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Uniquely human intelligence arose
from expanded information capacity
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Abstract

Sections

Mosttheories of how human cognition isunique propose specific
representational capacities or biases, often thoughtto arise through
evolutionary change. Inthis Perspective, we argue that the evidence
that supports these domain-specific theories isconfounded by
general information-processing differences. We argue that human
uniqueness arises through genetic quantitative increases inthe global
capacity to process information and share it among systems such as
memory, attention and learning. This change explains regularities
across numerous subdomains of cognition, behavioural comparisons
between species and phenomena in child development. This strict
evolutionary continuity theory of human intelligence is consistent
with comparative evidence about neural evolution and computational
constraints of memory on the ability to represent rules, patterns and
abstract generalizations. We show how these differences inthe degree
of information processing capacity yield differences inkind for human
cognitionrelative to other animals.
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Perspective

Introduction

One ofthe deepest mysteries about cognition is how human thought
differs from that of humanity’s close primate relatives. This question
targets the core of human nature itself, simultaneously pointing back-
wards to the evolution of natural intelligence and forwards to the likely
mechanisms needed to make artificial intelligence.

The theories that have gained the most traction in the study of
human uniqueness tend to be ‘silver bullet’ hypotheses that posita
single, specific adaptation or ‘instinct’ —such as social reasoning or
hierarchical syntax —as the central catalyst of human-like thought'~*.
Such domain-specific theories have largely dominated the field’s
hypothesis space. These theories tend to propose domain-specific or
modular adaptations that are innate in humans and arose uniquely in
human evolution.

Alternatives to a domain-specific evolutionary story have not
reached a consensus on a general cognitive mechanism or biological
basis for what is unique about humans’~'’. However, several newer
theories of human uniqueness suggest a shift towards more general

121319722 ‘These theories vary in how much innate

learning adaptations
structure they assume, from very little to a lot**. One class of theories
that sometimes emphasizes the general cognitive origins of human
intelligence is the cultural intelligence hypothesis'*'***7**. The cul-
tural intelligence hypothesis suggests that humans stand out among
animal species due to theirunique social learning ability and the accu-
mulation of cultural knowledge it affords. Some variations of this
hypothesis emphasize the role of purportedly innate, domain-specific
mechanisms such asjoint attention, theory of mind, language and imi-
tation, whereas others emphasize the importance of global increases
in general cognition such asthe innovation rate*® and flexibility'*. Even
cultural intelligence theories that posit innate adaptations to human
social learning agree that domain-general learning and memory do
much of the heavy lifting in the assimilation of new, unique human
knowledge'**"*.

However, allthese theories are inadequate for explainingin detail
how humans excel at the diversity of tasks they do, and therefore fail
to explain how unique capabilities emerge in humans. We argue that
the differences between human and non-human primates are not
due to one specialized cognitive adaptation or evena bunch ofthem.
Instead, human uniqueness largely results from a global adaptation
forincreased information processing capacity, which alters human
cognition profoundly and qualitatively. Information processing capac-
ity refers to the amount of information®** per unit time that can be
stored and transmitted between cognitive mechanisms or subsystems.

In this Perspective, we propose that global, genetic differences
inlearningand memory are sufficientto account foruniquely human
capacities across domains. Webegin by detailing silver-bullet theories,
cultural intelligence theories and our information capacity theory.
We then review evidence for the information capacity theory by
examining three major predictions: continuity of ability across spe-
cies; differences in capacity limitations across species; and qualitative
changesinability enabled by quantitative changes in capacity. We dis-
cussinformation capacity across human and non-human speciesand
explore capacity limitations in learning models and mathematical
analyses. We conclude that information capacity is a key determi-
nant of human uniqueness because it determines which rules and
representations canbe learned by speciesacrossarange of domains.

Functional specializations within species preclude a unitary
definition of intelligence across species (Box 1). Differences in intel-
ligence between species mightnot be driven by the same parameters

as differences within a species —we make no argument about differ-
ences within a species in the current Perspective. The definition of
human intelligence specifically is alsoamatter of debate, but the term
‘intelligence’ isoften used to refer to abilities that psychologists have
identified as distinctive in humans —capacities such as language, recur-
sion, theory of mind, massive memory, logical and relational reasoning,
complex tooluse and rich conceptual systems.

Theories of human uniqueness

Domain-specific theories have dominated the theory space around
humanuniqueness for decades and are still influential in more expansive
modern theories of human cognitive origins"'®. The domain-specific
focus on human origins has generated many different silver-bullet pro-
posals. Silver-bullet theories of human cognition are often derived from
sociobiological’®*’ or adaptationisttheories of human behaviour'-**-*°
but they also stem from counter-behaviourist theories about human
cognition*’ and from even earlier theories ofbiological preparedness
that helped to spawn the cognitive revolution’***'. Some evolution-
ary frameworks propose that human behaviour is largely influenced

1,18,42,43
© 975 whereas others

by genetically specialized cognitive functions
propose much less innate structure?’*’'. Many of the hypothetical
human-specific adaptations that various researchers propose are in
the social cognitive domain, including cheater detection?, theory of
d*** imitation*® and joint attention®’, whereas others are abstract
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computations such as symbolic geometry ,recursion

reasoning’” and language grammar’"*3°

Silver-bullettheories face multiple logical challenges in explain-
ing the wide range of behaviours that set humans apart from other
primates. One isthat the key behaviours that set humans apart from
other primates —behaviours such as language, mathematics, logical
reasoning, complex social structures, tools and technology —generally
must be acquired. Although each behaviour undoubtedly relies on
some innate machinery, the specificrepresentations that adults pos-
sessinany ofthese domainsseem to be fairlyunconstrained and criti-
callyunknown to the youngest human learners. Asecond problem is
that the distinctively human domains are remarkably diverse in the
representations and processes they require: asilverbullet for language
is unlikely to be a silver bullet for mathematics or logic, much less
for social reasoning and tool use. Researchers inthese domains have
tended to highlight their own area as the critical special one, while
failing to account for uniquely human abilities in the others. Finally,
each theory of human uniqueness posits that a different cognitive
representation was the silver bullet, but they cannotallbe the unique
key piece. This observation has led some theorists to conclude that
perhapsthere wasno singleadaptationthatled to humanuniqueness
but, rather, a patchwork of multiple specific adaptations'®. However,
atheory thatposthoc positsevolutionary change ineachdomain lacks
predictive power and parsimony because ithas an unprincipled and
unlimited attribution of unique adaptations for unique behaviours.
More importantly, a patchwork adaptation theory contradicts the
constituent domain-specific theories that form the patchwork, each
of whichmaintains that humans are superior to non-human primates
inone domainbut ordinary inother domains®®.

Although some silver-bullet studies claim to disprove more gen-
eral explanations of differences between humans and non-human
primates, the pattern that emerges across studies isthat humans dif-
ferin general ways from non-human primates, across many domains
and cognitive processes. Human advantages extend beyond any one
processor ability into basicobject memory, semantic memory, setand
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Box 1

Biological basis of information capacity differences

Addressing unique cognitive processes requires considering
biological implementation. Unlike alternative theories, the theory
that increased information capacity caused human intelligence

has a plausible biological mechanism underlying human cognitive
abilities and satisfies key criteria for a cause for intelligent behaviour
in biological theory (such as Tinbergen’s questions?’). Species
differences in information capacity are innate and rooted in their
embryonic biology.

Functional specialization is a fact of species evolution’”®. Species
differences in sensorimotor cortices firmly establish functional
specializations that readily differentiate, for example, a bat from a
possum from a primate. However, qualitative differences between
humans and apes are much less profound®’**’”’. Instead, there are
well-known adaptive advantages to generalized increases in neural
tissue for cognitive plasticity that drive unique cognitive abilities in
humans.

Mammal and bird species with larger brains relative to their body
size are more successful at surviving in novel environments than
species with smaller brains®. This pattern suggests that increased
brain size provides a fitness benefit in vertebrates*, and implicates a
global implementation of human advantages in cognition. Brain size
in humans is expanded across most cortical regions relative to other
primates?’®?”°, Even the prefrontal cortex, which was once thought to
be qualitatively distinct in humans, seems to have expanded largely
quantitatively relative to chimpanzees?’”*’°.

The number of cortical neurons is related to information
processing capacity, and can predict general cognitive abilities
across species, such as the ability to control prepotent responses
or make precise quantitative judgements'’®'#>?%2%° The number
of neurons is genetically determined, set before birth for each
species by the size of their neural progenitor pool and duration of
cortical neurogenesis®®**?*?*'=2% and is therefore a likely substrate
for adaptation®. Humans have an extended period of cortical
neurogenesis during prenatal development compared with other
primates®®?*, Extended cortical neurogenesis probably increases
neural density in human cortex generally, although it might be more
likely to increase frontal density than posterior density because
prolongations are more efficiently implemented there within the

sequence memory, memory duration, cognitive control and simple
learning rates —differences in these general cognitive functions are
not predicted by domain-specific theories.

Theories that attribute human uniqueness to domain-general
adaptations, such as the cultural intelligence hypothesis, tend to
focus on evolutionarily new general-purpose neural functions and
structures’’, such as ‘quantum leaps’ in adaptive specializations’®, cog-
nitive control in the prefrontal cortex’”®’, adaptations for abstraction®”
and other evolutionary discontinuities'®. These theories propose an
evolutionary discontinuity between humans and non-human primates.
There is general agreement among cultural intelligence theories that
humans are unique in their social learning abilities, which enhance

human cognitionthrough the accumulation of knowledge in culture'®'"’.

developmental schedule?®. Prior theories argued that human
prefrontal cortex underwent special expansion relative to other brain
regions for functionally specific reasons (for instance, cognitive
control'). But prefrontal expansion seems, instead, a continuation

of a new allometric trend, a yoked scaling between brain parts, that
began in a more distant ancestor shared with other apes®*, and might
be a consequence of general selection for neural density under the
ease of embryonic rostral-caudal neurogenesis rather than specific
functional selection for a frontal cognitive process.

Although there is growing genetic evidence in favour of
species-specific circuits for general learning and motivation,
there is no parallel evidence for circuits supporting purported silver
bullets of human uniqueness, including language, theory of mind,
cheater detection or relational reasoning. In fact, genetic evidence
for these domain-specific theories, such as predicted differences
between identical versus fraternal twins or predicted task-specific
correlations with genes, does not bear out in the data”. More broadly,
there are no theories for how new genetic cognitive modules such as
these would arise, nor how they would have arisen in humans alone.
Finally, existing theories of human uniqueness cannot explain why
corvids perform so similarly to non-human primates on many tasks?*.
By contrast, the information capacity theory easily explains this as the
result of similar neural densities between corvids and primates that
afford similar flexibility and learning rates®®"2.

Evolutionary theories of human intelligence that take the
chimpanzee mind as a starting point and factor the effects of
scaling-up on cognition are grounded in genetic physiology.

The information capacity theory proposes that increased neural

and glial density, determined by the size of the neural progenitor
pool at birth, qualitatively improves cognition. A plausible pathway
to human uniqueness is one in which genetic changes in the

human brain increase neural density quantitatively, which leads to
exponential increases in information processing capacity, and results
in conceptual learning leaps during child development that are
unseen in other primates. This theory provides a more straightforward
account of cognitive evolution by natural selection and predicts the
unmistakable biological continuity between primate and human
brains.

Some cultural theories effectively propose silver bullets by empha-
sizing innate, domain-specific mechanisms such as joint attention,
theory of mind, language and imitation as key catalysts for human
uniqueness' 2?7334 _Qther theories emphasize expansions in general
cognitive mechanisms such as learning, memory and executive func-
tion as the evolutionary foundation of human innovation, complex
communication and flexibility>'***?*""%* These latter theories show
that global increases in general cognition are adaptive and hypoth-
esize that general cognitive processes ratchet up unique cognitive
abilities that define humans through adaptations and environmental
opportunities for social learning. However, none of these prior theo-
riesexplainhow general capacities benefituniquely human cognitive
abilities.
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By contrast, we propose that a uniquely human genetic change
in global information capacity, implemented computationally as an
increased bit rate and biologically as increased cortical density, is
powerful enough to yield all of the qualitative differences between
human and non-human cognition. Thus, our idea differs from other
domain-general theories because itis a strict continuity theory of
the evolution of human uniqueness. Our theory is synergistic with
versions of the cultural intelligence hypothesis that propose evolu-
tionary expansions inlearning and memory as a key source of human
uniqueness'****’ Tt builds on constructivist theories of conceptual
change in childhood®* °® and complements facets of the cultural
intelligence hypothesis that emphasize the uniqueness of learning
inputs during human development'?'**'. Our hypothesis expands
those priorideas by offering a cognitive explanation forhow so many
qualitatively new types of cognition could emerge in humans through
simple, quantitative changes intheir global information capacity over
evolution.

We focus on how human cognitionisunique atthe cognitive algo-
rithmic level. However, information capacity constrains cognitive sys-
tems because neural energy isrequired to represent information and
transform it computationally®”®®. The key for human-like cognition is
that all neural systems must work together —improvements in social
reasoning or tooluse willnot help much unless informationinthese sys-
tems can be conveyed to systems for learning, memory and inference.
Inturn, learned and inferred representations guide systems for percep-
tion and interface tightly with memory architecture. Increased global
information capacity would not only be advantageous but perhaps
also essential for any expansion of cognitive faculties in human evolu-
tion, ensuring that enhancements in one domain could be effectively
integrated and utilized across the cognitive system. This mutualistic,
integrative view directly engages the evolutionary reality of human
uniqueness in global neural density, the behavioural predictiveness
of suchneural measures across species, and the likely ease with which
general information capacity parameters are changed genetically in
evolution (Box I).

Our theory yields three concrete predictions. First, it predicts
some degree of success for all species even in domains that are argued
to reflect unique human ability. To address this prediction, we review
the comparative cognitive and child development literature, demon-
strating acontinuity of success across humans and non-human animals.
Second, the theory predicts quantifiable differences between humans
and other species on basic information processing measures. To this
end, we review literature documenting predictable and systematic
performance gaps between species across most cognitive tasks, includ-
ing simple memory and learning paradigms. Last, our account predicts
that small changes in information capacity could yield big, qualitative
changes in behaviour. We present mathematical analysis, machine
learning models and cognitive models for which capacity constraints
have profound consequences.

Continuity of ability across species

The first prediction of the information capacity theory is that
non-human species will exhibit some degree of success on cognitive
tests argued to capture the key to human uniqueness. Relational rea-
soning, social reasoning, causal reasoning and tools, and symbolic
thought and language have been the focus of major silver-bullet theo-
ries (Table ). We discuss each of these domains inturn and show how
evidence ineach supports our first prediction of partial success by
non-human primates.

Social reasoning

Multiple silver-bullet theories posit social reasoning as the key to human
uniqueness, claimingthat one or a few social computations that humans
engage in are genetic adaptations®??:42:4%3%%~7l ‘Ope long-standing
hypothesisisthat human intelligence was sparked by ‘theory of mind’
abilities’*’*"*, or the capacity to predict behaviour based on knowledge
thatanother being has amind. Some theorists evenargue that theory
of mindisaninnate module***’. One problem with the notion of theory of
mindasaninnate human adaptation isthat its emergence in childhood
depends on experience and its learning trajectories are gradual and
vary widely®. General cognitive capacities such as working memory
andrelational reasoning increase with age and, along with the variability
inthe frequency of sociallearning input, resultin gradual and variable
age-related development oftheory of mind in humans.

Non-human animals canreason about the mental states of others,
including goals, views and actions. The difference in social reasoning
between humans and other species lies inthe breadth and depth of
how itisdeployed across contexts and complex tasks’*°. For instance,
similarto young human children, non-human animals possess shallow
knowledge about agents thatislinkedto concrete features ofthe world
rather than internal states such as deception, ignorance or surprise’’.

Non-human primates have demonstrated allcognitive constructs
thought to be essential to human social intelligence and uniquely

d78—8\ 82,83

,imitation®***, gaze following®*, joint atten-

89,90

human: theory of min
8586 teaching®**, helping and cooperation”’'. These findings
demonstrate that humans and non-human primates share substantial

social cognitive continuity.

tion

The difference between humans and non-human primatesisoften
one of degree®***** For example, astudy of imitation found that some
chimpanzees and capuchin monkeys could socially learn one-stage
and two-stage puzzle box behaviours but that only human children
(aged 3—4 years) imitated and modelled the longer and more complex
three-stage solutions to the puzzle box task’®. The degree of complex-
ity also influences social reasoning in chimpanzees during teaching
behaviours®”. These findingsindicatethat the amount ofinformation
processing demand causes species differences in social learning.

Although most theorists think that human social cognition is
rooted in discontinuous cognitive ‘traits’>’, another wayto see theory of
mindisasacontinuum from basicaction prediction to complex belief
attribution®®, or from shallow reasoning based on representing others’
knowledge to abstract reasoning based on inferred beliefs”””®. Children
and non-human primates are often characterized as able to reason
about rational action or behaviour and adult humans about mental
states’*’®’ Differences in complexity and abstractness between
human and non-human social reasoning imply a bottleneck that is
quantitative rather than trait-based or qualitative'®’.

Many cultural intelligence theories emphasize social learning
specifically as a key source of human and non-human differences in
social cognition'*'*~! For instance, biological preparedness accounts
focus on biases in shared mechanisms as the hypothetical locus of
genetic differences between humans and other species’. These theo-
ries emphasize innate biases such as prosociality inmechanisms such
as attention and motivation. There are clear differences in successes
and failures on social learning tasks between human children and
non-human primates'’. But the innate biases have acomparatively small
roleinthose differences because their function isprimarily to alter the
frequency of encountering different learning inputs —which means
thatthe bulk ofhuman uniqueness arises from learning. Importantly,

non-human primates cannot acquire abilities at the level of a human

Nature Reviews Psychology



Perspective

Table 1 |Domains of human uniqueness

Domain Proposed human Evidence for continuity across species Proposed influence of information capacity
uniqueness
Social Theory of mind Human development of theory of mind depends on Working memory, relational reasoning capacity and the
reasoning age®?*>?% relational reasoning capacity?’*** and frequencies of learning inputs increase quantitatively with age and
experience determine theory of mind ability in humans

Non-human animals can reason about simple,
limited mental states of others such as gaze—action
relationsBBfQZ,QQ,lD‘,,lGZ

Information capacity limits non-human animals to low-complexity
mind—behaviour relations versus more complex ones

Young children and non-human primates’ reasoning tends
to be limited to shallow, concrete and perceptual features
Of agents78793,93,96

Shallow processing requires fewer layers of information
processing than deep processing and is more likely when
information capacity is limited

Social learning Non-human animals can socially learn single items,
and imitation associations and short sequences with short durations but
not more demanding sequences®-°*%1%

Quantitative capacity differences limit the number of items and
the duration over which sequences are held in memory — learning
capacity will be worse or absent for longer sequences

Non-humans can socially learn some tasks that children
aged 3-5 years learn®'°° but differ from human children
quantitatively, even in solo learning rates for those
tasks!03104

Information capacity in non-human primates is insufficient for
human-like learning; social learning demands more capacity than
solo learning because it is passive and occurs over narrow bouts
and durations

Relational Relations Reasoning about relations between relations (quaternary
reasoning between relations) develops gradually in humans, in step with
relations general cognitive capacities!023%246:248

Humans need sufficient information processing capacity to
manage the demands of quaternary relations, which results in
gradual development of relational reasoning

Apes and young children succeed at relational reasoning
for unary, binary and ternary relations but similarly fail tasks
requiring reasoning about quaternary relations!®=1%>%7

Young human children and apes both have lower information
capacities than older children and adults, which results in similar
reasoning performance

Young children and non-human primates succeed at
quaternary relational tasks when they are given symbols for
the re|ation69,104,108,110,111

Symbols benefit relational reasoning in a general way, by
increasing information capacity for demanding relational
problems in any species

Corvids and monkeys succeed at simple
relations-between-relations tasks'***"”

Species with high neural densities succeed at perceptual
relational matching tasks because relational reasoning depends
on general information capacity

Causal Higher-order Non-human primates and young children often reason
reasoning causal relations associatively rather than relationally about causal
problemsllg,lzﬂ,ll&lio

Differences in information capacity result in variations in the depth
and breadth of causal reasoning abilities between species

Complex tool Some non-human primates use tools, but their routines
use typically involve binary relations #2041

Information capacity constraints limit the depth and complexity
of tool-use routines in non-human primates

Humans have more complex routines?*'*, often involving
multiple objects and nested subassembly routines, than
Othel' Species‘,227125,127,128,1iﬂ

Differences in information capacity lead to quantitative disparities
in acquired tool complexity and diversity between species

Non-human species that create tools often have limited
repertoires of one to a few types of tools'****

The capacity to hold in mind a wide range of actions and objects
allows humans to develop more extensive tool repertoires

Symbolic Symbolic Non-human animals can learn symbols that represent
thought representations objects and verbs'*>*?'%8, and tokens to represent
and relations™'>!*7! put the depth and number of such

language representations is smaller than in humans'®73'7

The synergy between language and information capacity is
self-reinforcing, and humans’ innately higher capacity yields faster
acquisition of symbols and concepts compared with non-human
animals

Symbol-trained chimpanzees show human-like benefits in
reasoning about relations between relations!"24141

There is a general synergy between symbols and information
capacity, not specific to humans

Human recursion has limits, as evidenced by the struggle
to understand sentences with multiple levels of recursive
embedding'**°

Recursion

Even humans need sufficient information processing capacity
to manage the demands of hierarchical embedding

Some success for non-human species on hierarchical
tasks, specifically for high-capacity species such as
monkeys and corvids, suggests a general origin for
recursion in humans'”*®

Non-human species can learn hierarchical patterns but do so more
slowly and shallowly than humans; differences between humans
and non-human animals in the capacity to synthesize large
amounts of information yield differences in hierarchical thought

childeven when their environment offers higher frequencies of direct
social input. This difference means that there is something critical in
the learning component of social learning that differs between humans
and non-humans beyond innate biases in sociality. Learning rates are
constrained by information capacity, and because social learning

occurs by observation it requires the ability to learn passively and on
someone else’s schedule and pace, which makes social learning more
demanding than individual learning. Although learning rates for indi-
vidual versus sociallearning conditions are rarely compared between
species, wesuggestthatthe time course ofsocial learningrequired to
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attain human-like characteristics is outside the learning capacity for
non-human primates on many tasks. Thus, information capacity could
have a causal role in determining the successes and failures of social
learning across species.

Relationalreasoning

Other silver-bullet theories suggest that human uniqueness rests on
forms of non-social reasoning such as the proposed ‘super-module’
of relational reasoning’®'"". Relational reasoning requires deep logi-
calrepresentations —minimally, it requires comparing two relations
across four entities, a quaternary representation. For instance, rela-
tional reasoning is involved in comparing one relation with another,
such as knowing that the relationship between the concept ofadog
as itrelates to adoghouse and a bird as itrelates to a birdhouse is
the same.

Many species form common classand category concepts but often
fail attasks requiring reasoning about relations between relations'**'*.
Both non-human primates and children younger than 5 years ofage
often fail at these tasks®*'’*. Some researchers have argued that they
cansucceed only ifgiven a symbol to represent the relation (such as
the word ‘same’ for children)'**. Consistent with this account, children
youngerthan4 yearsofagesucceed atrelational tasks only when given
relational labels, whereas children older than 4 years ofage spontane-
ously succeed —presumably because older children have acquired the
necessary relational labels®>'*>-'¢.

If there is a continuity of ability across human children and
non-human primates, then providing similar symbols to non-human
primates should enable them to succeed at more complex relational
reasoning. Indeed, chimpanzees provided with symbols (language
or shape tokens) succeed at quaternary relational tasks'®*'"7~'%,
The pattern thatonly ‘apes with symbols’succeed atrelational reason-
ing tasks suggests that tokens of some sort are the key to comparing
relations. However, there are exceptions to this generalization''*"'%.
For instance, corvids (birds with similar neural densities to mon-
keys) can succeed at relational matching tasks (distinguishing same
and different entities) involving shape, colour or size'”. However,
apes and bonobos succeed more readily than corvids on the same
task, and comparably with a 3-year-old child'®. These latter findings
indicate that relational reasoning isnot uniquely human or strictly
language-dependent —it can be learned by non-humans and is
influenced by general capacities such as a species’ learning rate.

Overall, a strict version of the hypothesis that the presence of
relational reasoning in humans distinguishes them from other species
is probably not correct. Instead, humans might have an easier time
processing relations, in part, due to the power of language to pack-
age concepts into lighter-weight mental representations, or chunks.
Another important component is likely to be humans’ greater general
information processing capacity, which can also contribute to effective
management of the informational demands of quaternary comparison.
Humans’ higher capacity forrelational reasoning probably has broad
applications across domains, including supporting sophisticated
conceptsinsocial and physical settings.

Causalreasoning andtools

Capacities in causal reasoning have also been posited as the silver
bullet of human uniqueness. Humans’ causal reasoning is linked to
exceptional exploitation of the environment, such astool use and novel
foraging behaviours such as armed hunting and farming'®. Although

some non-human primate species canusetools'”, identify useful tools''®

and create tools''*, humans have the ability to create amuch higher
number of novel tools'®"".

Non-human species that create tools —such as rooks, ravens,
crows, capuchins and chimpanzees —often have limited repertoires of
oneto a fewtypes oftools, whereas humans have largerrepertoires by
thetimethey are 5 yearsold'*''®'?'_ Chimpanzees have the largest tool
repertoires among non-human species and canuse around 20 different
tools'”>. Human children have large tool repertoires, which they initially
learn from observing experienced teachers, but by age 7—8 years they
go furtherand begin creating tools'*'.

Non-human primates have limited insight, breadth and generaliza-
tion ofeven simple causal relations''*'**'** which probably constrains
their tool use. In the tube-trap task, in which a target object must be
removed from a tube by using a probe while avoiding trap obstacles,
non-human animals show a lack of insight and minimal causal gen-
eralization when presented with novel but similar tubes. Rooks and
chimpanzees show near-transferto new similartube traps after learn-
ing to solve the original tube, but not far-transfer to visually distinct
tubes'**'?*. Minor tweaks to tube-trap apparatuses can help non-human
primate performance and non-humans, particularly apes and corvids,
solvethese simpletool-use tasks similarlyto children who are younger
than 5 years old. Specifically, young children and non-human primates
canmake some simple causalinferences abouttraps but oftenrevertto
narrow associativereasoning such asside biasesthatdo not generalize
to novel tasks'?°. However, as children approach 4—5 years ofage, they
quickly acquire broad causalknowledge oftube-trap tasks and general-
izetorotated and reconfigured tubes'**. Older childrenand adults not
onlylearnaction—objectassociations during tooluse but make broad
causalinferences that generalize to other tasks. The presence of some
successfullearningand generalizationinnon-human animals implies
that causal reasoning isnot entirely absent'*°. Rather, differences in
learning and generalizationbetween humans and non-human animals
couldbe causedby the amountofinformationrequired to solve aphysi-
cal problem. The types of causal concepts and tool-use routines that
non-human primates and other animals learn are probably shorter,
simplerand less enduring than those of humans.

Tool use in non-human species often involves a single object
impacting another object but rarely requires multiple objects organ-
ized into an action hierarchy. The integration of multiple objects and
actionsinto abehaviourisrare innon-human species''. Although some
speciesuse objects in binary combinations, such ashitting anut witha
stone, non-human tool use lacks nested subassembly routines, which
are observed frequently in human behaviour''. For example, field data
show that non-human animals do not frequently implement hierarchi-
calactionroutines where one tool isused to makeanother tool''. These
patterns suggest that the limitations that non-human animals face in
causal reasoning are quantitative ones in the breadth and depth of
action abstraction, and the number of nested levels of subroutines.
These quantitative limitations are plausibly explained by differences
ininformation capacity.

Symbolicthought andlanguage

Many theories of human uniqueness centre on language, but the spe-
cific evolutionary changes responsible for this ability are debated.
Some theorists have suggested thatrecursionisthe defining element
ofuniquely human language'*"*"'*". Although the term wasnot defined
inthese proposals, the example given by these authors was sentential
embedding, the ability to take a sentence S (such as ‘Itisraining’) and

putitinsideanother sentence, such as ‘Mary thinks that S’(‘Mary thinks
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that it is raining’)’'. This capacity presumably provides the ability to
build complex, hierarchical expressions that are predicated on other
complex expressions. Despite the importance of recursion, humans
face a limit of two levels of recursive embedding in certain construc-
tions, struggling to understand sentences such as ‘“The senator the
chefthe mouse saw attacked laughed’'**'*’. Additionally, not allhuman

0-132

languages use sentential embedding’ ,and ithasbeenargued that

relatively little daily language use involves recursive capacity'>*'**.
These discrepancies challengethe notion thatrecursion broadly isthe
keystone of human-like thought.

Arevised proposalisthatthe relevant sense ofrecursion for human
uniqueness isthe capacity to unboundedly put two arbitrary elements
together into a new unit'*>**. For example, the sentence ‘Wendy ate
marshmallows’ is recursive in this sense because it has three words.
Anoperation that can only put two words together at a time must
therefore operate multiple times on these words, including on its
own output. For example, most theories assume the verb and object
are combined into a new unit, {ate, marshmallows}, and then that
unit is combined recursively with the subject to form {Wendy, {ate,
marshmallows} }.

Thisidea critically relies on the assumption that even simple sen-
tences involve underlying binary structures. Some theorists have
argued that binary structure building is the simplest computational
operation®®, the key to human thought and language®, and the result
of a single mutation leading to a rapid evolutionary change'*’. This
proposed capacity isdistinct from non-human animals’ ability to gener-
ate sequences of behaviour as sequences need not have the required
hierarchical organization'*". However, this proposal has been critiqued
logically and in evolutionary models'*"'*?. For instance, there are prop-
erties of language that cannot be explained by minimal change to
enable recursive structure building, including features that are useful
in communication, even when only partially present’. Communica-
tive properties of human language tie it to animal communication
systems in that they suggest continuity in the evolution of language,
driven by the pressures of usage, rather than genetically determined
discontinuity'**'**. Such communicative explanations in linguistics
have found empirical support across linguistic subdomains'*%'43-148,
often showing how information-theoretic or usage-based constraints
shape the form of linguistic systems'*’.

More generally, the existence of innate grammatical constraints —
recursive structure building or others —is widely contested'*’~'">.
Ithasbeen argued that, essentially, none of the key properties of lan-
guage previously suggested to be universal across human groups
actually are'™.

Instead of language-specific adaptations, the human capacity for
representing and synthesizing large amounts of information might
yield more complex, hierarchical patterns of thought. Humans tend
to attribute tree-like structures to data'>>'*°: people across ages and
cultures generalize ambiguous data hierarchically. Inone study, Indig-
enous Amazonian adults, American adults, American children and
non-human primates (macaques) were taught sequences of symbols'’.
Allhumans tended to generalize to novel combinations of the learned
symbols hierarchically rather than using an ordinal strategy, even
though either strategy was consistent with the training data. Macaques
only used a hierarchical strategy with additional training, suggest-
ing that hierarchical generalization was not out of reach for them
but was a weaker bias. Children’s use of a hierarchical strategy in this
task was predicted by their working memory capacity, suggesting

thatthe development ofhierarchical reasoningis gradual and limited

by information capacity. Corvids, a family of birds with similar neural
densities to primates, perform at least as well asmacaques on the same
task, further highlighting continuity between humans and the rest of
the animalkingdom in the capacity to generalize hierarchically'*®. These
data that show some success for non-human species on hierarchical
tasks, and specifically for species with high information processing
capacity, implicate amore general origin story for recursion in humans
thatdoesnotdepend on specificadaptations for language.

A general problem for language-based theories of humanunique-
ness is that they are at odds with the continuity between humans
and non-human animals in many aspects of language learning'®’.
Non-human animals can learn hundreds of words and symbols, gen-
erate strings and comprehend basic syntax'®"'**. Baboons show expec-
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tations about some aspects of semantics in word learning tasks "~ and

exhibit some capacity for compositionality'®°. Atrained bonobo (Kanzi)
could comprehend sentences and differentiate them, but had limited
capacity with coordinate noun phrases and a shorter mean utterance
length than a2-year-old human child'®’. Although these differences are
sometimesinterpreted asevidence ofaunique human genetic adapta-
tion for grammar, they could also reflect quantitative differences in
abilities that snowballed into qualitative ones. For instance, insufficient
capacity to deal with parts of a phrase can impair one’s access to the
hierarchical structure of sentences, regardless of a grammar-specific
adaptation.

General computations related to language and symbolic struc-
tures have alsobeen proposed asuniquely human. Humans show fluent

learning of symbolic mental algorithms and procedures®*®

,including
advantages over non-human primates in domains such as geometry™’.
However, itisunclear what class of algorithms other species are capa-
ble of acquiring and whether their limitations are due to memory or
underlying algorithmic competence (Box 1). Indeed, the question
of uniquely human language abilities might not even make sense if
underlying memory capacities differbetween species.

Informational limits are a known constraint on language learn-
ingand might be critical in how children acquire language'®®. How-
ever, non-human primates face more drastic information limits. For
instance, non-human primates’ inability to learn human-like language
has been attributed to their difficulties learning and remembering
even lexical items'®’. Similarly, humans are thought to uniquely pos-
sessthe ability to learn massivenumbers of arbitrary symbols; human
knowledge oftens ofthousands ofarbitrary word meanings contrasts
greatly withthe few dozen callsknown to non-human primates'®. Many
accounts ofhuman language emphasizetherole of memorized struc-
tures or chunks (ratherthan a smallset of syntacticrules)indetermin-
ing linguistic competence'’'”'. Human learners acquire, on average,
2,000 bitsofinformationper day about word meanings, from birth to
adulthood'”? —amonumental feat of memory with probably no parallel
inanimal cognition.

Information capacity constrains the ability to learn language but
language also enhances information capacity once learned. The cog-
nitive changes associated with symbolic representation are believed
to be profound. Compositionality enables new conceptual structures
and information transfer between domains'”® and grammar provides an
“endless compacting of information limited only by human memory”'”*
akin to hierarchical organization for memory or concepts'’’. Words
provide ahandle on complex meanings'’®. For instance, the word ‘hun-
dred’ does notneed be broken down into “tentens’'””and the word ‘aunt’
need not be broken down into its component defining relations to
accessthese meanings. This synergisticrelationship between symbols
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and information capacity isnot unique to humans. For example, as
described above, chimpanzees trained with symbols for ‘same’ and
‘different’ learned to reason about relations between relations more
easily than those without symbol training —showing clear benefits of
symbols for complex rule learning even innon-human primates''*™''°.

We conclude that human uniqueness in symbolic thought and
language liesnot in an exclusive adaptation for grammar but, rather,
inhumans’ extraordinary capacity to manage vast quantities of infor-
mation. Non-human animals have demonstrated their ability to learn
words, construct sequences and grasp basic syntax to acertain extent,
challenging the notion of exclusive grammar adaptations inhumans.
Whattruly sets humans apartistheirunparalleled information capacity
and their ability to transcend information limits in language acquisi-
tion. Unlike any other species, humans possessremarkable learning and
retention of an extensive array of symbols and rules. Once acquired,
language serves as a powerful tool for expanding information capac-
ity. This synergy between symbols and information is observed in
symbol-trained chimpanzees, suggesting that successfully acquired
symbols benefitreasoning in other animals too, but the outcome of
this synergyisamplified inhumans because they store more symbols,
including symbolsupon symbolsinrecursive structures.

Species differences incapacity
The second major prediction of our information capacity theory is
that human and non-human primate species differ in their general
information capacity. We predict that species will differ on basic,
domain-general cognitive tasks involving general learning and
memory.

Alldomains that are purported to define human uniqueness —
including complex relational concepts such as social relations, mind—
behaviour relations, analogies, rule induction and grammar —are

Box 2

probably constrained by more fundamental domain-general limi-
tations on information capacity. Human adults are also subject to
limitations on information capacity (Box 2). Cognitive information
processing capacities such aslearningrate, attention, memory and con-
trol vary greatly across species'*'***%!7%7%4 ‘Such differences feed into
every other cognitive process, withthe consequence that performance
on any taskrequiring learning, attention, memory or cognitive control
willdiffer across species because of those underlying constraints. It is
therefore hard to posit fundamental representational differences in
any individual task without accounting for global informational fac-
tors. Moreover, such differences feed into learning, which can amplify
the differences: animals use informational capacities adaptively to
learn new things and therefore some species might end up with fun-
damentally different representations because of their information
capacity rather than domain-specific factors. Four key domain-general
capacities are particularly relevant to cross-species comparisons:
simple learning rates, simple memory capacity, cognitive control, and
sequence learning and memory. We review these four capacities
and theirimpactson purported human-unique domains here.

Simplelearning rates
Some species learn novel associations, generalizations, rules and

OLIESIS6 Forinstance, oddity learn-

strategies more quickly than others
ing, in which animals must tip over the odd object between three
wooden objects on a board to find a food reward, has shown species
differences. In one typical experiment, chimpanzees and monkeys
learned to decipher which object wasthe odd one above chance (60%)
in 1,152 trials, whereas cats and raccoons performed at chance for
4,800 trials'®’. Chimpanzees reached 90% accuracy at 2,208 trials,
whereas monkeys took 3,508 trials. Human children aged 3-5 years
learned to 90% accuracy inone fifth of the trials (mean = 203 trials)

Capacity limits in adulthood

Capacity limits are a key constraint in human adult cognition,
apparent in all posited silver-bullet domains. In many cases, adult
human abilities bump up against processing limitations, which
suggests that species with different limitations should not show
behaviour that is qualitatively human-like. For instance, adults exhibit
upper limits on the number of meaningful chunks of information

they can hold in mind at one time, which interacts with the resource
demands of the task®®. Effects of capacity limits on adult cognition
are observed in relational, causal and social reasoning and language.
For example, adults have highly limited abilities to understand
recursive embedding"*"*’. Furthermore, adults’ analogical reasoning
shifts from abstract and relational to more concrete and object-based
when information processing is taxed, such as with increased working
memory load*®. Finally, human social interactions become more
challenging and less cohesive if there are more than four people
involved in the discourse, a phenomenon known as ‘the dinner party
problem’”®'. Thus, adult human cognition is limited by its information
capacity, and there are certain rules and patterns that are too long or
complex for humans to comprehend.

‘Rational’ accounts of cognition attempt to explain behaviourin
terms of what would be expected from an ‘ideal’ learner who has
a perfect memory*>?**, However, models that posit that adults are
efficient at solving problems have obvious difficulty approximating
behaviour when adults’ behaviour is suboptimal. A growing area of
computational modelling seeks to understand so-called resource
rational models, which formalize optimal or efficient use of finite
mental resources such as memory or attention®*?**, Resource
rational models posit that people are efficient relative to their
resource constraints, but their resource constraints prevent them
from achieving normatively perfect behaviour. This type of approach
can be seen in theories of human perception®*®, decision-making?’’>%,
encoding of subjective value®”, generalization®”, processing of
centre-embedding linguistic structure®' and number cognition®’?.
Across these domains, models with limited resources provide a better
account of human behaviour than those that assume unlimited or
unrestricted resources. Limited capacity is therefore a promising
approach to understanding cognition that highlights ways in which
finite informational capacity shapes how humans solve problems.
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and those aged 6 yearsinone twentieth of the trials (mean = 96 trials)

'8¢ With instruction,
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compared with chimpanzees (mean = 2,208 trials)
human children learn even faster than they do by trial and error
Thus, humans learn abstract rules faster than primates from early
childhood, due partly to an inherently higher learning rate and partly
to instruction, enabling more abstract rule learning in humans com-
pared with other primates. Abstract rules with arbitrary stimuli such
as wooden blocks are unlikely to arise from domain-specific adapta-
tions and silver-bullet representations because the target of learning
is arbitrary stimuli and the rule applies to features of those stimuli
generally. Instead, species differences on these rule-learning tasks
indicate varying domain-general capacities.

Learning rates vary even within narrower clades of species, such

185,187,191 :
,animals must

asamong primates'”'’. In basic learning set tasks
choose correctly between two arbitrary stimuli (such asacylinder and
acube)to getafoodreward. Oncethey do so,twonew objects (suchasa
sphereandacone)arepresented and they mustlearn whichisrewarded.
Attention set-shifting involves switching between stimuli on the basis
ofone dimension (such as shape) and then another (such as colour)
within the same task. Animals learn the overarching task rule rather
thanjustanassociationbetween objector feature andreward, asdem-
onstrated by the factthatthey learn faster with eachnew contingency'’.
A meta-analysis of learning set performance with primates revealed
that apes exhibit faster learning than Old World monkeys, and Old

10 : .
.Humans, including

World monkeys performbetter than prosimians
young children, acquire learning set rules in a fraction of the trials it
takesapes and monkeys to learn'**'**. As with oddity learning, species
differences in this task are attributable to differences in underlying
information capacity. All species we described can learn the basic
associative task and the task sets with arbitrary stimuli but they con-
sistently differinthe rates at which they acquire and generalize those
contingencies, implicating general learning differences rather than
differences in domain-specific adaptations.

Reversal learning is similar to learning set tasks but requires
the exactopposite choiceof whatwasjustlearned. Duringreversals, the
previously unrewarded object becomes the rewarded one and vice
versa®"'**'%> Animals who learn broad task strategies are more success-
fulonthe taskthanthose whorely on associations, asthey learnto rep-
resent the task strategically with arule (such as ‘reverse’ or ‘win—stay,
lose—shift’)and canadapt when anitemthatyielded areward for many
trials suddenly becomes unrewarded. Some species (including apes)
show fastrates ofacquisitionon both initial learning set and reversals,
butothers (including lemurs) show fastlearning rates forsets but not
reversals. Thus, some species easily learn simple associations but do
notlearnabstractrules as easily.

Reversal learning shows qualitative differences in task perfor-
mancebetween species. Species with lower learning capacities are una-
ble to transfer their learning. After learning one association (‘choose A,
not B’)they mustbuildup anew associationde novo (‘choose B,not A’),
soeachreversal takes them along time to learn'*°. There was substantial
variability among 79 primate species who were trained to identical
criteria on reversal learning'®°. Some primates such as apes learned
a global strategy or rule whereas other species such as prosimians
learned a series of associations. Some animals lack the flexibility to
readily derive an abstractrule, perhaps inpart because they perseverate
oradhere to known successful responses.

Theseresults suggestthat general learning capacity yields qualita-
tivedifferences in cognition because different species solve identical
tasksin different ways. Systematic performance gaps emerge between

species even across simple, domain-general tasks—which supports the
second prediction of our theory.

Simple memory capacity
Humans have a large memory capacity, estimated at a billion bits'”®,

with language alone requiring 12.5 million bits'”’

. With training, human
memory capacity can be substantially improved'’”'’*. Humans can
learn and remember more than 2,500 new, unique visual items ina
simple 5-h experiment and are thought to be capable of maintaining
more than 200,000 unique visual items in memory at a time'*’. Using
acomparable paradigm, pigeons required 700 sessions to learn 1,000
images and baboons required 3—5 years to learn 3,500—5,000 images>"’.
The pigeons and baboons showed set size effects, suggesting similar
underlying mechanisms to human memory>’'. Baboons’ ability to learn
four times more stimuli than pigeons suggests genetic differences in
simple memory capacity between primates and pigeons. Humans are
estimated to have 50 times the memory capacity of baboons?** so those
genetic differences in simple memory capacity between pigeons and
non-human primates plausibly extend to differences between humans
and non-human primates as well. Such memory differences are certain
to cause profound species differences in cognitive domains such as
relational reasoning, social cognition, complex action and tool use,
and complex rule learning that require representing many items such
as symbols, words and concepts.

Cognitive control

Flexibility during problem-solving is a criterion for intelligent behav-
iour’”'®?. Some species are more likely to ‘get stuck’ during problem-
solving than others. There are a few general mechanisms relevant
to flexibility, which might be termed control, attention, inhibition,
self-regulation or executive function. These mechanisms have a role
in tasks that require remembering the past, avoiding errors and con-
sciousness, alltask behaviours that are proposed as markers of human
uniqueness attributed to unique neural evolution of human prefrontal
cortex'?. However, the role of these general cognitive mechanisms
in behavioural flexibility isenhanced not just in species with larger
prefrontal regions but also in species with larger overall brains and
relatively small prefrontal cortices.

Two self-regulation tasks include the A-not-B task, in which
aprepotent response (A)isbuiltup and then a new response (B) is
prompted and researchers measure the time needed to adopt the
new response’’’, and the perseveration test, in which anaturally prepo-
tentresponseisunsuccessfuland researchers measure how longittakes
subjects to change course’”***. Species vary in their ability to control
prepotentresponses inthese tasks, with larger-brained animalssuch as
apes, elephants and dolphins exhibiting the highestdegree of control,
and marmosets and rats showing the weakest control'®’. Overallneural
densities, whichare genetically determined, seem to influence an ani-
mal’s capacity for self-regulation. Humansrank high in control relative
to other primates, starting around age 2—3 years®””, which suggests
that human advantages in cognitive control develop early. The early
development of advantages in self-regulation suggests a genetic and
general cause forhuman advantages in cognitive control. This ability is
essential for conceptual change and complex learning —for example,
substantial evidence shows that these general cognitive capacities
are critical precursors to relational reasoning in human children®’®.
Together, these findings implicate ageneral and evolutionary basis for
species differences inacquiring simple rules, hinging on their ability
torapidly integrate new information into new action.
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Box 3

Information capacity constrains rule learning

A computational model can be used to evaluate how capacity
influences what structures a learner can acquire. Domain-general
pattern learning models are able to find concise algorithmic
descriptions of discrete data sequences®®. For example, when
provided with input such as ‘abbabbabb’, such a model would learn
an iterative or recursive representation that generalizes to longer
sequences following this pattern, such as ‘abbabbabbabbabb ....
When given input such as ‘aaabbbccc’ the model would generalize to
both shorter (‘aabbcc’) and longer (‘aaaabbbbcccc’) strings that also
follow this a”b"c" pattern. This program learning model can acquire
key structures in natural language, including different kinds of
recursion and hierarchy by constructing representations of grammars
out of a handful of algorithmic pieces, just as programmers build
complex programs out of a few dozen built-in operations®®.

Very similar models can be found in, for example, sequence
memory*” and other cognitive domains*. All such models work
by finding programs that provide a concise description of the data.
For example, if learners saw the sequence ‘abbabbabb’, they might
construct a program F defined as F() : =repeat(pair(‘a’, pair(‘b’, ‘b’)), 3).
Here, F first pairs together ‘bb’ from its component parts (using
pair(‘b’,/b’)), and then pairs that structure with an @’ to yield ‘abb’
(using pair(‘a’, pair(‘b’, ‘b’))). The repeat’ operation then repeats the
entire ‘abb’ structure three times. Thus, this program F is one way to
describe the regularities in the string ‘abbabbabb’. The task of the
learner is to find program F by searching over ways of composing
the parts to capture the data (or an approximation to it). Such models
work essentially similar to scientists who observe data and try to
craft formal theories to explain the data they see. The models are

Sequence learning and memory

The capacity to hold multiple items in mind atthe same time isneeded
to solve complex problems. For example, to recognize that a pattern
such as ‘ABBA’ also applies to ‘CDDC’ and ‘EFFE’,one must hold the
four elements of ‘ABBA’in mind, extractarule and apply itto four new
elements (Box 3). Species vary in their ability to hold multiple items in
mind”*’’. Many songbirds demonstrate exquisite sequential memory,
although it is species-specific’’’. Humans excel at learning arbitrary
sequences of colours, tones or shapes?’®. A meta-analysis of 108 experi-
ments across 14 species”” found that humans required far fewer trials
toreach a given level of performance on sequencing tasks than other
species. For example, ratsrequired thousands oftrials to discriminate
between two 3-item sequences above 50%; pigeons required 300 trials
to reach 95% accuracy, and then showed almost no improvement for
2,000 trials; and humans reached nearly 100% accuracy in 10 trials.
Onasequence discrimination task, humans took 30 trials to reach 90%
accuracy whereas macaques took 400 trials®'’.

Human adults might use language encoding as a tool to enhance
their capacity on sequencing tasks with verbalizable materials®'. How-
ever, non-verbal tasks such asthe Corsitapping task also show capacity
differences between humans and non-human primates®''. Baboons
performed significantly worse than humans on this task, being only

consistently above chance with three-item and four-item sequences,

typically biased to find short or concise programs to capture the data
they observe, following ‘minimum description length’ accounts of
statistical inference®® as well as theories of artificial intelligence that
argue that an intelligent agent should try to find concise programs to
explain observations®**%,

The complexity of pattern alearning model can find in a sequence
is a function of the length of the data its memory system can handle.
We used a version of a sequential rule-learning model** that includes
several operations including repetition (such as ‘repeat’), alternation,
reversals, list-building functions (such as ‘pair’) as well as recursive
and logical operations®” to demonstrate this point. This model also
enables learners to generate arbitrarily long sequences, meaning that
one could hypothesize that the observed data were part of an infinite
longer sequence. We looked at the length of every possible data
sequence (such as ‘abbabbabb’) versus the length of the shortest
computing program (rule) that would produce it. The key is that if
there is a program that is shorter than the data sequence, this means
that there is a pattern present that a learner could detect. Generally,
for short sequences there is no program shorter than the data,
meaning that even an ideal learner would memorize these sequences
and not find any pattern, nor be able to generalize a pattern to longer
sequences. However, once the learning model had enough memory
to use more than four or five items, it became possible to detect
patterns in the input and create a shorter generating program, just as
in the ABAB example. Thus, idealized learners with memory of fewer
than four or five items would not be able to discover much structure
from the world, even in principle. In this way, limits on information
capacity obscure competence.

whereas humans were above chance up to six items. Humans also
showed evidence of using a sequencing strategy involving encoding
relative distances and proximities among the sequence items, which
demands more resources initially than rote memory of locations but
could feed back into better memory in the long run. This strategy
difference suggests amore limited capacity innon-human animals to
represent sequential relations compared with humans®®'¢>2'2213,

The amount of time an individual can hold something in working
memory (duration)isindependent ofthe number of items an individual
canhold in working memory”'*. The duration of working memory varies
between species. On a one-item delayed matching task with one dis-
tractor, memory duration is similar across non-human primates and,
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potentially, some birds, whereas insect memory is poorer~ ~. The serial
probe recognition task®'’ tests memory duration per item position,
withoutrequiring animals to remember the sequence order. Pigeons,
monkeys and humans all perform this task with high accuracy and show
the signatures of primacy and recency in their memory performance”'®.
However, pigeon memory decays approximately three times faster than
monkey memory, and monkey memory decays three times faster
than human memory.

Chimpanzees showed impressive memory capacity on a touch-
screentaskin whichnumeralsbetween ‘I’and ‘9’ are briefly flashed on

ascreen and subjects have to press the locations in a trained order"”.
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Chimpanzees practised this task over a l-year period, 4 times per week
for 50 trials per session. After training, they were givenanovel testing
sessionin whichthe items were flashed at sub-second speeds and their
performance wascompared with that of humans. With six items, chim-
panzees were less accurate than humans and achieved 65% accuracy,
compared with 80% for humans during the two testing sessions, and
with five items, chimpanzees’ performance was generally within the
range of human performance. However, non-human primates typically
perform much worse than humans on memory tasks. For example,
chimpanzees and macaques struggle to integrate information in the
memory game (in which players flip over pairs of cards to find matching
pairs), tracking items over fewer than 4 cards® compared with humans
tracking itemsover 12 cards. Thus, whereas chimpanzees can perform
similarly to humans on some memory tasks, typically humans excel in
this area compared with other species”"”.

Other domains requiring sequence memory are tool use and lan-
guage. Non-human animals cannot produce complex, hierarchical
sequences of behaviour in a range of domains from communication
to tool use'*"’ but they can integrate a limited number of action—
objectrelations into their tool-using routines. Most non-human animal
tool use involves a single object impacting another object''. However,
human tool use often requires hierarchical embedding: using one
objectto make another objectand then impacting a third object (and
deeper levels of subroutines)''. Hierarchical embedding is the same
limitation observed in ape language wherein apes did not produce
multi-word utterances and struggled to comprehend multi-item hierar-
chical syntax'®°. General differences in hierarchical reasoning for action
and language might in this way distinguish humans from non-human
primates'"**’. This general constraint on non-human primate action
and communication is a quantitative one —the number of levels of
embedding incommunication and action.

Differences in item capacity and temporal decay in sequence
memory, as seen between humans and non-human primates, can sub-
stantially impact a species’ ability to extract various types of rules
from new information, even when there are no other differences in
representation. Intricate rules, such as analogies, grammars and hier-
archies, require the observation of patterns across multiple items that
unfold over time. When one’s capacity to faithfully represent multiple
items over anextended duration is small, it isimpossible to extract the
kinds of complex patterns or rules that only emerge inlonger sequences
and sets. Consequently, memory capacity for sets and sequencesisa
critical bottleneck forrepresenting relations and rules across domains,
including social cognition, tool use and communication.

Qualitative impacts from quantitative change

The third prediction of the information capacity theory is that quan-
titative change ininformation capacity canunderlie qualitative leaps
in ability. In this section we discuss these impacts across human
developmentand inmachine computation.

Developmental changeinrepresenting relations

Theories of uniquely human cognitive processes are stymied by the
lack of evidence of new neural functions or conceptual primitives
that are both innate and unique to humans®?'. However, this state is
not an issue for theories of uniquely human information capacity.
Indeed, the same developmental primitives are present in humans
as in other primate species: associative and statistical learning®'®**?,
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ordinality and iteration , object representations’**, spati-
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otemporal intuitions'?’, quantitative and numerical reasoning?”>,

226 gaze following®?’ and speech

categorization and generalization
segmentation??®.

Ithasbeenarguedthatanape cando anythingahuman child can
doup untilaround the age of 3 years'”’. Ataround 3 years of age, some-
thing changesinthe human childthat affords deeper abstractconcepts
and mental operations. According to our theory, this developmental
change isdue to an enhanced information processing capacity, an
account that has a counterpart in constructivist theories of human
development dating back to the 1960s. Atthat time, it was theorized
thatintelligencein children emerges by wayofageneralized combina-
torial system:developing general resources for mentally writing down
combinatorial rules that are abstract and generalizable®’.

Expanding on these initial ideas, many researchers have described
how conceptual change in childhood is fuelled by increases in general
capacities*®*7%3"232 For instance, the speeds at which many cogni-
tive processes take place, such as mental addition, mental rotation,
memory search and simple motor skills, follow aconsistent and predict-
able exponential pattern of change throughout development®**. This
observation indicates that there isa general constraint on global cog-
nitive processing and reflects properties of the information capacity
of children.

Majorleaps inhuman conceptual developmentrequire integrat-
ing four items into a logical rule or relation. There is a mathematical
reason for this quantitative constrainton logicalrule learning (Box 3).
Complex patterns and rules only existacross four or more items organ-
ized into dimensions, subgroups and hierarchies (not across one,
twoor three items). Logical rules requiring four items are sometimes
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called quaternary relations’’. Analogies’’, embedded and conjoint

conditional rules***, recursive syntax®*’, conjunctive syntax with two

subjects, a verb, and an object'®’ 162,236

,centre-embedded hierarchies
and the successor function in counting®’ can only be extracted across
setsor sequences of atleast four entities. Forexample, an analogy such
as ‘dogisto wolfas catisto cougar’ requires representing dog, wolf,
catand cougar inan A:B::C:Drule. Furthermore, a centre-embedded
hierarchy isonly distinct from iteration when ithas at least four items
(forinstance inan A"B"rule'®?).

The types of rules and patterns that children can explicitly rep-
resent at different ages vary quantitatively: unary relations at age
1 year, binary relations at age 2 years, ternary relations at age 5 years
and quaternary relations at age 11 years’’. Unary means the child is
representing one relation, such as ‘The colour of the sky is blue’. The
number of relations scales with the depth of meaning from concrete
to operational —unary relations compare object and feature simi-
larity whereas quaternary relations compare operations such as the
similarity of ‘similarities’ between groups. For example, in category
similarity judgements, children’s knowledge transitions from the
unary object-based sameness (for instance, a dog ismore similarto a
wolfthan a parrot) to quaternary relational-sameness (for instance,
adogissimilarto a wolfinthe same way a cat is similar to a cougar)’’.
We suggest that between the ages of 3 and 5 years children become
capable ofrepresenting rules and relations across fouritems because
they develop greater (functional) information processing capacity,
enabling complex rules and operations.

Non-human primates typically lack the ability to represent qua-
ternary relations. Even with years of language and symbol training,
non-human primates struggle with the combinatorial functions of
language learning”™'*"***_ Thus, they remain stuck at the level of ahuman
childaged 2—3 years when it comes to generating and comprehending
asentenceorrelational phrase. Multiple studies have shownthateven
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with more than 4 years of experience, language-trained apes have an
approximate mean utterance length of around 1.6 words, which is
similarto 2-year-old children'*"***. By contrast, by 3 years of age human
children have mean utterance lengths ofthree to four words®*”.

One longitudinal projectdirectly compared language comprehen-
sionina2-year-old childand a 2-year-oldbonobo who had similar lan-
guageexperiences. The childandbonobo were trained from 3 months
ofage to produce words and strings with a lexigram keyboard and to
comprehend spoken language'®’. Overatesting period of 9 months, the
child initially produced utterance lengths averaging 1.9l morphemes
androsetoanaverageof3.19, whereasthe bonobo’s utterances began
at l.I5Smorphemes and remained stuck at that level throughout the
testing period. Language comprehension wastested by presenting an
array ofreal objects and askingthe subject vianovel spoken sentences
to carry out actions with those objects (for example, ‘Putthe ball on
the pine needles’). Comprehension of language was far easier than
production forthe bonobo, who could carry out tasks from utterances
that were longer than those he produced. This pattern mirrors child
language development'®” and highlights the importance of memory
constraints in interpreting language production. The bonobo also
used word order to interpret the meaning of the sentences and could
understand syntactic reversals (such as ‘Put some water in the coke’
versus ‘Putsome coke in the water’). The specific limitation of the
bonobo compared with human children was with long utterances
and conjunctive constructions that burden memory capacity, such as
‘Givethe peas and the sweetpotatoes toKelly’. These findings suggest
that the key constraint on the bonobo’s language learning was the
capacity for multiple simultaneous representations.

Developmental change in domain-general capacity

Also consistent with the notion that quantitative changes yield con-
ceptual change, developmental changes in domain-general capaci-
ties are related to children’s conceptual changes®®. For example, the
emergence of theory of mind accompanies conceptual change in early
childhood. Theory of mind requires integrating multiple relations
between minds and behaviours of oneself and others**’. Infants have
knowledge about the goal-directed and intentional acts of people and
themselves but struggle to integrate that information across multiple
agents and events'>’. Tasks such as the false belieftask that measure
theory of mind ability show poor performance until around the age of
5 years, after which children typically succeed®*'. Children’s individual
differences on this task are highly correlated with their executive func-
tion abilities”®*?**. Furthermore, relational capacity explains 80% of
age-related variance in the performance of children aged 3-5 years
on false belief tasks®**. That is, children’s performance on tasks such
as transitive inference, which require high relational capacity (but
nottheory of mind), predicts their performance on tasks thatdo require
theory of mind. The capacity to integrate multiple relations develops
gradually in children and once present, theory of mind can develop.
Although the emergence of theory of mind might look similar to a
qualitative conceptual change, itisunderlain by quantitative changes
ininformation processing capacity.

Overdevelopment, expansions in general information capacities
increasethe number ofrules and relations that children canrepresent,
compare or embed, whichincreasesthe types ofrules that canbe rep-
resented. Qualitative conceptual change requires semantic knowledge
and experience but is fundamentally fuelled by changes in information
processing capacity. Thus, the phylogenetic and ontogenetic causes of
intelligence havea common coupling to information capacity.

Information capacity incomputation

Capacity differences, even minor or continuous changes, can pro-
foundly impact computational performance. For instance, Turing
machines, a standard abstract model of computation, are formalized
mathematically as possessing an infinite memory. However, early
results in complexity theory showed that ifthe computer has a tight
bound on memory available (as a function of its input size), then the
classof computations it can execute is strictly limited. Ifthe amount of
memory available to process an input of size n is less than log(log(n)),
then the computer is provably only capable of recognizing regular
languages®** —languages that canbe processed with a finite number of
memory states’*. Such capacity-limited computers are therefore inca-
pable of processing the kinds of hierarchies such as context-free lan-
guagesthatare considered to approximate human language, much less
more complex context-sensitive features or transformations*®. This
result seems to establish a ‘quantum jump’ in memory requirements
forregular versus non-regular languages: asmall quantitative increase
inmemory can lead to qualitatively different computational ability.

These formalresults provide acleardemarcationbetweenregular
andnon-regular languagesthatis governed by the amount ofavailable
memory: algorithms or species that use comparatively little memory
cannotbe generating or recognizing anything other thanthe simplest
kinds of string patterns. Althoughtheseresults are more than 60 years
old, they are strongly connected to contemporary cognitive science.
Several studies have examined what kinds of string patterns animals
are capable of processing'*"'****"*"; other work has attempted to rig-
orously characterize the level of computational complexity inhuman
languages®' *°°. The primary distinction examined in animal work is
whethernon-human speciesare capable of recognizing or generating
strings from languages other than regular languages, but the results
are mixed and difficultto interpret, in part, because the sets of strings
studied canoften be processed with other heuristics.

More general findings about the linkage between memory and
computational ability can be found inthe space hierarchy theorem?*’,
which proves that computers that are given more memory capacity
(asafunction oftheir input size) are capable of solving alargernumber
of problems. This conclusion can be contrasted with, for example, the
factthat many modifications of Turing machines do not increase their
computational capability. For example, altering a standard Turing
machine to give it two tapes, or even two-dimensional tapes, does
not fundamentally change the rules it can use or the problems it can
solve. But allocating it more internal memory space, as a function of
inputsize, does.

When a learner’s memory is only a few items, it willnot be pos-
sible for them to learn classes of patterns that only become apparent
after several items. For example, neither the sequence ABnor ABA
leads one to see the repetition pattern in ABAB, meaning that this
repetition pattern would be inaccessible for learners with memories
of fewer than fouritems. Thisidea canbe formulated inthe context of
structured learning models, for which limited memory of the input data
would prevent acquisition of patterns, including hierarchical structure.
Inthis case, the bestalearner could do istry to memorize the data. The
behavioural consequence of this memory limitation would be limited
rule-like generalizations in relational reasoning, imitation, tool use,
language learning and any domain that requires representations of
multiple actions, agents and entities.

Although this impactis debated, capacity constraints have also
been argued to critically shape machine learning capability in mod-
ern neural networks. Machine learning performance depends on
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parameters such asthe amount of training data, the number of training
steps and the number and arrangement of nodes in the network”****.
Some models only show above-floor performance on tasks involving
human-like intelligence when they are able to use billions of param-
eters. Indeed, although some tasks scale smoothly with model size,
at other times changes in capacity are profound and discontinuous
as the parameters or capacity of the models is increased*®’. Such
neural networks show systematic scaling patterns, often power laws,
between performance and both the amount of data and the neural
network size or capacity’®%. The highest performing deep learning
models can memorize massive amounts of data, fitting evenrandom
labels****% and it is likely that this ability for memorization is critical
for extracting the higher-order regularities necessary for high perfor-
mance in domains such as language usage and image classification.
Indeed, modern high-capacity systems have been argued to show
signs of general intelligence, succeeding on a diverse array of tasks
such as mathematics, tool use, theory of mind and programming”°®®,
although the ability of these systems to truly reason in a human-like
way is contested”®’.

Part ofthe success of modern neural networks has been driven
by the realization that increasing computational power can outper-
form tailored (silver-bullet) representations®°®. For domains including
speechrecognition, chess and computer vision, experts once believed
thattailoredrepresentations werethe solution, but these efforts stalled
and, arguably, eveninhibited future progress’®’. These problems were
eventually solved using simpler techniques with models that built
in less knowledge of each specific domain, combined with higher
computing power and more general capacity”®’.

Together, these results generally show that the informational
limits faced by a system are an important determinant of the range
of computations it can perform. Moreover, the success of the best
learning models does not seem to be due to carefully constructed
silver-bulletrepresentations but, rather, the discovery of how to make
learning scaleto large data sets and numbers of parameters, suggesting
that general scaling of informational capacity mighthavebeen aroute
to the evolution of human-like intelligence.

Conclusion

Wepropose that global, genetic differences inlearning and memory are
sufficientto account foruniquely human reasoning across domains, as
an alternative to theories thatrequire qualitative, domain-specific evo-
lutionary changes specifically in human cognition to explain uniquely
human behaviours. Thistheory ofhuman uniqueness makesthree con-
crete predictions. First, the theory predicts that non-human primates
will show some degree of success on tasks previously purported to
draw on domain-specific specializations in humans. Second, the theory
predicts continuous, quantifiable advantages for humans relative to
non-human species on basic tasks, even tasks that only require repre-
sentations of a few items, actions or features. Last, the theory predicts
that subtle increases in information capacity yield qualitative changes
in behaviour in humans, non-human animals and computational
systems more broadly.

No existing theories have been able to adequately disentangle
information capacity from domain-specific functions, nor explain the
concrete implications these capacity limitations have on the ability
to learn and represent knowledge. Theoreticians of domain-specific
theories have been too eager to posit that specific mechanisms are
unique to humans, leavingallthe other differences inthe information
processing machinery of cognition unaddressed and confounding.

We suspect that global information capacity tends to take a backseat
intheories of human uniqueness because researchers underestimate
its potential to yield qualitative changes in cognition between species.
However, general capacity constraints have profound consequences
and information capacity determines which species can learn the
hierarchical, abstract patterns and generalizations and which spe-
cies, simply, cannot. We showed how information capacity gradually
expands over human development and how it relates to qualitative
changes in human cognition. Expansions in information capacity ena-
ble rule-based, compressed representations of complex phenomena
such assequences, sets and relations that are abstract and generalizable
(Box 3). The ability to think symbolically probably enriches this benefit
of information capacity even further. Independently of the neural or
cognitive instantiation, changes to capacity have a surprising qualita-
tive effect on the abilities of computational systems: differences in
degree yield differences in kind.

We detailed how basic differences in information capacity
between humans and other animals can lead to qualitatively unique
human cognition, both developmentally and evolutionarily, offer-
ing new research possibilities. New directions include testing how
variations in information capacity relate to complex rule learning and
concept formation across species, how the synergy between informa-
tion capacity and language expands concept and rule learning during
humandevelopment, and the role of sequence and set memory inrule
extraction across different species and age groups. One key prediction
isthat the capacity for complex rule learning (whether social, physical
or abstract) isinherently and mathematically linked to the capacity for
representing multiple items simultaneously —a hypothesis that can
be tested in animals, developing children and machines. A key experi-
mental direction willbe to test causalevidence forthe role ofinforma-
tion capacity on the tasks hypothesized to show human uniqueness.
However, measuring information capacity directly poses a challenge
(Box4),due to the complexity of the target behaviours and the limited
tasks for which information can be formally characterized at present.
Information measures vary across inputs, abstractions and processes.
For instance, channel capacity for high-level vision of objects might
differ between species, even ifthe capacity for low-level vision is the
same because the information processing demands of high-level
versus low-level abstractions probably differ. Information process-
ing demands also can vary across content types, such as between
social interactions and objectuse. Simulations of information capac-
ity under different processing conditions are critical for developing
experimental predictions.

‘How’ human cognitionisunique isprobably intertwined with ‘why’
human cognition isunique. Several authors have proposed accounts
of human evolution that provide a compelling answer to ‘why’ new
cognitive abilities might have emerged specifically in humans. Perhaps
primitive human environments contained unique survival pressures
to cooperate and learn socially’' or humans uniquely benefited from
cumulative culture, which altered the human environment so dramati-
callythatitprompted new genetic adaptations'>*’". The problem with
prior ‘why’ accounts such as these is that they do not explain ‘how’,
cognitively, human minds and brains changed®”'. Inlight of the behav-
ioural, neurobiological, computational and developmental evidence
we reviewed, we propose that unique expansions in global, generic
information capacity are the most plausible genetically based cogni-
tive adaptation to ratcheting environmental pressures on learning,
memory, attention, semantics and logical rule use arising from ever
more demanding human culture.
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Box 4

Measuring information capacity

There are several methods that have been developed to measure
information processing, and each targets information specific to a
given behavioural task or setting.

Speed and bit rate

One approach to measuring information capacity is to use tasks in
which participants are asked to respond as quickly and accurately as
possible to a stimulus. Hick’s law quantifies the ‘rate of information
gain’ in asimple choice paradigm®'’; memory tasks such as digit span
and working memory measure item, sequence and channel capacity
for information®**®, Posner cueing tasks, flanker tasks and Stroop tasks
also have been used to measure bit rates in humans with simple rules
and stimuli*". One study showed that the speeds at which numerous
diverse cognitive processes occur, including mental addition, mental
rotation, memory search and simple motor skills, exhibit a consistent
and predictable exponential pattern of change over development?*®

— aglobal cognitive processing constraint reflecting children’s
information capacity. Additionally, some work has provided estimates
of information capacity in humans for long-term memory and linguistic
storage'®>??>?%, often by quantifying what coding capacity would be
required to achieve the observed performance.

Predictability

Machine learning models are often evaluated by computing the

log probability that they assign to the observed data, which is an
information measure (often surprisal or cross-entropy). Following
the same logic, one could measure the effective predictability of,

for example, sequential stimuli for any species and task, and use

that to quantify information processing ability. For instance, in one
study people were asked to predict upcoming letters in text and their
accuracy was used to deduce how much information they had about
upcoming linguistic material®?. In a context in which an individual
predicts upcoming sequential material that follows a novel pattern —
for example, simple formal language rules — accuracy could be used
to estimate how much information about the pattern is internalized.

Theuniquely human adaptation for information processing capac-
ity provides an opportunity to represent multiple complex behav-
ioural alternatives, to enact flexibility and innovation®’? and to learn
quickly,and yieldsa substrate for ‘cognitive gadgets’, wherein humans
acquireunique capacities by building on culturalinnovations'®. One cog-
nitive gadget, writing, provides important cluesto the pressures humans
faced for information capacity. Over cultural evolution, the human
species was so pressured forincreased information capacity that they
invented writing, arevolutionary leap forwardinthe development ofour
speciesthatenables information capacity to be externalized’”, frees up
internal processing and affords the development of more complex con-
cepts. Inother words, writing enabled humans to think more abstractly
and logically by increasing information capacity. Today, humans have
goneto even greater lengths: the Internet, computers and smartphones
aretestaments to the substantial pressure humans currently face—and
probably faced inthe past —to increase information capacity.

For example, from an individual’s accuracy or pattern of errors in
predicting the next character in the sequence ‘abbacabbacabbac ../,
one can compute how much they have learned about the sequence
(see Reber®™ for people’s learning of similar string patterns and
Saffran et al.’** for work on early language learning). Empirically
measuring predictive ability in this setting is potentially powerful
because above-chance accuracy means that some information must
be present, which can be examined as a function of developmental
age, amount of training exposure or species.

Learning rate and lapse rate

The learning rate and the lapse rate are another pair of measures for
estimating information capacity*'’. The learning rate quantifies change
in accuracy per unit time, and the lapse rate is the asymptote of the
learning curve. Both of these metrics vary across species and can

be used to query global information processing across tasks. Lapse
rates are especially useful for measuring general motivation during a
given task, which is a common confound for comparing cognition
between populations. Similarly, species might make different speed—
accuracy trade-offs in any given task®®, with different strategic choices
potentially confounding conclusions about overall ability.

Recoding

Estimating and comparing information capacity between groups is
difficult when recoding occurs®'®. Recoding is the process by which
information is mentally compressed during task performance. Humans
are very good at recoding information using chunking, rules, heuristics
or verbalization, thereby making space for more information. Non-
human primates also have some ability to recode information'’**7

The ways that humans and non-human primates recode and compress
information are only beginning to be understood, but it is critical

to understand these phenomena in order to measure information
capacity. For example, symbolic recoding could facilitate human
learning during passive or social learning tasks in ways that exceed

the capabilities of non-human primates.

Darwin claimed that humans differed from other primates in
degree rather than kind, which has been dismissed by some as a mis-
taken claim®®. But ifthere is one lesson from formal computer sci-
ence, itisthat differences indegree yield differences in kind. Evolution
doubled the information processing capacity of humans, which set
inmotion a cycleofadvances between logic innovation and develop-
mental acquisition that snowballed over millions of years of human
cultural evolution. Other species could never learn human-like rules
and structures, internalize human-like logic and relations or exhibit
the same complex behaviour as humans when their cognitive systems
face severe information constraints. Unique information capacity
magnifies human cognition, qualitatively alters its representations
and processes, and is essential for understanding the evolution and
development ofhuman intelligence.
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