

The error term in the truncated Perron formula for the logarithm of an L -function

Stephan Ramon Garcia, Jeffrey Lagarias[✉], and Ethan Simpson Lee[✉]

Abstract. We improve upon the traditional error term in the truncated Perron formula for the logarithm of an L -function. All our constants are explicit.

1 Introduction

The truncated Perron formula relates the summatory function of an arithmetic function to a contour integral that may be estimated using techniques from complex analysis. Let $F(s) = \sum_{n=1}^{\infty} f(n)n^{-s}$ be absolutely convergent on $\operatorname{Re} s > c_F$; examples include the Riemann zeta function, Dirichlet L -functions, the Dedekind zeta function associated with a number field, and Artin L -functions. The truncated Perron formula tells us that if $x > 0$ is not an integer, $T \geq 1$, and $c > c_F$, then

$$(1.1) \quad \sum_{n \leq x} f(n) = \frac{1}{2\pi i} \int_{c-iT}^{c+iT} F(s) \frac{x^s}{s} ds + O^* \left(\sum_{n=1}^{\infty} \left(\frac{x}{n} \right)^c |f(n)| \min \left\{ 1, \frac{1}{T |\log \frac{x}{n}|} \right\} \right),$$

in which $O^*(g(x)) = h(x)$ means $|h(x)| \leq g(x)$ (see [8, Chapter 7], [10, Section 5.1], [11, Example 4.4.15], and [15, Section II.2]). We let T depend on x , and let $c = c_F + 1/\log x$, so that $x^c = ex^{c_F}$. A variation of (1.1) improves the order of the error term by truncating the integral at $\pm T^*$ for an unknown $T^* \in [T, O(T)]$ [3], although this is inconvenient if one must avoid T^* that correspond to the ordinates of nontrivial zeros of $F(s)$. The authors of [3] have also informed us in a personal communication that their paper inherited an unfortunate typo from another paper, so the error term in their variation of the truncated Perron formula could be worse by a factor of $\log x$; this means that our main result (Theorem 1.1) will be comparable in strength *and* more straightforward to apply when compared against the outcome of their result.

For $\operatorname{Re} s > 1$, the logarithm of the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$ is $\log \zeta(s) = \sum_{n=1}^{\infty} \Lambda(n)(\log n)^{-1} n^{-s}$, in which $\Lambda(n)$ is the von Mangoldt function. The logarithm of a typical L -function is of the form $\sum_{n=1}^{\infty} \Lambda(n)a_n(\log n)^{-1} n^{-s}$, in which the a_n are easily controlled. For example, $|a_n| \leq 1$ for Dirichlet L -functions and

Received by the editors February 9, 2023; revised February 20, 2023; accepted February 20, 2023.

Published online on Cambridge Core March 9, 2023.

S.R.G. was supported by NSF Grant DMS-2054002.

AMS subject classification: 11M06, 11R42, 11S40.

Keywords: Perron formula, L -function, zeta function, Lambert function.

$|a_n| \leq d$ for Artin L -functions of degree d (see [7, Chapter 5]. In these cases, the error term in (1.1) with $c = 1/\log x$ is on the order of

$$(1.2) \quad \sum_{n=2}^{\infty} \left(\frac{x}{n}\right)^{\frac{1}{\log x}} \frac{\Lambda(n)}{n \log n} \min \left\{1, \frac{1}{T \log \frac{x}{n}}\right\} = O\left(\frac{\log x}{T}\right).$$

Granville and Soundararajan used (1.2) with Dirichlet L -functions to study large character sums [6, equation (8.1)]. Cho and Kim applied it to Artin L -functions to obtain asymptotic bounds on Dedekind zeta residues [1, Proposition 3.1]. A bilinear relative of (1.2) appears in Selberg's work on primes in short intervals [14, Lemma 4]. Analogous sums arise with the logarithmic derivative of an L -function in [4, p. 106] and [12, p. 44].

We improve upon (1.2) asymptotically and explicitly in the following result.

Theorem 1.1 *If $x \geq 3.5$ is a half integer and $T \geq (\log \frac{3}{2})^{-1} > 2.46$, then*

$$(1.3) \quad \sum_{n=2}^{\infty} \left(\frac{x}{n}\right)^{\frac{1}{\log x}} \frac{\Lambda(n)}{n \log n} \min \left\{1, \frac{1}{T \log \frac{x}{n}}\right\} \leq \frac{R(x)}{T},$$

in which

$$(1.4) \quad R(x) = 40.23 \log \log x + 58.12 + \frac{3.87}{\log x} + \frac{5.22 \log x}{\sqrt{x}} - \frac{1.84}{\sqrt{x}}.$$

Our result has a wide and explicit range of applicability. For example, the following corollary employs (1.1) with $T = x$ and $c = 1/\log x$. Since one can use analytic techniques to see the integral below is asymptotic to $\log L(1, \chi)$, one can relate $\log L(1, \chi)$ to a short sum. We hope to do so explicitly in the future.

Corollary 1.2 *Let $L(s, \chi)$ be an entire Artin L -function of degree d such that*

$$L(s, \chi) = \prod_p \prod_{i=1}^d \left(1 - \frac{\alpha_i(p)}{p^s}\right)^{-1} \quad \text{for } \operatorname{Re} s > 1$$

with $a(p^k) = \alpha_1(p)^k + \cdots + \alpha_d(p)^k$ for prime p . Then, with $R(x)$ as in (1.4), we have

$$\sum_{1 < n < x} \frac{\Lambda(n)a(n)}{n \log n} = \frac{1}{2\pi i} \int_{\frac{1}{\log x} - ix}^{\frac{1}{\log x} + ix} \frac{x^s}{s} \log L(1+s, \chi) ds + O^*\left(\frac{d R(x)}{x}\right).$$

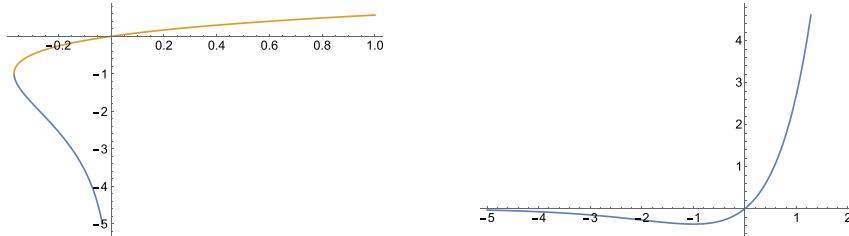
2 Preliminaries

Here, we establish several lemmas needed for the proof of Theorem 1.1.

Lemma 2.1 *If $\sigma > 0$, then $\log \zeta(1 + \sigma) \leq -\log \sigma + \gamma \sigma$.*

Proof For $s > 1$, we have $\zeta(s) \leq e^{\gamma(s-1)}/(s-1)$ [13, Lemma 5.4]. Let $s = 1 + \sigma$ and take logarithms to obtain the desired result. ■

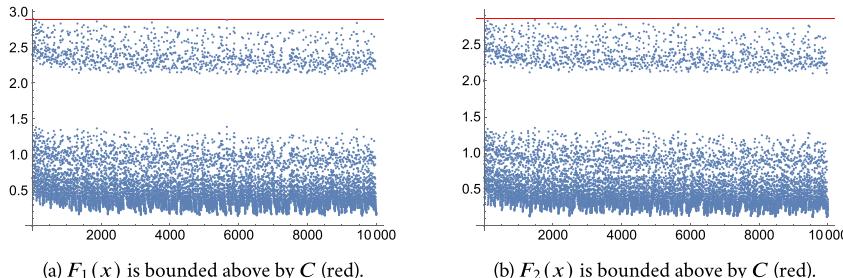
For real z, w , the equation $z = we^w$ can be solved for w if and only if $z \geq -e^{-1}$. There are two branches for $-e^{-1} \leq z < 0$. The lower branch defines the *Lambert $W_{-1}(z)$*



(a) The two branches of $z = we^w$. The lower branch (blue) is the Lambert function $W_{-1}(z)$, the upper branch (gold) is $W_0(z)$.

(b) $f(w) = we^w$ decreases on $(-\infty, -1]$.

Figure 1: Graphs relevant to the construction of the sequence y_n .



(a) $F_1(x)$ is bounded above by C (red).

(b) $F_2(x)$ is bounded above by C (red).

Figure 2: The functions $F_1(x)$ and $F_2(x)$ behave erratically.

function [2], which decreases to $-\infty$ as $z \rightarrow 0^-$ (see Figure 1a). For $n \geq 6 > 2e$, we define the strictly increasing sequence

$$(2.1) \quad y_n = \frac{-n}{2} W_{-1}\left(\frac{-2}{n}\right) \quad \text{for } n \geq 6.$$

Lemma 2.2 For $n \geq 8$, we have $\frac{2y_n}{\log y_n} = n$ and $y_n \geq \frac{n}{2} \log n$.

Proof For $n \geq 6$, the definition of W_{-1} and (2.1) confirm that $\frac{2y_n}{\log y_n} = n$. Thus, the desired inequality is equivalent to $W_{-1}\left(\frac{-2}{n}\right) \leq -\log n$. Since $f(w) = we^w$ decreases on $(-\infty, -1]$ (Figure 1b) and $-\frac{1}{e} < -\frac{2}{n} < 0$, the desired inequality is equivalent to

$$-\frac{2}{n} \geq f(-\log n) = (-\log n)e^{-\log n} = -\frac{\log n}{n},$$

which holds whenever $\log n \geq 2$. This occurs for $n \geq e^2 \approx 7.38906$. \blacksquare

Remark 2.3 For all $-e^{-1} \leq x < 0$, the bound $W_{-1}(x) \leq \log(-x) - \log(-\log(-x))$ is valid (see [9, equations (8) and (39)]). It follows from this observation and (2.1) that

$$y_n \geq \frac{n}{2} \left(\log\left(\frac{1}{2} \log \frac{n}{2}\right) + \log n \right),$$

which also implies Lemma 2.2 for $n \geq 15$.

The next lemma is needed later to handle a few exceptional primes.

Lemma 2.4 *Let $x > 1$ be a half integer, and let $C = \frac{1284699552}{444215525} = 2.89206 \dots$*

1. *Let $p_{-8} < p_{-7} < \dots < p_{-1} < x$ denote the largest eight primes (if they exist) in the interval $(\frac{x}{2}, x)$. We have the sharp bound*

$$(2.2) \quad F_1(x) = \sum_{1 \leq n \leq 8} \frac{1}{x - p_{-n}} \leq C$$

(see Figure 2a). The corresponding summand in (2.2) is zero if p_{-n} does not exist.

2. *Let $x < p_1 < p_2 < \dots < p_8$ denote the smallest eight primes (if they exist) in the interval $(x, \frac{3x}{2})$. We have the sharp bound*

$$(2.3) \quad F_2(x) = \sum_{1 \leq n \leq 8} \frac{1}{p_n - x} \leq C$$

(see Figure 2a). The corresponding summand in (2.3) is zero if p_n does not exist.

Proof (a) If $x \geq 10.5$, then $2, 3, 5 \notin (\frac{x}{2}, x)$. Computation confirms that

$$F_1(x) \leq F_1(3.5) = \frac{8}{3} = 2.66 \dots$$

for $x \leq 9.5$. If $x \geq 10.5$, then any prime in $(\frac{x}{2}, x)$ is congruent to one of $1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$. There are finitely many patterns modulo 30 that the $p_{-8}, p_{-7}, \dots, p_{-1}$ may assume. Among these, computation confirms that $F_1(x)$ is maximized if

$$\begin{aligned} p_{-1} &= \lfloor x \rfloor \equiv 19 \pmod{30}, & p_{-5} &= \lfloor x \rfloor - 12 \equiv 7 \pmod{30}, \\ p_{-2} &= \lfloor x \rfloor - 2 \equiv 17 \pmod{30}, & p_{-6} &= \lfloor x \rfloor - 18 \equiv 1 \pmod{30}, \\ p_{-3} &= \lfloor x \rfloor - 6 \equiv 13 \pmod{30}, & p_{-7} &= \lfloor x \rfloor - 20 \equiv 29 \pmod{30}, \\ p_{-4} &= \lfloor x \rfloor - 8 \equiv 11 \pmod{30}, & p_{-8} &= \lfloor x \rfloor - 26 \equiv 23 \pmod{30}, \end{aligned}$$

which yields the desired upper bound C . This prime pattern first occurs for $x = 88,819.5$ (see <https://oeis.org/A022013>).

(b) If $x \geq 5.5$, then $2, 3, 5 \notin (x, \frac{3x}{2})$. Observe that $F_2(x) \leq 2$ for $x \leq 4.5$ (attained at $x = 1.5, 2.5, 4.5$). If $x \geq 5.5$, then (as in (a)), any prime in $(x, \frac{3x}{2})$ is congruent to one of $1, 7, 11, 13, 17, 19, 23, 29 \pmod{30}$. It follows that $F_2(x)$ is maximized if

$$\begin{aligned} p_1 &= \lceil x \rceil \equiv 11 \pmod{30}, & p_5 &= \lceil x \rceil + 12 \equiv 23 \pmod{30}, \\ p_2 &= \lceil x \rceil + 2 \equiv 13 \pmod{30}, & p_6 &= \lceil x \rceil + 18 \equiv 29 \pmod{30}, \\ p_3 &= \lceil x \rceil + 6 \equiv 17 \pmod{30}, & p_7 &= \lceil x \rceil + 20 \equiv 1 \pmod{30}, \\ p_4 &= \lceil x \rceil + 8 \equiv 19 \pmod{30}, & p_8 &= \lceil x \rceil + 26 \equiv 7 \pmod{30}, \end{aligned}$$

which yields the desired upper bound C . This prime pattern occurs for $x = 10.5$, but not all eight primes lie in $(x, \frac{3x}{2})$. Therefore, the first admissible value is $x = 15,760,090.5$ (see <https://oeis.org/A022011>). ■

We also need an elementary estimate on k th powers in intervals.

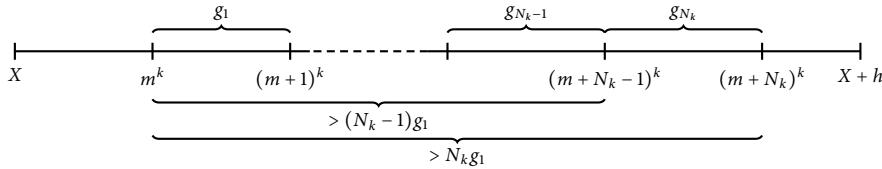


Figure 3: Proof of Lemma 2.5.

Lemma 2.5 Let $X > 1$ be a noninteger, $h > 1$, and $k \geq 2$.

- (1) There are at most $N_k + 1$ perfect k th powers in $[X, X+h)$, in which $N_k \leq \frac{h}{k\sqrt{X}}$.
- (2) The shortest gap between k th powers in $[X, X+h)$ (if they exist) is $G_k \geq k\sqrt{X}$.

Proof We may assume that X is so large that $N_k \geq 1$. Let $m = \lceil X^{\frac{1}{k}} \rceil$ so that m^k is the first k th power larger than X . Consider the gaps g_1, g_2, \dots, g_{N_k} between the N_k consecutive k th powers in $[X, X+h)$ (see Figure 3). Then

$$G_k = \min\{g_1, g_2, \dots, g_{N_k}\} = g_1 = (m+1)^k - m^k \geq km^{k-1} \geq kX^{\frac{k-1}{k}} \geq k\sqrt{X}.$$

The desired inequality follows since $N_k G_k \leq g_1 + g_2 + \dots + g_{N_k} \leq h$. \blacksquare

Finally, we need an estimate on the n th harmonic number $H_n = \sum_{j=1}^n \frac{1}{j}$:

$$(2.4) \quad \frac{1}{2n + \frac{2}{5}} < H_n - \log n - \gamma < \frac{1}{2n + \frac{1}{3}} \leq \frac{3}{7} \quad \text{for } n \geq 1,$$

in which γ is the Euler–Mascheroni constant [16]. We require the upper bound

$$\begin{aligned}
 \sum_{\ell=1}^n \frac{1}{2\ell-1} &= \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n}\right) - \left(\frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2n}\right) = H_{2n} - \frac{1}{2}H_n \\
 &\leq \left(\log 2n + \gamma + \frac{1}{4n + \frac{1}{3}}\right) - \frac{1}{2}\left(\log n + \gamma + \frac{1}{2n + \frac{2}{5}}\right) \\
 &\leq \frac{1}{2}\log n + \frac{1}{2}\gamma + \log 2 + \frac{1}{4n + \frac{1}{3}} - \frac{1}{4n + \frac{4}{5}} \\
 &= \frac{1}{2}\log n + \frac{1}{2}\gamma + \log 2 + \frac{7}{240n^2 + 68n + 4} \\
 (2.5) \quad &\leq \frac{1}{2}\log n + \frac{1}{2}\gamma + \log 2 + \frac{7}{312} \quad \text{for } n \geq 1.
 \end{aligned}$$

3 Proof of Theorem 1.1

In what follows, $x \in \mathbb{N} + \frac{1}{2} = \{\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \dots\}$ and $c = \frac{1}{\log x}$. Minor improvements below are possible; these were eschewed in favor of a final estimate of simple shape.

3.1 When n is very far from x

Suppose that $n \leq \frac{x}{2}$ or $\frac{3x}{2} \geq n$. Then $\log \frac{x}{n} \leq -\log \frac{3}{2}$ or $\log \frac{3}{2} < \log 2 \leq \log \frac{x}{n}$, so $|\log \frac{x}{n}| \geq \log \frac{3}{2}$. If $T \geq (\log \frac{3}{2})^{-1} > 2.46$, then

$$\min \left\{ 1, \frac{1}{T|\log \frac{x}{n}|} \right\} \leq \frac{1}{T|\log \frac{x}{n}|} \leq \frac{1}{T \log \frac{3}{2}}.$$

For such T , the previous inequality and Lemma 2.1 imply (recall that $c = \frac{1}{\log x}$)

$$\begin{aligned} \sum_{\substack{n \leq \frac{x}{2} \text{ or} \\ n \geq \frac{3x}{2}}} \left(\frac{x}{n} \right)^c \frac{\Lambda(n)}{n \log n} \min \left\{ 1, \frac{1}{T|\log \frac{x}{n}|} \right\} &\leq x^c \sum_{\substack{n \leq \frac{x}{2} \text{ or} \\ n \geq \frac{3x}{2}}} \frac{1}{n^{1+c}} \left(\frac{\Lambda(n)}{\log n} \right) \left(\frac{1}{T \log \frac{3}{2}} \right) \\ &\leq \frac{x^c}{T \log \frac{3}{2}} \log \zeta(1+c) \\ &\leq \frac{x^c}{T \log \frac{3}{2}} (-\log c + \gamma c) \\ (3.1) \quad &= \frac{e}{T \log \frac{3}{2}} \left(\log \log x + \frac{\gamma}{\log x} \right). \end{aligned}$$

3.2 Reduction to a sum over prime powers

Suppose that $\frac{x}{2} < n < \frac{3x}{2}$. Let $z = 1 - \frac{n}{x}$ and observe that $|z| < \frac{1}{2}$. Then

$$\log \frac{x}{n} = -\log(1-z) = z \left(-\frac{\log(1-z)}{z} \right),$$

in which the function in parentheses is positive and achieves its minimum value $2 \log \frac{3}{2} = 0.81093 \dots$ on $|z| < \frac{1}{2}$ at its left endpoint $-\frac{1}{2}$ (see Figure 4a). Then

$$(3.2) \quad |\log(1-z)| > \left(2 \log \frac{3}{2} \right) |z| \quad \text{for} \quad |z| < \frac{1}{2},$$

whose validity is illustrated in Figure 4b. Therefore,

$$(3.3) \quad \left| \log \frac{x}{n} \right| > \left(2 \log \frac{3}{2} \right) \left| 1 - \frac{n}{x} \right| \quad \text{for} \quad \frac{x}{2} < n < \frac{3x}{2},$$

and hence

$$\begin{aligned} \sum_{\frac{x}{2} < n < \frac{3x}{2}} \left(\frac{x}{n} \right)^c \frac{\Lambda(n)}{n \log n} \min \left\{ 1, \frac{1}{T|\log \frac{x}{n}|} \right\} \\ \leq \frac{x^c}{T} \sum_{\frac{x}{2} < n < \frac{3x}{2}} \left(\frac{\Lambda(n)}{n^{1+c} \log n} \right) \left(\frac{1}{|\log \frac{x}{n}|} \right) \end{aligned}$$

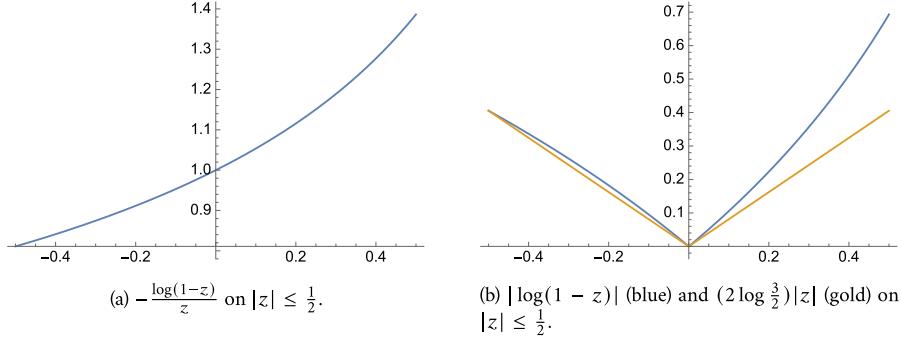


Figure 4: Graphs relevant to the derivation of (3.2).

$$\begin{aligned}
 &\leq \frac{x^c}{T} \sum_{\frac{x}{2} < n < \frac{3x}{2}} \left(\frac{\Lambda(n)}{n^{1+c} \log n} \right) \frac{1}{(2 \log \frac{3}{2})|1 - \frac{n}{x}|} \quad (\text{by (3.3)}) \\
 &\leq \frac{x^c}{T(2 \log \frac{3}{2})} \sum_{\frac{x}{2} < n < \frac{3x}{2}} \frac{2}{x} \left(\frac{\Lambda(n)}{n^c \log n} \right) \frac{1}{|1 - \frac{n}{x}|} \quad (\text{since } \frac{x}{2} < n) \\
 &\leq \frac{x^c}{T \log \frac{3}{2}} \sum_{\frac{x}{2} < n < \frac{3x}{2}} \left(\frac{\Lambda(n)}{n^c \log n} \right) \frac{1}{|x - n|} \\
 &\leq \frac{x^c}{T \log \frac{3}{2}} \sum_{\frac{x}{2} < p^k < \frac{3x}{2}} \left(\frac{\log p}{(p^k)^c k \log p} \right) \frac{1}{|x - p^k|} \quad (\text{def. of } \Lambda) \\
 (3.4) \quad &\leq \frac{e}{T \log \frac{3}{2}} \sum_{\frac{x}{2} < p^k < \frac{3x}{2}} \frac{1}{k|x - p^k|} \quad (\text{since } c = \frac{1}{\log x}),
 \end{aligned}$$

in which the final two sums run over all prime powers p^k in the stated interval.

The remainder of the proof uses ideas from [5, Lemma 2] to estimate

$$(3.5) \quad \sum_{\frac{x}{2} < p^k < \frac{3x}{2}} \frac{1}{k|x - p^k|} = \underbrace{\sum_{\frac{x}{2} < p < \frac{3x}{2}} \frac{1}{|x - p|}}_{S_{\text{prime}}(x)} + \underbrace{\sum_{\substack{\frac{x}{2} < p^k < \frac{3x}{2} \\ k \geq 2}} \frac{1}{k|x - p^k|}}_{S_{\text{power}}(x)}.$$

3.3 The sum over primes

First observe that

$$S_{\text{prime}}(x) \leq \underbrace{\sum_{\frac{x}{2} < p < x} \frac{1}{x - p}}_{S_{\text{prime}}^-(x)} + \underbrace{\sum_{x < p < \frac{3x}{2}} \frac{1}{p - x}}_{S_{\text{prime}}^+(x)}.$$

We require the Brun–Titchmarsh theorem (see [10, Corollary 2]):

$$(3.6) \quad \pi(X + Y) - \pi(X) \leq \frac{2Y}{\log Y}, \quad \text{where } \pi(x) = \sum_{p \leq x} 1, X > 0, \text{ and } Y > 1.$$

3.3.1 The lower sum over primes

Let $p_{-k} < p_{-(k-1)} < \dots < p_{-2} < p_{-1}$ be the primes in $(\frac{x}{2}, x)$; note that $k \leq \frac{x}{2}$. Apply (3.6) with $X = x - y_n$ and $Y = y_n$ to get

$$0 \leq \pi(x) - \pi(x - y_n) \leq \frac{2y_n}{\log y_n} = n \quad \text{for } 6 \leq n \leq k$$

by Lemma 2.2, so $(x - y_n, x]$ contains at most n primes. Thus, $p_{-(n+1)} \leq x - y_n$ and

$$(3.7) \quad \frac{1}{x - p_{-(n+1)}} \leq \frac{1}{y_n} \quad \text{for } 6 \leq n \leq k - 1.$$

Then Lemma 2.2, which requires $k \geq 8$, and the integral test provide

$$\begin{aligned} \sum_{\frac{x}{2} < p < x} \frac{1}{x - p} &= \sum_{1 \leq n \leq 8} \frac{1}{x - p_{-n}} + \sum_{9 \leq n \leq k} \frac{1}{x - p_{-n}} \\ &\leq F_1(x) + \sum_{8 \leq n \leq k-1} \frac{1}{y_n} \quad (\text{by (2.2) and (3.7)}) \\ &\leq C + 2 \sum_{7 < n \leq \frac{x}{2}} \frac{1}{n \log n} \quad (\text{by Lemma 2.2}) \\ &\leq C + 2 \log \log x, \end{aligned}$$

which is valid for $k \leq 7$ since Lemma 2.4a shows that the sum is majorized by C .

3.3.2 The upper sum over primes

Let $p_1 < p_2 < \dots < p_k$ denote the primes in $(x, \frac{3x}{2})$ and note that $k \leq \frac{x}{2}$. Then (3.6) with $X = x$ and $Y = y_n$ ensures that

$$0 \leq \pi(x + y_n) - \pi(x) \leq \frac{2y_n}{\log y_n} = n \quad \text{for } 6 \leq n \leq k$$

by Lemma 2.2, so $(x, x + y_n]$ contains at most n primes. Thus, $p_{n+1} \geq x + y_n$ and

$$(3.8) \quad \frac{1}{p_{n+1} - x} \leq \frac{1}{y_n} \quad \text{for } 6 \leq n \leq k.$$

An argument similar to that above reveals that

$$\sum_{x < p < \frac{3x}{2}} \frac{1}{p - x} \leq \sum_{1 \leq n \leq 8} \frac{1}{p_n - x} + \sum_{9 \leq n \leq k} \frac{1}{p_n - x} \leq C + 2 \log \log x.$$

3.3.3 Final bound over primes

For $x \in \mathbb{N} + \frac{1}{2}$, the previous inequalities yield

$$(3.9) \quad S_{\text{prime}}(x) = \sum_{\frac{x}{2} < p < \frac{3x}{2}} \frac{1}{|x - p|} \leq 2C + 4 \log \log x.$$

3.4 The sum over prime powers

We now majorize

$$S_{\text{power}}(x) = \sum_{\substack{\frac{x}{2} < p^k < \frac{3x}{2} \\ k \geq 2}} \frac{1}{k|x - p^k|}.$$

3.4.1 Initial reduction

To bound $S_{\text{power}}(x)$ it suffices to majorize

$$(3.10) \quad S_{\text{sqf}}(x) = \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ k \geq 2 \\ n \geq 2 \text{ sq. free}}} \frac{1}{k|x - n^k|},$$

in which the prime powers p^k are replaced with the powers n^k of square free $n \geq 2$. The square-free restriction ensures that powers such as $2^6 = (2^2)^3 = (2^3)^2$ are not counted multiple times in (3.10). If $\frac{x}{2} < n^k < \frac{3x}{2}$ and $k \geq 2$, then (since $n \geq 2$)

$$(3.11) \quad k \leq \frac{\log \frac{3x}{2}}{\log 2} \leq \lfloor 2.4 \log x \rfloor \quad \text{for} \quad x \geq 3.5.$$

3.4.2 Nearest-power sets

The largest contributions to $S_{\text{sqf}}(x)$ come from the powers closest to x . We handle those summands separately and split the sum (3.10) accordingly. For each $k \geq 2$, the inequalities $\lfloor x^{\frac{1}{k}} \rfloor^k < x < \lceil x^{\frac{1}{k}} \rceil^k$ exhibit the two k th powers nearest to x . Define

$$(3.12) \quad \mathcal{N}_k \subseteq \left\{ \lfloor x^{\frac{1}{k}} \rfloor^k, \lceil x^{\frac{1}{k}} \rceil^k \right\}$$

according to the following rules:

- \mathcal{N}_k contains $\lfloor x^{\frac{1}{k}} \rfloor^k$ if it is square free and belongs to $(\frac{x}{2}, \frac{3x}{2})$.
- \mathcal{N}_k contains $\lceil x^{\frac{1}{k}} \rceil^k$ if it is square free and belongs to $(\frac{x}{2}, \frac{3x}{2})$.

Consequently, \mathcal{N}_k , if nonempty, contains only powers that satisfy the restrictions in (3.10). The square-free condition ensures that $\mathcal{N}_j \cap \mathcal{N}_k = \emptyset$ for $j \neq k$.

Write $S_{\text{sqf}}(x) = S_{\text{near}}(x) + S_{\text{far}}(x)$, in which

$$(3.13) \quad S_{\text{near}}(x) = \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ k \geq 2 \\ n \geq 2 \text{ sq. free} \\ n^k \in \mathcal{N}_k}} \frac{1}{k|x - n^k|} \quad \text{and} \quad S_{\text{far}}(x) = \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ k \geq 2 \\ n \geq 2 \text{ sq. free} \\ n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|}.$$

3.4.3 Near Sum

For $x \geq 3.5$, a nearest-neighbor overestimate provides

$$\begin{aligned}
 S_{\text{near}}(x) &= \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ k \geq 2 \\ n \geq 2 \text{ sq. free} \\ n^k \in \mathcal{N}_k}} \frac{1}{k|x - n^k|} && \text{(by 3.13)} \\
 &= \sum_{k=2}^{\lfloor 2.4 \log x \rfloor} \sum_{m \in \mathcal{N}_k} \frac{1}{k|x - m|} && \text{(by 3.11)} \\
 &\leq \frac{1}{2} \sum_{k=2}^{\lfloor 2.4 \log x \rfloor} \sum_{m \in \mathcal{N}_k} \frac{1}{|x - m|} && \text{(since } k \geq 2\text{)} \\
 &\leq \frac{1}{2} \sum_{j=0}^{\lfloor 2.4 \log x \rfloor - 2} \left(\frac{1}{x - (\lfloor x \rfloor - j)} + \frac{1}{(\lceil x \rceil + j) - x} \right) && \text{(see below)} \\
 &\leq \frac{1}{2} \sum_{\ell=1}^{\lfloor 2.4 \log x \rfloor - 1} \frac{2}{\ell - \frac{1}{2}} < \frac{1}{2} \sum_{\ell=1}^{\lfloor 2.4 \log x \rfloor} \frac{1}{2\ell - 1} \\
 &\leq \log(\lfloor 2.4 \log x \rfloor) + \gamma + 2 \log 2 + \frac{14}{312} && \text{(by 2.5)} \\
 (3.14) \quad &< \log \log x + \gamma + 2 \log 2 + \log 2.4 + \frac{7}{156}.
 \end{aligned}$$

Let us elaborate on a crucial step above. Consider the at most $\lfloor 2 \log x \rfloor - 1$ pairs of values $|x - m|$ that arise as m ranges over each \mathcal{N}_k with $2 \leq k \leq \lfloor 2 \log x \rfloor$ (since $\mathcal{N}_j(x) \cap \mathcal{N}_k = \emptyset$ for $j \neq k$, no m appears more than once). Replace these values with the absolute deviations of x from its $2 \times (\lfloor 2 \log x \rfloor - 1)$ nearest neighbors $\lfloor x \rfloor - j$ (to the left) and $\lceil x \rceil + j$ (to the right), in which $0 \leq j \leq \lfloor 2 \log x \rfloor - 2$. Since $x \in \mathbb{N} + \frac{1}{2}$, these deviations are of the form $\ell - \frac{1}{2}$ for $1 \leq \ell \leq \lfloor 2 \log x \rfloor - 1$.

3.4.4 Splitting the second sum

From (3.13), the second sum in question is

$$S_{\text{far}}(x) = \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ k \geq 2 \\ n \geq 2 \text{ sq. free} \\ n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} \leq \sum_{\substack{\frac{x}{2} < n^k < \frac{3x}{2} \\ n, k \geq 2 \\ n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} = S_{\text{far}}^-(x) + S_{\text{far}}^+(x),$$

in which

$$(3.15) \quad S_{\text{far}}^-(x) = \sum_{k \geq 2} \sum_{\substack{\frac{x}{2} < n^k < x \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} \quad \text{and} \quad S_{\text{far}}^+(x) = \sum_{k \geq 2} \sum_{\substack{x < n^k < \frac{3x}{2} \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|}.$$

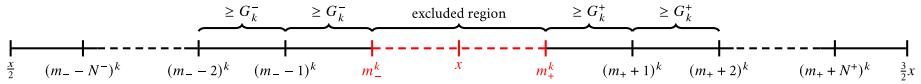


Figure 5: Analysis of k th powers in $[\frac{x}{2}, \frac{3x}{2}]$, in which $m_- = \lfloor x^{1/k} \rfloor$ and $m_+ = \lceil x^{1/k} \rceil$ are excluded from consideration. There are at most N_k^- admissible k th powers in $[\frac{x}{2}, x)$, with minimal gap size G_k^- , and at most N_k^+ admissible k th powers in $[x, \frac{3x}{2})$, with minimal gap size G_k^+ .

For $k \geq 2$, Lemma 2.5 with $X = h = \frac{x}{2}$, then with $X = x$ and $h = \frac{x}{2}$, implies that

$$(3.16) \quad G_k^- \geq \frac{k\sqrt{x}}{\sqrt{2}}, \quad N_k^- \leq \frac{\sqrt{x}}{2\sqrt{2}}, \quad \text{and} \quad G_k^+ \geq k\sqrt{x}, \quad N_k^+ \leq \frac{\sqrt{x}}{4}$$

are admissible in Figure 5. For $1 \leq j \leq N_k^-$ and $1 \leq j \leq N_k^+$, respectively,

$$|x - (m_- - j)^k| \geq \frac{jk\sqrt{x}}{\sqrt{2}} \quad \text{and} \quad |x - (m_+ + j)^k| \geq jk\sqrt{x}.$$

Let $N_k^\pm \geq 1$, since otherwise the corresponding sum estimated below is zero. Then

$$(3.17) \quad \sum_{\substack{\frac{x}{2} < n^k < x \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} = \sum_{j=1}^{N_k^-} \frac{1}{k|x - (m_- - j)^k|} \leq \frac{\sqrt{2}H_{N_k^-}}{k^2\sqrt{x}}$$

and

$$(3.18) \quad \sum_{\substack{x < n^k < \frac{3x}{2} \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} = \sum_{j=1}^{N_k^+} \frac{1}{k|x - (m_+ + j)^k|} \leq \frac{H_{N_k^+}}{k^2\sqrt{x}}.$$

Therefore,

$$\begin{aligned} S_{\text{far}}^-(x) &= \sum_{k \geq 2} \sum_{\substack{\frac{x}{2} < n^k < x \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} \leq \frac{\sqrt{2}}{\sqrt{x}} \sum_{k \geq 2} \frac{H_{N_k^-}}{k^2} \quad (\text{by (3.15) and (3.17)}) \\ &\leq \frac{\sqrt{2}}{\sqrt{x}} \left(\frac{1}{2} \log x - \frac{3}{2} \log 2 + \gamma + \frac{3}{7} \right) \sum_{k \geq 2} \frac{1}{k^2} \quad (\text{by (2.4) and (3.16)}) \\ (3.19) \quad &= \frac{\pi^2 - 6}{3\sqrt{2x}} \left(\frac{1}{2} \log x - \frac{3}{2} \log 2 + \gamma + \frac{3}{7} \right) \quad (\text{since } \zeta(2) - 1 = \frac{\pi^2 - 6}{6}) \end{aligned}$$

and

$$\begin{aligned} S_{\text{far}}^+(x) &= \sum_{k \geq 2} \sum_{\substack{x < n^k < \frac{3x}{2} \\ n \geq 2, n^k \notin \mathcal{N}_k}} \frac{1}{k|x - n^k|} \leq \frac{1}{\sqrt{x}} \sum_{k \geq 2} \frac{H_{N_k^+}}{k^2} \quad (\text{by (3.15) and (3.18)}) \\ &\leq \frac{1}{\sqrt{x}} \left(\frac{1}{2} \log x - 2 \log 2 + \gamma + \frac{3}{7} \right) \sum_{k \geq 2} \frac{1}{k^2} \quad (\text{by (2.4) and (3.16)}) \end{aligned}$$

$$(3.20) \quad = \frac{\pi^2 - 6}{6\sqrt{x}} \left(\frac{1}{2} \log x - 2 \log 2 + \gamma + \frac{3}{7} \right) \quad (\text{since } \zeta(2) - 1 = \frac{\pi^2 - 6}{6}).$$

3.4.5 Final prime-power estimate

Using (3.14), (3.19), and (3.20), we can bound

$$S_{\text{power}}(x) \leq S_{\text{sqf}}(x) = S_{\text{near}}(x) + S_{\text{far}}^-(x) + S_{\text{far}}^+(x).$$

We postpone doing this explicitly until the finale below.

4 Conclusion

For $x \geq 3.5$, with $T \geq (\log \frac{3}{2})^{-1}$, the sum (1.3) is bounded by

$$\begin{aligned} & \underbrace{\frac{e}{T \log \frac{3}{2}} \left(\log \log x + \frac{\gamma}{\log x} \right)}_{\text{by (3.1)}} + \underbrace{\frac{e}{T \log \frac{3}{2}} \sum_{\frac{x}{2} < p^k < \frac{3x}{2}} \frac{1}{k|x - p^k|}}_{\text{by (3.4)}} \\ & \leq \frac{e}{T \log \frac{3}{2}} \left(\log \log x + \frac{\gamma}{\log x} \right) + \underbrace{\frac{e}{T \log \frac{3}{2}} (S_{\text{prime}}(x) + S_{\text{sqf}}(x))}_{\text{by (3.5) and (3.10)}} \\ & \leq \frac{e}{T \log \frac{3}{2}} \left(\log \log x + \frac{\gamma}{\log x} \right) + \frac{e}{T \log \frac{3}{2}} \left[\underbrace{2C + 4 \log \log x}_{S_{\text{prime}}(x) \text{ bounded by (3.9)}} \right. \\ & \quad \left. + \underbrace{\left(\log \log x + \gamma + 2 \log 2 + \log 2.4 + \frac{7}{156} \right)}_{S_{\text{near}}(x) \text{ bounded by (3.14)}} + \underbrace{\frac{\pi^2 - 6}{3\sqrt{2x}} \left(\frac{1}{2} \log x - \frac{3}{2} \log 2 + \gamma + \frac{3}{7} \right)}_{S_{\text{far}}^-(x) \text{ bounded by (3.19)}} \right. \\ & \quad \left. + \underbrace{\frac{\pi^2 - 6}{6\sqrt{x}} \left(\frac{1}{2} \log x - 2 \log 2 + \gamma + \frac{3}{7} \right)}_{S_{\text{far}}^+(x) \text{ bounded by (3.20)}} \right] \\ & < \frac{1}{T} \left(40.22465 \log \log x + 58.11106 + \frac{3.86972}{\log x} + \frac{5.21918 \log x}{\sqrt{x}} - \frac{1.85268}{\sqrt{x}} \right). \end{aligned}$$

Acknowledgment E.S.L. thanks the Heilbronn Institute for Mathematical Research for their support. We also thank the referee for their suggestions.

References

- [1] P. J. Cho and H. H. Kim, *Extreme residues of Dedekind zeta functions*. Math. Proc. Cambridge Philos. Soc. 163(2017), no. 2, 369–380.
- [2] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, *On the Lambert W function*. Adv. Comput. Math. 5(1996), no. 4, 329–359.
- [3] M. Cully-Hugill and D. R. Johnston, *On the error term in the explicit formula of Riemann–von Mangoldt*. Int. J. Number Theory (2022).

- [4] H. Davenport, *Multiplicative number theory*, 3rd ed., Graduate Texts in Mathematics, 74, Springer, New York, 2000.
- [5] D. A. Goldston, *On a result of Littlewood concerning prime numbers. II*. Acta Arith. 43(1983), no. 1, 49–51.
- [6] A. Granville and K. Soundararajan, *Large character sums*. J. Amer. Math. Soc. 14(2001), no. 2, 365–397.
- [7] H. Iwaniec and E. Kowalski, *Analytic number theory*, American Mathematical Society Colloquium Publications, 53, American Mathematical Society, Providence, RI, 2004.
- [8] D. Koukoulopoulos, *The distribution of prime numbers*, Graduate Studies in Mathematics, 203, American Mathematical Society, Providence, RI, 2019.
- [9] L. Lóczi, *Guaranteed- and high-precision evaluation of the Lambert W function*. Appl. Math. Comput. 433 (2022), 127406.
- [10] H. L. Montgomery and R. C. Vaughan, *The large sieve*. Mathematika 20(1973), 119–134.
- [11] M. R. Murty, *Problems in analytic number theory*, Graduate Texts in Mathematics, Springer, New York, 2008.
- [12] S. J. Patterson, *An introduction to the theory of the Riemann zeta-function*, Cambridge Studies in Advanced Mathematics, 14, Cambridge University Press, Cambridge, 1988.
- [13] O. Ramaré, *An explicit density estimate for Dirichlet L-series*. Math. Comp. 85(2016), no. 297, 325–356.
- [14] A. Selberg, *On the normal density of primes in small intervals, and the difference between consecutive primes*. Arch. Math. Naturvid. 47(1943), no. 6, 87–105.
- [15] G. Tenenbaum, *Introduction to analytic and probabilistic number theory*, Cambridge Studies in Advanced Mathematics, 46, Cambridge University Press, Cambridge, 1995, Translated from the second French edition (1995) by C. B. Thomas.
- [16] L. Tóth and S. Mare, *E 3432*. Amer. Math. Monthly. 98(1991), no. 3, 264.

Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA 91711, USA

e-mail: stephan.garcia@pomona.edu

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA

e-mail: lagarias@umich.edu

School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK

e-mail: ethan.lee@bristol.ac.uk