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A Python Package itca for

Information-Theoretic Classification Accuracy:

A Criterion That Guides Data-Driven Combination of

Ambiguous Outcome Labels in Multiclass Classification
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ABSTRACT

The itca Python package offers an information-theoretic criterion to assist practitioners in
combining ambiguous outcome labels by balancing the tradeoff between prediction accuracy
and classification resolution. This article provides instructions for installing the itca Python
package, demonstrates how to evaluate the criterion, and showcases its application in real-
world scenarios for guiding the combination of ambiguous outcome labels.
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1. BACKGROUND

In real-world data sets, such as those in medical and biological applications, outcome labeling am-

biguity and subjectivity are common challenges. Practitioners often resort to ad hoc methods to combine

ambiguous labels for all data points to improve the accuracy of multiclass classification. However, there lacks

a systematic and principled approach to guide the combination of ambiguous outcome labels. To fill this gap,

we have developed the information-theoretic classification accuracy (ITCA) criterion (Zhang et al., 2022).

This article serves as a concise guide to using the itca Python package, which implements the ITCA

criterion. For troubleshooting assistance or feedback, please visit the GitHub page (https://github.com/

JSB-UCLA/ITCA), where additional documentation is available.

2. INSTALLATION

To install the itca package, users need Python version 3.6.8 or later. Running the following command in

the terminal installs the package:
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pip install itca
After the installation, the package can be imported by running the following Python code:

import itca

3. CRITERION EVALUATION AND GUIDING
AMBIGUOUS LABELS COMBINATION

ITCA evaluates a class combination by the performance of a specific classification algorithm on a data

set whose labels have been combined according to the class combination. The data set consists of feature

vectors and the corresponding outcome labels.

In the Python package, we have introduced a bidict class, which serves as a bidirectional dictionary

representing a class combination. We denote the class combination as pK‚ where K represents the number

of classes after the combination has been applied. For example, if K0 = 4 observed classes are combined

into K = 3 classes by merging the observed classes 2 and 3, then p3(0) = 0, p3(1) = 1, p3(2) = 2, and p3(3) = 2;
p3 can be represented using the bidict class as follows:

from itca import bidict
true_combination=bidict({0:0, 1:1, 2:2, 3:2})
In the following example code, we will simulate a data set, evaluate the ITCA criterion using the linear

discriminant analysis (LDA) classification algorithm, and conduct a greedy search to determine the optimal

class combination. In the itca package, the function for the ITCA criterion evaluation is itca, and the

greedy search is encapsulated in a class called GreedySearch.

� We simulate n = 900 observations from a three-component multivariate Gaussian mixture model,

where the three Gaussian distributions have the same covariance matrix (i.e., the LDA model).

Hence, the number of true classes is three. We randomly split the last true class into two classes by

bidict.reverse_map. Consequently, the number of observed classes is K0 = 4.
import numpy as np
from itca.simulator import SimLDA
np.random.seed(2023)
centriods =np.array([[1, 0, 0], [1, 0, -1], [0, 0.5, 0]])
A =np.random.randn(3, 3)
covariance =np.eye(3) + A @ A.T
sim_lda =SimLDA(centriods, covariance)
sim_data=sim_lda.gen(900)
y_observed =true_combination.reverse_map(sim_data.y)

� We split the data set into training and test data. With the observed classes (no combination), we first

train the LDA classification algorithm on training data, and then evaluate ITCA of the trained classifier

on test data.

from sklearn.model_selection import train_test_split
from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis
from itca import itca
X_train, X_test, y_train, y_test =train_test_split(sim_data.X,
y_observed, test_size =0.2, random_state=2023)
no_combination =bidict({0:0, 1:1, 2:2, 3:3})
clf=LinearDiscriminantAnalysis()
clf.fit(X_train, y_train)
y_pred =clf.predict(X_test)
itca_score =itca(y_test, y_pred, no_combination)
print(‘‘ITCA score: ’’, itca_score)
print(‘‘Accuracy score: ’’, clf.score(X_test, y_test))

� We perform greedy search with LDA and fivefold cross-validation to find the optimal class combi-

nation defined by ITCA. First, an instance of the GreedySearch class is created with the desired

parameters. In this case, the class_type parameter is set to nominal to indicate that the outcome
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label is categorical. After the search is complete, the selected class combination is gs
.selected.mapping.
from itca import GreedySearch
clf=LinearDiscriminantAnalysis()
gs=GreedySearch(class_type=’nominal’)
gs.search(sim_data.X, y_observed, clf, verbose=False, early_
stop=True)
print(gs.selected.mapping)

In this example, the true class combination is found (i.e., the observed classes 3 and 4 are combined).

3.1. Application to single-cell RNA-seq data

An important application of ITCA is to detect similar class types. Here, we demonstrate how to detect

biologically similar cell types in a Hydra single-cell RNA-seq data set (Siebert et al., 2019) and build a cell

type hierarchy by greedy search with ITCA as the criterion. For the purpose of illustration, we will use the

first 10 classes.

from itca.datasets import load_hydra_data
X, y, labels =load_hydra_data(); X =X[y<10, :]; y =y[y<10]
In the code above, X contains cells’ gene expression vectors, y contains cells’ annotated types (with

numerical labels), and labels contains the names of the cell types.

Next, we will construct a cell type hierarchy using a greedy search approach. This involves iteratively

combining classes until all classes are combined into one. To ensure the search continues until a single class

is left, we set the early_stop parameter to False.
gs =GreedySearch(class_type=‘‘nominal’’)
gs.search(X, y, clf, early_stop=False, verbose =True)
To visualize the constructed hierarchy, one can use the plot_ascii_tree function.

from itca.visualize import plot_ascii_tree
plot_ascii_tree(gs)

4. A NOTE ON CLASSIFICATION ALGORITHM CHOICE

In addition to its adaptability to all classification algorithms, ITCA offers comparability across different

classification algorithms. This allows users to choose the most suitable classification algorithm for their

specific tasks. When it comes to prediction tasks, it is recommended to use a strong classification algorithm

that maximizes ITCA. In contrast, when the goal is to detect similar classes, a weak classification algorithm

such as LDA can be employed.

4.1. Software availability

The itca Python package is under the MIT License and available at https://github.com/JSB-UCLA/ITCA
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