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The error term in the truncated Perron
formula for the logarithm of an L-function

Stephan Ramon Garcia, Jeffrey Lagarias®, and Ethan Simpson Lee

Abstract. We improve upon the traditional error term in the truncated Perron formula for the
logarithm of an L-function. All our constants are explicit.

1 Introduction

The truncated Perron formula relates the summatory function of an arithmetic
function to a contour integral that may be estimated using techniques from complex
analysis. Let F(s) = Yoo, f(n)n™" be absolutely convergent on Res > cr; examples
include the Riemann zeta function, Dirichlet L-functions, the Dedekind zeta function
associated with a number field, and Artin L-functions. The truncated Perron formula
tells us that if x > 0 is not an integer, T > 1, and ¢ > cf, then

. c
W) Y f(n)= -1 f”’TF(s)’is ds + o*( i (") |f ()| min {1 1})
= 2mi Je-it s “Z\n " Tllog [ )’
in which O*(g(x)) = h(x) means |h(x)| < g(x) (see [8, Chapter 7], [10, Section 5.1],
[11, Example 4.4.15], and [15, Section I1.2]). We let T depend on x, and let ¢ = cp +
1/logx, so that x© = ex®. A variation of (1.1) improves the order of the error term
by truncating the integral at + T for an unknown T* € [T, O(T)] [3], although this
is inconvenient if one must avoid T* that correspond to the ordinates of nontrivial
zeros of F(s). The authors of [3] have also informed us in a personal communication
that their paper inherited an unfortunate typo from another paper, so the error term
in their variation of the truncated Perron formula could be worse by a factor of log x;
this means that our main result (Theorem 1.1) will be comparable in strength and more
straightforward to apply when compared against the outcome of their result.

For Res >1, the logarithm of the Riemann zeta function {(s) =Y, n"" is
log{(s) = Y52 A(n)(logn)™'n5, in which A(n) is the von Mangoldt function.
The logarithm of a typical L-function is of the form Y02, A(n)a,(logn)™'n"%, in
which the a,, are easily controlled. For example, |a,| < 1 for Dirichlet L-functions and
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The error term in the truncated Perron formula 1123

|a,| < d for Artin L-functions of degree d (see [7, Chapter 5]. In these cases, the error
term in (1.1) with ¢ = 1/log x is on the order of

> xyeex A(n) 1 log x
1.2 — 1, =0 .
(2 Zz(n) nlognmm{ TIIOgﬁI} ( T

Granville and Soundararajan used (1.2) with Dirichlet L-functions to study large
character sums [6, equation (8.1)]. Cho and Kim applied it to Artin L-functions to
obtain asymptotic bounds on Dedekind zeta residues [1, Proposition 3.1]. A bilinear
relative of (1.2) appears in Selberg’s work on primes in short intervals [14, Lemma 4].
Analogous sums arise with the logarithmic derivative of an L-function in [4, p. 106]
and [12, p. 44].

We improve upon (1.2) asymptotically and explicitly in the following result.

Theorem 1.1  If x > 3.5 is a half integer and T > (log %)’1 > 2.46, then
& xyieer A(n) 1 R(x)

1.3 — 1, < ,

- %) mm{ Tlog:|} T

= nlogn

in which

3.87 5221 1.84
(1.4) R(x) = 40.23loglog x + 58.12 + —— 4 222 08%

log x Jx Jx
Our result has a wide and explicit range of applicability. For example, the following
corollary employs (1.1) with T = x and ¢ = 1/log x. Since one can use analytic tech-
niques to see the integral below is asymptotic to log L(1, x), one can relate log L(1, x)
to a short sum. We hope to do so explicitly in the future.

Corollary 1.2 Let L(s, x) be an entire Artin L-function of degree d such that

L(s,x) = HH( oc(p)) for Res >1
p i=1
with a(p*) = a1(p)* + -+ ag(p)* for prime p. Then, with R(x) as in (1.4), we have
L+ix s
> An)aln) _ iflogx xlogL(1+s,X)ds+O*(dR(x)).
ix S x

nlogn 2mi ix

I<n<x log x

2 Preliminaries
Here, we establish several lemmas needed for the proof of Theorem 1.1.
Lemma 2.1 Ifo >0, thenlog{(1+0)<-logo +yo.

Proof For s >1, we have {(s) < e’¢™) /(s —1) [13, Lemma 5.4]. Let s = 1 + ¢ and
take logarithms to obtain the desired result. ]

For real z, w, the equation z = we" can be solved for wifand only if z > —e~". There
are two branches for —e™! < z < 0. The lower branch defines the Lambert W_,(z)
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-5 E = -1 1 2

(a) The two branches of z = we". The lower (b) f(w) =we" decreases on (—co, —1].
branch (blue) is the Lambert function W_; (z), the
upper branch (gold) is Wy (z).

Figure I: Graphs relevant to the construction of the sequence y,.
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(a) F1 (x) is bounded above by C (red). (b) F>(x) is bounded above by C (red).

Figure 2: The functions Fi(x) and F,(x) behave erratically.

function [2], which decreases to —oo as z — 0~ (see Figure la). For n > 6 > 2e, we
define the strictly increasing sequence

-n -2
(2.1) Yn = TW_I(F) for n > 6.
Lemma 2.2 Forn > 8, we have lozé'; =nand y, > 5logn.

Proof For n > 6, the definition of W_; and (2.1) confirm that lOZgy y = n. Thus, the

desired inequality is equivalent to W_;(=2) < —log n. Since f(w) = we" decreases on
(—00,-1] (Figure 1b) and -1 < =2 < 0, the desired inequality is equivalent to

2 1
~Z> f(~logn) = (~logn)e 8" = - 81,
n n
which holds whenever log 7 > 2. This occurs for n > e* ~ 7.38906. ]

Remark 2.3 Forall —e™' < x <0, thebound W_,(x) < log(-x) - log(-log(-x)) is
valid (see [9, equations (8) and (39)]). It follows from this observation and (2.1) that

ynzﬁ log llogE +logn],
2 2 2

which also implies Lemma 2.2 for n > 15.
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The next lemma is needed later to handle a few exceptional primes.

Lemma 2.4 Let x > 1 be a half integer, and let C = % =2.89206.. ..

1. Let p_g < p_7 << p_y < x denote the largest eight primes (if they exist) in the
interval (3, x). We have the sharp bound

(2.2) F(x)= ) ! <C

1<n<8 X ~ P-n

(see Figure 2a). The corresponding summand in (2.2) is zero if p_, does not exist.
2. Let x < py < py <--- < pg denote the smallest eight primes (if they exist) in the
interval (x, %). We have the sharp bound

(2.3) F(x)= ), ! <C

1<n<8 Pn —

(see Figure 2a). The corresponding summand in (2.3) is zero if p, does not exist.

Proof (a)Ifx >10.5 then2,3,5 ¢ (%, x). Computation confirms that
8
Fl(x) < F1(35) = g =2.66...

for x < 9.5.1f x > 10.5, then any prime in (3, x) is congruent to one of 1, 7,11,13,17, 19,
23,29(mod 30). There are finitely many patterns modulo 30 that the p_g, p_7,..., p
may assume. Among these, computation confirms that F; (x) is maximized if
p-1=|x] =19(mod 30), p-s =|x] —12 = 7(mod 30),
P2 =|x] -2=17(mod 30), p 6 = |x] — 18 = 1(mod 30),
p-3 =|x] - 6=13(mod 30), | x] =20 = 29(mod 30),
P-4 =|x]| -8 =11(mod 30), |x] — 26 = 23(mod 30),
which yields the desired upper bound C. This prime pattern first occurs for
x = 88,819.5 (see https://oeis.org/A022013).
(b) If x > 5.5, then 2,3,5 ¢ (x, 2*). Observe that F,(x) < 2 for x < 4.5 (attained at

x =1.5,2.5,4.5). If x > 5.5, then (as in (a)), any prime in (x, 37") is congruent to one
of1,7,11,13,17,19, 23, 29(mod 30). It follows that F,(x) is maximized if

X

]+ 2 =13(mod 30), [x] +18 = 29(mod 30),
]+ 6 =17(mod 30), [x] +20 =1(mod 30),
] +8=19(mod 30), [x]+ 26 = 7(mod 30),

p1 = [x] = 11(mod 30), Ps = [x] +12 = 23(mod 30),
=[x
=[x

P4—[

which yields the desired upper bound C. This prime pattern occurs for x = 10.5,
but not all eight primes lie in (x, %x) Therefore, the first admissible value is x =
15,760, 090.5 (see https://oeis.org/A022011). |

We also need an elementary estimate on kth powers in intervals.
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& ENi-1 8Ni

T
X mk (m+1)* (m+ Ny —1)¥ (m+ Nk  X+h

> (Nk - 1)g1
> ngl

Figure 3: Proof of Lemma 2.5.

Lemma 2.5 Let X > 1be a noninteger, h > 1, and k > 2.
(1) There are at most Ny + 1 perfect kth powers in [ X, X + h), in which Ny < ﬁ
(2) The shortest gap between kth powers in [X, X + h) (if they exist) is Gx > k\/X.

Proof = We may assume that X is so large that Ny > 1. Let m = [ X ﬂ so that m* is
the first kth power larger than X. Consider the gaps g1, g2, . .., gn, between the Ny
consecutive kth powers in [ X, X + h) (see Figure 3). Then

Gy =min{gi, g2...,gn, } = &1 = (m+ 1) —m* > km* > kXF > kVX.
The desired inequality follows since NGy < g1 + g2 + - + gn, < h. ]

Finally, we need an estimate on the nth harmonic number H,, = 27:1 %

(2.4) for n>1,

<H,-logn-y<

2

2n+5

in which y is the Euler-Mascheroni constant [16]. We require the upper bound
o1 1 1 1 1 1 1 1
27:(1+7+7+---+—)—(7+7+---+—):H2n—7Hn
Z20-1 273 ) \27 4 2n 2

<|log2n+y+ ! —llon++ !
=178 Y an+1 2\ 08Ty 2n+ 2
1 1
logn+5y+log2+7

3 5
1
1 4
47’l+§ 47’1"’5

IA

1
logn+—-y+log2+ —————
8 2)’ 8 240n2 + 68n + 4

IA
N —= = N~

1 7
. - —_— > 1.
(2.5) logn+2y+10g2+312 for n>1

3 Proof of Theorem 1.1

In what follows, x e N+ 1 = {2,271 and ¢ = 1. Minor improvements below
2 222’2 log x

are possible; these were eschewed in favor of a final estimate of simple shape.
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3.1 When n is very far from x

Suppose that n <% or 2 >n. Then log <-log3 or log3 <log2<logZ, so

[log | >log 2. If T > (log 2)™" > 2.46, then

min< 1, ! — (< ! — < ! 5
T|log % | T|log%| = Tlog3

For such T, the previous inequality and Lemma 2.1 imply (recall that ¢ = 1ng)
<A 1 1 (A 1
(A min e (A1)
nizor M/ nlogn T|log *| nizor W<\ logn J\ Tlog 3
nx3 nx3x
xC
<—1 1+
Tlog§ ogl(l+c)
;( logc +yc)
)
3.1 log1 —
(3.1) ( og 0gx+ x)

3.2 Reduction to a sum over prime powers

Suppose that ¥ < n < 2*. Let z =1- 2 and observe that |z| < . Then

log% =—log(1-2) :z(—l%(lz_z)),

in which the function in parentheses is positive and achieves its minimum value
2log 3 = 0.81093... on |z| < ] at its left endpoint —1 (see Figure 4a). Then

3 1
(3.2) |log(1-z)| > (210g 2)|z for |z| < >
whose validity is illustrated in Figure 4b. Therefore,

3 3
(3.3) >[2log = 1- 2 for E<n<—x,
2 X 2 2

X
log —
Ogn

and hence

<x; A(n) 1
T T A2 \nttelogn J\ [log 2|
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14} 0.7F
13} 06
1.2F 05t

041

0.3}
0.2}
0.1}

-0.4 -0.2 C 0.2 04 -0.4 -0.2 : 0.2 0.4

@) _w onlz| < % (b) | log(1 = z)| (blue) and (210g%)|z| (gold) on

1
IZl < 2

Figure 4: Graphs relevant to the derivation of (3.2).

x n) 1
<= by (3.3
r 2, (e @)
x° (n) 1 .
<— X
TGlog}) | 2y ( logn)u o L en)
B x° 3 A(n) 1
T Tlog3 . 2 \nclogn ) |x - nl
x° log p ) 1
< — def. of A
Tlog? ;2 (o thgg gy (o)

e 1

(3.4)
Tlog2 1;3»' k|x — pk|

I/\

(since ¢ = @),

in which the final two sums run over all prime powers p* in the stated interval.
The remainder of the proof uses ideas from [5, Lemma 2] to estimate

1 1 1
(3.5) — .
"<‘;:<3" k|x pk| x<§£37" |X—p| i< pZin k|x Pk|
k>2
Sprime () _
Spower(x)

3.3 The sum over primes

First observe that

Sprime(¥) < Y. 5t >

§<p<x p x<p< 3x p x

S;rime(x) S;rimg(x)
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We require the Brun-Titchmarsh theorem (see [10, Corollary 2]):

2Y
(3.6) n(X+Y)-n(X)< 2 where 7(x) = > 1,X>0,and Y > L.

log p<x

3.3.1 The lower sum over primes

Let p_g < p_(x-1) <+ < p-2 < p_1 be the primes in (7,x); note that k < 7. Apply
(3.6)with X =x—-y,and Y = y, to get

2yy

=n for6<n<k
log y,

0<m(x)—m(x—yn) <

by Lemma 2.2, so (x — y,,, x] contains at most n primes. Thus, p_(,1) < X — y, and

1 1
(3.7) — < — for6<n<k-1

X=P_(n41) Yn

Then Lemma 2.2, which requires k > 8, and the integral test provide

2 > 2

S<p<x X—P 1<p<g X~ P-n 9<n<k X T P-n

<R+ Y L (by (22) and (3.7))

8<n<k-1Vn

1
7<n<3 n log n

< C+2loglogx,

1 1 1

<C+2 (by Lemma 2.2)

which is valid for k < 7 since Lemma 2.4a shows that the sum is majorized by C.

3.3.2 The upper sum over primes
Let p; < pp < - < py denote the primes in (x,2*) and note that k < %. Then (3.6)
with X = x and Y = y,, ensures that

2yn
03n(x+yn)—n(x)sizn for 6<n<k
log v,

by Lemma 2.2, so (x,x + y,,] contains at most n primes. Thus, p,4; > x + y,, and

1 1
< — for 6<n<k.

pn+1_x a yn

(3.8)

An argument similar to that above reveals that

Yoy

x<p< P—X 1in<g Pn—X  gipek Pn—X

< C+2loglogx.
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3.3.3 Final bound over primes

For x e N+ %, the previous inequalities yield

(39) Sprime (x) = Z

x 3l| - |
2<P<3

<2C+4loglogx.

3.4 The sum over prime powers

We now majorize

1
S (x) = —_
power K
%<pk<37x k|x p |
k>2
3.4.1 Initial reduction
To bound Syower (x) it suffices to majorize
1
3.10 S X)= —_
G0 RARRP Oy
i<n <7
k>2
n>2sq. free

in which the prime powers p* are replaced with the powers n* of square free n > 2. The
square-free restriction ensures that powers such as 26 = (22)* = (2°)? are not counted

multiple times in (3.10). If 5 < nk < 37" and k > 2, then (since n > 2)
log 3%

(3.11) k<82 |2.4logx|  for  x>3.5.
log2

3.4.2 Nearest-power sets

The largest contributions to Seqf(x) come from the powers closest to x. We handle
those summands separately and split the sum (3.10) accordingly. For each k > 2, the
inequalities [x¥ | < x < [xi 1¥ exhibit the two kth powers nearest to x. Define

(3.12) Ni € {Lack J*, Txk 75}

according to the following rules:

o N} contains [x%]k if it is square free and belongs to (%, ).
: PR LTS x 3x
+ Nj contains [x* |* if it is square free and belongs to (3, ).
Consequently, Ny, if nonempty, contains only powers that satisfy the restrictions in
(3.10). The square-free condition ensures that N; n Ny = & for j # k.

Write Sgqf(X) = Snear(X) + Sgar(X), in which

1 1
3.13 Shear = —_— d St = —_—.
( ) (x) . Zk:ix k|x—nk\ an f: (x) Z};LX k|x—nk|

S<n< F<n'<
k>2 k>2
n>2 sq. free n>2 sq. free
n*eNy n* Ny

https://doi.org/10.4153/50008439523000218 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439523000218

The error term in the truncated Perron formula 1131
3.4.3 Near Sum
For x > 3.5, a nearest-neighbor overestimate provides

1
Snear(x) = ), ] (by 3.13)
§<nk<37" x-n
k>2
n>2 sq. free
nkeNk

[2.4log x| 1

= 2 X

—_— (by 3.11)
k=2 meNy klx - m|

1 |2.4log x| 1
<3 (since k > 2)
2 k=2 meNy |x - m|
1 [2.41()ng—2( 1 1 )
<5 Nt ; (see below)
2% x=(lx]-7)  (x]+j)-=x
1 [2.41ogx]-1 2 |2.4log x| 1
<= - <2 Z I
= o 20-1
14
<log(|2-4logx|) +y+2log2+ D (by 2.5)
7
(3.14) <loglogx +y +2log2+log2.4 + T

Let us elaborate on a crucial step above. Consider the at most [2logx| -1 pairs
of values |x — m| that arise as m ranges over each Ny with 2 < k < |2logx]| (since
Nj(x) NNy = @ for j # k, no m appears more than once). Replace these values with
the absolute deviations of x from its 2 x (|2log x| — 1) nearest neighbors | x| — j (to
the left) and [x] + j (to the right), in which 0 < j < |2log x| — 2. Since x € N + 1, these
deviations are of the form ¢ — ] for1 < ¢ < [2logx| - 1.

3.4.4 Splitting the second sum

From (3.13), the second sum in question is

1 1
Star (x) = T $ T = Star (%) + SEr (%)
ar %<§<% k|x—nk| £<nzk<37x k|x_nk| ar ar >
k>2 n,k>2
n>2 sq. free n*eN
n*eNy

in which

1 1
315) S, =  E—— d S = _
( ) far(x) z Z k|x—nk| an far(x) Z Z k|x—nk|

k>2 %<nk<x k>2 x<nk<37"

nZZ,nk¢Nk nZZ,nkéNk
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1
I
3 (m_ - N7k (m_ =2k (m_-1)* mk ~ mk (my +1)% (my +2)% (my + Nk 3%

Figure 5: Analysis of kth powersin [ %, 2], in which m_ = |x/* ] and m = [x"/¥] are excluded

from consideration. There are at most Ny, admissible kth powers in [, x), with minimal gap
size G, and at most N} admissible kth powers in [x, 2 ), with minimal gap size G;.

For k > 2, Lemma 2.5 with X = h = 7, then with X = x and h = 7, implies that

k\/_ V" VX
—=, N < +=, and G{ > kv/x, N<X=
\/— k 2\/5 k \/_ k

3.16 Gy
(3.16) k2 ,
are admissible in Figure 5. For 1 < j < N; and 1< j < Ny, respectively,

jkV/x
v

Let Nj > 1, since otherwise the corresponding sum estimated below is zero. Then

= (m_ - )] > and  [x— (. + )| > k.

1 Ny 1 \/_HN’
(3.17) > - => -
U e R L RV
n22,nk¢Nk
and
1 N 1 Hy:
(3.18) = < — L
2 K AR (e ) SRR
n22,nk¢32¢k
Therefore,
1 \/_ HN
Star (x by (3.15) and (3.17)
f: ( ) kgz x<§:<x k|x | \/_k>2 k2 (y )
n>2,n éNk
_f( log x - log2+y+3)z L (by49)and G16))
\/_ k>2k
(3.19) 71_6( lo x—flo 2+ +3) (since {(2) 1= Z=%)
: N 8 goty
and
1 1 Hyy

Star(x) = — < £ (by(3.15) and (3.18))
f ,gz x<nz":<37x klx —nk| = /x &5 k?

nzz,nk¢Nk

1 (1 3 1
< \/)_C(zlogx—210g2+y+ 7)k>2k2 (by (2.4) and (3.16))
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2 _

(3.20) 6\/_

( logx - 210g2+y+3) (since {(2) 1= ==5).

3.4.5 Final prime-power estimate
Using (3.14), (3.19), and (3.20), we can bound
Spower(X) < Ssqf (%) = Snear(x) + Sg, (%) + Star (%)
We postpone doing this explicitly until the finale below.
4 Conclusion

For x > 3.5, with T > (log %)_1, the sum (1.3) is bounded by

v\, e !
loglogx + —— )+ Tl — k|
( log x Tlog% %q,;g?x klx - p¥|

_°
Tlog? 3

by (3.1) by (3.4)

e
) + Wg% (Sprime(x) + Ssqf(x))

e
< Wgé loglog x +

5 log x

by (3.5) and (3.10)

e y e
< — | logl + —— |+ 2C + 4logl
< Tlog;( oglogx logx) [ oglog x
Sprime (x) bounded by (3.9)

loglogx +y +2log2 + lo 24+L il 10 x—flo 2+ +§
glogx +y g g 156 3\/5 g g2ty

Snear (x) bounded by (3.14) S, bounded by (3.19)

71-2_ lox 2log2 + +§
6\/_ g g2ty

Si.(x) bounded by (3.20)

1 3.86972 5.21918logx  1.85268
<7 40.22465loglog x + 58.11106 +

+ —
log x Vx VX
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