors 809

eigenvalues of each A ∈ Hn are real and denoted λ1(A) ≥ λ2(A) ≥ ⋯ ≥ λn(A). We
may write λ = (λ1 , λ2 , . . . , λn) if A is understood.

1.1.2 Probability theory

A probability space is a measure space (Ω, F, P), in which F is a σ-algebra on Ω,
P is nonnegative, and P(Ω) = 1. A random variable is a measurable function X ∶
Ω → R. We assume that Ω ⊆ R and X is nondegenerate, that is, nonconstant. The
expectation of X is E[X] = ∫Ω X dP, often written as EX. For p ≥ 1, let Lp(Ω, F, P)
denote the vector space of random variables such that ∥X∥L p = (E∣X∣p)1/p <∞. The
pushforward measure X∗P of X is the probability distribution of X. The cumulative
distribution of X is FX(x) = P(X ≤ x), which is the pushforward measure of (−∞, x].
If X∗P is absolutely continuous with respect to Lebesgue measure m, the Radon–
Nikodym derivative fX = dX∗P/dm is the probability density function (PDF) of X [5,
Chapter 1].

1.1.3 Random vectors

A random vector is a tuple X = (X1 , X2 , . . . , Xn), in which X1 , X2 , . . . , Xn are
real-valued random variables on a common probability space (Ω, F, P); we
assume Ω ⊆ R. A random vector X is positive definite if its second-moment matrix
Σ(X) = [EX i X j]ni , j=1 exists and is positive definite. This occurs if the X i are iid and
belong to L2(Ω, F, P) (see Lemma 3.1).

1.1.4 Moments

For k ∈ N, the kth moment of X is µk = E[Xk], if it exists. If X has PDF fX , then
µk = ∫ ∞−∞ xk fX(x) dm(x). The mean of X is µ1 and the variance of X is µ2 − µ2

1 ;
Jensen’s inequality ensures that the variance is positive since X is nondegenerate. The
moment generating function (if it exists) of X is

M(t) = E[e t X] = ∞∑
k=0

E[Xk] tk

k!
= ∞∑

k=0
µk

tk

k!
.(1.1)

If X1 , X2 , . . . , Xn are independent, then E[X i1
1 X i2

2 ⋯X in
n ] =∏n

k=1 E[X ik
k ], for all

i1 , i2 , . . . , in ∈ N whenever both sides exist.

1.1.5 Cumulants

If X admits a moment generating function M(t), then the rth cumulant κr of X is
defined by the cumulant generating function

K(t) = log M(t) = ∞∑
r=1

κr
tr

r!
.(1.2)

The first two cumulants are κ1 = µ1 and κ2 = µ2 − µ2
1 . If X does not admit a moment

generating function but X ∈ Ld(Ω, F, P) for some d ∈ N, we can define κ1 ,κ2 , . . . ,κd
by the recursion µr = ∑r−1

ℓ=0 (r−1
ℓ
)µℓκr−ℓ for 1 ≤ r ≤ d (see [5, Section 9]).
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1.1.6 Power-series coefficients

The coefficient ck of tk in f (t) = ∑∞r=0 cr tr is denoted [tk] f (t), as is standard in
combinatorics and the study of generating functions.

1.1.7 Complete Bell polynomials

The complete Bell polynomials of degree ℓ [4, Section II] are the polynomials
Bℓ(x1 , x2 , . . . , xℓ) defined by

∞∑
ℓ=0

Bℓ(x1 , x2 , . . . , xℓ) tℓ
ℓ!
= exp( ∞∑

j=1
x j

t j

j!
).(1.3)

For example, B0 = 1, B2(x1 , x2) = x2
1 + x2, and

B4(x1 , x2 , x3 , x4) = x4
1 + 6x2

1 x2 + 4x1x3 + 3x2
2 + x4 .(1.4)

1.1.8 Symmetric and positive functions

A function is symmetric if it is invariant under all permutations of its arguments. A
continuous real-valued function on Mn or Hn is positive definite if it is everywhere
positive, except perhaps at 0.

1.1.9 Partitions

A partition of d ∈ N is a tuple π = (π1 , π2 , . . . , πr) ∈ Nr such that π1 ≥ π2 ≥ ⋯ ≥ πr and
π1 + π2 +⋯ + πr = d [20, Section 1.7]. We denote this π ⊢ d and write ∣π∣ = r for the
number of parts in the partition. Define

κπ = κπ1κπ2⋯κπr and yπ =∏
i≥1
(i!)m i m i !,(1.5)

in which m i = m i(π) is the multiplicity of i in π. For example, π = (4, 4, 2, 1, 1, 1)
yields κπ = κ2

4κ2κ
3
1 and yπ = (1!33!)(2!11!)(4!22!) = 13,824. Note that yπ is not the

quantity zπ =∏i≥1 im i m i ! from symmetric function theory [21, Proposition 7.7.6].

1.1.10 Power sums

For π ⊢ d , let pπ(x1 , x2 , . . . , xn) = pπ1 pπ1⋯pπr , where pk(x1 , x2 , . . . , xn) = xk
1 + xk

2 +⋯ + xk
n is a power-sum symmetric polynomial; we often simply write pk . If A ∈ Hn has

eigenvalues λ = (λ1 , λ2 , . . . , λn), we write

pπ(λ) = pπ1(λ)pπ2(λ)⋯pπr(λ) = (tr Aπ1)(tr Aπ2)⋯(tr Aπr).(1.6)

1.1.11 Complete homogeneous symmetric polynomials

The CHS polynomial of degree d in x1 , x2 , . . . xn is

hd(x1 , x2 , . . . , xn) = ∑
1≤i1≤⋯≤id≤n

x i1 x i2⋯x id ,(1.7)
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the sum of all monomials of degree d in x1 , x2 , . . . , xn (see [21, Section 7.5]). For exam-
ple, h0(x1 , x2) = 1, h2(x1 , x2) = x2

1 + x1x2 + x2
2 , and h4(x1 , x2) = x4

1 + x3
1 x2 + x2

1 x2
2 +

x1x3
2 + x4

2 . Hunter proved that the even-degree CHS polynomials are positive definite
[14]. This has been rediscovered many times [1, Theorem 1], [2, Lemma 3.1], [3], [6,
Theorem 2], [9, Corollary 17], [19, Theorem 2.3], [22, Theorem 1].

1.1.12 Schur convexity

Let x̃ = (x̃1 , x̃2 , . . . , x̃n) be the nondecreasing rearrangement of x = (x1 , x2 , . . . , xn) ∈
Rn . Then y majorizes x , denoted x ≺ y, if∑n

i=1 x̃ i = ∑n
i=1 ỹ i and∑k

i=1 x̃ i ≤ ∑k
i=1 ỹ i for

1 ≤ k ≤ n. A function f ∶ Rn → R is Schur convex if f (x) ≤ f (y) whenever x ≺ y.
This occurs if and only if (x i − x j)( ∂

∂x i
− ∂

∂x j
) f (x1 , x2 , . . . , xn) ≥ 0 for all 1 ≤ i < j ≤ n,

with equality if and only if x i = x j [18, p. 259].

1.2 Statement of main results

With the preliminary concepts and notation covered, we can state our main theorem.
In what follows, ! is the gamma function and ⟨⋅, ⋅⟩ is the Euclidean inner product
on Rn .

Theorem 1.1 Let d ≥ 2 and X = (X1 , X2 , . . . , Xn), in which X1 , X2 , . . . , Xn ∈
Ld(Ω, F, P) are nondegenerate iid random variables.

(a) ∣∣∣A∣∣∣X ,d = (E∣⟨X , λ⟩∣d
!(d + 1) )

1/d
is a norm on Hn .

(b) If the X i admit a moment generating function M(t) and d ≥ 2 is even, then

∣∣∣A∣∣∣dX ,d = [td]MΛ(t) for all A ∈ Hn ,(1.8)

in which MΛ(t) =∏n
i=1 M(λ i t) is the moment generating function for the random

variable Λ = ⟨X , λ(A)⟩ = λ1 X1 + λ2 X2 +⋯ + λn Xn . In particular, ∣∣∣A∣∣∣X ,d is a
positive definite, homogeneous, symmetric polynomial in the eigenvalues of A.

(c) If the first d moments of Xi exist, then

∣∣∣A∣∣∣dX ,d = 1
d!

Bd(κ1 tr A,κ2 tr A2 , . . . ,κd tr Ad)(1.9)

= ∑
π⊢d

κπ pπ(λ)
yπ

for A ∈ Hn ,(1.10)

in which Bd is given by (1.3), and in which κπ and yπ are defined in (1.5), pπ(λ)
is defined in (1.6), and the second sum runs over all partitions π of d.

(d) The function λ(A)↦ ∣∣∣A∣∣∣X ,d is Schur convex.
(e) Let π = (π1 , π2 , . . . , πr) be a partition of d. Define Tπ ∶Mn → R by setting Tπ(Z)

to be 1/( d
d/2) times the sum over the ( d

d/2) possible locations to place d/2 adjoints
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∗ among the d copies of Z in (tr ZZ⋯Z?@@@@@@A@@@@@@B
π1

)(tr ZZ⋯Z?@@@@@@A@@@@@@B
π2

)⋯(tr ZZ⋯Z?@@@@@@A@@@@@@B
πr

). Then

∣∣∣Z∣∣∣X ,d = ( ∑
π ⊢ d

κπTπ(Z)
yπ

)1/d
for Z ∈Mn ,(1.11)

in which κπ and yπ are defined in (1.5) and the sum runs over all partitions π of
d , is a norm on Mn that restricts to the norm on Hn above. In particular, ∣∣∣Z∣∣∣dX ,d
is a positive definite trace polynomial in Z and Z∗.

The independence of the X i is not needed in (a) and (d) (see Remarks 3.4 and 3.5,
respectively). A more precise definition of Tπ(Z) is in Section 3.5, although the
examples in the next section better illustrate how to compute (1.11).

The positive definiteness of (1.8), (1.9), and (1.11) is guaranteed by Theorem 1.1;
the triangle inequality is difficult to verify directly. Positivity is not obvious since
we consider the eigenvalues of A ∈ Hn and not their absolute values in (a) and (b).
Thus, these norms on Hn do not arise from singular values or symmetric gauge
functions [13, Section 7.4.7]. Norms like ours can distinguish singularly cospectral
graphs, unlike the operator, Frobenius, Schatten–von Neumann, and Ky Fan norms
(see [1, Example 2]).

1.3 Organization

This paper is organized as follows: We first cover examples and applications in
Section 2, including a generalization of Hunter’s positivity theorem. The proof of
Theorem 1.1, which is lengthy and involves a variety of ingredients, is contained in
Section 3. We end this paper in Section 4 with a list of open questions that demand
further exploration.

2 Examples and applications

We begin with computations for small d (Section 2.1). Gamma random variables
(Section 2.2) lead to a generalization of Hunter’s positivity theorem (Section 2.3). We
examine norms arising from familiar distributions in Sections 2.4–2.10.

2.1 Generic computations

Let X = (X1 , X2 , . . . , Xn), where the X i are nondegenerate iid random variables such
that the stated cumulants and moments exist. For d = 2 and 4, we obtain trace-
polynomial representations of ∣∣∣Z∣∣∣d in terms of cumulants or moments. This can also
be done for d = 6, 8, . . . , but we refrain from the exercise.

Example 2.1 The two partitions of d = 2 satisfy κ(2) = κ2 = µ2 − µ2
1 , κ(1,1) =

κ2
1 = µ2

1 , and y(2) = y(1,1) = 2. There are (2
1) = 2 ways to place two adjoints ∗

in a string of two Zs. Thus, T(2)(Z) = 1
2 (tr(Z∗Z) + tr(ZZ∗)) = tr(Z∗Z) and
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T(1,1)(Z) = 1
2 ((tr Z∗)(tr Z) + (tr Z)(tr Z∗)) = (tr Z∗)(tr Z), so

∣∣∣Z∣∣∣2X ,2 = ∑
π ⊢ d

κπTπ(A)
yπ

= µ2 − µ2
1

2
tr(Z∗Z) + µ2

1
2
(tr Z∗)(tr Z).(2.1)

If µ1 = 0 (mean zero), then ∣∣∣ ⋅ ∣∣∣2 is a nonzero multiple of the Frobenius norm since
the variance µ2 − µ2

1 is positive by nondegeneracy. As predicted by Theorem 1.1, the
norm (2.1) on Mn reduces to (1.9) on Hn since B2(x1 , x2) = x2

1 + x2 and

∣∣∣A∣∣∣2X ,2 = 1
2

B2(κ1 tr A,κ2 tr A2)
= 1

2
[(κ1 tr A)2 + κ2 tr(A2)] = µ2 − µ2

1
2

tr(A2) + µ2
1

2
(tr A)2 ,

which agrees with (2.1) if Z = A = A∗.

Example 2.2 The five partitions of d = 4 satisfy

κ(4) = κ4 , κ(3,1) = κ1κ3 , κ(2,2) = κ2
2 , κ(2,1,1) = κ2κ

2
1 , κ(1,1,1,1) = κ4

1 ,
y(4) = 24, y(3,1) = 6, y(2,2) = 8, y(2,1,1) = 4, y(1,1,1,1) = 24.

There are (4
2) = 6 ways to place two adjoints ∗ in a string of four Zs. For example,

6T(3,1)(Z) = (tr Z∗Z∗Z)(tr Z) + (tr Z∗ZZ∗)(tr Z) + (tr Z∗ZZ)(tr Z∗)
+ (tr ZZ∗Z∗)(tr Z) + (tr ZZ∗Z)(tr Z∗) + (tr ZZZ∗)(tr Z∗)
= 3 tr(Z∗2Z)(tr Z) + 3(tr Z2Z∗)(tr Z∗).

Summing over all five partitions yields the following norm on Mn :

∣∣∣Z∣∣∣4X ,4 = 1
72(3κ4

1 (tr Z∗)2(tr Z)2 + 3κ2κ
2
1 (tr Z∗)2 tr(Z2) + 3κ2κ

2
1 tr(Z∗2)(tr Z)2

+ 12κ2κ
2
1 (tr Z∗)(tr Z∗Z)(tr Z) + 6κ3κ1 tr(Z∗2Z)(tr Z)

+ 6κ3κ1 tr(Z∗) tr(Z∗Z2) + 6κ2
2(tr Z∗Z)2 + 3κ2

2 tr(Z2) tr(Z∗2)
+ 2κ4 tr(Z2Z∗2) + κ4 tr(ZZ∗ZZ∗)).(2.2)

If Z = A ∈ Hn , Theorem 1.1.c and (1.4) ensure that the above reduces to
1

24(κ4
1 (tr A)4 +6κ2

1κ2 tr(A2)(tr A)2 +4κ1κ3 tr(A3) tr(A)+3κ2
2 tr(A2)2 +κ4 tr(A4)).

2.2 Gamma random variables

Let X = (X1 , X2 , . . . , Xn), in which the X i are independent with probability density

f (t) = ⎧⎪⎪⎨⎪⎪⎩
1

βα!(α) tα−1e−t/β , if t > 0,
0, if t ≤ 0.

(2.3)

Here, α, β > 0 (note that α = k/2 and β = 2 yield a chi-squared random variable with
k degrees of freedom, and α = β = 1 is the standard exponential distribution). Then
M(t) = (1 − βt)−α and K(t) = −α log(1 − βt), so

κr = αβr(r − 1)! for r ∈ N.(2.4)
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For even d ≥ 2,

∣∣∣A∣∣∣dX ,d = [td] n∏
i=1

1
(1 − βλ i t)α = [td]⎛⎝

1
βn tn pA(β−1 t−1)

⎞
⎠

α

for A ∈ Hn ,(2.5)

in which pA(t) = det(tI − A) denotes the characteristic polynomial of A.

Example 2.3 Since κ1 = αβ and κ2 = αβ2 , (2.1) becomes ∣∣∣Z∣∣∣2X ,2 = 1
2 αβ2 tr(Z∗Z) +

1
2 α2β2(tr Z∗)(tr Z) for Z ∈Mn . Similarly, (2.2) yields generalizations of [1, equations
(8) and (9)] (which correspond to α = β = 1):

∣∣∣Z∣∣∣4X ,4 = 1
24(α4β4(tr Z)2(tr Z∗)2 + α3β4(tr Z∗)2 tr(Z2)
+ 4α3β4(tr Z)(tr Z∗)(tr Z∗Z) + 2α2β4(tr Z∗Z)2

+ α3β4(tr Z)2 tr(Z∗2) + α2β4 tr(Z2) tr(Z∗2)
+ 4α2β4 tr(Z∗) tr(Z∗Z2) + 4α2β4 tr(Z) tr(Z∗2Z)
+ 2αβ4 tr(Z∗ZZ∗Z) + 4αβ4 tr(Z∗2Z2)).

2.3 A generalization of Hunter’s positivity theorem

Examining the gamma distribution (Section 2.2) recovers Hunter’s theorem [14]
(Corollary 2.6) and establishes a powerful generalization (Theorem 2.5).

Example 2.4 Let α = β = 1 in (2.3) and (2.5). Then

∣∣∣A∣∣∣2X ,d = [td] n∏
i=1

1
1 − λ i t

= [td] 1
tn pA(t−1) for A ∈ Hn ,(2.6)

which is [1, Theorem 20]. Expand each factor (1 − λ i t)−1 as a geometric series,
multiply out the result, and deduce that for d ≥ 2 even,

∣∣∣A∣∣∣dX ,d = [td] n∏
i=1

1
1 − λ i t

= [td] ∞∑
r=0

hr(λ1 , λ2 , . . . , λn)tr .(2.7)

From (2.4), we have κi = (i − 1)!. Therefore,

κπ
yπ
= ∏i≥1 [(i − 1)!]m i

∏i≥1(i!)m i m i !
= 1
∏i≥1 im i m i !

for any partition π. Theorem 1.1 and (1.5) imply that for even d ≥ 2 and A ∈ Hn ,

hd(λ1 , λ2 , . . . , λn) = ∣∣∣A∣∣∣dX ,d = ∑
π⊢d

κπ pπ
yπ
= ∑

π⊢d

pπ
zπ

,(2.8)

in which zπ =∏i≥1 im i m i ! and pπ is given by (1.6). This recovers the combinatorial
representation of even-degree CHS polynomials [21, Proposition 7.7.6] and establishes
Hunter’s positivity theorem since ∣∣∣ ⋅ ∣∣∣dX ,d is positive definite.

The next theorem generalizes Hunter’s theorem [14], which is the case α = 1.
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Theorem 2.5 For even d ≥ 2 and α ∈ N,

Hd ,α(x1 , x2 , . . . , xn) = ∑
π⊢d∣π∣≤α

cπ hπ(x1 , x2 , . . . , xn)

is positive definite on Rn , in which the sum runs over all partitions π = (π1 , π2 , . . . , πr)
of d. Here, hπ = hπ1 hπ2⋯hπr is a product of CHS polynomials and

cπ = α!
(α − ∣π∣)!∏r

i=1 m i !
,

where ∣π∣ denotes the number of parts in π and m i is the multiplicity of i in π.

Proof Let α ∈ N and define polynomials P(α)ℓ (x1 , x2 , . . . , xℓ) by

P(α)0 = x0 = 1 and (1 + ∞∑
r=1

xr tr)α = ∞∑
ℓ=0

P(α)ℓ (x1 , x2 , . . . , xℓ)tℓ .(2.9)

Then

P(α)ℓ (x1 , x2 , . . . , xℓ) = ∑
i1 , i2 , . . . , iα≤ℓ

i1+i2+⋯+iα=ℓ
x i1 x i2⋯x iα = ∑

π⊢ℓ∣π∣≤α

cπ xπ .(2.10)

Let X be a random vector whose n components are iid and distributed according to
(2.3) with β = 1. Let A ∈ Hn have eigenvalues x1 , x2 , . . . , xn . For even d ≥ 2,

∣∣∣A∣∣∣dX ,d
(2.5)= [td]( k∏

i=1

1
1 − x i t

)α (2.7)= [td](1 + ∞∑
r=1

hr(x1 , x2 , . . . , xn)tr)α

(2.9)= [td] ∞∑
ℓ=0

P(α)ℓ (h1 , h2 , . . . , hℓ)tℓ
(2.10)= [td] ∞∑

ℓ=0
( ∑

π⊢ℓ∣π∣≤α

cπ hπ(x1 , x2 , . . . , xn))tℓ .

Consequently,∑π⊢d∣π∣≤α
cπ hπ(x1 , x2 , . . . , xn) = ∣∣∣A∣∣∣dX ,d , which is positive definite. ∎

Corollary 2.6 (Hunter [14]) For even d ≥ 2, the complete symmetric homogeneous
polynomial hd(x1 , x2 , . . . , xn) is positive definite.

Example 2.7 If α = 2, then we obtain the positive definite symmetric polynomial
Hd ,2(x1 , x2 , . . . , xn) = ∑d

i=0 h i(x1 , x2 , . . . , xn)hd−i(x1 , x2 , . . . , xn).
Example 2.8 The relation ∑∞ℓ=0 Hℓ,α tℓ = (∑∞ℓ=0 hℓtℓ)(∑∞ℓ=0 Hℓ,α−1 tℓ) implies that
the sequence {Hd ,α}α≥1 satisfies the recursion

Hd ,α = d∑
i=0

h i Hd−i ,α−1 .(2.11)
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For example, let j = 4 and α = 3. There are four partitions π of j with ∣π∣ ≤ 3. These are(1, 1, 2), (1, 3), (2, 2), and (4). Therefore,

H4,3(x1 , x2 , x3 , x4) = c(1, 1, 2)h2
1 h2 + c(1, 3)h1h3 + c(2, 2)h2

2 + c(4)h4

= 3!
0!2!1!

h2
1 h2 + 3!

1!1!1!
h1h3 + 3!

1!2!
h2

2 + 3!
2!1!

h4

= 3h2
1 h2 + 6h1h3 + 3h2

2 + 3h4

is a positive definite symmetric polynomial. In light of (2.11), we can also write
H4,3(x1 , x2 , x3 , x4) = ∑4

i=0 h i H4−i ,2 = H4,2 + h1H3,2 + h2H2,2 + h3H1,2 + h4.

2.4 Normal random variables

Let X = (X1 , X2 , . . . , Xn), in which the X i are independent normal random variables
with mean µ and variance σ 2 > 0. Then M(t) = exp(tµ + σ 2 t2

2 ) and K(t) = σ 2 t2

2 + µt;
in particular, κ1 = µ and κ2 = σ 2 and all higher cumulants are zero. Then

MX ,λ(t) = n∏
i=1

exp(λ i tµ + σ 2 λ2
i t2

2
) = exp(tµ tr A+ σ 2 tr(A2)t2

2
).

Theorem 1.1 and the above tell us that

∣∣∣A∣∣∣dX ,d =
d
2∑

k=0

µ2k(tr A)2k

(2k)! ⋅ σ d−2k∥A∥d−2k
F

2 d
2 −k( d

2 − k)! for A ∈ Hn ,(2.12)

in which ∥A∥F is the Frobenius norm of A. For d ≥ 2 even, Theorem 1.1 yields

∣∣∣Z∣∣∣2X ,2 = 1
2 σ 2 tr(Z∗Z) + 1

2 µ2(tr Z∗)(tr Z),
∣∣∣Z∣∣∣4X ,4 = 1

24(µ4(tr Z)2(tr Z∗)2 + µ2σ 2 tr(Z∗)2 tr(Z2)
+ 4µ2σ 2(tr Z)(tr Z∗)(tr Z∗Z) + 2σ 4(tr Z∗Z)2

+ µ2σ 2(tr Z)2 tr(Z∗2) + σ 4 tr(Z2) tr(Z∗2)).
Since κr = 0 for r ≥ 3, we see that ∣∣∣Z∣∣∣4X ,4 does not contain summands like
tr(Z∗) tr(Z∗Z2) and tr(Z∗2Z2), in contrast to the formula in Example 2.3.

2.5 Uniform random variables

Let X = (X1 , X2 , . . . , Xn), where the X i are independent and uniformly distributed
on [a, b]. Each X i has probability density f (x) = (b − a)−11[a ,b], where 1[a ,b] is the
indicator function of [a, b]. Then

µk = E[Xk
i ] = ∫ ∞

−∞ xk f (x) dx = hk(a, b)
k + 1

,(2.13)

in which hk(a, b) is the CHS polynomial of degree k in the variables a, b. The
moment and cumulant generating functions of each X i are M(t) = ebt−e at

t(b−a) and K(t) =
log( e t(b−a)−1

t(b−a) ) + at. The cumulants are
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κr =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a+b
2 , if r = 1,

Br
r (b − a)r , if r is even,

0, otherwise,

in which Br is the rth Bernoulli number [10]. Theorem 1.1 ensures that

∣∣∣A∣∣∣dX ,d = [td] n∏
i=1

ebλ i t − eaλ i t

λ i t(b − a) for A ∈ Hn .(2.14)

Example 2.9 If [a, b] = [−1, 1], then

∣∣∣Z∣∣∣4X ,4 = 1
1,080(10(tr Z∗Z)2 + 5 tr(Z2) tr(Z∗2) − 4(tr Z2Z∗2) − 2 tr(ZZ∗ZZ∗))

for Z ∈Mn , which is not obviously positive, let alone a norm. Indeed, tr Z2Z∗2 and
tr(ZZ∗ZZ∗) appear with negative scalars in front of them! Similarly,

∣∣∣A∣∣∣6X ,6 = 1
45,360(35(tr A2)3 − 42 tr(A4) tr(A2) + 16 tr(A6)) for A ∈ H6

has a nonpositive summand. Since MX ,λ(t) =∏n
i=1

sinh(λ i t)
λ i t is an even function of

each λ i , the corresponding norms are polynomials in even powers of the eigenvalues
(so positive definiteness is no surprise, although the triangle inequality is nontrivial).

Example 2.10 If [a, b] = [0, 1], then MX ,λ(t) =∏n
i=1

e λ i t−1
λ i t , and hence for A ∈ Hn ,

∣∣∣A∣∣∣2X ,2 = 1
12 (2λ2

1 + 3λ1 λ2 + 2λ2
2),

∣∣∣A∣∣∣4X ,4 = 1
720 (6λ4

1 + 15λ3
1 λ2 + 20λ2

1 λ2
2 + 15λ1 λ3

2 + 6λ4
2).

Unlike the previous example, these symmetric polynomials are not obviously positive
definite since λ3

1 λ2 and λ1 λ3
2 need not be nonnegative.

2.6 Laplace random variables

Let X = (X1 , X2 , . . . , Xn), where the X i are independent random variables distributed
according to the probability density f (x) = 1

2β e− ∣x−µ∣
β , in which µ ∈ R and β > 0.

The moment and cumulant generating functions of the X i are M(t) = e µt

1−β2 t2 and
K(t) = µt − log(1 − β2 t2), respectively. The cumulants are

κr =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

µ, if r = 1,
2βr(r − 1)!, if r is even,
0, otherwise.

For even d ≥ 2, it follows that ∣∣∣A∣∣∣dX ,d is the dth term in the Taylor expansion of

∣∣∣A∣∣∣dX ,d = [td] n∏
i=1

e µt

1 − β2 λ2
i t2 . = e µ tr At[td] n∏

i=1

1
1 − β2 λ2

i t2 .(2.15)
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Example 2.11 Let µ = β = 1. Expanding the terms in (2.15) gives

MX ,λ(t) = etr At
n∏

i=1

1
1 − λ2

i t2 = (
∞∑

k=0
(tr A)k tk

k!
)( ∞∑

k=0
hk(λ2

1 , λ2
2 , . . . , λ2

n)t2k),
which implies ∣∣∣A∣∣∣dX ,d = ∑d/2

k=0
(tr A)2k

(2k)! h d
2 −k(λ2

1 , λ2
2 , . . . , λ2

n).
2.7 Bernoulli random variables

Let X = (X1 , X2 , . . . , Xn), in which the X i are independent Bernoulli random vari-
ables. Each X i takes values in {0, 1} with P(X i = 1) = q and P(X i = 0) = 1 − q for
some fixed 0 < q < 1. Each X i satisfies E[Xk

i ] = ∑ j∈{0,1} jkP(X i = j) = q for k ∈ N. We
have M(t) = 1 − q + qe t and K(t) = log(1 − q + qe t). The first few cumulants are

q, q − q2 , 2q3 − 3q2 + q, −6q4 + 12q3 − 7q2 + q, . . . .

For even d ≥ 2, the multinomial theorem and independence imply that

∣∣∣A∣∣∣dX ,d = 1
d! ∑

i1+i2+⋯+in=d
q∣I∣λ i1

1 λ i2
2 ⋯λ in

n ,

in which ∣I∣ denotes the cardinality of I = {i1 , i2 , . . . , in}. We can write this as

∣∣∣A∣∣∣dX ,d = ∑
π ⊢ d

∣π∣!
d!

q∣π∣mπ(λ),
in which mπ denotes the monomial symmetric polynomial corresponding to the
partition π of d [21, Section 7.3]. To be more specific,

mπ(x) =∑
α

xα ,

in which the sum is taken over all distinct permutations α = (α1 , α2 , . . . , αr) of
the entries of π = (i1 , i2 , . . . , ir) and xα = xα1

1 xα2
2 ⋯xαr

r . For example, m(1) = ∑i x i ,
m(2) = ∑i x2

i , and m(1,1) = ∑i< j x i x j .

2.8 Finite discrete random variables

Let X be supported on {a1 , a2 , . . . , aℓ} ⊂ R, with P(X = a j) = q j > 0 for 1 ≤ j ≤ ℓ and
q1 + q2 +⋯ + qℓ = 1. Then E[Xk] = ∑ℓ

i=1 ak
i q i , and hence

M(t) = ℓ∑
j=1

q j( ∞∑
k=0

ak
j

tk

k!
) = ℓ∑

j=1
q j ea j t .(2.16)

Let X = (X1 , X2 , . . . , Xn), in which X1 , X2 , . . . , Xn ∼ X are iid random variables.

Example 2.12 Let ℓ = 2 and a1 = −a2 = 1 with q1 = q2 = 1
2 . The X i are Rademacher

random variables. Identity (2.16) yields M(t) = cosh t, so MX ,λ(t) =∏n
i=1 cosh(λ i t).

For n = 2, we have ∣∣∣A∣∣∣2X ,2 = 1
2 (λ2

1 + λ2
2), ∣∣∣A∣∣∣4X ,4 = 1

24 (λ4
1 + 6λ2

2 λ2
1 + λ4

2), and

∣∣∣A∣∣∣6X ,6 = 1
720 (λ6

1 + 15λ2
2 λ4

1 + 15λ4
2 λ2

1 + λ6
2).
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Let γp =√2(√π)−1/p!( p+1
2 )1/p denote the pth moment of a standard normal

random variable. Let X1 , X2 , . . . , Xn be independent Rademacher random variables
(see Example 2.12). The classic Khintchine inequality asserts that

(E∣ n∑
i=1

λ i X i ∣2)1/2 ≤ (E∣ n∑
i=1

λ i X i ∣p)1/p ≤ ap(E∣ n∑
i=1

λ i X i ∣2)1/2
,(2.17)

for all λ1 , λ2 , . . . , λn ∈ R and p ≥ 2, with a2 = 1 and ap = γp for p > 2. Moreover, these
constants are optimal [11]. Immediately, we obtain the equivalence of norms

∥A∥F ≤ !(p + 1)1/p ∣∣∣A∣∣∣X , p ≤ ap∥A∥F ,(2.18)

for all A ∈ Hn(C) and p ≥ 2. The proof of Theorem 1.e implies that ∥Z∥F ≤ !(p +
1)1/p ∣∣∣Z∣∣∣X , p ≤ ap∥Z∥F for all Z ∈Mn and p ≥ 2.

In general, suppose that X1 , X2 , . . . , Xn are iid random variables. A comparison
of the form (2.17) is a Khintchine-type inequality. Establishing a Khintchine-type
inequality here is equivalent to establishing an equivalence of norms as in (2.18).
This is always possible since Hn(C) is finite dimensional. However, establishing
Khintchine-type inequalities is, in general, a nontrivial task (see [7, 8, 12, 15]).

2.9 Poisson random variables

Let X = (X1 , X2 , . . . , Xn), in which the X i are independent random variables on{0, 1, 2, . . .} distributed according to f (t) = e−α α t

t! , in which α > 0. The moment and
cumulant generating functions of the X i are M(t) = eα(e t−1) and K(t) = α(e t − 1),
respectively. Therefore, κi = α for all i ∈ N and hence

∣∣∣A∣∣∣dX ,d = ∑
π⊢d

α∣π∣pπ
yπ

.

For example, if A ∈ Hn we have

4!∣∣∣A∣∣∣4X ,4 = α4(tr A)4 + 6α3(tr A)2 tr A2 + 4α2 tr A tr A3 + 3α2(tr A2)2 + α tr A4 .

2.10 Pareto random variables

Let X = (X1 , X2 , . . . , Xn), in which the X i are independent random variables dis-
tributed according to the probability density

f (x) = ⎧⎪⎪⎨⎪⎪⎩
α

x α+1 , x ≥ 1,
0, x < 1.

The moments that exist are µk = α
α−k for k < α. For even d ≥ 2 with d < α, the

multinomial theorem and independence yield

d!∣∣∣A∣∣∣dX ,d = E[⟨X , λ⟩d] = E[(λ1 X1 + λ2 X2 +⋯ + λn Xn)d]
= E

⎡⎢⎢⎢⎢⎢⎢⎣
∑

k1+k2+⋯+kn=d
k1 ,k2 , . . . ,kn≥0

( d
k1 , k2 , . . . , kn

) n∏
i=1
(λ i X i)k i

⎤⎥⎥⎥⎥⎥⎥⎦
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= ∑
k1+k2+⋯+kn=d

k1 ,k2 , . . . ,kn≥0

( d
k1 , k2 , . . . , kn

) n∏
i=1

λk i
i E[Xk i

i ]

= ∑
k1+k2+⋯+kn=d

k1 ,k2 , . . . ,kn≥0

( d
k1 , k2 , . . . , kn

) n∏
i=1

αλk i
i

α − k i
.

In particular, limα→∞ d!∣∣∣A∣∣∣dXα ,d = (tr A)d and

lim
α→d+(α − d)d!∣∣∣A∣∣∣dXα ,d = lim

α→d+(α − d) ∑
k1+k2+⋯+kn=d

k1 ,k2 , . . . ,kn≥0

( d
k1 , k2 , . . . , kn

) n∏
i=1

αλk i
i

α − k i

= lim
α→d+(α − d) n∑

i=1
(d

d
) dλd

i
α − d

= d
n∑

i=1
λd

i = d∥A∥d
d ,

in which ∥A∥d is the Schatten d-norm on Hn .

Example 2.13 For n = 2,

∣∣∣A∣∣∣2X ,2 = 1
2

α ( λ2
1

α − 2
+ 2αλ1 λ2(α − 1)2 + λ2

2
α − 2

) and

∣∣∣A∣∣∣4X ,4 = 1
24

α ( λ4
1

α − 4
+ 4αλ3

1 λ2
α2 − 4α + 3

+ 6αλ2
2 λ2

1(α − 2)2 + 4αλ1 λ3
2

α2 − 4α + 3
+ λ4

2
α − 4

) .

3 Proof of Theorem 1.1

Let d ≥ 2 be arbitrary, and let X = (X1 , X2 , . . . , Xn) be a random vector in Rn , in
which X1 , X2 , . . . , Xn ∈ Ld(Ω, F, P) are iid random variables. Independence is not
needed for (a) (see Remark 3.4). We let λ = (λ1 , λ2 , . . . , λn) denote the vector of
eigenvalues of A ∈ Hn . As before, A denotes a typical Hermitian matrix and Z ∈Mn
an arbitrary square matrix.

The proofs of (a)–(e) of Theorem 1.1 are placed in separate subsections below.
Before we proceed, we require an important lemma.

Lemma 3.1 X is positive definite.

Proof Hölder’s inequality shows that each X i ∈ L2(Ω, F, P), so µ1 and µ2 are finite.
Jensen’s inequality yields µ2

1 ≤ µ2; nondegeneracy of the X i ensures the inequality is
strict. Independence implies that E[X i X j] = E[X i]E[X j] for i ≠ j, so

Σ(X) = [EX i X j] =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ2 µ2
1 ⋯ µ2

1
µ2

1 µ2 ⋯ µ2
1⋮ ⋮ ⋱ ⋮

µ2
1 µ2

1 ⋯ µ2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (µ2 − µ2

1 )I + µ2
1 J ,

in which µ2 − µ2
1 > 0 and J is the all-ones matrix. Thus, Σ(X) is the sum of a positive

definite and a positive semidefinite matrix, so it is positive definite. ∎
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3.1 Proof of Theorem 1.1.a

Since X1 , X2 , . . . , Xn ∈ Ld(Ω, F, P) for some d ≥ 2, Hölder’s inequality implies the
random variable Λ = ⟨X , λ⟩ satisfies

⟨λ, Σ(X)λ⟩ = E[∣Λ∣2] ≤ (E∣Λ∣d)2/d .(3.1)

For A ∈ Hn , consider the nonnegative function

N(A) = ( E∣⟨X , λ⟩∣d
!(d + 1) )

1/d
.(3.2)

It is clearly homogeneous: N(αA) = ∣α∣N(A) for all α ∈ R. Lemma 3.1 ensures that
Σ(X) is positive definite, so (3.1) implies N(A) = 0 if and only if A = 0.

We must show that N satisfies the triangle inequality. Our approach parallels that
of [1, Theorem 1]. We first show that N satisfies the triangle inequality on Dn(R),
the space of real diagonal matrices. Then, we use Lewis’ framework for convex matrix
analysis [17] to establish the triangle inequality on Hn .

Let V be a finite-dimensional real vector space with inner product ⟨⋅, ⋅⟩V. The
adjoint ϕ∗ of a linear map ϕ ∶ V→ V satisfies ⟨ϕ∗(A), B⟩ = ⟨A, ϕ(B)⟩ for all A, B ∈ V.
We say that ϕ is orthogonal if ϕ∗ ○ ϕ is the identity. Let O(V) denote the set of
orthogonal linear maps on V. If G ⊂ O(V) is a subgroup, then f ∶ V→ R is G-invariant
if f (ϕ(A)) = f (A) for all ϕ ∈ G and A ∈ V .

Definition 3.1 (Definition 2.1 of [17]) δ ∶ V→ V is a G-invariant normal form if
(a) δ is G-invariant.
(b) For each A ∈ V, there is an ϕ ∈ O(V) such that A = ϕ(δ(A)).
(c) ⟨A, B⟩V ≤ ⟨δ(A), δ(B)⟩V for all A, B ∈ V.

Such a triple (V, G , δ) is a normal decomposition system (NDS). Let (V, G, δ) be an
NDS and W ⊆ V a subspace. The stabilizer of W in G is GW = {ϕ ∈ G ∶ ϕ(W) =W}.
We restrict the domain of ϕ ∈ GW and consider GW as a subset of O(W).
Lemma 3.2 (Theorem 4.3 of [17]) Let (V, G, δ) and (W, GW , δ∣W) be NDSs with
ran δ ⊂W. Then a G-invariant function f ∶ V→ R is convex if and only if its restriction
to W is convex.

Let V = Hn be the R-vector space of complex Hermitian (A = A∗) matrices
equipped with the Frobenius inner product (A, B)↦ tr AB. Let Un denote the
group of n × n complex unitary matrices. For U ∈ Un , define ϕU ∶ V→ V by
ϕU(A) = UAU∗. Then G = {ϕU ∶ U ∈ Un} is a group under composition. We may
regard it is a subgroup of O(V) since ϕ∗U = ϕU∗ .

Let W = Dn(R) ⊂ V denote the set of real diagonal matrices. Then GW ={ϕP ∶ P ∈ Pn}, in which Pn is the group of n × n permutation matrices. Define
δ ∶ V→ V by δ(A) = diag(λ1(A), λ2(A), . . . , λn(A)), the n × n diagonal matrix
with λ1(A), λ2(A), . . . , λn(A) on its diagonal. Observe that ran δ ⊂W since the
eigenvalues of a Hermitian matrix are real. We maintain this notation below.
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Lemma 3.3 (V, G, δ) and (W, GW , δ∣W) are NDSs.

Proof We claim that (V, G, δ) is an NDS. (a) Eigenvalues are similarity invariant,
so δ is G-invariant. (b) For A ∈ V, the spectral theorem gives a U ∈ Un such that
A = Uδ(A)U∗ = ϕU(δ(A)). (c) For A, B ∈ V, note that tr AB ≤ tr δ(A)δ(B) [16, The-
orem 2.2] (see [1, Remark 10] for further references).

We claim that (W, GW , δ∣W) is an NDS. (a) δ∣W is GW-invariant since δ(ϕP(A)) =
δ(PAP∗) = δ(A) for all A ∈W and P ∈ Pn . (b) If A ∈W, then there is a P ∈ Pn such
that A = Pδ(A)P∗ = ϕP(δ(A)). (c) The diagonal elements of a diagonal matrix are its
eigenvalues. Thus, this property is inherited from V. ∎

The function N ∶ V→ R is G-invariant since it is a symmetric function of
λ1(A), λ2(A), . . . , λn(A) (see Remark 3.4). If A, B ∈W, define random variables X =⟨X , λ(A)⟩ and Y = ⟨X , λ(B)⟩. Since A and B are diagonal, λ(A+ B) = λ(A) + λ(B)
and hence Minkowski’s inequality for Ld(Ω, F, P) yields

(E∣⟨X , λ(A+ B)⟩∣d)1/d = (E∣X + Y ∣d)1/d ≤ (E∣X∣d)1/d + (E∣Y ∣d)1/d .

Thus, N(A+ B) ≤N(A) +N(B) for all A, B ∈W, and hence N is convex on W.
Lemma 3.2 implies that N is convex on V. Therefore, 1

2 N(A+ B) =N( 1
2 A+ 1

2 B) ≤
1
2 N(A) + 1

2 N(B) for all A, B ∈ V, so (3.2) defines a norm on V = Hn .

Remark 3.4 Independence is not used in the proof of (a). Our proof only requires
that the function ∣∣∣A∣∣∣X ,d be invariant with respect to unitary conjugation. If the X i are
assumed to be iid, but not necessarily independent, then ∣∣∣A∣∣∣X ,d is a homogeneous
symmetric function of the eigenvalues of A. Any such function is invariant with
respect to unitary conjugation.

3.2 Proof of Theorem 1.1.b

Let d ≥ 2 be even, and let X = (X1 , X2 , . . . , Xn) be a random vector, in which
X1 , X2 , . . . , Xn are iid random variables which admit a moment generating function
M(t). Let A ∈ Hn have eigenvalues λ1 ≥ λ2 ≥ ⋯ ≥ λn . If Λ = ⟨X , λ⟩ = λ1 X1 + λ2 X2 +⋯ + λn Xn , then independence ensures that MΛ(t) =∏n

i=1 M(λ i t). Thus, ∣∣∣A∣∣∣dX ,d =
E[Λd]/d! = [td]MΛ(t).

3.3 Proof of Theorem 1.1.c

Maintain the same notation as in the proof of (b). However, we only assume exis-
tence of the first d moments of the X i . In this case, MΛ(t) is a formal series with
κ1 ,κ2 , . . . ,κd determined and the remaining cumulants treated as formal variables.
Then

MΛ(t) = n∏
i=1

M(λ i t) (1.2)= exp( n∑
i=1

K(λ i t)) (1.2)= exp( ∞∑
j=1

κ j(λ j
1 + λ j

2 +⋯ + λ j
n) t j

j!
)

= exp( ∞∑
j=1

κ j tr(A j) t j

j!
) (1.3)= ∞∑

ℓ=0
Bℓ(κ1 tr A,κ2 tr A2 , . . . ,κℓ tr Aℓ) tℓ

ℓ!
.
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Expanding the right side of (1.3) yields

Bℓ(x1 , x2 , . . . , xℓ) = ℓ! ∑
j1 , j2 , . . . , jℓ≥0

j1+2 j2+⋯+ℓ jℓ=ℓ

ℓ∏
r=1

x jr
r(r!) jr jr !

= ℓ!∑
π⊢ℓ

xπ
yπ

,(3.3)

in which xπ = x i1 x i2⋯x i j for a each partition π = (i1 , i2 , . . . , i j) of ℓ. Substitute
x i = κi tr(Ai) above and obtain

d!∣∣∣A∣∣∣dX ,d = [td]MΛ(t) = Bd(κ1 tr A,κ2 tr A2 , . . . ,κd tr Ad).
Finally, (3.3) and the above ensure that ∣∣∣A∣∣∣dX ,d = ∑π⊢d

κπ pπ
yπ

for A ∈ Hn .

3.4 Proof of Theorem 1.1.d

Recall that a convex function f ∶ Rn → R is Schur convex if and only if it is symmetric
[18, p. 258]. Suppose that x , y ∈ Rn . Let X = (X1 , X2 , . . . , Xn) be a random vector, in
which X1 , X2 , . . . , Xn ∈ Ld(Ω, F, P) are iid. Define random variables X = ⟨X , x⟩ and
Y = ⟨X , y⟩.

Define N ∶ Rn → R≥0 by N(x) = ( E∣⟨X ,x⟩∣d
!(d+1) )1/d

. This function satisfies

N(x + y) = (E∣⟨X , x + y⟩∣d
!(d + 1) )1/d = (E∣X + Y ∣d

!(d + 1) )
1/d ≤N(x) +N(y)

as seen in the proof of Theorem 1.1.a. Homogeneity implies that N is convex on Rn .
Finally, N is symmetric since X1 , X2 , . . . , Xn are iid. It follows that N is Schur convex.
Thus, λ(A)↦N(λ1 , λ2 , . . . , λn) = ∣∣∣A∣∣∣X ,d is Schur convex.

Remark 3.5 Note that independence is not required in the previous argument.

3.5 Proof of Theorem 1.1.e

The initial details parallel those of [1, Theorem 3]. Let V be a C-vector space with
conjugate-linear involution ∗ and suppose that the real-linear subspace VR = {v ∈ V ∶
v = v∗} of ∗-fixed points has the norm ∥ ⋅ ∥. Then e i tv + e−i tv∗ ∈ VR for each v ∈ V
and t ∈ R, and t ↦ ∥e i tv + e−i tv∗∥ is continuous for each v ∈ V. The following is [1,
Proposition 15].

Lemma 3.6 For even d ≥ 2, the following is a norm on V that extends ∥ ⋅ ∥:
Nd(v) = ( 1

2π( d
d/2) ∫

2π

0
∥e i tv + e−i tv∗∥d dt)1/d

.(3.4)

Let ⟨x , x∗⟩ be the free monoid generated by x and x∗. Let ∣w∣ denote the length
of a word w ∈ ⟨x , x∗⟩, and let ∣w∣x count the occurrences of x in w. For Z ∈Mn , let
w(Z) ∈Mn be the natural evaluation of w at Z. For example, if w = xx∗x2 , then ∣w∣ =
4, ∣w∣x = 3, and w(Z) = ZZ∗Z2. The next lemma is [1, Lemma 16].
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Lemma 3.7 Let d ≥ 2 be even and π = (π1 , π2 , . . . , πr) be a partition of d. For
Z ∈Mn ,

1
2π ∫

2π

0
tr(e i t Z + e−i t Z∗)π1⋯ tr(e i t Z + e−i t Z∗)πr dt

= ∑
w1 , . . . ,wr∈⟨x ,x∗⟩∶∣w j ∣=π j ∀ j
∣w1⋯wr ∣x= d

2

tr w1(Z)⋯ tr wr(Z).(3.5)

Given a partition π = (π1 , π2 , . . . , πr) of d and Z ∈Mn , let

Tπ(Z) = 1
( d

d/2) ∑
w1 , . . . ,wr∈⟨x ,x∗⟩∶∣w j ∣=π j ∀ j
∣w1⋯wr ∣x= d

2

tr w1(Z)⋯ tr wr(Z),(3.6)

that is, Tπ(Z) is 1/( d
d/2) times the sum over the ( d

d/2) possible locations to place d/2
adjoints ∗ among the d copies of Z in (tr ZZ⋯Z?@@@@@@@A@@@@@@B

π1

)(tr ZZ⋯Z?@@@@@@@A@@@@@@B
π2

)⋯(tr ZZ⋯Z?@@@@@@@A@@@@@@B
πr

).
Consider the conjugate transpose ∗ on V =Mn . The corresponding real subspace

of∗-fixed points is VR = Hn . Apply Proposition 3.6 to the norm ∣∣∣ ⋅ ∣∣∣d on Hn and obtain
the extension Nd(⋅) to Mn defined by (3.4).

If Z ∈Mn and Nd(A) = ∥A∥d is the norm for A ∈ Hn , then Proposition 3.6 ensures
that the following is a norm on Mn :

Nd(Z) (3.4)= ( 1
2π( d

d/2) ∫
2π

0
∣∣∣e i t Z + e−i t Z∣∣∣dX ,d dt)1/d

(1.10)= ( 1
2π( d

d/2) ∫
2π

0
∑

π ⊢ d

κπ pπ(λ(e i t Z + e−i t Z∗))
yπ

dt)1/d

(1.6)= ( 1
( d

d/2) ∑π ⊢ d

κπ
yπ
⋅ 1

2π ∫
2π

0
tr(e i t Z + e−i t Z∗)π1⋯ tr(e i t Z + e−i t Z∗)πr dt)1/d

(3.5)= ( 1
( d

d/2) ∑π ⊢ d

κπ
yπ

∑
w1 , . . . ,wr∈⟨x ,x∗⟩∶∣w j ∣=π j ∀ j
∣w1⋯wr ∣x= d

2

tr w1(Z)⋯ tr wr(Z))1/d

(3.6)= ( ∑
π ⊢ d

κπTπ(Z)
yπ

)1/d
.

4 Open questions

If ∥ ⋅ ∥ is a norm on Mn , then there is a scalar multiple of it (which may depend
upon n) that is submultiplicative. One wonders which of the norms ∣∣∣ ⋅ ∣∣∣X ,d are
submultiplicative, or perhaps are when multiplied by a constant independent of n.
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For example, (2.1) ensures that for d = 2, a mean-zero distribution leads to a multiple
of the Frobenius norm. If µ2 = 2, then the norm is submultiplicative.

Problem 1 Characterize those X that give rise to submultiplicative norms.

For the standard exponential distribution, [1, Theorem 31] provides an answer to
the next question. An answer to the question in the general setting eludes us.

Problem 2 Characterize the norms ∣∣∣ ⋅ ∣∣∣X ,d that arise from an inner product.

Several other unsolved questions come to mind.

Problem 3 Identify the extreme points with respect to random vector norms.

Problem 4 Characterize norms on Mn or Hn that arise from random vectors.

Acknowledgment We thank Bruce Sagan for remarks about symmetric functions.
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