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The error term in the truncated Perron
formula for the logarithm of an L-function
Stephan Ramon Garcia, Jeffrey Lagarias , and Ethan Simpson Lee

Abstract. We improve upon the traditional error term in the truncated Perron formula for the
logarithm of an L-function. All our constants are explicit.

1 Introduction

The truncated Perron formula relates the summatory function of an arithmetic
function to a contour integral that may be estimated using techniques from complex
analysis. Let F(s) = ∑∞n=1 f (n)n−s be absolutely convergent on Re s > cF ; examples
include the Riemann zeta function, Dirichlet L-functions, the Dedekind zeta function
associated with a number field, and Artin L-functions. The truncated Perron formula
tells us that if x > 0 is not an integer, T ≥ 1, and c > cF , then

∑
n≤x

f (n) = 1
2πi ∫

c+iT

c−iT
F(s)x s

s
ds + O∗( ∞∑

n=1
( x

n
)c ∣ f (n)∣min{1, 1

T ∣ log x
n ∣} ),(1.1)

in which O∗(g(x)) = h(x)means ∣h(x)∣ ≤ g(x) (see [8, Chapter 7], [10, Section 5.1],
[11, Example 4.4.15], and [15, Section II.2]). We let T depend on x, and let c = cF +
1/ log x, so that x c = ex cF . A variation of (1.1) improves the order of the error term
by truncating the integral at ±T∗ for an unknown T∗ ∈ [T , O(T)] [3], although this
is inconvenient if one must avoid T∗ that correspond to the ordinates of nontrivial
zeros of F(s). The authors of [3] have also informed us in a personal communication
that their paper inherited an unfortunate typo from another paper, so the error term
in their variation of the truncated Perron formula could be worse by a factor of log x;
this means that our main result (Theorem 1.1) will be comparable in strength and more
straightforward to apply when compared against the outcome of their result.

For Re s > 1, the logarithm of the Riemann zeta function ζ(s) = ∑∞n=1 n−s is
log ζ(s) = ∑∞n=1 Λ(n)(log n)−1n−s , in which Λ(n) is the von Mangoldt function.
The logarithm of a typical L-function is of the form ∑∞n=1 Λ(n)an(log n)−1n−s , in
which the an are easily controlled. For example, ∣an ∣ ≤ 1 for Dirichlet L-functions and
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The error term in the truncated Perron formula 1123

∣an ∣ ≤ d for Artin L-functions of degree d (see [7, Chapter 5]. In these cases, the error
term in (1.1) with c = 1/ log x is on the order of

∞∑
n=2
( x

n
) 1

log x Λ(n)
n log n

min{1, 1
T ∣ log x

n ∣} = O( log x
T
).(1.2)

Granville and Soundararajan used (1.2) with Dirichlet L-functions to study large
character sums [6, equation (8.1)]. Cho and Kim applied it to Artin L-functions to
obtain asymptotic bounds on Dedekind zeta residues [1, Proposition 3.1]. A bilinear
relative of (1.2) appears in Selberg’s work on primes in short intervals [14, Lemma 4].
Analogous sums arise with the logarithmic derivative of an L-function in [4, p. 106]
and [12, p. 44].

We improve upon (1.2) asymptotically and explicitly in the following result.

Theorem 1.1 If x ≥ 3.5 is a half integer and T ≥ (log 3
2 )−1 > 2.46, then

∞∑
n=2
( x

n
) 1

log x Λ(n)
n log n

min{1, 1
T ∣ log x

n ∣} ≤
R(x)

T
,(1.3)

in which

R(x) = 40.23 log log x + 58.12 + 3.87
log x

+ 5.22 log x√
x

− 1.84√
x

.(1.4)

Our result has a wide and explicit range of applicability. For example, the following
corollary employs (1.1) with T = x and c = 1/ log x. Since one can use analytic tech-
niques to see the integral below is asymptotic to log L(1, χ), one can relate log L(1, χ)
to a short sum. We hope to do so explicitly in the future.

Corollary 1.2 Let L(s, χ) be an entire Artin L-function of degree d such that

L(s, χ) =∏
p

d∏
i=1
(1 − α i(p)

ps )
−1

for Re s > 1

with a(pk) = α1(p)k +⋯ + αd(p)k for prime p. Then, with R(x) as in (1.4), we have

∑
1<n<x

Λ(n)a(n)
n log n

= 1
2πi ∫

1
log x +ix

1
log x −ix

x s

s
log L(1 + s, χ) ds + O∗(d R(x)

x
) .

2 Preliminaries

Here, we establish several lemmas needed for the proof of Theorem 1.1.

Lemma 2.1 If σ > 0, then log ζ(1 + σ) ≤ − log σ + γσ .

Proof For s > 1, we have ζ(s) ≤ eγ(s−1)/(s − 1) [13, Lemma 5.4]. Let s = 1 + σ and
take logarithms to obtain the desired result. ∎

For real z, w, the equation z = wew can be solved for w if and only if z ≥ −e−1. There
are two branches for −e−1 ≤ z < 0. The lower branch defines the Lambert W−1(z)
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Figure 1: Graphs relevant to the construction of the sequence yn .

Figure 2: The functions F1(x) and F2(x) behave erratically.

function [2], which decreases to −∞ as z → 0− (see Figure 1a). For n ≥ 6 > 2e, we
define the strictly increasing sequence

yn = −n
2

W−1(−2
n
) for n ≥ 6.(2.1)

Lemma 2.2 For n ≥ 8, we have 2yn
log yn

= n and yn ≥ n
2 log n.

Proof For n ≥ 6, the definition of W−1 and (2.1) confirm that 2yn
log yn

= n. Thus, the
desired inequality is equivalent to W−1(−2

n ) ≤ − log n. Since f (w) = wew decreases on(−∞,−1] (Figure 1b) and − 1
e < − 2

n < 0, the desired inequality is equivalent to

− 2
n
≥ f (− log n) = (− log n)e− log n = − log n

n
,

which holds whenever log n ≥ 2. This occurs for n ≥ e2 ≈ 7.38906. ∎
Remark 2.3 For all −e−1 ≤ x < 0, the bound W−1(x) ≤ log(−x) − log(− log(−x)) is
valid (see [9, equations (8) and (39)]). It follows from this observation and (2.1) that

yn ≥ n
2
(log( 1

2
log n

2
) + log n) ,

which also implies Lemma 2.2 for n ≥ 15.
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The error term in the truncated Perron formula 1125

The next lemma is needed later to handle a few exceptional primes.

Lemma 2.4 Let x > 1 be a half integer, and let C = 1284699552
444215525 = 2.89206 . . ..

1. Let p−8 < p−7 < ⋯ < p−1 < x denote the largest eight primes (if they exist) in the
interval ( x

2 , x). We have the sharp bound

F1(x) = ∑
1≤n≤8

1
x − p−n

≤ C(2.2)

(see Figure 2a). The corresponding summand in (2.2) is zero if p−n does not exist.
2. Let x < p1 < p2 < ⋯ < p8 denote the smallest eight primes (if they exist) in the

interval (x , 3x
2 ). We have the sharp bound

F2(x) = ∑
1≤n≤8

1
pn − x

≤ C(2.3)

(see Figure 2a). The corresponding summand in (2.3) is zero if pn does not exist.

Proof (a) If x ≥ 10.5, then 2, 3, 5 ∉ ( x
2 , x). Computation confirms that

F1(x) ≤ F1(3.5) = 8
3
= 2.66 . . .

for x ≤ 9.5. If x ≥ 10.5, then any prime in ( x
2 , x) is congruent to one of 1, 7, 11, 13, 17, 19,

23, 29(mod 30). There are finitely many patterns modulo 30 that the p−8 , p−7 , . . . , p−1
may assume. Among these, computation confirms that F1(x) is maximized if

p−1 = ⌊x⌋ ≡ 19(mod 30), p−5 = ⌊x⌋ − 12 ≡ 7(mod 30),
p−2 = ⌊x⌋ − 2 ≡ 17(mod 30), p−6 = ⌊x⌋ − 18 ≡ 1(mod 30),
p−3 = ⌊x⌋ − 6 ≡ 13(mod 30), p−7 = ⌊x⌋ − 20 ≡ 29(mod 30),
p−4 = ⌊x⌋ − 8 ≡ 11(mod 30), p−8 = ⌊x⌋ − 26 ≡ 23(mod 30),

which yields the desired upper bound C. This prime pattern first occurs for
x = 88, 819.5 (see https://oeis.org/A022013).

(b) If x ≥ 5.5, then 2, 3, 5 ∉ (x , 3x
2 ). Observe that F2(x) ≤ 2 for x ≤ 4.5 (attained at

x = 1.5, 2.5, 4.5). If x ≥ 5.5, then (as in (a)), any prime in (x , 3x
2 ) is congruent to one

of 1, 7, 11, 13, 17, 19, 23, 29(mod 30). It follows that F2(x) is maximized if

p1 = ⌈x⌉ ≡ 11(mod 30), p5 = ⌈x⌉ + 12 ≡ 23(mod 30),
p2 = ⌈x⌉ + 2 ≡ 13(mod 30), p6 = ⌈x⌉ + 18 ≡ 29(mod 30),
p3 = ⌈x⌉ + 6 ≡ 17(mod 30), p7 = ⌈x⌉ + 20 ≡ 1(mod 30),
p4 = ⌈x⌉ + 8 ≡ 19(mod 30), p8 = ⌈x⌉ + 26 ≡ 7(mod 30),

which yields the desired upper bound C. This prime pattern occurs for x = 10.5,
but not all eight primes lie in (x , 3

2 x). Therefore, the first admissible value is x =
15, 760, 090.5 (see https://oeis.org/A022011). ∎

We also need an elementary estimate on kth powers in intervals.

3��9��  084�8:2 �����	� ����
���	�������
�� /54�310�8�54�1�/"�
.�/:4021���4!1:�4�"��:1��

https://oeis.org/A022013
https://oeis.org/A022011
https://doi.org/10.4153/S0008439523000218


1126 S. R. Garcia, J. Lagarias, and E. S. Lee

X + h(m + Nk)k(m + Nk − 1)k(m + 1)kmkX

gNkgNk−1g1

> (Nk − 1)g1

> Nk g1

Figure 3: Proof of Lemma 2.5.

Lemma 2.5 Let X > 1 be a noninteger, h > 1, and k ≥ 2.
(1) There are at most Nk + 1 perfect kth powers in [X , X + h), in which Nk ≤ h

k
√

X .
(2) The shortest gap between kth powers in [X , X + h) (if they exist) is Gk ≥ k

√
X.

Proof We may assume that X is so large that Nk ≥ 1. Let m = ⌈X 1
k ⌉ so that mk is

the first kth power larger than X. Consider the gaps g1 , g2 , . . . , gNk between the Nk
consecutive kth powers in [X , X + h) (see Figure 3). Then

Gk =min{g1 , g2 , . . . , gNk} = g1 = (m + 1)k −mk ≥ kmk−1 ≥ kX k−1
k ≥ k

√
X .

The desired inequality follows since NkGk ≤ g1 + g2 +⋯ + gNk ≤ h. ∎
Finally, we need an estimate on the nth harmonic number Hn = ∑n

j=1
1
j :

1
2n + 2

5
< Hn − log n − γ < 1

2n + 1
3
≤ 3

7
for n ≥ 1,(2.4)

in which γ is the Euler–Mascheroni constant [16]. We require the upper bound
n∑
ℓ=1

1
2ℓ − 1

= (1 + 1
2
+ 1

3
+⋯ + 1

2n
) − ( 1

2
+ 1

4
+⋯ + 1

2n
) = H2n − 1

2
Hn

≤ ( log 2n + γ + 1
4n + 1

3
) − 1

2
( log n + γ + 1

2n + 2
5
)

≤ 1
2

log n + 1
2

γ + log 2 + 1
4n + 1

3
− 1

4n + 4
5

= 1
2

log n + 1
2

γ + log 2 + 7
240n2 + 68n + 4

≤ 1
2

log n + 1
2

γ + log 2 + 7
312

for n ≥ 1.(2.5)

3 Proof of Theorem 1.1

In what follows, x ∈ N + 1
2 = { 3

2 , 5
2 , 7

2 , . . .} and c = 1
log x . Minor improvements below

are possible; these were eschewed in favor of a final estimate of simple shape.
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3.1 When n is very far from x

Suppose that n ≤ x
2 or 3x

2 ≥ n. Then log x
n ≤ − log 3

2 or log 3
2 < log 2 ≤ log x

n , so∣ log x
n ∣ ≥ log 3

2 . If T ≥ (log 3
2 )−1 > 2.46, then

min{1, 1
T ∣ log x

n ∣} ≤
1

T ∣ log x
n ∣ ≤

1
T log 3

2
.

For such T, the previous inequality and Lemma 2.1 imply (recall that c = 1
log x )

∑
n≤ x

2 or
n≥ 3x

2

( x
n
)c Λ(n)

n log n
min{1, 1

T ∣ log x
n ∣ } ≤ x c ∑

n≤ x
2 or

n≥ 3x
2

1
n1+c (Λ(n)

log n
)( 1

T log 3
2
)

≤ x c

T log 3
2

log ζ(1 + c)
≤ x c

T log 3
2
(− log c + γc)

= e
T log 3

2
( log log x + γ

log x
).(3.1)

3.2 Reduction to a sum over prime powers

Suppose that x
2 < n < 3x

2 . Let z = 1 − n
x and observe that ∣z∣ < 1

2 . Then

log x
n
= − log(1 − z) = z (− log(1 − z)

z
) ,

in which the function in parentheses is positive and achieves its minimum value
2 log 3

2 = 0.81093 . . . on ∣z∣ < 1
2 at its left endpoint − 1

2 (see Figure 4a). Then

∣ log(1 − z)∣ > (2 log 3
2
)∣z∣ for ∣z∣ < 1

2
,(3.2)

whose validity is illustrated in Figure 4b. Therefore,

∣ log x
n
∣ > (2 log 3

2
)∣1 − n

x
∣ for x

2
< n < 3x

2
,(3.3)

and hence

∑
x
2 <n< 3x

2

( x
n
)c Λ(n)

n log n
min{1, 1

T ∣ log x
n ∣}

≤ x c

T ∑
x
2 <n< 3x

2

( Λ(n)
n1+c log n

)( 1
∣ log x

n ∣ )
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Figure 4: Graphs relevant to the derivation of (3.2).

≤ x c

T ∑
x
2 <n< 3x

2

( Λ(n)
n1+c log n

) 1
(2 log 3

2 )∣1 − n
x ∣ (by (3.3))

≤ x c

T(2 log 3
2 ) ∑x

2 <n< 3x
2

2
x
( Λ(n)

nc log n
) 1
∣1 − n

x ∣ (since x
2 < n)

≤ x c

T log 3
2
∑

x
2 <n< 3x

2

( Λ(n)
nc log n

) 1
∣x − n∣

≤ x c

T log 3
2
∑

x
2 <pk< 3x

2

( log p
(pk)c k log p

) 1
∣x − pk ∣ (def. of Λ)

≤ e
T log 3

2
∑

x
2 <pk< 3x

2

1
k∣x − pk ∣ (since c = 1

log x ),(3.4)

in which the final two sums run over all prime powers pk in the stated interval.
The remainder of the proof uses ideas from [5, Lemma 2] to estimate

∑
x
2 <pk< 3x

2

1
k∣x − pk ∣ = ∑

x
2 <p< 3x

2

1
∣x − p∣

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
Sprime(x)

+ ∑
x
2 <pk< 3x

2
k≥2

1
k∣x − pk ∣

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
Spower(x)

.(3.5)

3.3 The sum over primes

First observe that

Sprime(x) ≤ ∑
x
2 <p<x

1
x − p

BCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCE
S−prime(x)

+ ∑
x<p< 3x

2

1
p − x

BCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCE
S+prime(x)

.
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We require the Brun–Titchmarsh theorem (see [10, Corollary 2]):

π(X + Y) − π(X) ≤ 2Y
log Y

, where π(x) = ∑
p≤x

1, X > 0, and Y > 1.(3.6)

3.3.1 The lower sum over primes

Let p−k < p−(k−1) < ⋯ < p−2 < p−1 be the primes in ( x
2 , x); note that k ≤ x

2 . Apply
(3.6) with X = x − yn and Y = yn to get

0 ≤ π(x) − π(x − yn) ≤ 2yn
log yn

= n for 6 ≤ n ≤ k

by Lemma 2.2, so (x − yn , x] contains at most n primes. Thus, p−(n+1) ≤ x − yn and

1
x − p−(n+1) ≤

1
yn

for 6 ≤ n ≤ k − 1.(3.7)

Then Lemma 2.2, which requires k ≥ 8, and the integral test provide

∑
x
2 <p<x

1
x − p

= ∑
1≤n≤8

1
x − p−n

+ ∑
9≤n≤k

1
x − p−n

≤ F1(x) + ∑
8≤n≤k−1

1
yn

(by (2.2) and (3.7))
≤ C + 2 ∑

7<n≤ x
2

1
n log n

(by Lemma 2.2)
≤ C + 2 log log x ,

which is valid for k ≤ 7 since Lemma 2.4a shows that the sum is majorized by C.

3.3.2 The upper sum over primes

Let p1 < p2 < ⋯ < pk denote the primes in (x , 3x
2 ) and note that k ≤ x

2 . Then (3.6)
with X = x and Y = yn ensures that

0 ≤ π(x + yn) − π(x) ≤ 2yn
log yn

= n for 6 ≤ n ≤ k

by Lemma 2.2, so (x , x + yn] contains at most n primes. Thus, pn+1 ≥ x + yn and

1
pn+1 − x

≤ 1
yn

for 6 ≤ n ≤ k.(3.8)

An argument similar to that above reveals that

∑
x<p< 3x

2

1
p − x

≤ ∑
1≤n≤8

1
pn − x

+ ∑
9≤n≤k

1
pn − x

≤ C + 2 log log x .
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3.3.3 Final bound over primes

For x ∈ N + 1
2 , the previous inequalities yield

Sprime(x) = ∑
x
2 <p< 3x

2

1
∣x − p∣ ≤ 2C + 4 log log x .(3.9)

3.4 The sum over prime powers

We now majorize

Spower(x) = ∑
x
2 <pk< 3x

2
k≥2

1
k∣x − pk ∣ .

3.4.1 Initial reduction

To bound Spower(x) it suffices to majorize

Ssqf(x) = ∑
x
2 <nk< 3x

2
k≥2

n≥2sq. free

1
k∣x − nk ∣ ,(3.10)

in which the prime powers pk are replaced with the powers nk of square free n ≥ 2. The
square-free restriction ensures that powers such as 26 = (22)3 = (23)2 are not counted
multiple times in (3.10). If x

2 < nk < 3x
2 and k ≥ 2, then (since n ≥ 2)

k ≤ log 3x
2

log 2
≤ ⌊2.4 log x⌋ for x ≥ 3.5.(3.11)

3.4.2 Nearest-power sets

The largest contributions to Ssqf(x) come from the powers closest to x. We handle
those summands separately and split the sum (3.10) accordingly. For each k ≥ 2, the
inequalities ⌊x 1

k ⌋k < x < ⌈x 1
k ⌉k exhibit the two kth powers nearest to x. Define

Nk ⊆ {⌊x 1
k ⌋k , ⌈x 1

k ⌉k}(3.12)

according to the following rules:
• Nk contains ⌊x 1

k ⌋k if it is square free and belongs to ( x
2 , 3x

2 ).
• Nk contains ⌈x 1

k ⌉k if it is square free and belongs to ( x
2 , 3x

2 ).
Consequently, Nk , if nonempty, contains only powers that satisfy the restrictions in
(3.10). The square-free condition ensures that N j ∩Nk = ∅ for j ≠ k.

Write Ssqf(x) = Snear(x) + Sfar(x), in which

Snear(x) = ∑
x
2 <nk< 3x

2
k≥2

n≥2 sq. free
nk∈Nk

1
k∣x − nk ∣ and Sfar(x) = ∑

x
2 <nk< 3x

2
k≥2

n≥2 sq. free
nk∉Nk

1
k∣x − nk ∣ .(3.13)
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3.4.3 Near Sum

For x ≥ 3.5, a nearest-neighbor overestimate provides

Snear(x) = ∑
x
2 <nk< 3x

2
k≥2

n≥2 sq. free
nk∈Nk

1
k∣x − nk ∣ (by 3.13)

= ⌊2.4 log x⌋∑
k=2

∑
m∈Nk

1
k∣x −m∣ (by 3.11)

≤ 1
2

⌊2.4 log x⌋∑
k=2

∑
m∈Nk

1
∣x −m∣ (since k ≥ 2)

≤ 1
2

⌊2.4 log x⌋−2∑
j=0

( 1
x − (⌊x⌋ − j) +

1
(⌈x⌉ + j) − x

) (see below)
≤ 1

2

⌊2.4 log x⌋−1∑
ℓ=1

2
ℓ − 1

2
< 2

⌊2.4 log x⌋∑
ℓ=1

1
2ℓ − 1

≤ log(⌊2.4 log x⌋) + γ + 2 log 2 + 14
312

(by 2.5)
< log log x + γ + 2 log 2 + log 2.4 + 7

156
.(3.14)

Let us elaborate on a crucial step above. Consider the at most ⌊2 log x⌋ − 1 pairs
of values ∣x −m∣ that arise as m ranges over each Nk with 2 ≤ k ≤ ⌊2 log x⌋ (since
N j(x) ∩Nk = ∅ for j ≠ k, no m appears more than once). Replace these values with
the absolute deviations of x from its 2 × (⌊2 log x⌋ − 1) nearest neighbors ⌊x⌋ − j (to
the left) and ⌈x⌉ + j (to the right), in which 0 ≤ j ≤ ⌊2 log x⌋ − 2. Since x ∈ N + 1

2 , these
deviations are of the form ℓ − 1

2 for 1 ≤ ℓ ≤ ⌊2 log x⌋ − 1.

3.4.4 Splitting the second sum

From (3.13), the second sum in question is

Sfar(x) = ∑
x
2 <nk< 3x

2
k≥2

n≥2 sq. free
nk∉Nk

1
k∣x − nk ∣ ≤ ∑x

2 <nk< 3x
2

n ,k≥2
nk∉Nk

1
k∣x − nk ∣ = S−far(x) + S+far(x),

in which

S−far(x) =∑
k≥2

∑
x
2 <nk<x

n≥2,nk∉Nk

1
k∣x − nk ∣ and S+far(x) =∑

k≥2
∑

x<nk< 3x
2

n≥2,nk∉Nk

1
k∣x − nk ∣ .(3.15)
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Figure 5: Analysis of kth powers in [ x
2 , 3x

2 ], in which m− = ⌊x 1/k⌋ and m+ = ⌈x 1/k⌉ are excluded
from consideration. There are at most N−k admissible kth powers in [ x

2 , x), with minimal gap
size G−k , and at most N+k admissible kth powers in [x , 3x

2 ), with minimal gap size G+k .

For k ≥ 2, Lemma 2.5 with X = h = x
2 , then with X = x and h = x

2 , implies that

G−k ≥ k
√

x√
2

, N−k ≤
√

x
2
√

2
, and G+k ≥ k

√
x , N+k ≤

√
x

4
(3.16)

are admissible in Figure 5. For 1 ≤ j ≤ N−k and 1 ≤ j ≤ N+k , respectively,

∣x − (m− − j)k ∣ ≥ jk
√

x√
2

and ∣x − (m+ + j)k ∣ ≥ jk
√

x .

Let N±k ≥ 1, since otherwise the corresponding sum estimated below is zero. Then

∑
x
2 <nk<x

n≥2,nk∉Nk

1
k∣x − nk ∣ =

N−k∑
j=1

1
k∣x − (m− − j)k ∣ ≤

√
2HN−k

k2√x
(3.17)

and

∑
x<nk< 3x

2
n≥2,nk∉Nk

1
k∣x − nk ∣ =

N+k∑
j=1

1
k∣x − (m+ + j)k ∣ ≤

HN+k
k2√x

.(3.18)

Therefore,

S−far(x) =∑
k≥2

∑
x
2 <nk<x

n≥2,nk∉Nk

1
k∣x − nk ∣ ≤

√
2√
x ∑k≥2

HN−k
k2 (by (3.15) and (3.17))

≤
√

2√
x
( 1

2
log x − 3

2
log 2 + γ + 3

7
)∑

k≥2

1
k2 (by (2.4) and (3.16))

= π2 − 6
3
√

2x
( 1

2
log x − 3

2
log 2 + γ + 3

7
) (since ζ(2) − 1 = π2−6

6 )(3.19)

and

S+far(x) =∑
k≥2

∑
x<nk< 3x

2
n≥2,nk∉Nk

1
k∣x − nk ∣ ≤

1√
x ∑k≥2

HN+k
k2 (by (3.15) and (3.18))

≤ 1√
x
( 1

2
log x − 2 log 2 + γ + 3

7
)∑

k≥2

1
k2 (by (2.4) and (3.16))
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= π2 − 6
6
√

x
( 1

2
log x − 2 log 2 + γ + 3

7
) (since ζ(2) − 1 = π2−6

6 ).(3.20)

3.4.5 Final prime-power estimate

Using (3.14), (3.19), and (3.20), we can bound

Spower(x) ≤ Ssqf(x) = Snear(x) + S−far(x) + S+far(x).
We postpone doing this explicitly until the finale below.

4 Conclusion

For x ≥ 3.5, with T ≥ (log 3
2 )−1, the sum (1.3) is bounded by

e
T log 3

2
( log log x + γ

log x
)

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
by (3.1)

+ e
T log 3

2
∑

x
2 <pk< 3x

2

1
k∣x − pk ∣

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
by (3.4)

≤ e
T log 3

2
( log log x + γ

log x
) + e

T log 3
2
(Sprime(x) + Ssqf(x))BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE

by (3.5) and (3.10)

≤ e
T log 3

2
( log log x + γ

log x
) + e

T log 3
2
[ 2C + 4 log log xBCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE

Sprime(x) bounded by (3.9)

+ ( log log x + γ + 2 log 2 + log 2.4 + 7
156
)

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
Snear(x) bounded by (3.14)

+ π2 − 6
3
√

2x
( 1

2
log x − 3

2
log 2 + γ + 3

7
)

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
S−far bounded by (3.19)

+ π2 − 6
6
√

x
( 1

2
log x − 2 log 2 + γ + 3

7
)

BCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCE
S+far(x) bounded by (3.20)

]

< 1
T
(40.22465 log log x + 58.11106 + 3.86972

log x
+ 5.21918 log x√

x
− 1.85268√

x
).
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