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Norms on complex matrices induced
by random vectors

Angel Chavez, Stephan Ramon Garcia, and Jackson Hurley

Abstract. We introduce a family of norms on the # x n complex matrices. These norms arise from a
probabilistic framework, and their construction and validation involve probability theory, partition
combinatorics, and trace polynomials in noncommuting variables. As a consequence, we obtain a
generalization of Hunter’s positivity theorem for the complete homogeneous symmetric polynomials.

1 Introduction

This paper introduces norms on the space M, of n x n complex matrices that are
induced by random vectors in R". Specifically, we construct a family of norms for
each random vector X whose entries are independent and identically distributed
(iid) random variables with sufficiently many moments. Initially, these norms are
defined on complex Hermitian matrices as symmetric functions of their (necessarily
real) eigenvalues. This contrasts with Schatten and Ky-Fan norms, which are defined
in terms of singular values. To be more specific, our norms do not arise from the
machinery of symmetric gauge functions [13, Section 7.4.7]. The random vector norms
we construct are actually generalizations of the complete homogeneous symmetric
(CHS) polynomial norms introduced in [1].

1.1 Preliminaries

Our main result (Theorem 1.1 on page 4) connects a wide range of topics, such as
cumulants, Bell polynomials, partitions, and Schur convexity. We briefly cover the
preliminary concepts and notation necessary to state our main results.

1.1.1 Numbers and matrices

In what follows, N = {1,2,...}; the symbols R and C denote the real and complex
number systems, respectively. Let M,, denote the set of n x n complex matrices and
H, c M, the subset of n x n Hermitian complex matrices. We reserve the letter A for
Hermitian matrices (so A = A*) and Z for arbitrary square complex matrices. The
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Norms on complex matrices induced by random vectors 809

eigenvalues of each A € H,, are real and denoted 1;(A) > 1,(A) >+ > 1,(A). We
may write A = (A1, A,,...,1,) if A is understood.

1.1.2 Probability theory

A probability space is a measure space (Q,F,P), in which JF is a ¢-algebra on Q,
P is nonnegative, and P(Q) =1. A random variable is a measurable function X :
Q — R. We assume that O € R and X is nondegenerate, that is, nonconstant. The
expectation of X is E[X] = [, X dP, often written as EX. For p > 1, let L?(Q, F,P)
denote the vector space of random variables such that | X|;» = (E|X|?)"/? < oo. The
pushforward measure X, P of X is the probability distribution of X. The cumulative
distribution of X is Fx(x) = P(X < x), which is the pushforward measure of (-0, x].
If X, P is absolutely continuous with respect to Lebesgue measure m, the Radon-
Nikodym derivative fy = d X, P/dm is the probability density function (PDF) of X [5,
Chapter 1].

1.1.3 Random vectors

A random vector is a tuple X = (X1, X,,...,X,), in which X;,X5,...,X, are
real-valued random variables on a common probability space (Q,F,P); we
assume Q) € R. A random vector X is positive definite if its second-moment matrix
2(X) = [EX;X;]7 ;_, exists and is positive definite. This occurs if the X; are iid and
belong to L*(Q, F, P) (see Lemma 3.1).

1.1.4 Moments

For k € N, the kth moment of X is yj = E[X*], if it exists. If X has PDF f, then
pr = [0 x*fx(x) dm(x). The mean of X is y; and the variance of X is y, — pi;
Jensen’s inequality ensures that the variance is positive since X is nondegenerate. The
moment generating function (if it exists) of X is

0o k 0o k
(LD MU%EMﬂ:ZEMH%:ZW%,
k=0 * k=0 :

If Xi,Xs,...,X, are independent, then E[X]'Xy---Xi] =TI}, E[X}}], for all
i1, 12, ..., i, € N whenever both sides exist.

1.1.5 Cumulants

If X admits a moment generating function M(t), then the rth cumulant £, of X is
defined by the cumulant generating function

(12) Mﬂﬂ%Mm:;m%

The first two cumulants are x; = y; and x5, = g, — yi. If X does not admit a moment
generating function but X € L4 (Q,F,P) for some d € N, we can define k1, k3, . . ., kg

by the recursion y, = 3= (') perir—s for 1 < r < d (see [5, Section 9]).
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1.1.6 Power-series coefficients

The coefficient ¢; of t* in f(t) = 222, c,t" is denoted [t¥]f(¢), as is standard in
combinatorics and the study of generating functions.

1.1.7 Complete Bell polynomials

The complete Bell polynomials of degree { [4, Section II] are the polynomials
By(x1, %2, ...,x¢) defined by

(1.3) ZBg(xl,xz,...,xg)gl:exp(ij,').
£=0 : =

For example, By = 1, By(x1, x2) = x + x,, and

(1.4) By(X1, X2, X3, X4) = X} + 6x1 25 + 41 X3 + 3X5 + X4.

1.1.8 Symmetric and positive functions

continuous real-valued function on M,, or H,, is positive definite if it is everywhere
positive, except perhaps at 0.

1.1.9 Partitions

A partitionof d € Nisatuple w = (my, 72, ..., 7,) € N'suchthatm > 7 > -+ > m, and
7 + 713 + -+ + 7, = d [20, Section 1.7]. We denote this 7 + d and write |7| = r for the
number of parts in the partition. Define

(1.5) Kg = Km Ky Ky, and  y, = H(i!)m"m,-!,

i>1
in which m; = m; () is the multiplicity of i in m. For example, m = (4,4,2,1,1,1)
yields ki, = K2K,k7 and y, = (11°31)(2!"11)(4!22!) = 13,824. Note that y, is not the
quantity z, = [;5; " m;! from symmetric function theory [21, Proposition 7.7.6].
1.1.10 Power sums

For 7w+ d,let p(x1,X2, ..., Xn) = P, Py P, Where pr(x1, X2, ..., X ) = x5 + x5 +
-+ x¥ is a power-sum symmetric polynomial; we often simply write pi. If A € H,, has
eigenvalues A = (A1, 1,...,14,), we write

18 pa(d) = P (A)pas(V)opm, (A) = (trA™)(tr A™)-oo(tr A™).
1.1.11 Complete homogeneous symmetric polynomials

The CHS polynomial of degree d in x1, x5, ... x, is

1.7) ha(x1, %2, ...,%,) = Z XiyXiy Xy

1<i1<<ig<n
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the sum of all monomials of degree d in xy, x5, . . . , x,, (see [21, Section 7.5]). For exam-
ple, ho(x1,%2) =1, ha(x1,%2) = X2 + x100 + %%, and hy(x1,%2) = X} + x0 x5 + x2x2 +
x1%3 + x3. Hunter proved that the even-degree CHS polynomials are positive definite
[14]. This has been rediscovered many times [1, Theorem 1], [2, Lemma 3.1], [3], [6,

Theorem 2], [9, Corollary 17], [19, Theorem 2.3], [22, Theorem 1].

1.1.12 Schur convexity

Letx = (X1,X,, ..., X, ) be the nondecreasing rearrangement of x = (x,x5,...,%,) €
R”. Then y majorizes x, denoted x < y, if ¥", %, = ¥, ; and 5 X < 5 7, for
1<k <n. A function f:R" - R is Schur convex if f(x) < f(y) whenever x < y.
This occursifand only if (x; — xj)(a%i - %)f(xl,xz,. .>Xp) 2 0foralll<i<j<n,
with equality if and only if x; = x; [18, p. 259].

1.2 Statement of main results

With the preliminary concepts and notation covered, we can state our main theorem.
In what follows, " is the gamma function and (,-) is the Euclidean inner product
on R".

Theorem 1.1 Let d>2 and X=(X1,Xs,...,X,), in which X1,X,,...,X, €
L%(Q, F, P) are nondegenerate iid random variables.
BJ(x, )4\
(@ JAlx.q4= (M) is a norm on H,,.
(b) Ifthe X; admit a moment generating function M(t) and d > 2 is even, then

(1.8) [Al%.q = [1"1MA(t) forall AcH,,

inwhich M (t) = [17.; M(A;t) is the moment generating function for the random
variable A = (X,A(A)) = 1 Xq + 1, X5 + -+ A, X, In particular, |Alx,q is a
positive definite, homogeneous, symmetric polynomial in the eigenvalues of A.

(c) Ifthe first d moments of X; exist, then

1
(19) |||A|||§)d = EBd(/ﬁl trA, kytr A%, ..., kg tr AY)
p)
(110) -3 Knpr(1) for AcH,,
w-d Y

in which By is given by (1.3), and in which k, and y, are defined in (1.5), p.(1)
is defined in (1.6), and the second sum runs over all partitions m of d.

(d) The function A(A) = |Al|x,4 is Schur convex.

(e) Letm = (m,mny,...,n,) beapartition of d. Define T, : M,, - R by setting T(Z)
to be 1/(;}2) times the sum over the (dth) possible locations to place d[2 adjoints

https://doi.org/10.4153/50008439522000741 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439522000741

812 A. Chavez, S. R. Garcia, and J. Hurley

* among the d copies of Zin (tt ZZ---Z)(tt ZZ---Z)---(tr ZZ---Z). Then
N—— ~—— ~——

o 2 Ty

1/d
K Ta(Z) ) for Z eM,,

) Zlxa - ( 5

a-d L

in which K, and y, are defined in (1.5) and the sum runs over all partitions 7 of
d, is a norm on M, that restricts to the norm on H, above. In particular, \||Z|||§l()d
is a positive definite trace polynomial in Z and Z*.

The independence of the X; is not needed in (a) and (d) (see Remarks 3.4 and 3.5,
respectively). A more precise definition of T,(Z) is in Section 3.5, although the
examples in the next section better illustrate how to compute (1.11).

The positive definiteness of (1.8), (1.9), and (1.11) is guaranteed by Theorem 1.1;
the triangle inequality is difficult to verify directly. Positivity is not obvious since
we consider the eigenvalues of A € H, and not their absolute values in (a) and (b).
Thus, these norms on H, do not arise from singular values or symmetric gauge
functions [13, Section 7.4.7]. Norms like ours can distinguish singularly cospectral
graphs, unlike the operator, Frobenius, Schatten-von Neumann, and Ky Fan norms
(see [1, Example 2]).

1.3 Organization

This paper is organized as follows: We first cover examples and applications in
Section 2, including a generalization of Hunter’s positivity theorem. The proof of
Theorem 1.1, which is lengthy and involves a variety of ingredients, is contained in
Section 3. We end this paper in Section 4 with a list of open questions that demand
further exploration.

2 Examples and applications

We begin with computations for small d (Section 2.1). Gamma random variables
(Section 2.2) lead to a generalization of Hunter’s positivity theorem (Section 2.3). We
examine norms arising from familiar distributions in Sections 2.4-2.10.

2.1 Generic computations

Let X = (X}, X3, ..., X, ), where the X; are nondegenerate iid random variables such
that the stated cumulants and moments exist. For d =2 and 4, we obtain trace-
polynomial representations of | Z||; in terms of cumulants or moments. This can also
be done for d = 6,8, ..., but we refrain from the exercise.

Example 2.1 'The two partitions of d =2 satisfy k() = ks = s — 4f, K =
2
1

*

): 2 ways to place two adjoints
(tr(Z2*Z) +tr(ZZ2*)) =tr(Z*Z) and

Kt =y, and V@) = Yaq) = 2. There are (

in a string of two Zs. Thus, T(2)(Z) =3
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Tan(2) = L((tr Z2°) (tr 2) + (tr Z) (tr 2*)) = (tr Z*)(tr Z), 50

T. (A 42 2
(2.1) 12152 = . finTa(A) _ itz 2”1 tr(Z*Z)+%(trZ*)(trZ).
w+d T

If y; = 0 (mean zero), then || - |, is a nonzero multiple of the Frobenius norm since
the variance p, — u? is positive by nondegeneracy. As predicted by Theorem 1.1, the
norm (2.1) on M,, reduces to (1.9) on H,, since B, (x;, x,) = x7 + x; and

1
|||A|||§(z = 532(51 trA, Ky tr A2)

1 _ 2 2
- E[(“l tr A)? + iy tr(A2)] = % tr(A%) + izl(trA)z,
which agrees with (2.1) if Z = A = A*.

Example 2.2  The five partitions of d = 4 satisfy

R(a) = R4, K(3,1) = K1K3,  K(2,2) = ﬁ%, K(2,1,1) = 52“%, R,L1,1) = Hil’
Y@4) = 24, Y@Ga) = 6, Y@2,2) = 8, Y11 = 4, Y1) = 24.

There are (;) = 6 ways to place two adjoints * in a string of four Zs. For example,
6Ty (2)=(wZ"Z*Z)(tw Z) + (0w Z* 227 ) (tr Z) + (r Z* ZZ) (tr Z7)
+ (2272t Z2) + (& ZZ7Z) (i Z27) + (W ZZZ7 ) (tr Z7)
=3tr(Z222)(tr Z) + 3(tr Z2* 27 ) (tr Z7).
Summing over all five partitions yields the following norm on M,,:
1Z1% 4 = 5 (3k1 (tr Z*)?(tr Z)? + 3kak7 (tr Z*)? tr(Z2) + 3kaks tr(Z7*2) (tr Z)?
+ 126267 (tr Z°) (tr Z¥ Z) (tr Z) + 6r351 tr(Z72Z) (tr Z)
+ 63k tr(Z¥) (25 2%) + 6K3(tr Z* 2)* + 3k tr(Z%) tr(Z27?)
(2.2) + 2k tr(Z22*%) + k4 t1(227227)).
If Z = A e H,, Theorem 1.1.c and (1.4) ensure that the above reduces to
= (ki (tr A)* +6r7ky tr(A?) (tr A)® + 4k k3 tr(A%) tr(A) + 353 tr(A%)” + k4 tr(AY)).

2.2 Gamma random variables

Let X = (X1, X3, ..., X,), in which the X; are independent with probability density
1 a-1,—t/B ;
———t , ift>0,
(23) f(t)=]FT@" € !
0, ift<o0.

Here, a, 8 > 0 (note that « = k/2 and f8 = 2 yield a chi-squared random variable with
k degrees of freedom, and « = § =1 is the standard exponential distribution). Then
M(t) = (1-Bt)"* and K(t) = —alog(1- ft), so

(2.4) kr=af (r-1)! forreN.
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Forevend > 2,

1
Bretpa(Bt)

in which p4(t) = det(¢I — A) denotes the characteristic polynomial of A.

(2.5) |||A|||§l(,d H - ﬂA e = d]( ) for AeH,,

i=1

Example 2.3 Since x1 = aff and k; = af?, (2.1) becomes | Z[% , = apf> tr(Z*Z) +
1a?B2(tr Z*) (tr Z) for Z € M,,. Similarly, (2.2) yields generalizations of [1, equations
(8) and (9)] (which correspond to & = § = 1):

12184 = & (0B (0 2) (0 2°)? + @B (1 2 (22)
+40’ B (tr Z2) (e Z2¥) (tr 2* Z) + 202 B (tr 2¥ Z)?
+ o’ (tr 2)2 tr(Z2*%) + a* B tr(2%) tr(Z272)
+ 40 BHr(Z*) (22 Z%) + 4a* B tr(2) tr( 272 Z)
+2ap*tr(Z2* 22 Z) + 4aft tr(Z272Z%)).

2.3 A generalization of Hunter’s positivity theorem

Examining the gamma distribution (Section 2.2) recovers Hunters theorem [14]
(Corollary 2.6) and establishes a powerful generalization (Theorem 2.5).

Example 2.4 Leta =5 =1in(2.3) and (2.5). Then

n
1
o b= T - for A € H,,

i=1 t"PA(t_l)

which is [I, Theorem 20]. Expand each factor (1-1;t)™" as a geometric series,
multiply out the result, and deduce that for d > 2 even,

n

i=11_

2.7) JAI%,q =[]

OIS (Mo Aas e At
r=0
From (2.4), we have k; = (i — 1)!. Therefore,

Kn _ [Tiss [(i_l)!]rni a 1
Vn [Tisi (i) ™im;! [1is i™im;!

for any partition 7. Theorem 1.1 and (1.5) imply that for even d > 2 and A € H,,,

(2.8) ha(A, gy Ay) = |||A|||;i(,d = fnlr >, &>

wd T ard 2w

in which z, = [;5, i"m;! and p, is given by (1.6). This recovers the combinatorial
representation of even-degree CHS polynomials [21, Proposition 7.7.6] and establishes
Hunter’s positivity theorem since | - |4 , is positive definite.

The next theorem generalizes Hunter’s theorem [14], which is the case & = 1.
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Theorem 2.5 Forevend>2and a €N,

Hyo(x1,%2,...,%,) = Z Caha(x1, %2, ..., %Xp)
wd
|7|<a

is positive definite on R", in which the sum runs over all partitions w = (7, 72, . .., 71;)
of d. Here, hy = hy hy,---hy, is a product of CHS polynomials and

ol
(= |7)! TTiy mit

where || denotes the number of parts in m and m; is the multiplicity of i in m.

Cp =

Proof Let a € Nand define polynomials Pé“)(xl,xz, ...,x¢) by

(2.9) Péa) =xo=1 and (1+ Zxrt') = ZPg“)(xl,xz,...,xg)té.
r=1 £=0

Then
(a)
(2.10) Py (%1, X250 05 %0) = Z XiyXiy X, = Z CaXn.
i1,i2,..,iq<E L
iy +igtetig=L |7|<a

Let X be a random vector whose n components are iid and distributed according to

(2.3) with § =1. Let A € H,, have eigenvalues x;, X3, ..., x,. Foreven d > 2,
k o o o
. 1 .
lapd , & [td]( [1— t) = [td](1 + 3 b (31, %2, ,xn)t')
i=1 + T A r=1

Y Y P (o )
£=0

(2.10) [td] i( Z Cnhn(xlyxz’-")xﬂ))tg'

£=0 \ m-¢
|7|<a
Consequently, Y g crhg(x1,%2,...,%,) = |||A|||§( 4» which is positive definite. ]

|7|<a

Corollary 2.6 (Hunter [14]) For even d > 2, the complete symmetric homogeneous
polynomial hy(x1, x2,...,x,) is positive definite.

Example 2.7 If a = 2, then we obtain the positive definite symmetric polynomial
Hgo(x1,%2, ..., %,) = Z?:o hi(x1, X255 X0 ) ha_i(x1, %2, 00, X))

Example 2.8 'The relation Y0° Hyot! = (X520 het®) (X520 Heo-1t*) implies that
the sequence {H, 4 } o>1 satisfies the recursion

d
(2.11) Hyo=Y hiHa ia1.
i=0
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For example, let j = 4 and « = 3. There are four partitions 7 of j with |7| < 3. These are
(1L,1,2),(1,3), (2,2), and (4). Therefore,
H4)3(X1,X2,X3,X4) = C(l, 1,2)h2h2 + C(l 3)h1h3 + C(2 2)h2 + C(4)h4
3, 3!
T TR LR ﬁh‘*

= 3hihy + 6hyhs + 3h5 + 3hy

is a positive definite symmetric polynomial. In light of (2.11), we can also write
Hy (%1, %2, X3,%4) = Yoo hiHai0 = Hap + hiHs o + hoHa g + hsHyp + hy.

2.4 Normal random variables

Let X = (X}, X2,..., X, ), in which the X are independent normal random Variables

with mean y and variance o2 > 0 Then M(t) = exp(tu + S- ) and K(t) = &~ + ut;
in particular, 5; = g and k, = 0% and all higher cumulants are zero. Then

02/\2 £ o? tr(A2) )

Mx (t) = Hexp(A tu+ ):exp(t‘utrAJr

Theorem 1.1 and the above tell us that

d

2 2k trA)Zk d ZkHAHd -2k

2.12 A
(2.12) I |||Xd k; (2k)! ZTk(%— k)!

in which |A|f is the Frobenius norm of A. For d > 2 even, Theorem 1.1 yields

for Ae H,,

1ZI% 2 = 30° 0(Z°Z) + 3 (0 27) (0 Z),

1Z1x,0 = 25 (' (0 2)*(r 2°)? + p?0* tr(Z)* tr(2?)
+ 4t (tr Z2) (e Z*) (tr Z2¥ Z) + 20* (tr 2* Z)?
+uo (tr 2)*te(Z2*?) + ot tr(Z2) tr(Z2*2)).

Since k,=0 for r>3, we see that |Z]} , does not contain summands like
tr(Z*) tr(Z*Z*) and tr(Z**Z?), in contrast to the formula in Example 2.3.

2.5 Uniform random variables

Let X = (X, X3, ..., X,), where the X; are independent and uniformly distributed
on [a, b]. Each X; has probability density f(x) = (b — a) 1,1}, where L, 4] is the
indicator function of [a, b]. Then

0 hi(a, b
(2.13) p =E[X[] = [oo x*f(x)dx = %

in which hy(a,b) is the CHS polynomial of degree k in the variables a,b. The
moment and cumulant generating functions of each X; are M(¢) = f(h";) and K(t) =

(et(b D 1) + at. The cumulants are
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ash, ifr=1,
Ky = %(b —a)", ifriseven,

0, otherwise,

in which B, is the rth Bernoulli number [10]. Theorem 1.1 ensures that

alit

2.14 Al¢ ettt - for AcH,.
Q1) a1 Ty forae

Example 2.9 1f[a,b] = [-1,1], then
120% .4 = o055 (10(tr 2* 2)* + 50(Z*) r(Z2*2) - 4(tr 2°Z*2) - 20(22° 2Z"))

for Z € M,,, which is not obviously positive, let alone a norm. Indeed, tr ZZ*? and
tr(ZZ*ZZ*) appear with negative scalars in front of them! Similarly,

1Al% 6 = 5360 e (35(tr A%)? — 42tr(A*) tr(A?) + 16 tr(A®))  for A € Hg

has a nonpositive summand. Since My »(t) = [T7; 224! 5 an even function of
p X,A i=1 Ait
each A;, the corresponding norms are polynomials in even powers of the eigenvalues

(so positive definiteness is no surprise, although the triangle inequality is nontrivial).

Example 2.10 1f[a,b] =[0,1], then Mx ,(t) = [1\,; ea"f;l, and hence for A € H,,,

1Al%. = %(zlz +30A, +212),
JALL 4 = 555 (6AF +15030; + 201222 + 150,43 + 613).

Unlike the previous example, these symmetric polynomials are not obviously positive
definite since A; 1, and 1,13 need not be nonnegative.
2.6 Laplace random variables

Let X = (X1, X3, ..., X, ), where the X; are independent random variables distributed
lx—u]

according to the probability density f(x) = ﬁe_T, in which g eR and > 0.
The moment and cumulant generating functions of the X; are M(¢t) = 1_‘;%2 and

K(t) = ut —log(1 - B*t*), respectively. The cumulants are

78 ifr=1,
kr=12B"(r-1)!, ifriseven,
0, otherwise.

For even d > 2, it follows that |||A|||§ 4 is the dth term in the Taylor expansion of
n n

d tAt
i) Al = T g = U g zw

i=1 i=1
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Example 2.11 Let y = 8 = 1. Expanding the terms in (2.15) gives

oo tk oo
Mxa(t) = thfH Aztz:(];)(trA)kE)(I;)hk(Af,/\ﬁ,...,Ai)tZk),

which implies |\|A|||f(,d = Z/f) (t(rzlz;, ha (AR5, A2,

2.7 Bernoulli random variables

Let X = (X, X3,...,X,), in which the X; are independent Bernoulli random vari-
ables. Each X; takes values in {0,1} with P(X; =1) =g and P(X; =0) =1- g for
some fixed 0 < g < 1. Each X; satisfies E[X¥] = Y jefo.1} J*P(X; = j) = qfor k e N. We
have M(t) =1-q+ qe' and K(t) = log(1— g + ge"). The first few cumulants are

q q—qz, 2q3—3q2+q, —6q4+12q3—7q2 +q....
For even d > 2, the multinomial theorem and independence imply that

1

Loy gy,

iy+iz+etip=d

d
1Al =
in which |I| denotes the cardinality of I = {i}, i3, ..., i, }. We can write this as

|!
Al = 3 PEgrim, 1),

n-d

in which m, denotes the monomial symmetric polynomial corresponding to the
partition 7 of d [21, Section 7.3]. To be more specific,

ma(x) =) x%

in which the sum is taken over all distinct permutations &« = (ay, as,...,a,) of
the entries (2)f m = (i1, iz,...,1,) and x% = x{"x3>---x}". For example, m(yy = ¥, x;,
my =2, xi,and mq gy = Yicj XiXj.

2.8 Finite discrete random variables

Let X be supported on {ay, az,...,a¢} c R, withP(X = a;) =g;>0for1< j</¢and
Q1+ g2+ +qe = 1. Then E[X¥] = X'_, a¥q;, and hence

¢
t
16 M(1) - leq,( Sl k|) - 2qe
Let X = (X1, X3, ..., X,,), in which Xj, X5, ..., X, ~ X are iid random variables.
Example 2.12 Let{=2and g, = —a, =1withq; = ¢, = % The X; are Rademacher

random variables. Identity (2.16) yields M(t) = cosh t, so Mx 5 (t) = [}, cosh(A;1).
For n = 2, we have ||\A|||§(2 = %()Lf +M3) 1Alx 4 = i(/\j‘ +6A2A% +13), and

JAI 6 = 525 (A + 1503 +1505A7 + A3).
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Let y, = V2(v/)"/PT(£+)/? denote the pth moment of a standard normal
random variable. Let X;, X5, ..., X, be independent Rademacher random variables
(see Example 2.12). The classic Khintchine inequality asserts that

2 ) 1/2

2,1/2 n n
) <(E ;Aixi < aP(E‘Z;AiXi

forall A;,Az,...,4, € Rand p > 2, with a; = 1and a, = y, for p > 2. Moreover, these
constants are optimal [11]. Immediately, we obtain the equivalence of norms

p)l/p

(2.17) (E‘ i 1 X
i=1

(2.18) |Ale < T(p+ D" |ALx, < ap|Ale,

for all A €H,(C) and p > 2. The proof of Theorem l.e implies that | Z|r < T'(p +
| Z||x,p < ap|Z|g forall Z e M, and p > 2.

In general, suppose that X;, X5, ..., X, are iid random variables. A comparison
of the form (2.17) is a Khintchine-type inequality. Establishing a Khintchine-type
inequality here is equivalent to establishing an equivalence of norms as in (2.18).
This is always possible since H,(C) is finite dimensional. However, establishing
Khintchine-type inequalities is, in general, a nontrivial task (see [7, 8, 12, 15]).

2.9 Poisson random variables

Let X = (X1, X5,...,X,), in which the X; are independent random variables on
{0,1,2,...} distributed according to f(t) = %I"", in which « > 0. The moment and
cumulant generating functions of the X; are M(t) = e and K(t) = a(e’ - 1),
respectively. Therefore, x; = « for all i € N and hence

L
«p
A%, = 35—

n-d T

For example, if A € H,, we have

AAlxq = a*(tr A)* + 60’ (trA)* tr A® + 4o’ tr Atr A’ + 30 (tr A)? + atr A*.
2.10 Pareto random variables

Let X = (X3, X,,...,X,), in which the X; are independent random variables dis-
tributed according to the probability density

& x>1,

f() {

0, x <1

The moments that exist are u; = -%; for k < a. For even d >2 with d < a, the
multinomial theorem and independence yield

dJAl% 4 = BI{X,2)"] = E[(Li X1 + X + -+ + 1, X, )]

d

ki+ky+etky=d (kl’ ka,...
ki,k2,...s kn>0

=E

>kn) ﬁ(lixi)ki
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d L kel vk
— 1 1
T (k k k)HA" B
kit+ka+--+kp=d L A2 R/ jo
kika.... k20
n ki
_ D ( d ) ad;’
ki+ko++ky=d kl) k2>--->kn i-1 & — ki
ki,k2,....ky >0

In particular, lim .o d!|A]§., = (tr A)? and

d n o gk

lim (@ - d)dA]E = lim (a-d ( ) i

Jm (-l o= i amd) 3 (T
kiskzs..oskn>0

in which |A| is the Schatten d-norm on H,,.

Example 2.13 Forn =2,
1 Az 20(A1A2 /12
Aly,=-a L + 2 and
I - o 2 Pt K
1 A 4aA3), 6aA3N? 4aM A3 A3
—a + + + + .
24 4 a?-4a+3 (a-2)> a’?-4a+3 a-4

lAl,. =

3 Proof of Theorem 1.1

Let d > 2 be arbitrary, and let X = (X, X3,...,X,) be a random vector in R”, in
which X, X,,..., X, € LY(Q,F,P) are iid random variables. Independence is not
needed for (a) (see Remark 3.4). We let A = (A1, A;,...,1,) denote the vector of
eigenvalues of A € H,,. As before, A denotes a typical Hermitian matrix and Z € M,
an arbitrary square matrix.

The proofs of (a)-(e) of Theorem 1.1 are placed in separate subsections below.
Before we proceed, we require an important lemma.

Lemma 3.1 X is positive definite.
Proof  Holder’s inequality shows that each X; € L2(Q, J, P), so y; and y, are finite.

Jensen’s inequality yields y? < u,; nondegeneracy of the X; ensures the inequality is
strict. Independence implies that E[ X; X;] = E[X; ]E[X|] for i # j, so

Hoopo W
2 2
2(X) = [EX;X;] = (B0 B2 B s (= )T+ ),
Wopo
in which p, — y# > 0 and J is the all-ones matrix. Thus, £(X) is the sum of a positive
definite and a positive semidefinite matrix, so it is positive definite. ]
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3.1 Proof of Theorem 1.1.a

Since X1, X, ..., X, € LY(Q,J,P) for some d > 2, Holder’s inequality implies the
random variable A = (X, A) satisfies

(3.1) (A, Z(X)A) = E[|A]*] < (E|A|*)¥1.

For A € H,, consider the nonnegative function

E|(X, 1)/ )“d

(3.2) N(A) =( @

It is clearly homogeneous: D(aA) = |a|M(A) for all @ € R. Lemma 3.1 ensures that
2(X) is positive definite, so (3.1) implies 91(A) = 0 if and only if A = 0.

We must show that 91 satisfies the triangle inequality. Our approach parallels that
of [1, Theorem 1]. We first show that 9 satisfies the triangle inequality on D, (R),
the space of real diagonal matrices. Then, we use Lewis’ framework for convex matrix
analysis [17] to establish the triangle inequality on H,,.

Let V be a finite-dimensional real vector space with inner product (-,-)v. The
adjoint ¢* of alinear map ¢ : V — V satisfies (¢*(A), B) = (A, ¢(B)) forall A,Be V.
We say that ¢ is orthogonal if ¢* o ¢ is the identity. Let O(V) denote the set of
orthogonal linear maps on V. If G c O('V) isa subgroup, then f : V — R is G-invariant
if f(¢(A))=f(A)forall¢ e GandAe V.

Definition 3.1 (Definition 2.1 of [17]) &8 :V — V is a G-invariant normal form if

(a) ¢ 1is G-invariant.
(b) Foreach A €V, there is an ¢ € O(V) such that A = ¢(5(A)).
() (A,B)y<(6(A),8(B))yforallA,BeV.

Such atriple (V, G, 8) is a normal decomposition system (NDS). Let (V, G, §) be an
NDS and W ¢V a subspace. The stabilizer of Win G is Sw = {¢p € G: ¢(W) = W}.
We restrict the domain of ¢ € Gy and consider Gy as a subset of O('W).

Lemma 3.2 (Theorem 4.3 of [17]) Let (V,G,8) and (W, Gw, 8]w) be NDSs with
rand ¢ W. Then a G-invariant function f : V — R is convex if and only if its restriction
to W is convex.

Let V =H, be the R-vector space of complex Hermitian (A = A*) matrices
equipped with the Frobenius inner product (A, B) — tr AB. Let U, denote the
group of nxn complex unitary matrices. For U e U,, define ¢y:V -V by
¢u(A) = UAU*. Then G = {¢y: UeU,} is a group under composition. We may
regard it is a subgroup of O(V) since ¢7; = py-.

Let W=D,(R) cV denote the set of real diagonal matrices. Then Gy =
{¢p: P €eP,}, in which P, is the group of nx n permutation matrices. Define
0:V -7V by 8(A) =diag(A1(A),A,(A),...,1,(A)), the nxn diagonal matrix
with 11(A),A,(A),...,A,(A) on its diagonal. Observe that rand c W since the
eigenvalues of a Hermitian matrix are real. We maintain this notation below.
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Lemma3.3 (V,9,0) and (W, Sw, 8|w) are NDSs.

Proof We claim that (V, G, §) is an NDS. (a) Eigenvalues are similarity invariant,
so & is G-invariant. (b) For A €V, the spectral theorem gives a U € U, such that
A=UGS(A)U* = ¢y(8(A)). (c) For A, B € V, note that tr AB < tr §(A)§(B) [16, The-
orem 2.2] (see [1, Remark 10] for further references).

We claim that (W, Gy, 8] ) isan NDS. (a) 8| is Gyy-invariant since 8(¢p(A)) =
0(PAP*) = 8(A) forall Ac Wand P e P,,. (b) If A € W, then thereisa P € P, such
that A = P6(A)P* = ¢p(8(A)). (c) The diagonal elements of a diagonal matrix are its
eigenvalues. Thus, this property is inherited from V. ]

The function 91:V — R is G-invariant since it is a symmetric function of
M(A),A2(A), ..., 1, (A) (see Remark 3.4). If A, B € W, define random variables X =
(X,A(A)) and Y = (X,A(B)). Since A and B are diagonal, A(A + B) = A(A) + A(B)
and hence Minkowski’s inequality for L (Q, F, P) yields

(B)(x, Aa+B)))" = (Blx + v < (B]x19)"" + (B Y)9)"".

Thus, 9(A + B) < 91(A) + DN(B) for all A,BeW, and hence 91 is convex on 'W.
Lemma 3.2 implies that 91 is convex on V. Therefore, 391(A + B) = M(3A+ 1B) <
IN(A) + 190(B) forall A, B €V, so0 (3.2) defines a norm on V = H,,.

Remark 3.4 Independence is not used in the proof of (a). Our proof only requires
that the function | A]x,s be invariant with respect to unitary conjugation. If the X; are
assumed to be iid, but not necessarily independent, then |A]x 4 is @ homogeneous
symmetric function of the eigenvalues of A. Any such function is invariant with
respect to unitary conjugation.

3.2 Proof of Theorem 1.1.b

Let d >2 be even, and let X = (X, X;,...,X,) be a random vector, in which
X1, X5, ..., X, are iid random variables which admit a moment generating function
M(t). Let A € H,, have eigenvalues A; > A, > -2 A, If A = (X, 1) = 1 X1 + 1, X5 +
-++ 1, X,, then independence ensures that M, (¢t) = [T/, M(A;t). Thus, |||A\||‘;(,d =
E[A9]/d! = [t1]MA(2).

3.3 Proof of Theorem 1.1.c

Maintain the same notation as in the proof of (b). However, we only assume exis-
tence of the first d moments of the X;. In this case, M, (t) is a formal series with

K1, K2, . . . » kg determined and the remaining cumulants treated as formal variables.
Then
T (12) - (12) SNITAY N
Mp(t) = [TM(Ait) =" exp| D K(Ait) | =" exp| Do rj(A + A5+ +A%) "
i=1 i=1 j=1 J:

j 0

= exp(antr(AJ),') ) ZBZ(K}ltI‘A,IiztI’AZ,...,Iigtl’Ae Tk
j=1 J: £=0 :
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Expanding the right side of (1.3) yields

x
(3.3) Bo(x1, %2, ..., %) = £! [ Ypatid
U Ji JZZJPO ﬂ r')Jr], 7%)’71’
J1+2ja++Lje=L

in which x5 = x;,x;,---x;; for a each partition 7 = (i15d25...,1;) of £. Substitute
x; = k; tr(A") above and obtain

A Al% 4 = [t IMA(t) = Ba(kitr A, katr A2, .., kg tr A%).

Finally, (3.3) and the above ensure that |A]§ ;, = > 4 ””P ™ for AeH,.

3.4 Proof of Theorem 1.1.d

Recall that a convex function f : R” — R is Schur convex if and only if it is symmetric
(18, p. 258]. Suppose that x, y € R". Let X = (X}, X5, ..., X, ) be a random vector, in
which Xy, Xa, ..., X, € L9(Q, J, P) are iid. Define random variables X = (X, x) and
Y=(X,y)

1/d
Define 91: R" — Ry by 9i(x) = (Ell_(();fl))ld ) . This function satisfies

E|(X, x + y)J )l/d ) (E|X+ y|?

1/d
rd+1) rd+1) ) <) +N(y)

N(x+y) = (
as seen in the proof of Theorem 1.1.a. Homogeneity implies that 1 is convex on R”.

Finally, 91 is symmetric since Xj, X5, ..., X, are iid. It follows that 1 is Schur convex.
Thus, A(A) = N(A1, Az, ..., An) = |A]x,4 is Schur convex.

Remark 3.5 Note that independence is not required in the previous argument.

3.5 Proof of Theorem 1.1.e

The initial details parallel those of [1, Theorem 3]. Let V be a C-vector space with
conjugate-linear involution * and suppose that the real-linear subspace Vg = {v € V:

v =v*} of *-fixed points has the norm | - . Then e’'v + e~"'v* € Vg for each v € V
and t € R, and t ~ |e''v + e7''v*| is continuous for each v € V. The following is [I,
Proposition 15].

Lemma 3.6  For even d > 2, the following is a norm on 'V that extends || - |:

) . ) 1/d
(3.4) Na(v) = (d f letv +e v dt) .
2”(d/2) 0

Let (x,x*) be the free monoid generated by x and x*. Let |w| denote the length
of a word w € (x, x*), and let |w|, count the occurrences of x in w. For Z € M,,, let
w(Z) € M,, be the natural evaluation of w at Z. For example, if w = xx*x?, then |w| =
4,|w|; =3,and w(Z) = ZZ* Z*. The next lemma is [1, Lemma 16].
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Lemma 3.7 Let d >2 be even and m = (m, ma,...,7,) be a partition of d. For

ZeM,,
1 2 . . . .
— tr(e"Z+e " Z ) tr(e Z + e ZY) T dt
21 Jo
(3.5) = > trwi(Z)--trw,(2).
Wiy, WrE(x,x7)
|wjl=m; Vj

IWI"'Wr‘x:%

Given a partition 7 = (71, 713, ..., 7m,) of dand Z € M,,, let

1
(36) Tﬂ(Z) = —~ Z trW](Z)"'trWr(Z),
(d/z) Wiy Wr€(X,x7)
|wjl=m; Vj
wi--w|e=4

that is, T,(Z) is 1/(;2) times the sum over the (djz) possible locations to place d/2
adjoints * among the d copies of Zin (tr ZZ---Z)(tr ZZ-+-Z)---(tr ZZ-+-Z).
—— —— ——
m ™ .
Consider the conjugate transpose * on V = M,,. The corresponding real subspace
of »-fixed pointsis Vg = H,. Apply Proposition 3.6 to the norm | - |; on H,, and obtain
the extension 91,(+) to M,, defined by (3.4).

IfZ eM, andM;(A) = |A| 4 is the norm for A € H,,, then Proposition 3.6 ensures
that the following is a norm on M,,:

(3.4) 1 m g —it pd Wi
N(2) (s [Tz e It
2n( 0

af2)
2 it —it % 1/d

(1.10) 1 kapr(A(e”Z +e7"Z7))
- 7‘1/ > dt

Zﬂ(d/z) 0 ard Y

1/d

: 1 1 2 i —it % i —it %
(1:6)( y @7/ tr(e tZ+e tZ )”lu-tr(e tZ+€ tZ )n,dt)

() e 27 o
35 1 K 1/d
e (d = > trwl(Z)-utrwr(Z))

(d/2) aed Jm Wiseeos wre(x,x*):

lwjl=m; Vj

e =

(3.6) ( 3 kaTa(Z) )1/d.

ard Y

4 Open questions

If |- | is @ norm on M, then there is a scalar multiple of it (which may depend
upon n) that is submultiplicative. One wonders which of the norms |- |x 4 are
submultiplicative, or perhaps are when multiplied by a constant independent of #.
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For example, (2.1) ensures that for d = 2, a mean-zero distribution leads to a multiple
of the Frobenius norm. If y; = 2, then the norm is submultiplicative.

Problem1 Characterize those X that give rise to submultiplicative norms.

For the standard exponential distribution, [1, Theorem 31] provides an answer to
the next question. An answer to the question in the general setting eludes us.

Problem 2 Characterize the norms || - | x4 that arise from an inner product.
Several other unsolved questions come to mind.
Problem 3  Identify the extreme points with respect to random vector norms.

Problem 4 Characterize norms on M,, or H,, that arise from random vectors.

Acknowledgment We thank Bruce Sagan for remarks about symmetric functions.
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