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Abstract Sections

Most theories of how human cognition is unique propose specific
representational capacities or biases, often thought to  arise through
evolutionary change. In this Perspective, we argue that the evidence
that supports these domain-specific theories is confounded by
general information-processing differences. We argue that human
uniqueness arises through genetic quantitative increases in the global
capacity to  process information and share it among systems such as
memory, attention and learning. This change explains regularities
across numerous subdomains of cognition, behavioural comparisons
between species and phenomena in child development. This strict
evolutionary continuity theory of human intelligence is consistent
with comparative evidence about neural evolution and computational
constraints of memory on the ability to  represent rules, patterns and
abstract generalizations. We show how these differences in the degree
of information processing capacity yield differences in kind for human
cognition relative to  other animals.
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Perspective

Introduction
One of the  deepes t  mysteries about  cognition is how human thought
differs from that  of humanity’s close primate relatives. This question
targets the  core of human nature itself, simultaneously pointing back-
wards to  the evolution of natural intelligence and forwards to  the likely
mechanisms needed  to  make artificial intelligence.

The theor ies  tha t  have gained the  mos t  trac t ion in the  study of
hu m a n  uniqueness  t e nd  t o  be  ‘silver bullet’ hypotheses  tha t  pos it  a
single, specific adapta t ion  or  ‘instinct’ — such as social reasoning or

hierarchical syntax — as the  central catalyst of human-like thought1–8.
Such domain-specif ic theor ie s  have largely d o m i n a t e d  t h e  field’s
hypothesis space. These theories tend  to  propose  domain-specific or
modular  adaptat ions tha t  are innate in humans  and arose uniquely in
human  evolution.

Alternatives t o  a domain-specific evolutionary story have n o t
reached a consensus on  a general cognitive mechanism or  biological

basis for what is un ique  ab o u t  humans9– 1 9.  However, several newer
theories of human  uniqueness  suggest  a shift towards more  general

learning adaptations12,13,19–22. These theories vary in how much innate

structure they assume, from very little to  a lot23. One class of theories
tha t  somet imes  emphasizes the  general  cognitive origins of human

intelligence is t he  cultural intelligence hypothesis13,19,24–33. The cul-
tural intelligence hypothesis suggests tha t  humans  stand  ou t  among
animal species due  to  their unique social learning ability and the  accu-
mulation of cul tural knowledge it affords. Some variations of this
hypothesis emphasize the  role of purportedly innate, domain-specific
mechanisms such as joint attention, theory of mind, language and imi-
tation, whereas others  emphasize the  importance of global increases

in general cognition such as the  innovation rate26 and flexibility13. Even
cultural intelligence theories tha t  posit  innate adaptat ions to  human
social learning agree  tha t  domain-general  learning and  memor y d o
mu c h  of the  heavy lifting in the  assimilation of new, unique hu m a n

knowledge12,31,33.
However, all these theories are inadequate for explaining in detail

how humans  excel a t  the  diversity of tasks they do, and therefore fail
to  explain how unique capabilities emerge  in humans.  We argue tha t
t h e  differences be tween h u m a n  an d  no n - h u ma n  pr ima tes  are  n o t
due  to  one  specialized cognitive adaptat ion or  even a bunch of them.
Instead, human  uniqueness  largely results from a global adapta t ion
for increased information process ing capacity, which alters hum a n
cognition profoundly and qualitatively. Information processing capac-

ity refers to  the  amo u n t  of information34,35 pe r  unit  t ime tha t  can be
stored and transmitted between cognitive mechanisms or subsystems.

In this Perspective, we propose  tha t  global, genetic differences
in learning and memory are sufficient to  account for uniquely human
capacities across domains. We begin by detailing silver-bullet theories,
cultural intelligence theories  and  ou r  information capacity theory.
We t h e n  review evidence for t h e  informat ion capaci ty theor y by
examining three  major  predictions: continuity of ability across spe-
cies; differences in capacity limitations across species; and qualitative
changes in ability enabled by quantitative changes in capacity. We dis-
cuss information capacity across human  and  non-human species and
explore capacity limitations in learning mode l s  an d  ma themat ica l
analyses. We conc lude  t h a t  informat ion capacity is a key de te rmi-
nant  of h u m a n  un iqueness  because  it de te rmines  which rules a n d
representat ions can be  learned by species across a range of domains.

Func t ional specializations within species p rec lude  a  uni tary
definition of intelligence across species (Box 1). Differences in intel-
ligence between species might no t  be  driven by the  same parameters

as differences within a species — we make no  argument  about  differ-
ences within a species in th e  cu r ren t  Perspective. The definition of
human intelligence specifically is also a matter of debate, bu t  the  term
‘intelligence’ is often used to  refer to  abilities tha t  psychologists have
identified as distinctive in humans — capacities such as language, recur-
sion, theory of mind, massive memory, logical and relational reasoning,
complex tool use and  rich conceptual systems.

Theories of human uniqueness
Domain-specific theories  have domina ted  the  theory space  a round
human uniqueness for decades and are still influential in more expansive
modern  theories of human  cognitive origins1,18. The domain-specific
focus on human origins has generated many different silver-bullet pro-
posals. Silver-bullet theories of human cognition are often derived from
sociobiological36,37 o r  adaptationist theories of human behaviour1,38,39

bu t  they also s tem from counter-behaviourist theories about  human
cognition40 and from even earlier theories of biological preparedness
tha t  he lped  t o  spawn th e  cognitive revolution23,41. Some evolution-
ary frameworks propose  tha t  human  behaviour is largely influenced
by genetically specialized cognitive functions1,18,42,43, whereas o thers
p r o p o s e  m u c h  less inna te  structure23,31. Many of t h e  hypothet ical
human-specific adapta t ions tha t  various researchers  p ropose  are in
the  social cognitive domain,  including cheater  detection2, theory of
mind44,45, imitation46 and joint attention47, whereas others are abstract
computations such as symbolic geometry3,48,49, recursion50,51, relational
reasoning52 and  language grammar39,53–55.

Silver-bullet theories face multiple logical challenges in explain-
ing th e  wide range of behaviours tha t  se t  humans  apa r t  from o the r
primates. One is tha t  the  key behaviours tha t  set  humans  apar t  from
other  primates  — behaviours such as language, mathematics, logical
reasoning, complex social structures, tools and technology — generally
m u s t  be  acquired.  Although each behaviour undoubted ly relies on
some innate machinery, the  specific representat ions tha t  adults  pos-
sess in any of these  domains seem to  be  fairly unconstrained and  criti-
cally unknown to  the  youngest  human  learners. A second problem is
tha t  the  distinctively hu man  domains are remarkably diverse in the
representations and processes they require: a silver bullet for language
is unlikely t o  be  a silver bullet for mathema t i c s  o r  logic, m u c h  less
for social reasoning and  tool use. Researchers in these  domains have
t e n d e d  t o  highlight their  own area as the  critical special one,  while
failing to  account for uniquely human  abilities in the  others.  Finally,
each  theory of h u m a n  uniqueness  pos i ts  t ha t  a different cognitive
representat ion was the  silver bullet, bu t  they cannot all be  the  unique
key piece. This observation has led some  theoris ts  to  conclude tha t
perhaps there  was no  single adaptat ion tha t  led to  human uniqueness

but,  rather,  a patchwork of multiple specific adaptations18. However,
a theory that post hoc posits evolutionary change in each domain lacks
predictive power and  parsimony because it has an unprincipled and
unlimited at tr ibution of unique adaptat ions for unique behaviours.
More impor tantly, a pa tchwork adapt a t ion  theor y cont rad ic ts  t he
constituent  domain-specific theories tha t  form the  patchwork, each
of which maintains tha t  humans  are superior to  non-human primates

in one  domain bu t  ordinary in o ther  domains56.
Although some silver-bullet studies claim to  disprove more  gen-

eral explanat ions of differences be tween hu m a n s  a n d  non - human
primates, the  pa t te rn  tha t  emerges  across studies is tha t  humans  dif-
fer in general ways from non-human primates, across many domains
and  cognitive processes. Human advantages extend beyond any one
process or  ability into basic object memory, semantic memory, set and
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Box 1

Biological basis of information capacity differences
Addressing unique cognitive processes requires considering
biological implementation. Unlike alternative theories, the theory
that increased information capacity caused human intelligence
has a plausible biological mechanism underlying human cognitive
abilities and satisfies key criteria for a cause for intelligent behaviour
in biological theory (such as Tinbergen’s questions274). Species
differences in information capacity are innate and rooted in their
embryonic biology.

Functional specialization is a fact of species evolution275. Species
differences in sensorimotor cortices firmly establish functional
specializations that readily differentiate, for example, a bat from a
possum from a primate. However, qualitative differences between
humans and apes are much less profound276,27 . Instead, there are
well-known adaptive advantages to generalized increases in neural
tissue for cognitive plasticity that drive unique cognitive abilities in
humans.

Mammal and bird species with larger brains relative to their body
size are more successful at surviving in novel environments than
species with smaller brains30. This pattern suggests that increased
brain size provides a fitness benefit in vertebrates26, and implicates a
global implementation of human advantages in cognition. Brain size
in humans is expanded across most cortical regions relative to other
primates278,279. Even the prefrontal cortex, which was once thought to
be qualitatively distinct in humans, seems to have expanded largely
quantitatively relative to chimpanzees277,276.

The number of cortical neurons is related to information
processing capacity, and can predict general cognitive abilities
across species, such as the ability to control prepotent responses
or make precise quantitative judgements179,183,265,280. The number
of neurons is genetically determined, set before birth for each
species by the size of their neural progenitor pool and duration of
cortical neurogenesis264,265,281–283, and is therefore a likely substrate
for adaptation284. Humans have an extended period of cortical
neurogenesis during prenatal development compared with other
primates269,285. Extended cortical neurogenesis probably increases
neural density in human cortex generally, although it might be more
likely to increase frontal density than posterior density because
prolongations are more efficiently implemented there within the

sequence  memory, memor y durat ion, cognitive control  and  simple
learning ra tes  — differences in these general cognitive functions are
not  predicted by domain-specific theories.

Theories t ha t  a t t r ibu te  h u m a n  un iqueness  t o  domain-general
adapta t ions ,  such  as t h e  cul tural intelligence hypothesis ,  t e n d  t o
focus o n  evolutionarily new general -purpose neura l  functions an d

structures57, such as ‘quantum leaps’ in adaptive specializations58, cog-

nitive control in the prefrontal cortex59,60, adaptations for abstraction52

and  o ther  evolutionary discontinuities18. These theories p ropose  an
evolutionary discontinuity between humans and non-human primates.
There is general agreement  among cultural intelligence theories tha t
humans  are  un ique  in their social learning abilities, which enhance

human cognition through the accumulation of knowledge in culture18,19.

developmental schedule281. Prior theories argued that human
prefrontal cortex underwent special expansion relative to other brain
regions for functionally specific reasons (for instance, cognitive
control14). But prefrontal expansion seems, instead, a continuation
of a new allometric trend, a yoked scaling between brain parts, that
began in a more distant ancestor shared with other apes281, and might
be a consequence of general selection for neural density under the
ease of embryonic rostral–caudal neurogenesis rather than specific
functional selection for a frontal cognitive process.

Although there is growing genetic evidence in favour of
species-specific circuits for general learning and motivation281,
there is no parallel evidence for circuits supporting purported silver
bullets of human uniqueness, including language, theory of mind,
cheater detection or relational reasoning. In fact, genetic evidence
for these domain-specific theories, such as predicted differences
between identical versus fraternal twins or predicted task-specific
correlations with genes, does not bear out in the data13. More broadly,
there are no theories for how new genetic cognitive modules such as
these would arise, nor how they would have arisen in humans alone.
Finally, existing theories of human uniqueness cannot explain why
corvids perform so similarly to non-human primates on many tasks286.
By contrast, the information capacity theory easily explains this as the
result of similar neural densities between corvids and primates that
afford similar flexibility and learning rates287,288.

Evolutionary theories of human intelligence that take the
chimpanzee mind as a starting point and factor the effects of
scaling-up on cognition are grounded in genetic physiology.
The information capacity theory proposes that increased neural
and glial density, determined by the size of the neural progenitor
pool at birth, qualitatively improves cognition. A plausible pathway
to human uniqueness is one in which genetic changes in the
human brain increase neural density quantitatively, which leads to
exponential increases in information processing capacity, and results
in conceptual learning leaps during child development that are
unseen in other primates. This theory provides a more straightforward
account of cognitive evolution by natural selection and predicts the
unmistakable biological continuity between primate and human
brains.

Some cultural theories effectively propose  silver bullets by empha-
sizing innate, domain-specific mechanisms such as joint at tent ion,
theory of mind, language an d  imitation as key catalysts for hu m a n

uniqueness18,28,31–33,46. Other theories emphasize expansions in general
cognitive mechanisms such as learning, memory and  executive func-
tion as the  evolutionary foundat ion of hu m a n  innovation, complex

communication and  flexibility13,17,25,26,61–63. These latter theor ies show
tha t  global increases in general cognition are  adapt ive and  hypoth-
esize th a t  general  cognitive processes  ra tche t  u p  un ique  cognitive
abilities tha t  define humans  through  adaptat ions and environmental
oppor tuni t ies  for social learning. However, none  of these prior theo-
ries explain how general capacities benefit uniquely human cognitive
abilities.
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By contrast ,  we propose  tha t  a uniquely hu m an  genet ic change
in global information capacity, implemented computationally as an
increased bi t  ra te  a n d  biologically as increased cort ical density, is
powerful enough  t o  yield all of the  qualitative differences be tween
human  and  non-human cognition. Thus, our  idea differs from o ther
domain-genera l  theor ies  because  it is a  st r ic t  continui ty theory of
the  evolution of h u m a n  uniqueness .  Our theor y is synergistic with
versions of the  cultural intelligence hypothesis tha t  p ropose  evolu-
tionary expansions in learning and  memory as a key source of human

uniqueness13,29,30. It builds on  construct ivist  theor ies of conceptua l

ch ange  in childhood6 4–6 6  a n d  co m p l e m e n t s  facets of t h e  cul tural
intelligence hypothesis tha t  emphasize the  uniqueness  of learning

inpu t s  dur ing h u m a n  development12, 19,31. Our hypothes is  expands
those  prior ideas by offering a cognitive explanation for how so many
qualitatively new types of cognition could emerge in humans through
simple, quantitative changes in their global information capacity over
evolution.

We focus on  how human cognition is unique at the  cognitive algo-
rithmic level. However, information capacity constrains cognitive sys-
tems because neural energy is required to  represent  information and

transform it computationally67,68. The key for human-like cognition is
tha t  all neural systems mus t  work together  — improvements in social
reasoning or tool use will not  help much unless information in these sys-
tems can be  conveyed to  systems for learning, memory and inference.
In turn, learned and inferred representations guide systems for percep-
tion and interface tightly with memory architecture. Increased global
information capacity would no t  only be  advantageous bu t  pe rhaps
also essential for any expansion of cognitive faculties in human evolu-
tion, ensuring tha t  enhancements  in one  domain could be  effectively
integrated and utilized across the  cognitive system. This mutualistic,
integrative view directly engages the  evolutionary reality of hum an
uniqueness in global neural density, the  behavioural predictiveness
of such neural measures  across species, and  the  likely ease with which
general information capacity parameters  are changed genetically in
evolution (Box 1).

Our theory yields th ree  concre te  predic tions.  First, it predic t s
some degree of success for all species even in domains that are argued
to  reflect unique human ability. To address  this prediction, we review
the  comparative cognitive and child development  literature, demon-
strating a continuity of success across humans and non-human animals.
Second, the  theory predicts quantifiable differences between humans
and  other  species on  basic information processing measures.  To this
end, we review li terature document ing  predic table and  systematic
performance gaps between species across most cognitive tasks, includ-
ing simple memory and learning paradigms. Last, our  account predicts
that  small changes in information capacity could yield big, qualitative
changes  in behaviour. We presen t  mathemat ica l  analysis, machine
learning models  and cognitive models  for which capacity constraints
have profound consequences.

Continuity of ability across species
The first p re d i c t i o n  of t h e  in fo rma t ion capac i ty t h e o r y is t h a t
non-human species will exhibit some degree  of success on  cognitive
tests  argued  to  capture the  key to  human  uniqueness. Relational rea-
soning, social reasoning, causal reasoning an d  tools, an d  symbolic
thought  and language have been the  focus of major silver-bullet theo-
ries (Table 1). We discuss each of these domains in turn  and show how
evidence in each  su p po r t s  ou r  first pred ic t ion  of part ial success  by
non-human primates.

Social reasoning
Multiple silver-bullet theories posit social reasoning as the key to  human
uniqueness, claiming that one or a few social computations that humans

engage  in are  genet ic  adaptations8,33,42,46,56,69–71. One long-s tanding
hypothesis is tha t  human intelligence was sparked by ‘theory of mind’

abilities56,72,73, or  the capacity to  predict behaviour based on knowledge
that  another  being has a mind. Some theorists  even argue tha t  theory

of mind is an innate module44,45. One problem with the notion of theory of
mind as an innate human adaptation is that its emergence in childhood
depends  on  experience and  its learning trajectories are gradual and

vary widely8. General cognitive capacities such as working memor y
and relational reasoning increase with age and, along with the variability
in the  frequency of social learning input, result in gradual and variable
age-related development  of theory of mind in humans.

Non-human animals can reason about the mental states of others,
including goals, views and actions. The difference in social reasoning
between humans  and  o the r  species lies in the  bread th  and  de p t h  of

how it is deployed across contexts and complex tasks74–76. For instance,
similar to  young human children, non-human animals possess shallow
knowledge about agents that is linked to  concrete features of the world

rather  than internal sta tes  such as deception, ignorance or  surprise77.
Non-human primates have demonstrated all cognitive constructs

t h o u g h t  t o  b e  essent ial t o  h u m a n  social intelligence a n d  uniquely

human: theory of mind78–81, imitation82,83, gaze following84, joint atten-

tion85,86, teaching87,88, helping89,90 and  cooperat ion9 1. These findings
demonstrate tha t  humans and non-human primates share substantial
social cognitive continuity.

The difference between humans and non-human primates is often

one of degree8,84,92,93. For example, a study of imitation found that some
chimpanzees and  capuchin monkeys could socially learn one-stage
and  two-stage puzzle box behaviours bu t  tha t  only hum a n  children
(aged 3–4 years) imitated and modelled the  longer and more complex

three-stage solutions to  the  puzzle box task94. The degree of complex-
ity also influences social reasoning in chimpanzees during teaching

behaviours89. These findings indicate tha t  the  amount  of information
processing demand  causes species differences in social learning.

Although m o s t  theor i s t s  think t h a t  h u m a n  social cognit ion is
rooted in discontinuous cognitive ‘traits’95, another way to  see theory of
mind is as a continuum from basic action prediction to  complex belief
attribution96, or  from shallow reasoning based on representing others’
knowledge to  abstract reasoning based on inferred beliefs97,98. Children
and  non -human  pr imates  are  often charac ter ized as able t o  reason
abo u t  rational ac t ion or  behaviour and  adul t  humans  abou t  menta l
states94,98,99. Differences in complexity a n d  abs t rac t ness  be t ween
h u m a n  an d  non -human social reasoning imply a bot t leneck th a t  is
quantitative rather  than trait-based or  qualitative100.

Many cultural intelligence theor ies  emphasize social learning
specifically as a key source of hu m an  and  non-human differences in

social cognition13,19–21. For instance, biological preparedness accounts
focus o n  biases in sha red  mechan i sms  as th e  hypothetical  locus of

genetic differences between humans and other  species99. These theo-
ries emphasize innate biases such as prosociality in mechanisms such
as at tent ion and  motivation. There are clear differences in successes
a n d  failures o n  social learning tasks be tween h u m a n  children a n d

non-human primates19. But the innate biases have a comparatively small
role in those differences because their function is primarily to  alter the
frequency of encounter ing different learning inputs — which means
that  the  bulk of human  uniqueness arises from learning. Importantly,
non-human primates cannot acquire abilities a t  the  level of a human
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Table 1 | Domains of human uniqueness

Domain

Social
reasoning

Relational
reasoning

Causal
reasoning

Symbolic
thought
and
language

Proposed human
uniqueness

Theory of mind

Social learning
and imitation

Relations
between
relations

Higher-order
causal relations

Complex tool
use

Symbolic
representations

Recursion

Evidence for continuity across species

Human development of theory of mind depends on
age8,245,246, relational reasoning capacity247,248 and
experience

Non-human animals can reason about simple,
limited mental states of others such as gaze–action
relations88–93,99,101,102

Young children and non-human primates’ reasoning tends
to be limited to shallow, concrete and perceptual features
of agents78–93,95,96

Non-human animals can socially learn single items,
associations and short sequences with short durations but
not more demanding sequences91,94,97,103

Non-humans can socially learn some tasks that children
aged 3–5 years learn94,100 but differ from human children
quantitatively, even in solo learning rates for those
tasks103,104

Reasoning about relations between relations (quaternary
relations) develops gradually in humans, in step with
general cognitive capacities105,233,246,248

Apes and young children succeed at relational reasoning
for unary, binary and ternary relations but similarly fail tasks
requiring reasoning about quaternary relations103–105,107

Young children and non-human primates succeed at
quaternary relational tasks when they are given symbols for
the relation69,104,108,110,111

Corvids and monkeys succeed at simple
relations-between-relations tasks113,114,117

Non-human primates and young children often reason
associatively rather than relationally about causal
problems119,124,128,130

Some non-human primates use tools, but their routines
typically involve binary relations118,120,124,127

Humans have more complex routines122,126, often involving
multiple objects and nested subassembly routines, than
other species122–125,127,128,130

Non-human species that create tools often have limited
repertoires of one to a few types of tools121–131

Non-human animals can learn symbols that represent
objects and verbs165,167,168, and tokens to represent
relations111,112,115,171, but the depth and number of such
representations is smaller than in humans169,173,174

Symbol-trained chimpanzees show human-like benefits in
reasoning about relations between relations111,112,114,115

Human recursion has limits, as evidenced by the struggle
to understand sentences with multiple levels of recursive
embedding133–136

Some success for non-human species on hierarchical
tasks, specifically for high-capacity species such as
monkeys and corvids, suggests a general origin for
recursion in humans157,158

Proposed influence of information capacity

Working memory, relational reasoning capacity and the
frequencies of learning inputs increase quantitatively with age and
determine theory of mind ability in humans

Information capacity limits non-human animals to low-complexity
mind–behaviour relations versus more complex ones

Shallow processing requires fewer layers of information
processing than deep processing and is more likely when
information capacity is limited

Quantitative capacity differences limit the number of items and
the duration over which sequences are held in memory — learning
capacity will be worse or absent for longer sequences

Information capacity in non-human primates is insufficient for
human-like learning; social learning demands more capacity than
solo learning because it is passive and occurs over narrow bouts
and durations

Humans need sufficient information processing capacity to
manage the demands of quaternary relations, which results in
gradual development of relational reasoning

Young human children and apes both have lower information
capacities than older children and adults, which results in similar
reasoning performance

Symbols benefit relational reasoning in a general way, by
increasing information capacity for demanding relational
problems in any species

Species with high neural densities succeed at perceptual
relational matching tasks because relational reasoning depends
on general information capacity

Differences in information capacity result in variations in the depth
and breadth of causal reasoning abilities between species

Information capacity constraints limit the depth and complexity
of tool-use routines in non-human primates

Differences in information capacity lead to quantitative disparities
in acquired tool complexity and diversity between species

The capacity to hold in mind a wide range of actions and objects
allows humans to develop more extensive tool repertoires

The synergy between language and information capacity is
self-reinforcing, and humans’ innately higher capacity yields faster
acquisition of symbols and concepts compared with non-human
animals

There is a general synergy between symbols and information
capacity, not specific to humans

Even humans need sufficient information processing capacity
to manage the demands of hierarchical embedding

Non-human species can learn hierarchical patterns but do so more
slowly and shallowly than humans; differences between humans
and non-human animals in the capacity to synthesize large
amounts of information yield differences in hierarchical thought

child even when their environment offers higher frequencies of direct
social input. This difference means  tha t  there  is something critical in
the learning component of social learning that differs between humans
and  non-humans  beyond innate biases in sociality. Learning rates are
cons t ra ined by informat ion capacity, a n d  because  social learning

occurs by observation it requires the  ability to  learn passively and on
someone  else’s schedule and  pace, which makes social learning more
demanding than individual learning. Although learning rates for indi-
vidual versus social learning conditions are rarely compared between
species, we suggest  tha t  the  t ime course of social learning required to
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attain human-like characteristics is outside the  learning capacity for
non-human primates on many tasks. Thus, information capacity could
have a causal role in determining the  successes and  failures of social
learning across species.

Relational reasoning
Other silver-bullet theories suggest  tha t  human  uniqueness  rests  on
forms of non-social reasoning such as the  p rop osed  ‘super-module’

of relational reasoning52,101. Relational reasoning requires deep  logi-
cal representat ions — minimally, it requires comparing two relations
across four entities, a  quaternary representat ion.  For instance, rela-
tional reasoning is involved in compar ing one  relation with another,
such as knowing tha t  the  relationship between the  concep t  of a dog
as it relates  t o  a  do g h o u s e  a n d  a  b i rd as  it relates  t o  a  b i rdh ouse  is
the  same.

Many species form common class and category concepts bu t  often

fail at tasks requiring reasoning about relations between relations102,103.
Both non-human pr imates  and  children younger than  5 years of age

often fail a t  these tasks69,104. Some researchers have argued  tha t  they
can succeed only if given a symbol to  represen t  the  relation (such as

the  word ‘same’ for children)104. Consistent with this account, children
younger than 4 years of age succeed at relational tasks only when given
relational labels, whereas children older than 4 years of age spontane-
ously succeed — presumably because older children have acquired the

necessary relational labels69,105,106.
If t h e re  is a  cont inui ty of ability ac ross  h u m a n  ch i ldren a n d

non-human primates, then  providing similar symbols to  non-human
primates  should enable them to  succeed at  more  complex relational
reasoning. Indeed, chimpanzees provided with symbols (language

o r  s h a p e  tokens) su c ce e d  a t  qua te rna r y relat ional tasks104,107–109.
The pattern that only ‘apes with symbols’ succeed at relational reason-
ing tasks suggests tha t  tokens of some sor t  are the  key to  comparing

relations. However, there  are exceptions to  this generalization110–112.
For instance, corvids (birds with similar neura l  densi t ies t o  mon-
keys) can succeed at  relational matching tasks (distinguishing same

a n d  different entit ies) involving shape ,  co lour  o r  size113. However,
apes  a n d  bo n o b o s  succeed  m o r e  readily th a n  corvids o n  t he  s am e

task, and  comparably with a 3-year-old child114. These latter findings
indicate tha t  relational reasoning is no t  uniquely hu m a n  or  strictly
l a n g u a ge - d e p e n d e n t  — i t c a n  b e  l e a r n ed by n o n - h u m a n s  a n d  is
influenced by general capacities such as a species’ learning rate.

Overall, a  str ic t  version of th e  hypothesis  th a t  th e  presence  of
relational reasoning in humans distinguishes them from other  species
is probably no t  correct .  Instead, humans  might  have an  easier t ime
processing relations, in par t ,  du e  to  the  power of language t o  pack-
age concepts into lighter-weight mental  representat ions,  or  chunks.
Another important component is likely to  be  humans’ greater general
information processing capacity, which can also contribute to  effective
management of the informational demands of quaternary comparison.
Humans’ higher capacity for relational reasoning probably has broad
applica t ions across  domains ,  including suppo r t i ng  sophis t i ca ted
concepts in social and physical settings.

Causal reasoning and tools
Capacities in causal reasoning have also be e n  pos i ted  as  t h e  silver
bullet of h u m a n  uniqueness.  Humans’  causal reasoning is linked t o
exceptional exploitation of the environment, such as tool use and novel

foraging behaviours such as a rmed hunting and  farming18. Although

some non-human primate species can use tools115, identify useful tools116

and  crea te  tools114, hu m ans  have the  ability t o  crea te  a m u c h  higher
number  of novel tools18,117.

Non-human species t h a t  c rea te  tools — such  as rooks, ravens,
crows, capuchins and chimpanzees — often have limited repertoires of
one to  a few types of tools, whereas humans have larger repertoires by

the time they are 5 years old113,118–121. Chimpanzees have the largest tool
repertoires among non-human species and can use around 20 different

tools122. Human children have large tool repertoires, which they initially
learn from observing experienced teachers, bu t  by age 7–8 years they

go  further and  begin creating tools121.
Non-human primates have limited insight, breadth and generaliza-

tion of even simple causal relations119,123,124, which probably constrains
their tool  use. In the  tube- t rap task, in which a target  object mus t  be
removed from a tube  by using a p robe  while avoiding t rap  obstacles,
non -human animals show a lack of insight an d  minimal causal gen-
eralization when presen ted  with novel bu t  similar tubes.  Rooks and
chimpanzees show near-transfer to  new similar tube  traps after learn-
ing to  solve the  original tube,  bu t  no t  far-transfer to  visually distinct

tubes124,125. Minor tweaks to  tube-trap apparatuses can help non-human
primate performance and non-humans, particularly apes and corvids,
solve these simple tool-use tasks similarly to  children who are younger
than 5 years old. Specifically, young children and non-human primates
can make some simple causal inferences about traps but  often revert to
narrow associative reasoning such as side biases that do  no t  generalize

to  novel tasks126. However, as children approach 4–5 years of age, they
quickly acquire broad causal knowledge of tube-trap tasks and general-

ize to  ro ta ted  and  reconfigured tubes124. Older children and adults no t
only learn action–object associations during tool use bu t  make broad
causal inferences tha t  generalize to  o ther  tasks. The presence of some
successful learning and  generalization in non-human animals implies

tha t  causal reasoning is no t  entirely absent1 26. Rather, differences in
learning and generalization between humans and non-human animals
could be caused by the amount of information required to  solve a physi-
cal problem. The types of causal concepts and  tool-use routines tha t
non-human pr imates  and  o the r  animals learn are probably shor ter,
simpler and  less enduring than those  of humans.

Tool u se  in non - h u m a n  spec ies of ten involves a  single ob jec t
impacting another  object bu t  rarely requires multiple objects organ-
ized into an action hierarchy. The integration of multiple objects and

actions into a behaviour is rare in non-human species11. Although some
species use objects in binary combinations, such as hitting a nut  with a
stone, non-human tool use lacks nes ted  subassembly routines, which

are observed frequently in human behaviour11. For example, field data
show that non-human animals do  no t  frequently implement hierarchi-

cal action routines where one  tool is used to  make another tool11. These
pat terns  suggest  tha t  the  limitations tha t  non-human animals face in
causal reasoning are  quanti tat ive ones  in the  b read th  and  de p t h  of
action abstract ion,  and  the  numb er  of nes ted  levels of subrout ines.
These quantitative limitations are plausibly explained by differences
in information capacity.

Symbolic thought and language
Many theories of human  uniqueness centre on  language, bu t  the  spe-
cific evolutionary changes  responsible for this ability are  deba ted .
Some theorists  have suggested tha t  recursion is the  defining element

of uniquely human language11,50,51,127. Although the term was not  defined
in these proposals, the  example given by these  authors  was sentential
embedding,  the  ability to  take a sentence S (such as ‘It is raining’) and
put  it inside another sentence, such as ‘Mary thinks that S’ (‘Mary thinks
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th a t  it is raining’)51. This capacity presumably provides the  ability to
build complex, hierarchical expressions tha t  are predicated on  o ther
complex expressions. Despite the  impor tance  of recursion, humans
face a limit of two levels of recursive embedding  in certain construc-
tions, struggling t o  und e r s t a nd  sen tences  such  as ‘The sena tor  t he

chef the  mouse saw attacked laughed’128,129. Additionally, not  all human

languages use sentential embedding130–132, and  it has been argued tha t

relatively little daily language use  involves recursive capacity133,134.
These discrepancies challenge the  notion that recursion broadly is the
keystone of human-like thought .

A revised proposal is that the relevant sense of recursion for human
uniqueness is the  capacity to  unboundedly pu t  two arbitrary elements

toge ther  into a new unit135–138. For example, the  sentence ‘Wendy ate
marshmallows’ is recursive in this sense because it has three  words.
An ope ra t ion  th a t  can  only p u t  two words to ge t h e r  a t  a  t ime m u s t
the refo re op e ra te  mult iple t imes o n  the se  words, including o n  its
own output .  For example, mos t  theories assume the  verb and object
a re  co m b in e d  in to a new unit, {ate, marshmallows}, an d  t h e n  t h a t
uni t  is combined  recursively with the  subjec t  to  form {Wendy, {ate,
marshmallows}}.

This idea critically relies on  the  assumption tha t  even simple sen-
tences involve underlying binary st ruc tures .  Some theor i s t s  have
argued tha t  binary st ructure building is the  simplest computat ional

operation55, the  key to  human  thought  and  language53, and  the  result

of a single muta t ion  leading t o  a rapid evolutionary change139. This
proposed capacity is distinct from non-human animals’ ability to  gener-
ate sequences of behaviour as sequences need  no t  have the  required

hierarchical organization140. However, this proposal has been critiqued

logically and in evolutionary models141,142. For instance, there  are prop-
er t ies of language t h a t  ca n n o t  be  explained by minimal change  t o
enable recursive structure building, including features tha t  are useful

in communicat ion,  even when only partially present 6.  Communica-
tive proper t i es  of h u m a n  language tie it t o  animal communica t i on
systems in tha t  they suggest  continuity in the  evolution of language,
driven by the  pressures of usage, ra ther  than genetically dete rmined

discontinuity143,144. Such communicat ive explanations in linguistics

have found empirical suppor t  across linguistic subdomains140,145–148,
often showing how information-theoretic or  usage-based constraints

shape the  form of linguistic systems149.
More generally, the  existence of innate grammatical constraints —

recursive s t r uc tu re  building o r  o t h e r s  — is widely contested1 50– 1 53.
It has been  argued  that,  essentially, none  of the  key proper t ies of lan-
guage previously sugges ted  t o  b e  universal ac ross  h u m a n  g ro u p s

actually are154.
Instead of language-specific adaptations, the  human capacity for

represent ing and  synthesizing large amount s  of information might
yield more  complex, hierarchical pa t terns  of thought .  Humans tend

to  at t r ibute  tree-like s t ruc tures  to  data155,156: people across ages and
cultures generalize ambiguous data hierarchically. In one  study, Indig-
enous Amazonian adults, American adults , American children an d

non-human primates (macaques) were taught sequences of symbols157.
All humans tended  to  generalize to  novel combinations of the  learned
symbols hierarchically ra the r  th a n  us ing an  ordinal strategy, even
though either strategy was consistent with the training data. Macaques
only used  a hierarchical st ra tegy with additional training, suggest-
ing th a t  hierarchical generalization was n o t  o u t  of reach for t h e m
but  was a weaker bias. Children’s use of a hierarchical strategy in this
task was pred ic ted  by their  working me mo r y capacity, sugges t ing
that  the  development of hierarchical reasoning is gradual and  limited

by information capacity. Corvids, a family of birds with similar neural
densities to  primates, perform at least as well as macaques on  the same
task, fur ther highlighting continuity between humans  and  the  rest  of

the animal kingdom in the capacity to  generalize hierarchically158. These
da ta  tha t  show some success for non-human species on  hierarchical
tasks, and  specifically for species with high information processing
capacity, implicate a more general origin story for recursion in humans
that  does  no t  depend  on  specific adaptat ions for language.

A general problem for language-based theories of human unique-
ness is t h a t  they a re  a t  o d d s  with t h e  cont inui ty be tween h u m a n s

a n d  non - h u m a n  animals in many asp ec t s  of l anguage learning1 59.
Non-human animals can learn hundreds  of words and  symbols, gen-

erate strings and comprehend basic syntax160–164. Baboons show expec-

tations about  some aspects of semantics in word learning tasks165 and

exhibit some capacity for compositionality166. A trained bonobo (Kanzi)
could comprehend sentences and differentiate them, bu t  had limited
capacity with coordinate noun  phrases and  a shor ter  mean  utterance

length than a 2-year-old human child167. Although these differences are
sometimes interpreted as evidence of a unique human genetic adapta-
tion for grammar,  they could also reflect quantitative differences in
abilities that snowballed into qualitative ones. For instance, insufficient
capacity to  deal with par ts  of a phrase can impair one’s access to  the
hierarchical structure of sentences, regardless of a grammar-specific
adaptation.

General computa t ions  related to  language and  symbolic struc-
tures have also been proposed as uniquely human. Humans show fluent

learning of symbolic mental  algorithms and  procedures3,48, including

advantages over non-human primates in domains such as geometry49.
However, it is unclear what class of algorithms other  species are capa-
ble of acquiring and  whether their limitations are due  to  memor y  or
underlying algori thmic co m p e t e n c e  (Box 1). Indeed, th e  ques t ion
of uniquely hu m a n  language abilities might  no t  even make sense if
underlying memory capacities differ between species.

Informational limits are a known constraint  on  language learn-

ing an d  might  be  critical in how children acquire language168. How-
ever, non-human pr imates face more  drastic information limits. For
instance, non-human primates’ inability to  learn human-like language
has been  a t t r ibu ted  t o  their  difficulties learning and  remember ing

even lexical items167. Similarly, humans  are though t  to  uniquely pos-
sess the  ability to  learn massive numbers of arbitrary symbols; human
knowledge of tens of thousands of arbitrary word meanings contrasts

greatly with the few dozen calls known to  non-human primates169. Many
accounts of human  language emphasize the  role of memorized struc-
tures or  chunks (rather than a small set of syntactic rules) in determin-

ing linguistic competence170,171. Human learners acquire, on  average,
2,000  bits of information per  day about  word meanings, from birth to

adulthood172 — a monumental feat of memory with probably no parallel
in animal cognition.

Information capacity constrains the  ability to  learn language bu t
language also enhances information capacity once learned. The cog-
nitive changes associated with symbolic representat ion are believed
to  be profound.  Compositionality enables new conceptual structures
and information transfer between domains173 and grammar provides an
“endless compacting of information limited only by human memory”174

akin to  hierarchical organization for memor y  or  concepts175. Words
provide a handle on  complex meanings176. For instance, the  word ‘hun-
dred’ does not  need be broken down into ‘ten tens’177 and the word ‘aunt’
need  no t  be  broken down into its co m p o n e n t  defining relations t o
access these meanings. This synergistic relationship between symbols
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and  information capacity is no t  un ique  to  humans.  For example, as
descr ibed above, chimpanzees tra ined with symbols for ‘same’ and
‘different’ learned to  reason about  relations between relations more
easily than those  without symbol training — showing clear benefits of

symbols for complex rule learning even in non-human primates114–116.
We conclude tha t  hu m a n  un iqueness  in symbolic th o u g h t  an d

language lies no t  in an exclusive adaptat ion for grammar  but,  rather,
in humans’  extraordinary capacity to  manage vast quantities of infor-
mation. Non-human animals have demons t ra ted  their ability to  learn
words, construct sequences and grasp basic syntax to  a certain extent,
challenging the  notion of exclusive grammar  adaptat ions in humans.
What truly sets humans apart is their unparalleled information capacity
and  their ability to  transcend information limits in language acquisi-
tion. Unlike any other species, humans possess remarkable learning and
retent ion of an extensive array of symbols and  rules. Once acquired,
language serves as a powerful tool for expanding information capac-
ity. This synergy be tween symbols an d  information is obse r ved in
symbol-trained chimpanzees, suggest ing tha t  successfully acquired
symbols benefit reasoning in o ther  animals too, bu t  the  outcome of
this synergy is amplified in humans because they store more symbols,
including symbols upon  symbols in recursive structures.

Species differences in capacity
The second  major  predic t ion of ou r  informat ion capacity theor y is
t ha t  h u m a n  a n d  non - h uman  pr ima te  species  differ in their  general
information capacity. We pred ic t  t h a t  species  will differ o n  basic,
doma in - gene ra l  cogni t ive tasks involving gene ra l  lea rn ing a n d
memory.

All domains  tha t  are  pu r p o r t e d  t o  define hu m a n  uniqueness  —
including complex relational concepts such as social relations, mind–
behaviour relations, analogies, rule induc t ion an d  g ra m m a r  — a re

Box 2

Capacity limits in adulthood
Capacity limits are a key constraint in human adult cognition,
apparent in all posited silver-bullet domains. In many cases, adult
human abilities bump up against processing limitations, which
suggests that species with different limitations should not show
behaviour that is qualitatively human-like. For instance, adults exhibit
upper limits on the number of meaningful chunks of information
they can hold in mind at one time, which interacts with the resource
demands of the task289. Effects of capacity limits on adult cognition
are observed in relational, causal and social reasoning and language.
For example, adults have highly limited abilities to understand
recursive embedding136,13 . Furthermore, adults’ analogical reasoning
shifts from abstract and relational to more concrete and object-based
when information processing is taxed, such as with increased working
memory load290. Finally, human social interactions become more
challenging and less cohesive if there are more than four people
involved in the discourse, a phenomenon known as ‘the dinner party
problem’291. Thus, adult human cognition is limited by its information
capacity, and there are certain rules and patterns that are too long or
complex for humans to comprehend.

probably cons t ra ined by m o r e  fundamenta l  domain-genera l  limi-
tations o n  information capacity. Human adul t s  are  also subjec t  t o
limitations on  information capacity (Box 2). Cognitive information
processing capacities such as learning rate, attention, memory and con-

trol vary greatly across species10,14,29,62,178–184. Such differences feed into
every other  cognitive process, with the consequence that performance
on any task requiring learning, attention, memory or  cognitive control
will differ across species because of those  underlying constraints. It is
therefore  hard  to  posi t  fundamental  representat ional  differences in
any individual task without accounting for global informational fac-
tors. Moreover, such differences feed into learning, which can amplify
the  differences: animals use  informational capacities adaptively t o
learn new things and  therefore some species might  end  up  with fun-
damentally different represen ta t ions  because  of their  information
capacity rather than domain-specific factors. Four key domain-general
capaci t ies a re  particularly relevant t o  cross-species compar i sons :
simple learning rates, simple memory capacity, cognitive control, and
se q u e n ce  learning a n d  memor y.  We review t h e se  four capaci t ies
and  their impacts on  purpor ted  human-unique domains here.

Simple learning rates
Some species  learn novel associations, generalizations, rules a n d

strategies more  quickly than others61,185,186. For instance, oddity learn-
ing, in which animals m u s t  t ip over t h e  o d d  ob jec t  be tween  t h r e e
wooden objects on  a board  to  find a food reward, has shown species
differences. In o n e  typical experiment ,  ch impanzees  an d  monkeys
learned to  decipher which object was the  odd  one  above chance (60%)
in 1,152 trials, whereas  ca t s  a n d  raccoons  pe r fo rmed  a t  chance  for

4 , 80 0  trials187. Chimpanzees reached  90 % accuracy a t  2,208 trials,
whereas monkeys took 3,508 trials. Human children aged  3–5 years
learned t o  90% accuracy in on e  fifth of the  trials (mean  =  203 trials)

‘Rational’ accounts of cognition attempt to explain behaviour in
terms of what would be expected from an ‘ideal’ learner who has
a perfect memory292,293. However, models that posit that adults are
efficient at solving problems have obvious difficulty approximating
behaviour when adults’ behaviour is suboptimal. A growing area of
computational modelling seeks to understand so-called resource
rational models, which formalize optimal or efficient use of finite
mental resources such as memory or attention294,295. Resource
rational models posit that people are efficient relative to their
resource constraints, but their resource constraints prevent them
from achieving normatively perfect behaviour. This type of approach
can be seen in theories of human perception296, decision-making297,298,
encoding of subjective value299, generalization300, processing of
centre-embedding linguistic structure301 and number cognition302.
Across these domains, models with limited resources provide a better
account of human behaviour than those that assume unlimited or
unrestricted resources. Limited capacity is therefore a promising
approach to understanding cognition that highlights ways in which
finite informational capacity shapes how humans solve problems.
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and  those  aged 6  years in one  twentieth of the  trials (mean  =  96 trials)

compared with chimpanzees (mean = 2,208 trials)188. With instruction,

h u m a n  children learn even faster  t h an  they d o  by trial a n d  error1 8 9.
Thus, h u m a n s  learn abs t r ac t  rules faster  t h a n  pr ima tes  f rom early
childhood, due  partly to  an inherently higher learning rate  and partly
to  instruction, enabling more  abstract rule learning in humans  com-
pared with o ther  primates. Abstract rules with arbitrary stimuli such
as wooden blocks are  unlikely to  arise from domain-specific adapta-
t ions and  silver-bullet representat ions because the  target  of learning
is arbitrary stimuli an d  t h e  rule applies t o  features  of those  stimuli
generally. Instead, species differences o n  the se  rule-learning tasks
indicate varying domain-general capacities.

Learning rates vary even within narrower clades of species, such

as among primates10,190. In basic learning set tasks185,187,191, animals must
choose correctly between two arbitrary stimuli (such as a cylinder and
a cube) to  get a food reward. Once they do  so, two new objects (such as a
sphere and a cone) are presented and they must learn which is rewarded.
Attention set-shifting involves switching between stimuli on the basis
of one  dimension (such as shape) and  then  another  (such as colour)
within the  same task. Animals learn the  overarching task rule ra ther
than just an association between object or  feature and reward, as dem-

onstrated by the fact that they learn faster with each new contingency10.
A meta-analysis of learning se t  performance with pr imates  revealed
tha t  apes  exhibit faster learning than  Old World monkeys, an d  Old

World monkeys perform bet te r  than prosimians10. Humans, including
young children, acquire learning set  rules in a fraction of the  trials it

takes apes and monkeys to  learn192,193. As with oddity learning, species
differences in this task are at t r ibutable to  differences in underlying
informat ion capacity. All species we descr ibed can  learn th e  basic
associative task and  the  task sets  with arbitrary stimuli bu t  they con-
sistently differ in the  rates a t  which they acquire and generalize those
contingencies, implicating general learning differences ra ther  than
differences in domain-specific adaptations.

Reversal learning is similar t o  learning se t  tasks b u t  requ i res
the exact opposite choice of what was just learned. During reversals, the
previously unrewarded objec t  becomes  the  rewarded on e  and  vice

versa61,194,195. Animals who learn broad task strategies are more success-
ful on  the  task than those who rely on  associations, as they learn to  rep-
resent the  task strategically with a rule (such as ‘reverse’ or  ‘win–stay,
lose–shift’) and can adapt when an item that yielded a reward for many
trials suddenly becomes unrewarded. Some species (including apes)
show fast rates of acquisition on  bo th  initial learning set and reversals,
bu t  others  (including lemurs) show fast learning rates for sets  bu t  no t
reversals. Thus, some species easily learn simple associations bu t  do
not  learn abstract rules as easily.

Reversal learning shows qualitative differences in task perfor-
mance between species. Species with lower learning capacities are una-
ble to  transfer their learning. After learning one association (‘choose A,
not  B’) they must build up  a new association de  novo (‘choose B, no t  A’),

so each reversal takes them a long time to  learn186. There was substantial
variability am o n g  79 pr imate  species who were tra ined to  identical

criteria on  reversal learning186. Some pr imates  such as apes  learned
a global st ra tegy o r  rule whereas o t he r  species such as pros imians
learned a series of associations. Some animals lack the  flexibility to
readily derive an abstract rule, perhaps in part because they perseverate
or  adhere  to  known successful responses.

These results suggest that general learning capacity yields qualita-
tive differences in cognition because different species solve identical
tasks in different ways. Systematic performance gaps emerge between

species even across simple, domain-general tasks — which supports the
second prediction of our  theory.

Simple memory capacity
Humans have a large memor y  capacity, es t imated a t  a  billion bits196,

with language alone requiring 12.5 million bits177. With training, human

mem o r y  capacity can  be  substantially improved197,198. Humans  can
learn an d  re m e m b e r  m o r e  th an  2,500 new, unique  visual i tems in a
simple 5-h experiment  and  are though t  to  be  capable of maintaining

more  than 200 ,0 0 0  unique visual i tems in memory at  a time199. Using
a comparable paradigm, pigeons required 700  sessions to  learn 1,000

images and baboons required 3–5 years to  learn 3,500–5,000 images200.
The pigeons and  baboons  showed set  size effects, suggesting similar

underlying mechanisms to  human memory201. Baboons’ ability to  learn
four times more  stimuli than pigeons suggests genetic differences in
simple memory capacity between primates and pigeons. Humans are

estimated to  have 50 times the memory capacity of baboons202 so those
genetic differences in simple memory capacity between pigeons and
non-human primates plausibly extend to  differences between humans
and non-human primates as well. Such memory differences are certain
to  cause profound  species differences in cognitive domains  such as
relational reasoning, social cognition, complex action and  tool use,
and  complex rule learning tha t  require representing many items such
as symbols, words and  concepts.

Cognitive control
Flexibility during problem-solving is a criterion for intelligent behav-

iour29,183. Some species are more  likely to  ‘get stuck’ during problem-
solving t h a n  others .  There are  a  few general  mechan i sms  relevant
t o  flexibility, which migh t  be  t e r m e d  control ,  at tent ion,  inhibition,
self-regulation or  executive function. These mechanisms have a role
in tasks tha t  require remember ing the  past, avoiding errors  and  con-
sciousness, all task behaviours that are proposed as markers of human
uniqueness attributed to  unique neural evolution of human prefrontal

cortex1 4. However, t he  role of these  genera l  cognitive mechani sms
in behavioural flexibility is enh anced  n o t  just in species  with larger
prefrontal  regions b u t  also in species with larger overall brains an d
relatively small prefrontal cortices.

Two self- regula tion tasks include t h e  A-not-B task, in which
a p r e p o t e n t  re sponse  (A) is built u p  an d  t h e n  a new response  (B) is
p r o m p t e d  a n d  re sea rche r s  me a su re  th e  t ime n e e d e d  t o  a d o p t  t h e

new response203, and the perseveration test, in which a naturally prepo-
tent  response is unsuccessful and researchers measure how long it takes

subjects to  change course202,204. Species vary in their ability to  control
prepotent  responses in these tasks, with larger-brained animals such as
apes, elephants and dolphins exhibiting the  highest degree of control,

and marmosets and rats showing the weakest control183. Overall neural
densities, which are genetically determined, seem to  influence an ani-
mal’s capacity for self-regulation. Humans rank high in control relative

to  o the r  pr imates, s tar t ing a round  age  2–3 years205, which suggests
tha t  human  advantages in cognitive control develop early. The early
development of advantages in self-regulation suggests a genetic and
general cause for human advantages in cognitive control. This ability is
essential for conceptual change and  complex learning — for example,
substant ial evidence shows tha t  these  genera l  cognitive capacities

are critical precursors  to  relational reasoning in hum a n  children206.
Together, these findings implicate a general and evolutionary basis for
species differences in acquiring simple rules, hinging on  their ability
to  rapidly integrate new information into new action.
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Box 3

Information capacity constrains rule learning
A computational model can be used to evaluate how capacity
influences what structures a learner can acquire. Domain-general
pattern learning models are able to find concise algorithmic
descriptions of discrete data sequences303. For example, when
provided with input such as ‘abbabbabb’, such a model would learn
an iterative or recursive representation that generalizes to longer
sequences following this pattern, such as ‘abbabbabbabbabb …’.
When given input such as ‘aaabbbccc’ the model would generalize to
both shorter (‘aabbcc’) and longer (‘aaaabbbbcccc’) strings that also
follow this anbncn pattern. This program learning model can acquire
key structures in natural language, including different kinds of
recursion and hierarchy by constructing representations of grammars
out of a handful of algorithmic pieces, just as programmers build
complex programs out of a few dozen built-in operations304.

Very similar models can be found in, for example, sequence
memory305 and other cognitive domains48. All such models work
by finding programs that provide a concise description of the data.
For example, if learners saw the sequence ‘abbabbabb’, they might
construct a program F defined as F() : = repeat(pair(‘a’, pair(‘b’, ‘b’)), 3).
Here, F first pairs together ‘bb’ from its component parts (using
pair(‘b’,’b’)), and then pairs that structure with an ‘a’ to yield ’abb’
(using pair(‘a’, pair(‘b’, ‘b’))). The ‘repeat’ operation then repeats the
entire ‘abb’ structure three times. Thus, this program F is one way to
describe the regularities in the string ‘abbabbabb’. The task of the
learner is to find program F by searching over ways of composing
the parts to capture the data (or an approximation to it). Such models
work essentially similar to scientists who observe data and try to
craft formal theories to explain the data they see. The models are

Sequence learning and memory
The capacity to  hold multiple items in mind at the  same time is needed
to  solve complex problems. For example, to  recognize tha t  a pa t tern
such  as  ‘ABBA’ also applies t o  ‘CDDC’ a n d  ‘EFFE’, o n e  m u s t  hold  t h e
four elements of ‘ABBA’ in mind, extract a rule and  apply it to  four new
elements (Box 3). Species vary in their ability to  hold multiple items in

mind207. Many songbirds demonst ra te  exquisite sequential memory,

al though it is species-specific205. Humans excel a t  learning arbitrary

sequences of colours, tones or shapes208. A meta-analysis of 108 experi-

ments across 14 species209 found tha t  humans required far fewer trials
to  reach a given level of performance on  sequencing tasks than o ther
species. For example, rats required thousands of trials to  discriminate
between two 3-item sequences above 50%; pigeons required 300  trials
to  reach 95% accuracy, and  then  showed almost  no  improvement  for
2,000  trials; and  human s  reached  nearly 100% accuracy in 10 trials.
On a sequence discrimination task, humans took 30 trials to  reach 90%

accuracy whereas macaques took 4 0 0  trials210.
Human adults  might use language encoding as a tool  to  enhance

their capacity on sequencing tasks with verbalizable materials211. How-
ever, non-verbal tasks such as the Corsi tapping task also show capacity

differences between humans  and  non -human  primates2 1 1. Baboons
perfo rmed significantly worse than  humans  on  this task, being only
consistently above chance with three-item and four-item sequences,

typically biased to find short or concise programs to capture the data
they observe, following ‘minimum description length’ accounts of
statistical inference306 as well as theories of artificial intelligence that
argue that an intelligent agent should try to find concise programs to
explain observations307,308.

The complexity of pattern a learning model can find in a sequence
is a function of the length of the data its memory system can handle.
We used a version of a sequential rule-learning model308 that includes
several operations including repetition (such as ‘repeat’), alternation,
reversals, list-building functions (such as ‘pair’) as well as recursive
and logical operations309 to demonstrate this point. This model also
enables learners to generate arbitrarily long sequences, meaning that
one could hypothesize that the observed data were part of an infinite
longer sequence. We looked at the length of every possible data
sequence (such as ‘abbabbabb’) versus the length of the shortest
computing program (rule) that would produce it. The key is that if
there is a program that is shorter than the data sequence, this means
that there is a pattern present that a learner could detect. Generally,
for short sequences there is no program shorter than the data,
meaning that even an ideal learner would memorize these sequences
and not find any pattern, nor be able to generalize a pattern to longer
sequences. However, once the learning model had enough memory
to use more than four or five items, it became possible to detect
patterns in the input and create a shorter generating program, just as
in the ABAB example. Thus, idealized learners with memory of fewer
than four or five items would not be able to discover much structure
from the world, even in principle. In this way, limits on information
capacity obscure competence.

whereas hu m a n s  were above chance  u p  t o  six items. Humans also
showed evidence of using a sequencing strategy involving encoding
relative distances and  proximities among the  sequence items, which
demands  more  resources initially than ro te  memory of locations bu t
could  feed back in to be t t e r  me m o r y  in th e  long run. This st ra tegy
difference suggests a more  limited capacity in non-human animals to

represent  sequential relations compared with humans66,162,212,213.
The amount  of t ime an individual can hold something in working

memory (duration) is independent of the number of items an individual

can hold in working memory214. The duration of working memory varies
between species. On a one-i tem delayed matching task with one  dis-
tractor, memory durat ion is similar across non-human primates and,

potentially, some birds, whereas insect memory is poorer213. The serial

p robe  recognition task215 tes ts  memor y  dura t ion pe r  i tem position,
without requiring animals to  remember  the  sequence order.  Pigeons,
monkeys and humans all perform this task with high accuracy and show

the signatures of primacy and recency in their memory performance216.
However, pigeon memory decays approximately three times faster than
monkey memor y,  a n d  monkey memor y  decays t h re e  t imes faster
than human memory.

Chimpanzees showed impressive memory  capacity on  a touch-
screen task in which numerals between ‘1’ and ‘9’ are briefly flashed on

a screen and subjects have to  press the  locations in a trained order217.
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Chimpanzees practised this task over a 1-year period, 4 times per  week
for 50 trials per  session. After training, they were given a novel testing
session in which the  items were flashed at sub-second speeds and their
performance was compared with that of humans. With six items, chim-
panzees were less accurate than humans  and  achieved 65% accuracy,
compared with 80% for humans  during the  two testing sessions, and
with five items, chimpanzees’ performance was generally within the
range of human performance. However, non-human primates typically
perfo rm mu c h  worse than  hu m a n s  on  memor y  tasks. For example,
chimpanzees and  macaques struggle to  integrate information in the
memory game (in which players flip over pairs of cards to  find matching

pairs), tracking items over fewer than 4 cards218 compared with humans
tracking items over 12 cards. Thus, whereas chimpanzees can perform
similarly to humans on some memory tasks, typically humans excel in

this area compared with o ther  species213.
Other domains requiring sequence memor y are tool use and  lan-

guage. Non-human animals canno t  p ro d u ce  complex, hierarchical
sequences of behaviour in a range of domains from communication

t o  too l  use11,219 b u t  they can  in teg ra te  a limited n u m b e r  of ac t ion–
object relations into their tool-using routines. Most non-human animal

tool use involves a single object impacting another  object11. However,
h u m a n  tool  use  of ten requi res  hierarchical embedding:  using o n e
object to  make another  object and then  impacting a third object (and

deeper  levels of subroutines)1 1. Hierarchical embedding  is the  same
limitation obser ved in ape  language wherein apes  did no t  p roduce
multi-word utterances and struggled to  comprehend multi-item hierar-

chical syntax166. General differences in hierarchical reasoning for action
and  language might in this way distinguish humans  from non-human

primates11,220. This general  constraint on  non-human pr imate action
and  communica t ion is a quanti tat ive on e  — t h e  nu m b e r  of levels of
embedding  in communication and  action.

Differences in i tem capacity a n d  tempora l  decay in se q u e nce
memory, as seen between humans and non-human primates, can sub-
stantially impac t  a species’ ability t o  extrac t  various types of rules
from new information, even when the re  are  no  o the r  differences in
representation. Intricate rules, such as analogies, grammars and  hier-
archies, require the  observation of patterns across multiple items that
unfold over time. When one’s capacity to  faithfully represent multiple
items over an extended duration is small, it is impossible to  extract the
kinds of complex patterns or rules that only emerge in longer sequences
and  sets. Consequently, memory capacity for sets  and  sequences is a
critical bottleneck for representing relations and rules across domains,
including social cognition, tool use and  communication.

Qualitative impacts from quantitative change
The third prediction of the  information capacity theory is tha t  quan-
titative change in information capacity can underlie qualitative leaps
in ability. In thi s sec t ion we discuss t h e se  impac t s  ac ross  h u m a n
development and in machine computat ion.

Developmental change in representing relations
Theories of uniquely human  cognitive processes  are  stymied by the
lack of evidence of new neural  func t ions o r  concep tua l  primitives

tha t  are  b o t h  innate  and  unique  t o  humans221. However, this s ta te  is
n o t  an  issue for theor ies  of uniquely h u m a n  information capacity.
Indeed,  t h e  s a me  developmental  primitives are  p re sen t  in hu m a n s

as in o ther  pr imate  species: associative and  statistical learning216,222,

ordina l i ty a n d  iterat ion220,223, o b j e c t  rep re sen t a t ions 2 2 4 ,  spa t i -

o te m p o ra l  intuitions1 30, quant i ta t ive a n d  numer ica l  reasoning225,

ca tegor iza t ion a n d  generalization226, gaze  following227 a n d  speech
segmentation228.

It has been argued tha t  an ape  can do  anything a human child can

do  up  until around the  age of 3 years179. At around 3 years of age, some-
thing changes in the human child that affords deeper abstract concepts
and  mental  operations. According to  our  theory, this developmental
change  is d u e  t o  an  en ha nced  information process ing capacity, an
accoun t  tha t  has a coun te rpa r t  in constructivist theor ies  of hum a n
development dating back to  the  1960s. At tha t  time, it was theorized
that intelligence in children emerges by way of a generalized combina-
torial system: developing general resources for mentally writing down

combinatorial rules tha t  are abstract and generalizable229.
Expanding on  these initial ideas, many researchers have described

how conceptual change in childhood is fuelled by increases in general

capacities48,68,70,230–232. For instance, the  speeds  at  which many cogni-
tive processes  take place, such as mental  addition, menta l  rotation,
memory search and simple motor skills, follow a consistent and predict-

able exponential pa t tern  of change th roughout  development233. This
observation indicates tha t  there  is a general constraint on  global cog-
nitive processing and  reflects proper t ies  of the  information capacity
of children.

Major leaps in human conceptual development require integrat-
ing four items into a logical rule or  relation. There is a mathematical
reason for this quantitative constraint on  logical rule learning (Box 3).
Complex patterns and rules only exist across four or more items organ-
ized in to dimensions , sub g ro u p s  a n d  hierarchies (not  across  one,
two or  three  items). Logical rules requiring four items are somet imes

called quaternar y relations70. Analogies70, e m b e d d e d  and  conjoint

conditional rules234, recursive syntax235, conjunctive syntax with two

subjects, a verb, and  an object167, cent re -embedded hierarchies162,236

and the  successor function in counting237 can only be  extracted across
sets or  sequences of at least four entities. For example, an analogy such
as ‘dog is to  wolf as cat is to  cougar’ requires represent ing dog, wolf,
cat and  cougar in an A:B::C:D rule. Furthermore,  a centre -embedded
hierarchy is only distinct from iteration when it has at  least four items

(for instance in an AnBn rule162).
The types of rules and  pat te rns  tha t  children can explicitly rep-

resen t  a t  different ages  vary quantitatively: unary relat ions a t  age
1 year, binary relations at  age 2 years, ternary relations at  age 5 years

and  quate rnar y relations a t  age  11 years70. Unary means  the  child is
representing one  relation, such as ‘The colour of the  sky is blue’. The
number  of relations scales with the  dep th  of meaning from concrete
t o  opera t iona l  — unary relations co m pa re  ob jec t  an d  fea ture simi-
larity whereas quaternar y relations compare operat ions such as the
similarity of ‘similarities’ be tween groups.  For example, in category
similarity judgements ,  children’s knowledge trans i t ions f rom th e
unary object-based sameness  (for instance, a dog  is more  similar to  a
wolf than  a parrot)  to  quaternary relational-sameness (for instance,

a dog  is similar to  a wolf in the  same way a cat is similar to  a cougar)70.
We sugges t  tha t  be tween the  ages of 3 and  5 years children beco me
capable of representing rules and  relations across four items because
they develop grea ter  (functional) information processing capacity,
enabling complex rules and  operations.

Non-human primates typically lack the  ability to  represen t  qua-
ternary relations. Even with years of language and  symbol training,
non -human pr ima tes  st ruggle with th e  combinatorial  functions of

language learning50,167,233. Thus, they remain stuck at the level of a human
child aged 2–3 years when it comes to  generating and comprehending
a sentence or  relational phrase. Multiple studies have shown that  even
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with more  than 4  years of experience, language-trained apes have an
approximate  me a n  u t t e rance  length  of a ro u n d  1.6 words, which is
similar to  2-year-old children167,238. By contrast, by 3 years of age human
children have mean  utterance lengths of three  to  four words239.

One longitudinal project directly compared language comprehen-
sion in a 2-year-old child and  a 2-year-old bonobo  who had  similar lan-
guage experiences. The child and bonobo were trained from 3 months
of age to  produce words and  strings with a lexigram keyboard and  to

comprehend spoken language167. Over a testing period of 9 months, the
child initially produced utterance lengths averaging 1.91 morphemes
and rose to  an average of 3.19, whereas the  bonobo’s utterances began
at  1.15 mo rp hem e s  and  remained stuck a t  tha t  level th roughou t  the
testing period. Language comprehension was tested by presenting an
array of real objects and asking the  subject via novel spoken sentences
to  carry ou t  actions with those  objects (for example, ‘Put the  ball on
the  pine needles’). Comprehension of language was far easier than
production for the  bonobo,  who could carry out  tasks from utterances
tha t  were longer than  those  he  produced. This pa t te rn  mirrors child

language development1 67  and  highlights the  impor tance of memor y
const ra in ts  in in terpre t ing language produc t ion .  The b o n o b o  also
used word order  to  interpret  the  meaning of the  sentences and could
unders t and  syntactic reversals (such as ‘Put some  water in the  coke’
versus ‘Put so m e  coke in t h e  water’). The specific limitation of th e
b o n o b o  co m pa re d  with h u m a n  children was with long ut te rances
and  conjunctive constructions tha t  burden  memor y capacity, such as
‘Give the peas and the sweet potatoes to Kelly’. These findings suggest
t ha t  t he  key const ra in t  o n  th e  bonobo ’s  language learning was t he
capacity for multiple simultaneous representat ions.

Developmental change in domain-general capacity
Also consistent  with the  not ion tha t  quanti tative changes yield con-
ceptual  change, developmental  changes  in domain-genera l  capaci-

ties are  related to  children’s conceptual  changes68. For example, the
emergence of theory of mind accompanies conceptual change in early
childhood. Theory of mind  requires  integrat ing multiple relations

between minds and  behaviours of oneself and others240. Infants have
knowledge about  the  goal-directed and intentional acts of people and
themselves bu t  struggle to  integrate tha t  information across multiple

agents  and  events159. Tasks such as the  false belief task tha t  measure
theory of mind ability show poor  performance until a round the  age of

5 years, after which children typically succeed241. Children’s individual
differences on this task are highly correlated with their executive func-

tion abilities234,242. Fur thermore ,  relational capacity explains 80% of
age-related variance in t he  performance  of children aged  3–5  years

on  false belief tasks243. That is, children’s performance on  tasks such
as transitive inference, which require  high relational capacity (but
not theory of mind), predicts their performance on tasks that do  require
theory of mind. The capacity to  integrate multiple relations develops
gradually in children and  once  present ,  theory of mind can develop.
Although t h e  em e rgen ce  of theor y of mind  migh t  look similar t o  a
qualitative conceptual change, it is underlain by quantitative changes
in information processing capacity.

Over development, expansions in general information capacities
increase the  number of rules and relations that children can represent,
compare or  embed,  which increases the  types of rules tha t  can be  rep-
resented. Qualitative conceptual change requires semantic knowledge
and experience bu t  is fundamentally fuelled by changes in information
processing capacity. Thus, the phylogenetic and ontogenetic causes of
intelligence have a common coupling to  information capacity.

Information capacity in computation
Capacity differences, even minor  o r  con t inuous  changes ,  can  pro-
foundly impac t  computa t iona l  performance.  For instance,  Turing
machines, a standard  abstract model  of computat ion,  are formalized
mathematically as  possess ing an  infinite memor y.  However, early
results in complexity theory showed tha t  if the  compute r  has a t ight
bo und  on  memor y available (as a function of its input  size), then  the
class of computations it can execute is strictly limited. If the amount of
memor y available to  process an input  of size n is less than log(log(n)),
t he n  t h e  c o m p u t e r  is provably only capable  of recognizing regular

languages244 — languages that can be  processed with a finite number of

memory states245. Such capacity-limited computers are therefore inca-
pable of processing the  kinds of hierarchies such as context-free lan-
guages that are considered to  approximate human language, much less

more  complex context-sensitive features or  transformations246. This
result seems to  establish a ‘quantum jump’ in memor y requi rements
for regular versus non-regular languages: a small quantitative increase
in memory can lead to  qualitatively different computat ional  ability.

These formal results provide a clear demarcation between regular
and non-regular languages that is governed by the  amount of available
memory: algorithms or  species tha t  use comparatively little memory
cannot be  generating or  recognizing anything other  than the  simplest
kinds of string patterns. Although these results are more than 60  years
old, they are strongly connected to  contemporary cognitive science.
Several studies have examined what kinds of string pat terns  animals

are capable of processing157,164,247–250; o ther  work has a t tempted  to  rig-
orously characterize the  level of computat ional  complexity in human

languages251–256. The primary distinction examined in animal work is
whether non-human species are capable of recognizing or  generating
strings from languages o ther  than regular languages, bu t  the  results
are mixed and  difficult to  interpret,  in par t,  because the  sets of strings
studied can often be  processed with o ther  heuristics.

More general  findings abou t  the  linkage between memor y  and

computat ional ability can be  found in the  space hierarchy theorem257,
which proves tha t  compute r s  tha t  are given more  memor y capacity
(as a function of their input size) are capable of solving a larger number
of problems. This conclusion can be  contrasted with, for example, the
fact that many modifications of Turing machines do  no t  increase their
computa t i ona l  capability. For example, al tering a s t anda rd  Turing
machine  t o  give it two tapes,  o r  even two-dimensional tapes,  does
not  fundamentally change the  rules it can use or  the  problems it can
solve. But allocating it more  internal memory space, as a function of
input  size, does.

When a learner’s memor y  is only a few items, it will no t  be  pos-
sible for them to  learn classes of pa t terns  tha t  only become apparen t
after several items. For example, nei ther  th e  sequence  AB no r  ABA
leads on e  t o  see  t h e  repe t i t ion pa t t e r n  in ABAB, meaning  t h a t  this
repetit ion pa t tern  would be  inaccessible for learners with memories
of fewer than four items. This idea can be  formulated in the  context of
structured learning models, for which limited memory of the input data
would prevent acquisition of patterns, including hierarchical structure.
In this case, the  best a learner could do  is try to  memorize the  data. The
behavioural consequence of this memory limitation would be  limited
rule-like generalizations in relational reasoning, imitation, tool  use,
language learning and  any domain tha t  requires represen tat ions of
multiple actions, agents  and  entities.

Although this impact is debated ,  capacity constraints have also
been  argued to  critically shape  machine learning capability in mod-
e r n  neura l  networks. Machine learning pe r fo rmance  d e p e n d s  o n
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parameters such as the amount of training data, the number of training

steps and  the  number and  arrangement of nodes in the  network258,259.
Some models  only show above-floor performance on  tasks involving
human-like intelligence when they are able to  use billions of param-
eters.  Indeed, al though some  tasks scale smoothly with model  size,
a t  o the r  t imes changes in capacity are profound and  discontinuous

as t h e  pa r a m e te r s  o r  capac i ty of t h e  mo de l s  is increased26 0. Such
neural networks show systematic scaling patterns ,  often power laws,
be tween per formance and  b o t h  the  am o u n t  of da t a  an d  the  neural

network size or  capacity261–263. The highest performing deep  learning
models  can memorize massive amount s  of data, fitting even random

labels264,265, and  it is likely tha t  this ability for memorization is critical
for extracting the  higher-order regularities necessary for high perfor -
mance in domains such as language usage and  image classification.
Indeed, m o d e r n  high-capaci ty sys tems have be e n  a rg u e d  t o  show
signs of general intelligence, succeeding on  a diverse array of tasks

such as mathematics, tool use, theory of mind and  programming266,
al though the  ability of these systems to  truly reason in a human-like

way is contested267.
Part of the  success of mo d e rn  neural networks has  been  driven

by the  realization tha t  increasing computat ional  power can outper-

form tailored (silver-bullet) representations268. For domains including
speech recognition, chess and computer vision, experts once believed
that tailored representations were the solution, but  these efforts stalled

and, arguably, even inhibited future progress269. These problems were
eventually solved using simpler techn iques  with model s  th a t  built
in less knowledge of each  specific domain,  co m b i ned  with higher

computing power and more  general capacity269.
Together,  t hese  resul ts  generally show th a t  t h e  informational

limits faced by a system are  an  impor tan t  de te rminan t  of the  range
of computa t ions  it can  perform. Moreover, th e  success  of th e  be s t
learning mode l s  do e s  no t  se e m t o  be  d u e  t o  carefully co ns t ruc te d
silver-bullet representations but,  rather, the  discovery of how to  make
learning scale to  large data sets and numbers of parameters, suggesting
that general scaling of informational capacity might have been a route
to  the  evolution of human-like intelligence.

Conclusion
We propose that global, genetic differences in learning and memory are
sufficient to  account for uniquely human reasoning across domains, as
an alternative to  theories that require qualitative, domain-specific evo-
lutionary changes specifically in human cognition to  explain uniquely
human behaviours. This theory of human uniqueness makes three con-
crete predictions. First, the  theory predicts tha t  non-human primates
will show so m e  deg ree  of success o n  tasks previously pu r p o r t e d  t o
draw on domain-specific specializations in humans. Second, the theory
predicts continuous, quantifiable advantages for humans  relative to
non-human species on  basic tasks, even tasks tha t  only require repre-
sentations of a few items, actions or  features. Last, the  theory predicts
that subtle increases in information capacity yield qualitative changes
in behaviour  in humans ,  n o n - h u m a n  animals a n d  compu ta t i on a l
systems more  broadly.

No existing theor ies have been  able t o  adequately disentangle
information capacity from domain-specific functions, nor  explain the
concre te  implications these  capacity limitations have on  the  ability
to  learn and  represent  knowledge. Theoreticians of domain-specific
theor ies  have been  t o o  eager  t o  posi t  th a t  specific mechanisms are
unique to  humans, leaving all the  o ther  differences in the  information
processing machinery of cognit ion unaddressed  and  confounding.

We suspect tha t  global information capacity tends  to  take a backseat
in theories of human uniqueness because researchers underest imate
its potential to  yield qualitative changes in cognition between species.
However, general capacity constraints have profound consequences
a n d  informat ion capacity de te rmines  which species can  learn t h e
hierarchical, abs t rac t  pa t te rn s  an d  generalizations and  which spe-
cies, simply, cannot. We showed how information capacity gradually
expands over hu m a n  development  and  how it relates to  qualitative
changes in human cognition. Expansions in information capacity ena-
ble rule-based, compressed representat ions of complex phenomena
such as sequences, sets and relations that are abstract and generalizable
(Box 3). The ability to  think symbolically probably enriches this benefit
of information capacity even further. Independently of the  neural or
cognitive instantiation, changes to  capacity have a surprising qualita-
tive effect on  the  abilities of computa t iona l  systems: differences in
degree  yield differences in kind.

We de ta i l ed how bas ic d i ffe rences in in fo rmat ion capac i ty
between humans  and  o the r  animals can lead to  qualitatively unique
h u m a n  cognit ion, b o t h  developmental ly and  evolutionarily, offer-
ing new research possibilities. New direc tions include test ing how
variations in information capacity relate to  complex rule learning and
concept formation across species, how the  synergy between informa-
tion capacity and  language expands concept and  rule learning during
human development, and the  role of sequence and set memory in rule
extraction across different species and age groups. One key prediction
is that the  capacity for complex rule learning (whether social, physical
or  abstract) is inherently and mathematically linked to  the capacity for
represent ing multiple items simultaneously — a hypothesis tha t  can
be  tested in animals, developing children and  machines. A key experi-
mental direction will be  to  test causal evidence for the  role of informa-
tion capacity on  the  tasks hypothesized to  show human  uniqueness.
However, measuring information capacity directly poses  a challenge
(Box 4), due  to  the complexity of the  target behaviours and the  limited
tasks for which information can be  formally characterized at  present.
Information measures vary across inputs, abstractions and processes.
For instance, channel capacity for high-level vision of objects might
differ between species, even if the  capacity for low-level vision is the
s a m e  because  t h e  informat ion process ing d e m a n d s  of high-level
versus low-level abstrac t ions probably differ. Information process-
ing d e m a n d s  also can vary across  co n t e n t  types, such  as be t ween
social interactions and  object use. Simulations of information capac-
ity under  different processing conditions are critical for developing
experimental predictions.

‘How’ human cognition is unique is probably intertwined with ‘why’
human  cognition is unique. Several authors  have proposed  accounts
of hu m a n  evolution tha t  provide a compelling answer t o  ‘why’ new
cognitive abilities might have emerged specifically in humans. Perhaps
primitive human  environments contained unique survival pressures

to  cooperate  and  learn socially31 o r  humans  uniquely benefited from
cumulative culture, which altered the human environment so dramati-

cally tha t  it prompted new genetic adaptations12,270. The problem with
prior ‘why’ accounts  such as these  is tha t  they d o  no t  explain ‘how’,

cognitively, human minds and brains changed271. In light of the behav-
ioural, neurobiological, computat ional  and developmental evidence
we reviewed, we p ropose  tha t  unique expansions in global, generic
information capacity are the  mos t  plausible genetically based cogni-
tive adapta t ion  to  ra tchet ing environmental pressures  on  learning,
memory, at tention, semantics and  logical rule use arising from ever
more  demanding human  culture.
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Box 4

Measuring information capacity
There are several methods that have been developed to measure
information processing, and each targets information specific to a
given behavioural task or setting.

Speed  and bit rate
One approach to measuring information capacity is to use tasks in
which participants are asked to respond as quickly and accurately as
possible to a stimulus. Hick’s law quantifies the ‘rate of information
gain’ in a simple choice paradigm310; memory tasks such as digit span
and working memory measure item, sequence and channel capacity
for information213,308. Posner cueing tasks, flanker tasks and Stroop tasks
also have been used to measure bit rates in humans with simple rules
and stimuli311. One study showed that the speeds at which numerous
diverse cognitive processes occur, including mental addition, mental
rotation, memory search and simple motor skills, exhibit a consistent
and predictable exponential pattern of change over development239

— a global cognitive processing constraint reflecting children’s
information capacity. Additionally, some work has provided estimates
of information capacity in humans for long-term memory and linguistic
storage180,202,205, often by quantifying what coding capacity would be
required to achieve the observed performance.

Predictability
Machine learning models are often evaluated by computing the
log probability that they assign to the observed data, which is an
information measure (often surprisal or cross-entropy). Following
the same logic, one could measure the effective predictability of,
for example, sequential stimuli for any species and task, and use
that to quantify information processing ability. For instance, in one
study people were asked to predict upcoming letters in text and their
accuracy was used to deduce how much information they had about
upcoming linguistic material312. In a context in which an individual
predicts upcoming sequential material that follows a novel pattern —
for example, simple formal language rules — accuracy could be used
to estimate how much information about the pattern is internalized.

The uniquely human adaptation for information processing capac-
ity provides an  oppor tun i ty  t o  rep resen t  multiple complex behav-

ioural alternatives, to  enact  flexibility and  innovation272 and  to  learn
quickly, and  yields a substrate  for ‘cognitive gadgets’, wherein humans

acquire unique capacities by building on cultural innovations13. One cog-
nitive gadget, writing, provides important clues to  the pressures humans
faced for information capacity. Over cultural evolution, the  hum an
species was so pressured for increased information capacity tha t  they
invented writing, a revolutionary leap forward in the development of our

species that enables information capacity to  be  externalized273, frees up
internal processing and affords the  development of more complex con-
cepts. In other  words, writing enabled humans to  think more abstractly
and logically by increasing information capacity. Today, humans  have
gone to  even greater lengths: the  Internet, computers and smartphones
are testaments to  the  substantial pressure humans currently face — and
probably faced in the  past  — to  increase information capacity.

For example, from an individual’s accuracy or pattern of errors in
predicting the next character in the sequence ‘abbacabbacabbac …’,
one can compute how much they have learned about the sequence
(see Reber309 for people’s learning of similar string patterns and
Saffran et al.313 for work on early language learning). Empirically
measuring predictive ability in this setting is potentially powerful
because above-chance accuracy means that some information must
be present, which can be examined as a function of developmental
age, amount of training exposure or species.

Learning rate and lapse rate
The learning rate and the lapse rate are another pair of measures for
estimating information capacity314. The learning rate quantifies change
in accuracy per unit time, and the lapse rate is the asymptote of the
learning curve. Both of these metrics vary across species and can
be used to query global information processing across tasks. Lapse
rates are especially useful for measuring general motivation during a
given task, which is a common confound for comparing cognition
between populations. Similarly, species might make different speed–
accuracy trade-offs in any given task315, with different strategic choices
potentially confounding conclusions about overall ability.

Recoding
Estimating and comparing information capacity between groups is
difficult when recoding occurs316. Recoding is the process by which
information is mentally compressed during task performance. Humans
are very good at recoding information using chunking, rules, heuristics
or verbalization, thereby making space for more information. Non-
human primates also have some ability to recode information171,217

The ways that humans and non-human primates recode and compress
information are only beginning to be understood, but it is critical
to understand these phenomena in order to measure information
capacity. For example, symbolic recoding could facilitate human
learning during passive or social learning tasks in ways that exceed
the capabilities of non-human primates.

Darwin cla imed t h a t  h u m a n s  differed f rom o t h e r  p r ima tes  in
degree  rather  than kind, which has been dismissed by some as a mis-

taken claim52. But if th e re  is on e  lesson f rom formal co m p u t e r  sci-
ence, it is that differences in degree yield differences in kind. Evolution
doub led  the  information processing capacity of humans,  which se t
in motion a cycle of advances between logic innovation and  develop-
mental acquisition tha t  snowballed over millions of years of hu m an
cultural evolution. Other species could never learn human-like rules
and  structures, internalize human-like logic and  relations or  exhibit
the  same complex behaviour as humans when their cognitive systems
face severe informat ion constra ints .  Unique information capacity
magnifies hu m a n  cognition, qualitatively alters its representat ions
and  processes, and  is essential for unders tanding the  evolution and
development of human intelligence.
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