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Abstract. It is generally accepted that modeling Farley–

Buneman instabilities requires resolving ion Landau damp-

ing to reproduce experimentally observed features. Particle-

in-cell (PIC) simulations have been able to reproduce most

of these but at a computational cost that severely affects

their scalability. This limitation hinders the study of non-

local phenomena that require three dimensions or coupling

with larger-scale processes. We argue that a form of the five-

moment fluid system can recreate several qualitative aspects

of Farley–Buneman dynamics such as density and phase

speed saturation, wave turning, and heating. Unexpectedly,

these features are still reproduced even without using arti-

ficial viscosity to capture Landau damping. Comparing the

proposed fluid models and a PIC implementation shows good

qualitative agreement.

1 Introduction

Magnetized Hall-drifting electrons in the E-region iono-

sphere induce polarization drifts on the unmagnetized ions

which tend to overshoot electrostatic equilibrium and accu-

mulate in the crests of the local density irregularities faster

than diffusion opposes them (Sahr and Fejer, 1996). This

mechanism, which results in the amplitude enhancement of

local perturbations, is the Farley–Buneman instability. This

phenomenon has been shown to modify the mean state of

the ionosphere in various ways as well as the magnetosphere

morphology by modifying the local conductivity through

anomalous heating and nonlinear currents (Wiltberger et al.,

2017).

Linear fluid theory of Farley–Buneman instabilities pre-

dicts some aspects of the dynamics reasonably well. Fur-

thermore, linear kinetic theory shows that ion Landau damp-

ing effectively suppresses the growth of smaller wavelengths

(Schmidt and Gary, 1973), which motivates the necessity of

resolving kinetic ion effects. Nevertheless, the linear theory

fails to explain several features observed in the experimental

data obtained with rockets and coherent backscatter radars

(Oppenheim et al., 1996; Sahr and Fejer, 1996). Although

particle-in-cell (PIC) simulations have been able to model

many aspects of the nonlinear physics of Farley–Buneman

instabilities (Oppenheim et al., 2008; Oppenheim and Di-

mant, 2013; Young et al., 2020), their application to non-

local scales has been very challenging due to the computa-

tional cost. This limitation has motivated the exploration of

more cost-effective approaches like hybrid and fluid mod-

els, which often require much less computational resources

because they do not resolve the velocity distribution of the

plasma. For instance, Newman and Ott (1981) and Hassan

et al. (2015) proposed a fully fluid dynamical system that

models Landau damping with a viscosity term on the mo-

mentum equation that damps large wavenumbers. Because

of the isothermal approximation, these simulations could not

capture wave turning and other thermal effects (Dimant and

Oppenheim, 2004).

This work describes a numerical framework based on the

five-moment fluid model to simulate Farley–Buneman insta-

bilities and assesses its capability for capturing nonlinear fea-

tures reproduced previously with PIC simulations. First, we

used the viscosity proposed by Hassan et al. (2015), includ-

ing an energy equation for both species. The simulation pa-

rameters were similar to the ones used by Oppenheim et al.

(2008) to compare our results with the PIC estimates. Then,

we show that most characteristic nonlinear features can be

reproduced even after removing the viscosity term from the

five-moment system. These results are obtained even though
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the standard linear theory predicts that smaller structures will

grow faster. Furthermore, we argue that the nonlinear signa-

tures obtained without the viscosity are more similar to the

correspondent PIC estimates. This last result suggests that

the proposed fluid framework may dramatically increase the

scalability of Farley–Buneman simulations.

2 A numerical framework for Farley–Buneman

instabilities based on fluid equations

The Farley–Buneman instability is an electrostatic process

with the dominant dynamics mostly restricted to a 2D plane

perpendicular to B. Both the magnetized electrons and un-

magnetized ions collide predominantly with neutral particles

(Rojas and Hysell, 2021). Therefore, assuming both species

are locally Maxwellian, the following five-moment fluid sys-

tem should be capable of capturing most of the important

physics (Schunk and Nagy, 2009):

∂ns

∂t
+ ∇ · (nsvs) = 0, (1)

∂vs

∂t
+vs · ∇vs =

qs

ms
(E + vs × B) −

kTs

ms
∇ lnns

−
k

ms
∇Ts − νsnvs + R(Ti,vi), (2)

∂Ts

∂t
+vs · ∇Ts +

2

3
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2µsn

3k
νsnv

2
s

−δsnνsn(Ts − Tn), (3)

∇2φ = −
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ε0

∑

s

qsns. (4)

As usual, ns, vs, Ts, ms, and qs correspond to the density,

velocity, temperature, mass, and charge of species s, respec-

tively. The collision frequency between species s and neutral

particles is represented by νsn, and µsn is the reduced mass

of species s and the dominant neutral species. The frame of

reference is moving with the neutral particles at a temper-

ature Tn. On the right side of Eq. (3), the term on the left

corresponds to collisional heating, while the one on the right

captures collisional cooling. The term δsn captures the frac-

tion of energy lost by particle s when it collides with a neutral

(Dimant and Oppenheim, 2004). The electrostatic field was

calculated by solving Poisson’s Eq. (4).

The R(Ti,vi) term on the right-hand side of Eq. (2) is a

general regularization operator, and its purpose is to dampen

the growth of larger wave numbers. Here, Ti and vi are the ion

temperature and velocity, respectively. Hassan et al. (2015)

proposed a regularization term based on the ion viscosity op-

erator but using the ion–neutral collision frequency instead of

the Coulomb collision frequency. This term is used to damp

large k modes and is only necessary for ion scales (Rojas

et al., 2016). If we denote the stress tensor by 5, this regu-

larizing viscosity has the form R(Ti,vi) = ∇ · 5, where

5 = −
niTi

νin

(

∇vi + (∇vi)
T −

2

3
∇ · viI

)

. (5)

We used the operator proposed by Hassan et al. (2015) to

model R(Ti,vi) because it was successful in capturing sev-

eral features of Farley–Buneman irregularities. Furthermore,

the accuracy of this proxy will be assessed not by the quanti-

tative estimates of the simulation but by whether it improves

the resemblance to PIC simulations.

We chose a spectral solver to solve the five-moment sys-

tem. Spectral methods are well-known to have outstanding

accuracy and to scale very efficiently when periodic bound-

aries are applicable, and no shocks or discontinuities are ex-

pected (Hesthaven et al., 2007). These criteria are satisfied

in the case of Farley–Buneman irregularities. We build the

numerical solver using the Dedalus computational frame-

work for solving general partial differential equations using

sparse spectral methods (Burns et al., 2020). Our solver uses

Fourier spatial discretizations with implicit integration of lin-

ear terms. The nonlinear terms are integrated explicitly with

3/2 padding for dealiasing. This solver was comprehensively

described by Burns et al. (2020).

3 Simulation setup and results

Some further simplifications can be applied to the five-

moment system Eqs. (1)–(4). We omitted the gyro motion

term from the ion momentum equation for the ions and used

µin ≈ mi/2 and δin = 1. For the electrons, µen ≈ me, no reg-

ularization is included, and δen = 3.5×104 (Dimant and Op-

penheim, 2004). Furthermore, we used the simulation param-

eters shown in Table 1. These parameters are the same as the

ones used by Oppenheim et al. (2008) for their baseline sim-

ulation, except for the grid and box sizes, for which we used

8 times fewer grid points and half the box size, respectively.

Notice that the electron mass me and the electron–neutral

collision frequency νen have been artificially increased and

reduced, respectively. Increasing the electron mass allows the

use of larger time steps, but νen has to be reduced to maintain

the same magnetization levels. The background electric and

magnetic fields are defined in the ŷ and ẑ axes, respectively.

The simulation box size is several times smaller than

the largest ones used for recent purely kinetic (Oppenheim

et al., 2008) and hybrid (Young et al., 2017, 2019) Farley–

Buneman simulations. In this work, we will use small sim-

ulation boxes because we assume that most of the nonlinear

features of the PIC simulations are independent of the dimen-

sions of the simulation plane. Even though an energy cascade

to larger wavelengths has been reported and it seems to be an

issue of insufficiently large simulation boxes, we will not ad-

dress this point in this work as we are interested in the growth

rate of smaller scales. Furthermore, our claim about an im-

provement in scalability is based on the assumption that fluid
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Figure 1. Electron density perturbation snapshot for both models. Here, δnmax indicates the maximum perturbation for that time instant.

The color bar maps the corresponding fraction of δnmax. The top and bottom rows correspond to the regularized and unregularized models,

respectively.

Table 1. Simulation parameters

Parameter Value

Grid size 128 × 128

Box size 20 m

B 0.5 × 10−4 T

E0 50 mV m−1

n0 1 × 109 m−3

mi 5 × 10−26 kg

me 4 × 10−29 kg

νen 1.675 × 103 s−1

νin 2.7 × 103 s−1

T0 300 K

dt 10−6 s−1

models of few moments scale better than PIC kinetic sim-

ulations for the same accuracy when kinetic effects are not

dominant.

We implemented two models. We will refer to the first as

“regularized” and the second as “unregularized”. Both mod-

els will solve the continuity, momentum, energy, and Pois-

son equations, as shown in Eqs. (1–4). The only difference is

that the regularized model includes the regularization opera-

tor described in Eq. (5) and the unregularized does not.

Figure 1 shows the electron density perturbation ne/n0 −1

for both the regularized and the unregularized systems at rep-

resentative times. Several features are common to both mod-

els. At linear regime I, we see dominant wave modes clearly.

In the mixing regime II, most wave growth is aligned close to

the E×B direction, and perpendicular secondary waves start

to form. After saturation, in the turbulent regime III, we see a

stable evolution of the electron density perturbation at around

20 % of the background density and density structures simi-

lar to the ones obtained with PIC simulations. Moreover, we

see a slight turning of the waves in the direction consistent

with linear theory, and it is assumed to be present in the non-

linear regime (Dimant and Oppenheim, 2004). On the other

hand, the dominant wavelengths for the unregularized sys-

tem are smaller (≈ 1.5 m, similar to the PIC simulation) than

for the regularized case (≈ 2.5 m). This difference is consis-

tent with the idea that the regularization term not only damps

larger wave numbers but affects the dynamics of all the wave

modes.

Although linear fluid theory predicts that smaller wave-

lengths will grow faster and destabilize the system without

some form of regularization, we can see that the system not

only remains stable but can capture several aspects of the ex-

pected nonlinear dynamics. This “self-regularization” may

be a combination of several factors of numeric and physi-

cal origin. Even though spectral methods are well-known for

having a minimal numerical diffusion compared to other ap-

proaches, this may play a minor role in damping the larger

wave numbers. Other physical mechanisms which are cap-

tured in this model but not in some versions of the standard

linear theory and which play a role in dampening smaller

wavelengths are the stabilizing effect of a weak non-quasi-

neutrality (Dimant and Oppenheim, 2011) and electron in-

ertia (Hassan et al., 2015). An investigation of the extent of

each of these mechanisms is beyond the scope of this pa-

per and its topic of future work. Although the present sim-

ulations include the stabilizing effect of thermal dynamics,

we have seen similar behavior using an isothermal system,

namely, the presence of a dominant mode with no evidence

of a growth rate proportional to k2.

https://doi.org/10.5194/angeo-41-281-2023 Ann. Geophys., 41, 281–287, 2023
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Figure 2. Time series for the electron temperature (blue dashed), ion temperature (blue), electron density averaged perturbation (red), back-

ground forcing field (black dashed), and root mean square of the electric field (black) for the regularized (a) and unregularized (b) models.

Standard metrics to diagnose the simulation, such as the

root mean square (rms) of electron density, electric field per-

turbation, and the average heating, are presented in Fig. 2.

The background electric field was raised from a value below

the instability threshold at t = 0 to the value shown in Table 1

in the first 2ms of the simulation. Both simulations show an

increase in temperature due to Pedersen heating in the linear

regime indicated as region I. All metrics reach saturation in

the mixing regime characterized by region II and then sta-

bilize in region III. The time series of both the regularized

and, to a lesser extent, the unregularized simulations present

an overshoot just before saturation. This behavior has been

documented in hybrid (Rojas and Hysell, 2021) and fluid

(Hassan et al., 2015) simulations, but it does not seem to be

present in PIC simulations.

In both simulations, the electron density and the perturba-

tion electric rms field are larger than the corresponding PIC

values. The fact that this difference is more considerable for

the unregularized case (around twice the PIC metrics) sug-

gests that the origin might be a lack of a proper damping

mechanism. Although Oppenheim et al. (2008) also recov-

ered a perturbation electric rms field larger than the back-

ground, the difference was smaller. They attributed this ex-

cess to factors like the truncation of smaller wavelengths (fi-

nite box size).

For instance, the rms field in physical space is the same as

in Fourier space, so decreasing the amplitude of larger wave

numbers would reduce the total rms. Moreover, the average

ion temperature evolves similarly to kinetic simulations in

both cases. Nevertheless, the mean electron heating is sub-

stantially lower, probably related to the simple temperature-

independent collisional heating model used in both simula-

tions. Even though there are several quantitative differences

between these and the PIC results, it is interesting to notice

that in the unregularized case, the saturation onset time is

much closer to the corresponding time in the kinetic simula-

tion (≈ 60 ms).

Figure 3 illustrates the time series for the electron den-

sity perturbation for different wavelengths. Even though the

regularized system shows strong damping for smaller wave-

lengths, both approaches seem to oscillate around similar

amplitudes after saturation. This similarity may suggest that

capturing the correct damping physics will affect the satura-

tion onset time and the dominant wavelength value. More-

over, the amplitude of the larger wavelengths is compara-

tively larger for the regularized case.

The spectral properties of region III are summarized in

Fig. 4 for the unregularized simulation. The spectral sig-

natures of the regularized case are very similar but with

smoother contours. The dominant wave modes propagate

predominantly at phase speeds slightly above Cs. Heat capac-

ity ratios representative of region III for both species can be

estimated by fitting the expression for the ion-acoustic speed

C(fit)
s =

√

γe〈Te〉III + γi〈Ti〉III

mi
, (6)

to the most representative wave modes indicated by the red

dots in Fig. 4. Here, 〈Ts〉III indicates the average temper-

ature of species s over region III. The ion’s heat capacity

ratio that produced the best fit with the simulated spectral

peaks was γi ≈ 2.62 in both models, which was smaller than
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Figure 3. Time series of electron density perturbation spectral amplitude for specific wave numbers for both the regularized (a) and unregu-

larized (b) systems.

Figure 4. Electron density perturbation spectra versus wave num-

bers for the unregularized system. The red dots indicate the maxi-

mum amplitude for a particular k, and the green line represents the

best fit of kC
(fit)
s using anomalous γe,i as fitting parameters. Vd0 is

the linear estimate of the phase speed using state parameters at the

initialization.

the one reported in the corresponding PIC simulations by

14 %. On the other hand, the corresponding electron ratios

were γ
(r)
e ≈ 2.32 and γ

(n)
e ≈ 2.29 for the regularized and un-

regularized cases, respectively. The obtained ratios for the

electrons were larger than those obtained from PIC simula-

tions by approximately 30 %. Nevertheless, this discrepancy

was expected considering the oversimplification of the con-

stant heating and cooling rates used for both species. This

simplification is especially limiting for the electron thermal

evolution, considering that electron heating associated with

Farley–Buneman irregularities has been observed multiple

times (Bahcivan, 2007).

Figure 5. Spectra of electron density perturbations for |k| = 3m−1

with respect to phase speed and flow angle α for the unregularized

system in region III. The spectra were normalized with the maxi-

mum power for each flow angle. Vd follows the definition of Fig. 4.

The normalized spectra for |k| = 3 m−1 are plotted in

Fig. 5 with respect to the flow angle and the phase speed.

Notice that the dominant modes have narrower widths and lie

between the ion-acoustic and the convection speed. Both the

Doppler shifts and the spectral widths can be calculated for

each flow angle from these profiles. Considering that the sys-

tem was assumed to be periodic, we can estimate the Doppler

shifts and widths for the complete 360◦ by rotating the sim-

ulated ones (d
(sim)
s,w ) appropriately. The values estimated by

this rotation are labeled as d
(ext)
s,w . These spectra were fitted

to a modified version of a Doppler convection model used in

Rojas et al. (2018):

ds =

(

a +
V 2

d

b

)

cos(θ + θ0), (7)

dw = α

(

a +
V 2

d

b

)

sin(2(θ − 2θ0)) + β. (8)
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Figure 6. Simulated (d
(sim)
s,w ), extended (d

(ext)
s,w ), and fitted (d

(fit)
s,w ) Doppler shift and spectral width calculated for regime III of the unregularized

system. The dotted line indicates the local ion-acoustic speed.

This empirical model relates Doppler shifts and widths to the

flow angles θ . The local convection velocity Vd, wave turn-

ing angle θ0, a, and b are fitting parameters. The red and blue

lines in Fig. 6 correspond to the values of the model after es-

timating the parameters using a nonlinear optimization rou-

tine. We see that this empirical model agrees closely with the

simulated values. Moreover, the fitted parameters are con-

sistent with the experimental measurements by Nielsen and

Schlegel (1985).

4 Conclusions

The results obtained with the proposed fluid models are

consistent with the ones from PIC simulations in reproduc-

ing qualitative aspects of the Farley–Buneman instabilities.

Moreover, using an unregularized five-moment fluid system,

we could still reproduce most of the qualitative aspects of the

diagnostics obtained with PIC simulations despite the pre-

dictions of standard linear theory. To our knowledge, this is

the first time a fully fluid model is able to achieve this. Fur-

thermore, the stabilization mechanisms of the proposed fluid

electrostatic model seem to avoid the growth rates γ ∝ k2.

These results suggest that we may have to reconsider the ne-

cessity for capturing ion Landau damping accurately.

Even though the simulation box sizes used in this work

are small compared to the dimensions used in recent PIC

simulations, the potential of scalability relies on the fact that

if kinetic effects are not dominant, fluid simulations usually

require much less computational resources than PIC imple-

mentations to achieve similar accuracy.

Several interesting questions were raised: what nonlinear

damping processes modulate the dominant wavelengths and

onset saturation time? Would it be possible to build a Landau

fluid proxy that captures enough of the physics we have ac-

cess to by coherent backscatter radars? Would it be possible

to modify the proposed fluid system to improve its scalabil-

ity? Could these results be limited to spectral solvers? We

will try to answer these questions in future studies.

Furthermore, we think this has significant implications for

the plasma and space physics communities because it may

open the door to other researchers having fluid plasma mod-

els to explore this topic.
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