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Abstract

COVID-19 has a spectrum of disease severity;, ranging from
asymptomatic to requiring hospitalization. Understanding the
mechanisms driving disease severity is crucial for developing
effective treatments and reducing mortality rates. One way to
gain such understanding is.using.a multi-class classification
framework, in which patients”biological features are used to
predict patients’ severity classes. In this severity classification
problem, it is beneficial to‘prioritize the identification of more
severe classes and control'the “under-classification” errors,
in which patients are misclassified into less severe categories.
The Neyman-Pearson«(NP) classification paradigm has been
developed to_prioritize the designated type of error. However,
current NP procedures are either for binary classification or
do not provide high probability controls on the prioritized
errors.in multi-class classification. Here, we propose a
hierarchical NP (H-NP) framework and an umbrella algorithm
that generally adapts to popular classification methods and
controls the under-classification errors with high probability.
On an integrated collection of single-cell RNA-seq (scRNA-
seq) datasets for 864 patients, we explore ways of
featurization and demonstrate the efficacy of the H-NP
algorithm in controlling the under-classification errors
regardless of featurization. Beyond COVID-19 severity
classification, the H-NP algorithm generally applies to multi-
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class classification problems, where classes have a priority
order.

1 Introduction

The COVID-19 pandemic has infected over 767 million people and caused 6.94
million deaths (27 June 2023) (World Health Organization, 2023), prompting
collective efforts from statistics and other communities to address data-driven
challenges. Many statistical works have modeled epidemic dynamics (Betensky and
Feng, 2020; Quick et al., 2021), forecasted the case growth rates and outbreak
locations (Brooks et al., 2020; Tang et al., 2021; McDonald et al., 2021), and
analyzed and predicted the mortality rates (James et al., 2021; Kramlinger

et al., 2022). Classification problems, such as diagnosis (positive/negative)y(\Wu

et al., 2020; Li et al., 2020; Zhang et al., 2021) and severity prediction (Yan

et al., 2020; Sun et al., 2020; Zhao et al., 2020; Ortiz et al., 2022);"have been tackled
by machine learning approaches (e.g., logistic regression,ssupport vector machine
(SVM), random forest, boosting, and neural networks;see Alballa and Al-

Turaiki (2021) for a review).

In the existing COVID-19 classification works;'the commonly used data types are CT
images, routine blood tests, and other clinical data including age, blood pressure and
medical history (Meraihi et al., 2022). In comparison, multiomics data are harder to
acquire but can provide betterinsights into the molecular features driving patient
responses (Overmyer et al.;2021):"Recently, the increasing availability of single-cell
RNA-seq (scRNA-seq) data offers the opportunity to understand transcriptional
responses to COVID-19 severity at the cellular level (Wilk et al., 2020; Stephenson
et al., 2021; Ren'et aly2021).

More generally, genome-wide gene expression measurements have been routinely
used in classification settings to characterize and distinguish disease subtypes, both
in bulk-sample (Aibar et al., 2015) and, more recently, single-cell level (Arvaniti and
Claassen, 2017; Hu et al., 2019). While such genome-wide data can be costly, they
provide a comprehensive view of the transcriptome and can unveil significant gene
expression patterns for diseases with complex pathophysiology, where multiple

genes and pathways are involved. Furthermore, as the patient-level measurements



continue to grow in dimension and complexity (e.g., from a single bulk sample to
thousands-to-millions of cells per patient), a supervised learning setting enables us
to better establish the connection between patient-level features and their associated

disease states, paving the way towards personalized treatment.

In this study, we focus on patient severity classification using an integrated collection
of multi-patient scRNA-seq datasets. Based on the WHO guidelines (World Health
Organization, 2020), COVID-19 patients have at least three severity categories:
healthy, mild/moderate, and severe. The classical classification paradigm aims at
minimizing the overall classification error. However, prioritizing the identification of
more severe patients may provide important insights into the biological.mechanisms
underlying disease progression and severity, and facilitate the discovery of,potential
biomarkers for clinical diagnosis and therapeutic intervention. Consequently, it is
important to prioritize the control of “under-classification” errors, inwhich patients are

misclassified into less severe categories.

Motivated by the gap in existing classification algorithms,for severity classification
(Section 1.1), we propose a hierarchical Neyman-Pearson (H-NP) classification
framework that prioritizes the under-classification error control in the following sense.

T, _ T .
I=12.->7} ordered in

Suppose there are £ classes with class labelsi!
decreasing severity. For ’ € [f -1 , the, ~th under-classification error is the probability
of misclassifying an individualin class!/into any class jwith /> 7 We develop an H-
NP umbrella algorithm that c¢ontrols the ~th under-classification error below a user-

specified level ¢ < (0,1)

with high probability while minimizing a weighted sum of the
remaining classification errors. Similar in spirit to the NP umbrella algorithm for
binary classification_in“Tong et al. (2018), the H-NP umbrella algorithm adapts to
popular scoring-type multi-class classification methods (e.g., logistic regression,
random forest, and SVM). To our knowledge, the algorithm is the first to achieve

asymmetric error control with high probability in multi-class classification.

Another contribution of this study is the exploration of appropriate ways to featurize
multi-patient scRNA-seq data. Following the workflow in Lin et al. (2022), we
integrate 20 publicly available scRNA-seq datasets to form a sample of 864 patients

with three levels of severity. For each patient, scRNA-seq data were collected from



peripheral blood mononuclear cells (PBMCs) and processed into a sparse
expression matrix, which consists of tens of thousands of genes in rows and
thousands of cells in columns. We propose four ways of extracting a feature vector
from each of these 864 matrices. Then we evaluate the performance of each
featurization way in combination with multiple classification methods under both the
classical and H-NP classification paradigms. We note that our H-NP umbrella
algorithm is applicable to other featurizations of sScCRNA-seq data, other forms of
patient data, and more general disease classification problems with a severity

ordering.

Below we review the NP paradigm and featurization of multi-patient scRNA-seq data

as the background of our work.
1.1 Neyman-Pearson paradigm and multi-class classification

Classical binary classification focuses on minimizing the overall classification error,
i.e., a weighted sum of type | and Il errors, where the weights are the marginal
probabilities of the two classes. However, the class priorities are not reflected by the
class weights in many applications, especially disease severity classification, where
the severe class is the minor class and has a,smaller weight (e.g., HIV (Meyer and
Pauker, 1987) and cancer (Dettling and Buhlmann, 2003)). One class of methods
that addresses this error asymmetry is cost-sensitive learning

(Elkan, 2001; Margineantu, 2002), which assigns different costs to type | and type Il
errors. However, such weights may not be easy to choose in practice, especially in a
multi-class setting; nor/do‘these methods provide high probability controls on the
prioritized errors. The NP classification paradigm (Cannon et al., 2002; Scott and
Nowak, 2005; Rigollet and Tong, 2011) was developed as an alternative framework
to enforce ‘classwpriorities: it finds a classifier that controls the population type | error
(the prioritized error, e.g., misclassifying diseased patients as healthy) under a user-
specified level awhile minimizing the type Il error (the error with less priority, e.g.,
misdiagnosing healthy people as sick). Practically, using an order statistics
approach, Tong et al. (2018) proposed an NP umbrella algorithm that adapts all
scoring-type classification methods (e.g., logistic regression) to the NP paradigm for

classifier construction. The resulting classifier has the population type | error under a



with high probability. Besides disease severity classification, the NP classification
paradigm has found diverse applications, including social media text classification
(Xia et al., 2021) and crisis risk control (Feng et al., 2021). Nevertheless, the original

NP paradigm is for binary classification only.

Although several works aimed to control prioritized errors in multi-class classification
(Landgrebe and Duin, 2005; Xiong et al., 2006; Tian and Feng, 2021), they did not
provide high probability control. That is, if they are applied to severe disease
classification, there is a non-trivial chance that their under-classification errors

exceed the desired levels.
1.2 ScRNA-seq data featurization

In multi-patient scRNA-seq data, every patient has a gene-by-cell expression matrix;
genes are matched across patients, but cells are not. For learningtasks with patients
as instances, featurization is a necessary step to ensure that all,patients have
feautures in the same space. A common featurization@ppreach is to assign every
patient’s cells into cell types, which are comparable across patients, by clustering
(Stanley et al., 2020; Ganio et al., 2020) and/ormanual annotation (Han et al., 2019).
Then, each patient’s gene-by-cell expressionymatrix can be converted into a gene-
by-cell-type expression matrix using assummary statistic (e.g., every gene’s mean
expression in a cell type), so all patientsshave gene-by-cell-type expression matrices
with the same dimensions. We note:here that most of the previous multi-patient
single-cell studies with a reasonably large cohort used CyTOF data (Davis

et al., 2017), which typicallyymeasures 50-100 protein markers, whereas scRNA-seq
data have a much higher feature dimension, containing expression values of ~ 10’
genes. Thus furtherifeaturization is necessary to convert each patient’s gene-by-cell-

type expressionimatrix into a feature vector for classification.

Following the data processing workflow in Lin et al. (2022), we obtain 864 patients’
cell-type-by-gene expression matrices, which include 18 cell types and 3,000 genes
(after filtering). We propose and compare four ways of featurizing these matrices into
vectors, which differ in their treatments of 0 values and approaches to dimension

reduction. Note that we perform featurization as a separate step before classification



so that all classification methods are applicable. Separating the featurization step
also allows us to investigate whether a featurization way maintains robust

performance across classification methods.

The rest of the paper is organized as follows. In Section 2, we introduce the H-NP
classification framework and propose an umbrella algorithm to control the under-
classification errors with high probability. Next, we conduct extensive simulation
studies to evaluate the performance of the umbrella algorithm. In Section 3, we
describe four ways of featurizing the COVID-19 multi-patient scRNA-seq data and
show that the H-NP umbrella algorithm consistently controls the under-classification
errors in COVID-19 severity classification across all featurization ways and
classification methods. Furthermore, we demonstrate that utilizing the SCRNA-seq
data allows us to gain biological insights into the mechanism and immune response
of severe patients at both the cell-type and gene levels. Supplementary Materials

contain technical derivations, proofs and additional numerical results.

2 Hierarchical Neyman-Pearson.(H-NP) classification
2.1 Under-classification errors in H-NP classification

We first introduce the formulation of H-NP classification and define the under-
classification errors, which are the probabilities of individuals being misclassified to
less severe (more generally, less impartant) classes. In an H-NP problem with > 2

Z. 7 . .
h="4:2..-.7} gzre ranked in a decreasing order of

classes, the class labels * 4
importance, i.e., class /is more important than class /if /< /. Let (X, Y) be a random
pair, where ¥ <% @R “represents a vector of features, and ¥ <[* 1 denotes the
class label. A classifier’? : Yot maps a feature vector X'to a predicted class
label. In the follewing discussion, we abbreviate © 17 =9 as () Our H-NP
framework aims to control the under-classification errors at the population level in the

sense that

R.($)=P(p(X)eli+1,...., )y <a, for ie[l-1] (1)



a, €(0,1)

where is the desired control level for the ~th under-classification error

R.(9) Simultaneously, our H-NP framework minimizes the weighted sum of the
remaining errors, which can be expressed as

Ty

R'(¢)= P(¢p(X)=Y)=> 7.R.(¢), where 7z = P(¥=1i). (2)

i=1

We note that when % = 2, this H-NP formulation is equivalent to the binary NP

classification (prioritizing class 1 over class 2), with R (9) being the population type

| error.

For COVID-19 severity classification with three levels, severe patients labeled as Y=

1 have the top priority, and we want to control the probability of severe patients'not
being identified, which is R (9 The secondary priority is for moderate patients

labeled as Y= 2; %+ (#) s the probability of moderate patients being classified as

healthy. Healthy patients that do not need medical care.are labeled as Y= 3. Note
that ®+() and ) are population-level quantitiessas they depend on the intrinsic

distribution of (X, Y), and it is hard to control the R /s almost surely due to the

randomness of the classifier.
2.2 H-NP algorithm with high probability control

In this section, we construct an'H-NP.umbrella algorithm that controls the population

e . , 5 1L _
under-classification errors in the sense that © (R (#)> @) <3, gor i c[7 ~1] \yhere

(8,5, 81_)

is a vector of tolerance parameters, and ¢ is a scoring-type classifier to
be defined below.

Roughly speaking, we employ a sample-splitting strategy, which uses some data
subsets to train the scoring functions from a base classification method and other
data subsets to select appropriate thresholds on the scores to achieve population-
level error controls. Here, the scoring functions refer to the scores assigned to each
possible class label for a given input observation and include examples such as the

1T
output from the softmax transformation in multinomial logistic regression. For / <[" 1,
S

{X )

iy N
J

- denote N;independent observations from class /, where A;is the size

let



of the class. In the following discussion, the superscript on X'is dropped for brevity
when it is clear which class the observation comes from. Our procedure randomly

. . o S T »
splits the class-/observations into (up to) three parts: = (* " 1) for obtaining

i= 2,...,1)

S I S
scoring functions, (’G[ ‘1])forselectingthresholds, and « ( for

computing empirical errors. As will be made clear later, our procedure does not

S S
require '« or * and splits class 1 and class  into two parts only. After splitting,

s . Us

e[l

we use the combination to train the scoring functions.

. o : . . X
We consider a classifier that relies on £ -1 scoring functions U R

where the class decision is made sequentially with each T,(X) determining whether
the observation belongs to class /or one of the less prioritized classes G, * .
Thus at each step / the decision is binary, allowing us to use the NP Lemma to
motivate the construction of our scoring functions. Note that

P(Y=i|X=x)/PY eli+l,..., 2} |X =x)oc f(x)/ [ (%) where () ang 7.
represent the density function of Xwhen Y'> jand Y= respectively, and the density
ratio is the statistic that leads to the most powerful test with a given level of control
on one of the errors by the NP Lemma. Given a typical scoring-type classification

method (e.g., logistic regression, randem forest, SVM, and neural network) that

) . T
provides the probability estimates © (X = 14 for €171 'we can construct our
scores using these estimates by defining

P(Y =i|X)

T(X)=P (Y =1]X), andmT (X)=— for l<i<Z 1.
Y P(Y=j|X)

J=it+l

Given thresholds.\%* %> >7-) e consider an H-NP classifier of the form

(1, T(X)=z1;
|
2, T,(X)>t, and T(X)<t;
P(X)=1" (3)
II—I, T:r (X)2t;, and T(X)<t,..,Tr (X)<tr_;
[I otherwise.

Then the £th under-classification error for this classifier can be written as



R, (9)= P,_(¢3(X) eli+l,... ,I}): P(T(X)<t,...T(X)<t), (4)

where Xis a new observation from the £th class independent of the data used for

score training and threshold selection. The thresholds *%2:=+2-) are selected

S S
using the observationsin ' ¢~ and they are chosen to satisfy

. o _
PR (9)>a) =0, gorall ' €17 =11 |n what follows, we will develop our arguments

S
conditional on the data - for training the scoring functions so that 7/s can be
viewed as fixed functions.

(¢)= P (T (X)<1)

According to Eq (3), the first under-classification error Ry only

depends on #, while the other under-classification errors R, (#) dependon, e oY

; - N
To achieve the high probability controls with © (% (#)> @) =0, gqr g 1 €% ~11 ye

select > 7~ sequentially using an order statistics approach. \We start with the
selection of #, which is covered by the following general preposition. The proof is a
modification of Proposition 1 in Tong et al. (2018) and‘can be found in

Supplementary Section B.1.

Proposition 1. Forany ' € [I], denote |+ = IHOMLX 9,3 ,and let' ™ pe the
corresponding k-th order statistic. Further.denote the cardinality of 4 as ni.
Assuming that the data used to train the'scoring functions and the left-out data are
independent, then given a contrel level a, for another independent observation X

from class i,

)

|ti(kJ > a) <vik,n,a)=Y L _‘J(a)»”(l -a)"’. (B)

P(P[T.(x)<1,
j=o N J

(k)

We remark that similar to Proposition 1 in Tong et al. (2018), if 7;is a continuous
random variable, the bound in Eq (5) is tight.

Algorithm 1: DeltaSearch ("> #-9)

Input : size: n; level: a; tolerance: o.



14=0, w=0

2 while "+ = ¢ do

+m< ) (1 -a)™"
= a -a
3 Vk Vk kkJ

4k=k+1
5 end

Output: &

Let ki = maxik|v(k.n.a) <3} \yhich can be computed using Algorithm 1. Then

Proposition 1 and Eq (4) imply

P(R.()>a)s P(P[T(X)<tlt,,]>a)<s,  fofall\yri, . (6)

(k;) i(k;)

v(k,n,,a)) <, k €[n,]

We note that to have a solution for among , we need

S
n, 2 logd, [logl = a)) the minimum sample size required for the class ~ . When /=
1, the first inequality in Eq (6) becomes equality, so oo s an effective upper bound

on # when we later minimize.thexempirical counterpart of X () in Eq (2) with respect

to different feasible threshold choices. On the other hand, for /> 1, the inequality is

mostly strict, which means that the bound “wo on tis expected to be loose and can

be improved. Tosthis.end, we note that Eq (4) can be decomposed as
R ($) = P LY |T(X) <ty T, (X)) <t JP(T(X) <ty T, (X) < 1,,) (7)
leading to the following theorem that upper bounds ¢ given the previous thresholds.

Theorem 1. Given the previous thresholds "> ' | consider all the scores T; on the

T _ s .
= ALOTX €70 and a subset of these scores depending on the

T AT (X)X €S, T(X)<t,...,T,_ (X)<t_} We

S
left-out class ’

previous thresholds, defined as



: T T,
use "™ and' " to denote the k-th order statistic of + and ", respectively. Let nj
’ T T,
and " be the cardinality of + and ', respectively, and a; and J; be the

prespecified control level and violation tolerance for the i-th under-classification error

RC) We set

n' a.
po=—=p, = p,+e(n)a,' =—68"=68 —expi-2nc(n)}. (8)
n, p;

L0
where ¢(") = (/) . Let

jt’[_(k,), ifn,">1logds,"/log(l-a,’) and «, <l

(9)

ti = 1’1 .
Lt“k,)’ otherwise,

where k., = max{k e[n,]|v(k,n,a,)<05,} and k', =max{k e[n/]|v(kin',,a' )<}

Then,

P(R.(§)>a)= P (P[T(X)<t,..T(X)<t|t]>a,)<sl forall 1 <1, (10)

T,
In other words, if the cardinality of : exceeds athreshold, we can refine the choice
of the upper bound according to Eq (9); otherwise, the bound in Proposition 1 always

applies. The proof of the theorem is provided in Supplementary Section B.2; the

computation of the upper bound ’_is.summarized in Algorithm 2. % guarantees the
required high probability control'on'the ~th under-classification error, while providing

a tighter bound compared with'Eq (4). We make two additional remarks as follows.
Remark 1.

a) The.minimum sample size requirement for S s stif ™ = 1089, /log(l—a,)
becadse " in Eq (9) always exists when this inequality holds. For instance,
jFO =005 gpg 8, =005 g n =59

b) The choice of c(n) involves a frade-off between “" and ", although under
the constraint < = © 1 /\m) , any changes in both quantities are small in
magnitude for large n. For example, a larger c(n) leads to a smaller ¢ ' anda

larger %" | thus a looser tolerance level comes at the cost of a stricter error



control level. In practice, larger “: and larger " values are desired since

they lead to a wider region for t. We set <(") = 2/ u throughout the rest of

4

6,/=06,-e . so

the paper. Then by Eq (8), “ " increases as n increases, and
the difference between °:' and the prespecified &; is sufficiently small,

c¢) Eq (10) has two cases, as Eq (9) indicates. When "~ | the bound remains

= ¢’

the same as Eq (6), which is not tight for i > 1. When DT e Eq (10)
provides a tighter bound through the decomposition in Eq (7), where the first
part is bounded by a concentration argument, and the second part achieves a

tight bound the same way as Proposition 1.

With the set of upper bounds on the thresholds chosen according to Theorem: 1, the
next step is to find an optimal set of thresholds »2>+/2-) satisfying these upper

bounds while minimizing the empirical version of R*(4) , Which is*calculated using
s - Lj s )
observations in i=2 (since class-1 observations,are not needed in R°(9) ). For
brevity, we denote all the empirical errors as R , e4Q., & Mn Section 2.4, we will
show numerically that Theorem 1 provides a wider. search region for the threshold #

compared to Proposition 1, which benefits the minimization of Rx.

As our COVID-19 data has three severity levels, in the next section, we will focus on
the three-class H-NP umbrella,algorithm and describe in more details how the above

procedures can be combined to select the optimal thresholds in the final classifier.

S
Algorithm 2: UpperBound i+ @0 (T 1= (12 £11))

. S .
Input : The left-out class-/samples: ; level: a; tolerance: &; score functions:

(Tis-2T) - thresholds: (i fi-1)

1 ”i(_‘sit|

2 {ti(l)"“’ti(n,)}(_ T,-:{T,-(X)‘X ES,-,}

sort



3 k, < DeltaSearch(n,,a,,95,) ©// i.e., Algorithm 1

t[(k,)

N
T

5if /> 7then

TY ’ r S
=t ot b=sort{T(X)| X e® T (X)<¢t,..., T (X)<t .}
6 i { i(1) z(u,)} { 1( )‘ it 1( ) 1 1-1( ) i-17 ’// Note that

n !
i is random

n' 2
A i A , , —2m,.e? (n;)
p,< —,p, < p,+rcn,),a, < a, /lp, o'« o, -e

2
7 " ,// e.g., c(n) = \ﬁ:
8 if " >logd,"/log(l-«a,")and a,’ <1 then

9 k', < DeltaSearch(n',,a’,5"))

10 RS ﬂ“wJ
11 end

12 end

Output: i

2.3 H-NP umbrella algorithm for three classes

Since our COVID-19data groups patients into three severity categories, we
introduce ourH-NP umbrella algorithm for =3 Inthis case, there are two under-

classification errors R+ (#) = A(#(X) €12,3}) gpq Rox () = P ($(X) =3) , which need to

a

be controlled at prespecified levels %> with tolerance levels °1*?: | respectively. In

addition, we wish to minimize the weighted sum of errors

R () =P (¢(X)#Y)- 7 R.($)~7,R,.(§)
=7,P($(X) =1+ 7, [P((X)=1)+ P (¢(X)=2)]

(11)



When * =3 , our H-NP umbrella algorithm relies on two scoring functions

X .
1.7, " = R "\which can be constructed by Eq (3) using the estimates * (' = 1)

from any scoring-type classification method:
P(Y=2|X)

T(X)=P(Y =1|X) and T,(X)=——"— (12)
P(Y=3|X)

The H-NP classifier then takes the form

(1, T(X)>1;
&(X):JZ, T,(X)>¢, and T(X)<t; (13)

t3, otherwise.

Here 7> determines whether an observation belongs to class 2 or class 3, with a

larger value indicating a higher probability for class 2. Applying Algorithm 2, we can

find 3 such that any threshold “ = 3 will satisfy the high probability control on the

. e . (4 = : <5
first under-classification error, that is PR (@) > @)= PARTIE) <4 [4]> @) < 3, )

Recall that the computation of “ (and consequently £)depends on the choice of #.
Given a fixed #, the high probability control.on the'second under-classification errors

P(R,.(§)>a,)= P (P[T(X)<t.T(X)<t,|t]>a,)<s

is * 'where " is computed by

<7

Algorithm 2 so that any " satisfies the constraint.

The interaction between # and &,comes into play when minimizing the remaining

errors in ® (%) _ First note.that using Eq (11) and (13), the other types of errors in

R (9) are

P (#(X) =d) = PAT, (X ) > 1,),P ($(X) =1) = P, (T,(X) > 1), "
P (d(x) = 2)E P(T,(X) <1, T,(X) 2 1,).

To simplify the notation, let ¥ denote P(X) in the following discussion. For a fixed #,

decreasing & leads to an increase in P;(Y'=2) and has no effect on the other errors

t

in (14), which means that 2 = 2 minimizes RC(‘;). However, the selection of # is not

as straightforward as &. Figure 1(a) illustrates how the set



T, _ S
» SALMXO)X €%, T (X)) <1} (as appeared in Theorem 1) is constructed for a

given #, where the elements are ordered by their 7> values. Clearly, more elements
TV . ’ .
are removed from  : as 4 decreases, leading to a smaller "> . Consider an

T!
element in the set > which has rank &in the ordered list (colored yellow in

vik,n,",a

Figure 1(a)). Then kin,' e, and consequently - will all be affected by
decreasing #, but the change is not monotonic as shown in Figure 1(b). Decreasing
t could remove elements (dashed circles in Figure 1(b)) either to the left side (case
1) or right side (case 2) of the yellow element, depending on the values of the scores

v(k,n, Plo=2)

71. In case 1, -%:") decreases, resulting in a larger 2 and a smaller

error, whereas the reverse can happen in case 2. The details of how v nls @0
changes can be found in Supplementary Section B.3, with additional simulations in

Supplementary Figure S13. In view of the above, minimizing the empirical error R

T _ S
requires a grid search over #, for which we use the set ' ~ XX €70 and the
overall algorithm for finding the optimal thresholds and the'resulting classifier is
described in Algorithm 3, which we name as the H-NP:umbrella algorithm. The

algorithm for the general case with T'>3 can be féundin Supplementary Section E.

Algorithm 3: H-NP umbrella algorithm for 1733

S_S8 S :
Input : Sample: ~ = 1Y Y s lévels: @10 %2); tolerances: (% %:); grid set: A

T
(e.g., ).
g 7 =15 18w =18 108

s S Jssy s s LS S 8
ls 1¢ 1’ K t e 2’ K 3e
2 0w Random split."; 2> 20> 2 Random split 2; 3+ Random
S8
split >
S _S S S
3 e Y

4 1T, < Abase classification method (%)) /) c.f. Eq (12)

- S
5 t, < UpperBound(®,,,a,,d,,(T,),NULL) ©// i.e., Algorithm 2
6 R =1

7for i €A (=01 do
8 t, < UpperBound(SZI,az,éz,(Tl,Tz),(tl))

9 xS a classifier with respect to 4, &



ey = Y 1) =1/15, le,= Y 1g(X) eil,2}33/15,,
10 xeS,, =

¢ R R
11 R, = 7,8, +7e

12if Rov < R then
13 RZC < ];:ew,é;* < ¢?
14 end
15 end

Output: 2

2.4 Simulation studies

We first examine the validity of our H-NP umbrella algorithm using simulated data
from a setting denoted T1.1, where T =3 and the feature vectors.in'class /are
generated as (X' =~ N(u.D) , Where “1 = (0.-1) .y = (<1, e =1,0) and /is the
2 x 2 identity matrix. For each simulated dataset, we géenerate the feature vectors
and labels with 500 observations in each of the three classes. The observations are
randomly separated into parts for score training, threshold selection and computing
empirical errors: % is split into 50%, 50% for S s“; % is split into 45%, 50% and
5% for R and s“; %, is split inta'95%, 5% for 55 , respectively. All the

1,000

results in this section are based on repetitions from a given setting. We set

a =, =005 gpg 9 =9 = 005015 approximate and evaluate the true population

20,000

errors ®i> %o+ and Re, we additionally generate observations for each class

and refer to them as.the'test set.

First, we demonstrate that Algorithm 3 outputs an H-NP classifier with the desired
high probability controls. More specifically, we show that any “ = 3 and 2 = L (Z’ t
are computed by Algorithm 2) will lead to a valid threshold pair (4, &) satisfying
P(R.(9)> @) <5, gng P (R (9)> @) <6, \whare R and R: are approximated
using the test set in each round of simulation. Here, we use multinomial logistic
regression to construct the scoring functions 71 and 72, the inputs of Algorithm 3.

Figure 2 displays the boxplots of various approximate errors with # chosen as the A



’]' —
th largest elementin " (—,7]

as kchanges. In Figure 2(a) and 2(b), where the
blue diamonds mark the 95% quantiles, we can see that the violation rate of the
required error bounds (red dashed lines, representing a1 and a») is about 5% or less,

suggesting our procedure provides effective controls on the errors of concerns. In

this case, in most simulation rounds, “ minimizes the empirical error ° computed

=1

S S
on 2 and :,and " =" is chosen as the optimal threshold by Algorithm 3 in the

final classifier. We can see this coincide with Figure 2(c), which shows that the

" (==.41 (je., ) minimizes the approximate error /¢ on the

largest element in g
test set. We note here that the results from other splitting ratios can be found'in
Supplementary Section C.2, where we observe that once the sample size for
threshold selection reaches about twice the minimum sample size requirement, there
are little observable differences in the results. In Supplementary Section'C.3, we also
compare with variations in computing the scoring functions to examine‘the effect of
score normalization and calibration, showing that our current scoring functions are

ideal for our purpose.

Next, we check whether indeed Theorem 1 gives a better upper bound on & than

Proposition 1 for overall error minimization:*"Recall the two upper bounds in Eq (6) (

’“"z)) and Eq (9) (Z ). For each base classification algorithm (e.g., logistic

regression), we set ‘1 = °

1 and & equalito these two upper bounds respectively,
resulting in two classifiers with,different & thresholds. We compare their performance

by evaluating the approximate errors of R:-(9) ang 7Y = 2)

since, as discussed in
Section 2.3, the threshold & only influences these two errors for a fixed #. Figure 3
shows the distributions of'the errors and also their averages for three different base

classification algorithms. Under each algorithm, both choices of & effectively control
R, (#) , but the upper bound from Proposition 1 is overly conservative compared with
that of Theorem 1, which results in a notable increase in Y =2 This is

P(Y = 2)

undesirable since is one component in ® (¢) and the goal is to minimize

R*(4) under appropriate error controls.

Now we consider comparing our H-NP classifier against alternative approaches. We

construct an example of “approximate” error control using the empirical ROC curve



approach. In this case, each class of observations is split into two parts: one for
training the base classification method, the other for threshold selection using the

ROC curve. Under the setting T1.1, using similar splitting ratios as before, we

S S S
separate  into 50% and 50% for = and « for /=1, 2, 3. The same test set is
used. We re-compute the scoring functions (71 and 72) corresponding to the new

split. # is selected using the ROC curve generated by 71 aiming to distinguish

.S .S S :
between class 1 (samples in ) and class 2’ (samplesin =~ ) merging classes

2 and 3, with specificity calculated as the rate of misclassifying a class-1 observation

. o : . - .S S .
into class 2'. Similarly, & is selected using 7 dividing samples in >~ s inte class

2 and class 3, with specificity defined as the rate of misclassifying a class-2
observation into class 3. More specifically, in Eq (13) we use
|f 3 HT(X) <1}

1

t = t:
sup4[ |S“|

classifier for the ROC curve approach.

|[ 3 T, (X) <t}

Y

] ]

| \
<a t, =supqt: <wer ,p

|

J

2
15, |

and [ to obtain the

The comparison between our H-NP classifier and the ROC curve approach is
summarized in Figure 4. Recalling a;and &yare both 0.05, we mark the 95%

quantiles of the under-classification errors by solid black lines and the target error

control levels by dotted red lines. First we abserve that the 95% quantiles of Ry

using the ROC curve approach well’exceed the target level control, with their

averages centering around the target. We also see the influence of 4 on the Ry

without suitably adjusting & based on #, the control on %>+ ) in the ROC curve
approach is overly conservative despite it being an approximate error control

A =2) n view of this, we further

method, which in turn leads to inflation in error
consider a simulation setting where the influence of # on & is smaller. The setting
T2.1 moves'samples in class 1 further away from classes 2 and 3 by having

#:=(0.23) " "\while the other parts remain the same as in the setting T1.1. %59 are

still 0.05. As shown in Figure 5, the ROC curve approach does not provide the

required level of control for ®+ or %+



In Supplementary Sections C.4-C.6, we include more comparisons with alternative
methods with different overall approaches to the problem, including weight-adjusted
classification, cost-sensitive learning, and ordinal regression, and show that our H-

NP framework is more ideal for our problem of interest.

3 Application to COVID-19 severity classification
3.1 ScRNA-seq data and featurization

We integrate 20 publicly available scRNA-seq datasets to form a total of 864 COVID-
19 patients with three severity levels marked as “Severe/Critical” (318 patients),.”
Mild/Moderate” (353 patients), and “Healthy” (193 patients). The detail of each
dataset and patient composition can be found in Supplementary Table S1."The

severe, moderate and healthy patients are labeled as class 1, 2 and 3, respectively.

For each patient, PBMC scRNA-seq data is available in the form«of a matrix
recording the expression levels of genes in hundreds to'thousands of cells. Following
the workflow in Lin et al. (2022), we first perform data.integration including cell type
annotation and batch effect removal, before selecting.?-°°° highly variable genes
and constructing their pseudo-bulk expressienprofiles under each cell type, where

each gene’s expression is averaged across the cells of this type in every patient. The

. ] . . ) g xn, .
resulting processed data for each patient/is a matrix 4~ < R , Where n.=18 is

the number of cell types, and “&.~ '

is the number of genes for analysis. More
details of the integration process can be found in Supplementary Section A.
Supplementary Figure S1/shows the distribution of the sparsity levels, i.e., the
proportion of genes with zero values, under each cell type across all the patients.
Several cell types, despite having a significant proportion of zeros, have varying
sparsity across'the three severity classes (Supplementary Figure S3), suggesting
their activity level might be informative for classification. Since age information is
available (although in different forms, see Supplementary Table S4) in most of the
datasets we integrate, we include it as an additional clinical variable for classification.

The details of processing the age variable are deferred to Supplementary Section A.



Since classical classification methods typically use feature vectors as input,

appropriate featurization that transforms the expression matrices into vectors is

needed. We propose four ways of featurization that differ in their considerations of

the following aspects.

As we observe the sparsity level in some cell types changes across the
severity classes, we expect different treatments of zeros will influence the
classification performance. Three approaches are proposed: 1) no special
treatment (M.1); 2) remove individual zeros but keeping all cell types (M.4); 3)
remove cell types with significant amount of zeros across all three classes
(M.2 and M.3).

Dimension reduction is commonly used to project the information inva matrix
onto a vector. We consider performing dimension reduction @long different
directions, namely row projections, which take combinations,of genes (M.2),
and column projections, which combine cell types with appropriate weights
(M.3 and M.4). We aim to compare choices of projection direction, so we
focus on principal component analysis (PCA) as our dimension reduction
method.

We consider two approaches to generateithe PCA loadings: 1) overall PCA
loadings (M.2 and M.4), where we, perform PCA on the whole data to output a
loading vector for all patientsj.2)wpatient-specific PCA loadings (M.3), where

()]

PCA is performed for each'matrix 4 = to get an individual-specific loading

vector.

The details of each featurization method are as follows.

J)

M.1.. Simple feature screening: we consider each element A (gene u
under‘cell'type v) as a possible feature for patient jand use its standard
deviation across all patients, denoted as SD.,, to screen the features.
Elements that hardly vary across the patients are likely to have a low

discriminative power for classification. Let 5P be the ith largest element in

5D, Jueln v elndi The feature vector for each patient consists of the



(4" |sp, = SD, }

entries in 7 where nris the number of features desired and

set to 3-000

M.2  Overall gene combination: removing cell types with mostly zero

expression values across all patients (details in Supplementary Section A), we

) n, x17 .
select 17 cell types to construct 4~ € R that only preserves columns in

. . (1) ~(N)
4" corresponding to the selected cell types. Then, 4 >4 " are
ngx(Nx17)

concatenated column-wise to get 4" e R , where N=864. Let

we R"" denote the first principle component loadings of (4™ , and the

~T .
- w A(/)

feature vector for patient jis given by X

M.3 Individual-specific cell type combination: for patient / the loading vector
X is taken as the absolute values of first principle cemponent

w/_eR

J)

loadings for 4, the matrix with selected 17 cell types in. M.2 (details in

Supplementary Section A). The principle compenentloading vector " that

Ty o T
(47 w)

produces X is patient-specific, intending to reflect different cell

type compositions in different individuals.

M.4 Common cell type combination: we compute an expression matrix 4

averaged over all patients defined-as

> 4
uv
JELN]

4 = , ,
l{jeINTI A #0}

where 'l ds'the.cardinality function. Let » € R “"" denote the first principle

componentloadings of /T, then the feature vector for the £th patient is

i T
X/- A (A(/)W)

We next evaluate the performance of these featurizations when applied as input to

different base classification methods for H-NP classification.



3.2 Results of H-NP classification

After obtaining the feature vectors and applying a suitable base classification
method, we apply Algorithm 3 to control the under-classification errors. Recall that Y

=1, 2, 3 represent the severe, moderate and healthy categories, respectively, and

the goal is to control R.- (4) and R, (9) . In this section, we evaluate the performance
of the H-NP classifier applied to each combination of featurization method in

Section 3.1 and base classification method (logistic regression, random forest, SVM
(linear)), which is used to train the scores (71 and 72). In each class, we leave out

30% of the data as the test set and split the rest 70% as follows for training the'H-NP

S S S S
classifier: 35% and 35% of ' form ' and ' ; 35%, 25% and 10% of+ 24orm

S S S S S S e \
2> 2 gand  e; 35% and 35% of : form 3 and 3. For each combination of

featurization and base classification method, we perform random splitting of the

observations for 50 times to produce the results in this section.

In Figure 6, the yellow halves of the violin plots show the distributions of different
approximate errors from the classical classification'methods; Supplementary

Table S7 records the averages of these errors. Inallthe cases, the average of the
approximate R erroris greater than 20%, in.many cases greater than 40%. On the

other hand, the approximate R, erroptinder the classical paradigm is already
relatively low, with the averages around10%. Under the H-NP paradigm, we set
@@, =02 gpg 99, =02 , i.€.,'we want to control each under-classification error

under 20% at a 20% tolerance level.

With the prespecified 7, @::9,:9, fora given base classification method Algorithm 3
outputs an H-NP classifier that controls the under-classification errors while
minimizing the'weighted sum of the other empirical errors. The blue half violin plots
in Figure 6 show the resulting approximate errors after H-NP adjustment. We
observe that the common cell type combination feature M.4 consistently leads to
smaller errors under both the classical and H-NP classifiers, especially for linear
classification models (logistic regression and SVM). We have also implemented a

neural network classifier. However, as the training sample size is relatively small, its



performance is not as good as the linear classification models, and the results are

deferred to Supplementary Figure S14.

In each plot of Figure 6, the two leftmost plots are the distributions of the two

approximate under-classification errors R and ®: . We mark the 80% quantiles of

R 5,0, =02)

* and % by short black lines (since , and the desired control levels (

@@, =0-2y by red dashed lines. The four rightmost plots show the approximate

errors for the overall risk and the three components in R°(9) as discussed in Eq (14).
For all the featurization and base classification methods, the under-classification
errors are controlled at the desired levels with a slight increase in the overall-error,
which is much smaller than the reduction in under-classification errors. This
demonstrates consistency of our method and indicates its general applicability to

various base classification algorithms chosen by users.

Another interesting phenomenon is that when a classical classification method is
conservative for specified a;and J; our algorithm will increase the corresponding

threshold # which relaxes the decision boundary for classes less prioritized than /.
As a result, the relaxation will benefit some.components in R*(9) . In Figure 6(d), in
many cases the classifier produces amapproximate error R less than 0.2 under the
classical paradigm, which means it is‘conservative for the control level %z = °-2 at

the tolerance level %> = %2 | Inithis case, the NP classifier adjusts the threshold & to

lower the requirement for class,3,'thus notably decreasing the approximate error of

P(Y =2)

3.3 Identifying genomic features associated with severity

Finally, we show,that using this integrated scRNA-seq data in a classification setting
enables us to identify genomic features associated with disease severity in patients
at both the cell-type and gene levels. First, by combining logistic regression with an
appropriate featurization, we generate a ranked list of features (i.e., cell types or
genes) that are important in predicting severity. At the cell type level, we utilize
logistic regression with the featurization M.2, which compresses the expression

matrix for each patient into a cell-type-length vector, and rank the cell types based



on their coefficients from the log odds ratios of the severe category relative to the
healthy category. Supplementary Table S8 shows the top-ranked cell types are CD
14" monocytes, NK cells, CD$  effector T cells, and neutrophils, all with significant
p-values. This is consistent with known involvement of these cell types in the
immune response of severe patients (Lucas et al., 2020; Liu

et al., 2020; Rajamanickam et al., 2021).

At the gene level, we utilize logistic regression with the featurization M.4, which has
the best overall classification performance, and compresses each patient’s
expression matrix into a gene-length vector. Similar to the above analysis at the cell-
type level, we generate a ranked gene list which leads to the identification«of
pathways associated with the severe condition. By performing the pathway.
enrichment analysis on the ranked gene list, we find that the top-ranked genes are
significantly enriched in pathways involved in viral defense and leukocyte-mediated

immune response (Supplementary Table S9).

Next, we perform further analysis to directly demonstrate the benefits of the H-NP
classification results without relying on feature ranking. Based on the featurization
M.4, we construct a gene co-expression netwerk and identify modules with groups of
genes that are potentially co-regulatedand funetionally related. By comparing the
predicted severity labels from the H-NP classifier and the classical approach, we
show that the H-NP labels are better correlated with the eigengenes from these
functional modules, suggesting,that the H-NP labels better capture the underlying
signals in the data related:to disease mechanism and immune response
(Supplementary Figures S15-S17). Then, we compare the gene ontology enrichment
of the functional'modules constructed for the severe and healthy patients separately,
using the predictedH-NP labels. We find strong evidence of immune response to the
virus among severe patients, while no such evidence is observed in the healthy
group (Supplementary Tables S10 and S11). Finally, we note that compared with the
results from the severe patients as labeled by the classical paradigm, the H-NP
paradigm shows more significantly enriched modules with specific references to
important cell types, including T cells, and subtypes of T cells (Supplementary

Tables S10 and S12). Together, these results demonstrate that by prioritizing the



severe category in our H-NP framework, we can uncover stronger biological signals

in the data related to immune response.

More detailed descriptions of the methods used and analysis of results can be found

in Supplementary Sections D.4 and D.5.

4 Discussion

In general disease severity classification, under-classification errors are more
consequential as they can increase the risk of patients receiving insufficient medical
care. By assuming the classes have a prioritized ordering, we propose an H-NP.
classification framework and its associated algorithm (Algorithm 3) capable of
controlling under-classification errors at desired levels with high probability. The
algorithm performs post hoc adjustment on scoring-type classification methods and
thus can be applied in conjunction with most methods preferredsby users. The idea
of choosing thresholds on the scoring functions based on aheld-out set bears
resemblance to conformal splitting methods (Lei, 2014; Wang and Qiao, 2022).
However, our approach differs in that we assign only‘one label to each observation,
while maintaining high probability error controls: Additionally, our approach prioritizes
certain misclassification errors, unlike conformal prediction which treats all classes

equally.

Through simulations and the case study of COVID-19 severity classification, we
demonstrate the efficacy oflourialgorithm in achieving the desired error controls. We
have also compared different'ways of constructing interpretable feature vectors from
the multi-patient scRNA-seq data and shown that the common cell type PCA
featurization overall.achieves better performance under various classification
settings. By performing extensive gene ontology enrichment analysis, we illustrate
that the use of scRNA-seq data has allowed us to gain biological insights into the
disease mechanism and immune response of severe patients. We note here that
although parts of our analysis rely on a ranked feature list obtained from logistic
regression, there exist tools to perform such a feature selection step for all the other
base classification methods used in this paper, including neural networks, which can

utilize saliency maps and other feature selection procedures (Adebayo



et al., 2018; Novakovsky et al., 2023). We have chosen logistic regression in our
illustrative analysis based on its stable classification performance and ease of
interpretation. In addition, if the main objective is to build a classifier for triage
diagnostics using other clinical variables, one can easily apply our method to other

forms of patient-level COVID-19 data with other base classification methods.

Even though our case study has three classes, the framework and algorithm
developed are general. Increasing the number of classes has no effect on the

minimum size requirement of the left-out part of each class for threshold selection

since it suffices for each class /to satisfy = 1°89: /(1= @) "we also note that the
notion of prioritized classes can be defined in a context-specific way. For example, in
some diseases like Alzheimer’s disease, the transitional stage is considered to,be

the most important (Xiong et al., 2006).

There are several interesting directions for future work. For smalldata problems
where the minimum sample size requirement is not full-filled,»we might consider
adopting a parametric model, under which we can not only develop a new algorithm
without minimum sample size requirement, but also(study the oracle type properties
of the classifiers. In terms of featurizing mulii-patient scRNA-seq data, we have
chosen PCA as the dimension reduction. method to focus on other aspects of
comparison; more dimension reduction methods can be explored in future work. It is
also conceivable that the class labels in the case study are noisy with possibly
biased diagnosis. Accounting for label noise with a realistic noise model and
extending the work of Yaoietal. (2022) to a multi-class NP classification setting will

be another interesting direction to pursue.
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