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COHOMOLOGY OF FLAG SUPERVARIETIES AND
RESOLUTIONS OF DETERMINANTAL IDEALS

STEVEN V SAM AND ANDREW SNOWDEN

ABSTRACT. We study the coherent cohomology of generalized flag supervarieties. Our main
observation is that these groups are closely related to the free resolutions of (certain gen-
eralizations of) determinantal ideals. In the case of super Grassmannians, we completely
compute the cohomology of the structure sheaf: it is composed of the singular cohomology
of a Grassmannian and the syzygies of a determinantal variety. The majority of the work
involves studying the geometry of an analog of the Grothendieck—Springer resolution as-
sociated to the super Grassmannian; this takes place in the world of ordinary (non-super)
algebraic geometry. Our work gives a conceptual explanation of the result of Pragacz—
Weyman that the syzygies of determinantal ideals admit an action of the general linear
supergroup. In a subsequent paper, we will treat other flag supervarieties in detail.
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1. INTRODUCTION

Super geometry is a compelling generalization of algebraic geometry, with important con-
nections to physics and pure mathematics. However, a number of fundamental objects in
super geometry are still poorly understood. For example, the cohomology of natural vector
bundles on flag supervarieties is not known in general. In this paper, we develop a general
method for attacking this problem in some new cases, and use it to completely compute the
cohomology of the structure sheaf on the super Grassmannian.

1.1. General approach. Let G be a complex reductive supergroup, let P be a parabolic
subsupergroup, and let X = G/P be the associated flag supervariety. We outline a general
approach to study H*(X, Ox).

Let Gy, Py, and X be the reduced subschemes of GG, P, and X. Then Gy is a complex
reductive group, Py is a parabolic subgroup, and Xy, = Gy/F, is a flag variety. Let J be
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the ideal sheaf defining X inside of X. Since X is a smooth supervariety, J/J?% is a locally
free coherent sheaf on X, and gr(Ox) (formed with respect to the J-adic filtration) is the
exterior algebra on J/J?. Tt follows that we have a spectral sequence

EP? = HPT(Xo, A'(3/9%)) = HPPY(X,Ox).

This is our primary tool for connecting the cohomology of supervarieties to ordinary varieties.

To make use of this spectral sequence, we need to understand the cohomology of A (J/J%).
The genesis of this paper was the observation that the cohomology of exterior algebras,
especially on flag varieties, appears in another context: namely, the calculation of syzygies
of determinantal varieties (and similar varieties) via the geometric method developed by
Kempf, Lascoux, and Weyman, among others (see [We| for an exposition). This allows us
to relate the cohomology of A(J/J?) to syzygies, in certain cases.

We now explain how this works. Let g and p be the Lie superalgebras of G and P. For a
point x = gPy of Xy, let p* be the Lie superalgebra of gPg~'. Let Y be the vector bundle
over Xy whose fiber over z is p7, the odd part of p*; this is a closed subvariety of Xy X g;.
Let Z be the image of Y in g;; explicitly, Z is the union of all Go-conjugates of p;. In
many cases, Z is a determinantal variety, or something of a similar flavor. Let Z be the
affinization of Y, which is a finite cover of Z. We refer to this ensemble of varieties as the
Grothendieck—Springer theory for X, since it is analogous to the classical Grothendieck—
Springer resolution (and contains some instances of it). We emphasize that Xy, Y, Z, and
Z are ordinary (not super) varieties.

Combining the above spectral sequence and the geometric method, we obtain the following
theorem. It establishes a link between the cohomology of flag supervarieties and syzygies of
determinantal-like varieties.

Theorem 1.1. Suppose that H(Y,Oy) = 0 for i > 0. Letting S = Sym(g}), we have a
canonical isomorphism

HY(X, APT(3/3%)) = Tor, (03, C)paq
and a spectral sequence

EP? = Tor® (04,C), = HPM(X,0x).

1.2. The case of Grassmannians. Suppose now that X = Gr,|;(C"™) is the super Grass-
mannian. We apply the method discussed above to study H*(X, Ox). Since Gr,(C"™) =
Grs‘r(Cm‘"), we may assume, without loss of generality, that » > s. We summarize some of

the key points here.
Let Vo = C" and V; = C™, and put

W(] = HOI’Il(‘/O, ‘/1), W1 = Hom(Vl, ‘/0), W = W(] X Wl.
Thus W is identified with the odd part of the Lie superalgebra gl,,,. The space Y defined

in §1.1 can be described as follows: a point corresponds to a tuple (f, g, Ry, R1) where

e Ry is an r-dimensional subspace of

e [y is an s-dimensional subspace of V}

e f: Vo — Vi is a linear map satisfying f(Ry) C Ry

e g: Vi — Vj is a linear map satisfying g(R;) C Ry.
The projection map Y — W takes (f, g, Ro, R1) to (f,g). The only condition on points in
the image is that the nullity of f must be at least r —s. Hence Z = Z; x W, where Z is the
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determinantal variety consisting of linear maps with nullity at least r — s; if n —m > r — s,
then Zy = W, and hence Z = W. B

It turns out that the affinization Z of Y is typically not Z; that is, there are global
functions on Y that do not factor through Z. To see this, suppose that (f,g, Ry, R1) is
a point of Y. Then fg is an operator on V; that preserves the subspace R;. Thus the
characteristic polynomial of fg|g, is a factor of the characteristic polynomial of fg, and
its coefficients give additional global functions on Y. We show that these generate all the
additional functions on Y’; this is a non-trivial theorem. From this, we see that Z can be
described as the space of tuples (f, g, p) where f € Z,, g € Z;, and p is an appropriate factor
of the characteristic polynomial of fg.
~ We prove a number of results about the geometry of this situation. Notably, we show that
Z has rational singularities, which allows us to show that H (Y, Oy) = 0 for i > 0. We also
show that O is a free O z-module of finite rank, and that O;®¢, C is the singular cohomology
ring of a certain Grassmannian. Thus the free resolution of O; over S = Sym(W*) can be
determined from that of Oz, which was explicitly computed by Lascoux [Ls|]. Applying
Theorem 1.1, we obtain a spectral sequence computing H*(X,Ox), where the terms are
composed of the resolution of Oz and the singular cohomology of a Grassmannian. Using
Lascoux’s work, we show that this spectral sequence degenerates. The final result is the
following theorem:

Theorem 1.2. Let X = Grr‘s(C"‘m) with r > s. We have the following:

(a) Suppose n —m >r — s.
(i) H*(X, Ox) is naturally isomorphic to HY,,(Grs(C™),C) as a graded algebra.
(11) The GLyn, action on H*(X, Ox) is trivial.
(b) Suppose r —s >n —m, and let A* = H,,(Gr,(C"*7"), C).
(i) We have a natural isomorphism H*(X, Ox)Ctnim = A* of graded algebras.
(ii) There is a graded GLyy,,-representation E* such that H*(X, Ox) is isomorphic
to A* ® E*, as a graded GLy),-equivariant A*-module.
(iii) Let Zy C Hom(C", C™) be the determinantal variety consisting of linear maps of
rank <n+s—r, and regard Oz, as a quotient of S = Sym(C" ® (C™)*). Then
we have an isomorphism of GL, x GL,, representations

E' = P Tors (02, C)ityp,

p=>0

where the subscript on Tor denotes the appropriate graded piece. That is, E* is
the ith linear strand of the free resolution of Oy, .

We note that in (b) above, Zy; = Hom(C",C™) if r = s (and m > n). In particular,
E? =0 fori+# 0 and E° = C and so this situation behaves like case (a).

1.3. Supergroup representations on syzygies. In 1985, Pragacz and Weyman [PW]
discovered that the free resolutions of determinantal ideals carry a natural (but very much
non-obvious) representation of a general linear Lie superalgebra. Their construction was
generalized and simplified in some subsequent work of Akin—-Weyman [AW1, AW2, AW3] and
Raicu-Weyman [RW]. Theorem 1.2 leads to a much more direct and conceptual construction
of this action. Indeed, by considering the case where s = 0, we find that the ith linear strand
of the resolution of a determinantal variety is identified with HY(X, Ox) for an appropriate
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super Grassmannian X, and this obvious carries an action of the super general linear group
(as it acts on X). See §6.5 for more details.

The first author generalized the results of Pragacz—Weyman to (skew-)symmetric matrices
in [Sal]. Here the resolution carries an action of the periplectic superalgebra. The methods
of this paper also apply to that case. The details will be carried out in [SS1].

Rather than compute syzygies of determinantal ideals with respect to a polynomial ring,
one can consider them with respect to an intermediate quotient ring. Using a certain class
of complete intersections as such an intermediate quotient ring, a third class of superalgebra
actions was discovered in [Sa2] using the orthosymplectic Lie superalgebra. These represen-
tations are infinite-dimensional and do not appear to fall into the mold of the current paper.
However, one can attempt to treat the orthosymplectic Lie superalgebra using the methods
of this paper; see the comments in the next section.

1.4. Further work. We have used Theorem 1.1 to compute the cohomology of various other
flag supervarieties. The details of this work will appear in a subsequent paper [SS1]. We
summarize some of the results here:

e Let X be the partial flag supervariety parametrizing flags V; C --- C Vj, in C™
where dim(V;) = r;|s,. Suppose that n > m and n —m > r; — s; for each i. Then we
compute H*(X, Ox) completely. The result is similar to Theorem 1.2(a), in that no
interesting syzygies appear.

e Let V be a super vector space of dimension n|n equipped with a periplectic form, and
let X be the Grassmannian parametrizing totally isotropic subspaces of V' of dimen-
sion r|n — r. Then we compute H*(X, Ox) completely, and the result is analogous to
Theorem 1.2. In this case, the cohomology is composed of the singular cohomology
of an isotropic Grassmannian for a symplectic group and the syzygies of a determi-
nantal ideal of (skew-)symmetric matrices. This result gives a conceptual explanation
of the work of the first author [Sal| that these syzygies carry a representation of the
periplectic supergroup.

e Consider an isotropic super Grassmannian X associated to the orthosymplectic super-
group. In this case, the variety Z is a somewhat mysterious analog of a determinantal
variety that we have not previously encountered. Our results in this case are more
limited, as we do not know the syzygies of Z in general, and there are examples where
the spectral sequence computing H*(X, Ox) does not degenerate.

e Let X be a Grassmannian associated to the isomeric (also known as type Q, see [NSS,
§1.5]) supergroup. In this case, X; is an ordinary Grassmannian and J/J? is the sheaf
of 1-forms on X,. We thus see that H*(X, A(J/J?)) is the de Rham cohomology of X,
and the map Y — Z is the usual Grothendieck—Springer map for the general linear
Lie algebra. This gives a very direct connection between H*(X, Ox) and the singular
cohomology of X,. We can also handle partial flag varieties associated to the isomeric
supergroup.

e We can also treat some exceptional supergroups. For example, if X is a complete flag
supervariety associated to D(2,1;«a) then we compute H*(X,Ox) completely. The
variety Z in this case is the zero locus of the hyperdeterminant on (C?)®3.

There is one other direction coming out of Theorem 1.2 that we are currently pursuing.
Let X = Grr|s(C°°|°°) be the infinite super Grassmannian (still with » > s), and let R and
Q be the tautological sub and quotient bundles on X. A natural problem is to study the
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cohomology of the equivariant bundle € = S,(Q) ® S,,(R), where Sy denotes a Schur functor.
Theorem 1.2 implies that H*(X, Ox) is isomorphic to a polynomial ring Cley, . .., ¢ in this
case, where r > s and ¢; has degree 2i. We thus see that H*(X, ) is a module over this
polynomial ring. In [SS2], we study H*(X, €) from this perspective. The module structure
allows us to prove interesting results about the cohomology groups, and offers a kind of
explanation for the failure of the classical Borel-Weil-Bott theorem in this setting.

Remark 1.3. Generalizations of Borel-Weil-Bott to flag supervarieties appear in the liter-
ature: see, for instance, [Co, GS, Pe, PS]. However, the existing work (that we are aware
of) is of a quite different flavor than this paper, and generally does not treat the case of
the structure sheaf, or the vector bundles considered above, with the exception of super
projective space, see [GS, MS, Se. O

1.5. Questions and comments. The results of this paper raise a few issues that deserve
further exploration.

e We show that the spectral sequence in Theorem 1.1 degenerates for the super Grass-
mannian. Our proof is rather special and relies on the fact that the representations
appearing in the Tor group of a determinantal ideal are multiplicity-free. Is this a
more conceptual reason for this degeneration that does not rely on such explicit com-
binatorial calculation? One obstacle is that, as noted above, there are examples for
the orthosymplectic group in which the spectral sequence does not degenerate.

e Theorem 1.2 shows that the coherent cohomology of a super Grassmannian is related
to the singular cohomology of some ordinary Grassmannian. The path between these
two objects in our proof is somewhat circuitous. Is there a more direct connection?
As noted above, in the case of isomeric Grassmannians, the connection to singular
cohomology (through de Rham cohomology) is quite clear.

e Are there other homogeneous bundles on the super Grassmannian whose cohomology
can be completely computed using the methods of this paper, such as Q!? Each
bundle still has a filtration and associated graded, but the problem is getting a good
description of the cohomology of the resulting sheaf.

e A morphism from a superscheme X to the super Grassmannian is equivalent to the
data provided by the pullback of the tautological sequence. Hence, given a subbundle
of a trivial superbundle on X, we get a morphism from the coherent cohomology
of a super Grassmannian to H°(X, Ox). This allows one to define “coherent Chern
classes” for superbundles.

1.6. Outline. In §2, we develop our general method for studying the cohomology of flag
supervarieties. The rest of the paper is devoted to carrying out this method in the case of
super Grassmannians. In §3 and §4, we give some preparatory material needed for this. The
heart of the paper is §5, where we study the Grothendieck—Springer theory associated to the
super Grassmannian. Finally, in §6, we apply this work to compute the cohomology of the
super Grassmannian.

1.7. Conventions. Since we treat both superalgebras and ordinary (non-super) algebras,
we will reserve the term “algebra” or “ring” to mean an ordinary structure, and always use
the prefix “super” when it is used. The same applies to other objects, such as groups and
schemes.



6 STEVEN V SAM AND ANDREW SNOWDEN

If X is an affine scheme, we use Ox to denote both its structure sheaf and also the ring
of global sections; the meaning will be clear from context.

2. COHOMOLOGY OF FLAG SUPERVARIETIES AND SYZYGIES

In this section we outline a general approach to studying the cohomology of flag superva-
rieties by connecting them to certain determinantal-like varieties appearing in an analog of
Grothendieck—Springer theory.

2.1. Super geometry. We begin by recalling some fundamental notions from super geome-
try. For our purposes, a (commutative) super algebra is a Z/2-graded associative unital
C-algebra R such that 2y = (—1)I*/Ily2 holds for all homogeneous elements z,y € R, where
|z| € Z/2 denotes the degree of z. We use the term ordinary algebra to describe a super
algebra concentrated in degree 0. Let R be a super algebra. We let J = Jg be the ideal of R
generated by its degree 1 elements. Every element of J is nilpotent, and the quotient R/.J
is an ordinary algebra. We let Spec(R) be the topological space Spec(R/J) equipped with a
sheaf of super algebras derived from localizations of R in the usual manner.

A super scheme over C is a topological space equipped with a sheaf of super algebras
that is locally isomorphic (in a suitable sense) to a space of the form Spec(R), where R is
a super algebra. We use the term ordinary scheme to describe a super scheme for which
the structure sheaf is concentrated in degree 0; such an object is a scheme in the classical
sense. Let X be a super scheme. We let J = Jx be the ideal sheaf generated by the degree 1
elements of Ox. The quotient Ox/Jx is a sheaf of ordinary rings, and (X,0x/Jx) is an
ordinary scheme. We call this the underlying ordinary scheme and denote it by Xg.q.
We let gr"(Ox) = J"/d" and gr(Ox) = B,,5,2r"(Ox). Each gr*(Ox) is a quasi-coherent
sheaf on X,q and gr(Ox) is a quasi-coherent sheaf of super algebras.

We define a super scheme to be smooth if X4 is a smooth algebraic variety, J/J* is a
locally free coherent sheaf, and the natural map A(J/9%) — gr(Ox) is an isomorphism. We
sometimes use the term “supervariety” when speaking of smooth super schemes. Suppose
X is smooth and irreducible. We define its dimension to be the pair dy|d;, where dj is
the dimension of X4 and d; is the rank of J/J?. Given a point z € X, the cotangent
superspace of x is the super vector space m,/m2, where m, is the maximal ideal at x; this
is easily seen to have dimension dy|d;. The tangent superspace of z is the dual of the
cotangent superspace.

The following proposition, which is immediate from the definitions, is our primary tool
for connecting the coherent cohomology of super varieties to ordinary algebraic geometry:

Proposition 2.1. Let X be a smooth super scheme. There is a natural E, spectral sequence

(2.1a) EP? = HPYY(X, N\P(3/9%) = HPTY(X,0Ox).

2.2. The geometric method. Let X be a complex projective variety, and suppose that
0—=&—=e—=n—0

is an exact sequence of locally free coherent sheaves on X, with e = W* ® Ox globally free.
We make the following definitions:
e Let S = Sym(W™), a polynomial ring, and W = Spec(.S), an affine space.
e Let Y = Spec(Sym(n)). This is the total space of a vector bundle over X, and a
closed subvariety of X x W.
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e Let Z C W be the image of Y under the projection map X x W — W. This is a
closed subvariety of W as X is projective.

e Let Z be the affinization of Y, i.e., Z is the affine variety with coordinate ring O, =
(Y, Oy). The Stein factorization shows that the map Y — Z factors through a finite
morphism Z — Z. In particular, O 7 is a finite S-module.

The following proposition describes how to determine the terms of the minimal free resolution
of O, in certain situations. We remark that H*(Y, Oy) = H'(X, Sym(n)).

Proposition 2.2. Suppose that H(Y,Oy) = 0 for i > 0. Then we have a natural isomor-
phism of vector spaces
s
TOl"p ((927 C);D-l—q = Hq(Xv /\p-i-qg),
for all p,q € Z, where the subscript indicates the appropriate graded piece.

Proof. We briefly sketch the proof. Consider the cartesian diagram

/

g

X X xW
f’l lf
Spec(C) ! w

where ¢’ is the zero section and g is the inclusion of 0 in W. Regard Oy as a coherent sheaf
on X x W. Then we have a natural base change isomorphism [SP, Tag 08IB|

(2.2) Lg"R£.(0y) = RfL(g) (Oy).

By our assumptions, Rf.(Oy) = O, and so the left side above computes Tor? (0 ;, C). Now,
we have a Koszul resolution Oy @ A () — Oy. Since this is a flat resolution, it can be used to
compute L(¢')*. We find that L(¢)*(Oy) = A(€), where A(€) is the complex with A*(¢) in
cohomological degree —k and all differentials zero. The derived pushforward of this under f’
is @0 H (X, A"(€)) (ignoring degrees). We refer to [We, Ch. 5] for additional details. [

Remark 2.3. The functors Lg*Rf, and Rf/L(¢')* are both lax monoidal, and the base
change map Lg*Rf, — Rf/L(¢')* is one of lax monoidal functors. It follows that the two
sides of (2.2a) are algebras in the derived category of vector spaces, and the isomorphism is
one of algebras. From this, it follows that the isomorphism in Proposition 2.2 is compatible

with the multiplicative structures on each side. This compatibility is used at two points in
the proof of Theorem 1.2. O

2.3. The geometric method in super geometry. Combining Propositions 2.1 and 2.2,
we obtain the following important result:

Theorem 2.4. Let X be a smooth super variety with X..q projective. Suppose that
03/ =>e—n—0

s an exact sequence of locally free coherent sheaves on Xora, with e = W* ® Ox,,, globally
free. Let S = Sym(W*), let Y = Spec(Sym(n)), and let Z be the affinization of Y. Suppose
that H(Y, Oy) = 0 for i > 0. Then we have a natural isomorphism

Tor, (07, C)prq = HIX, A”7(9/5%)),
and a spectral sequence
EP? = Tor® (04,C), = H"MI(X,0x).
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We note one corollary of the theorem. Define the super dimension of a super vector
space V' by sdim(V) = dim(Vp) — dim(V}), and define the super Euler characteristic of a
super variety X by

X(X) =) (~1)'sdim H'(X, Ox).

>0

Corollary 2.5. Suppose we are in the setting of Theorem 2.4. Then X(X) is the degree of
the map Z — W over the generic point of W.

Proof. From the spectral sequence, we find x(X) = szo(—l)p dim Torg(OZ, C), which is
easily seen to coincide with the dimension of the vector space Frac(S) ®g O ;. O

We note that the corollary implies that x(X) = 0 if Z is a proper subvariety of W, i.e.,
if Y — W is not surjective. In this case, assuming sdim H°(X, Oy) # 0, we find that Oy
necessarily has higher cohomology. One can prove a number of variants of the above corollary,
e.g., allowing for cases where H (Y, Oy ) is non-vanishing, or replacing “super dimension” with
“super character” in the definition of x(X) when there is a group acting.

2.4. Grothendieck—Springer theory for flag supervarieties. Let G be a connected
reductive supergroup, let P be a parabolic subsupergroup of G, and let X = G/P be the
associated flag supervariety. We now take a look at what Theorem 2.4 amounts to in this
case. We note that this discussion is included only to sketch the general situation and provide
context; our main results do not depend on it.

Let Go, Py, and X be the ordinary varieties underlying GG, P, and X. Then Gy is a
connected reductive group, Py is a parabolic subgroup of Gg, and Xy = G/ P, is a generalized
flag variety. Let x = gF, be a complex point of X,. Let P* = 9P and P = 9F,, where
9(—) denotes conjugation by g. In this way, X, can be seen as parametrizing Go-conjugates
of either P or F,. Let g, p, and p* be the Lie superalgebras of G, P, and P*. The tangent
superspace to G/P at x is g/p*, while the tangent space to Go/Fy at z is go/pg. Since
J/d? is the conormal bundle to X, C X, we see that the fiber of J/J? at z is (g1/p7)*. Let
e = g] ® Ox and let n be the locally free coherent sheaf on X, whose fiber at x is pj. We
then have a short exact sequence

039/ —=e—n—0.

So far, we have just explained that there is such a sequence for each fiber. However, since
the sheaves are all Gy-equivariant and G acts transitively on X, it follows that there is
such a sequence of the sheaves.

We thus see that we are indeed in the setting of Theorem 2.4. The space W is g;. The
space Y is the vector bundle over X, whose fiber at = is p7. In other words, ¥ consists of
points (x,v) where z € Xy and v € p7. Recall that Z C g, is the image of Y under the
projection map Xy x W — W. From the description of Y, we see that Z = UgeGO 9p1.

The space Z is more subtle. Let h C po be a Cartan subalgebra of go and let 20 be its
Weyl group. We have maps

g1 — go — 00/ Go = b /20,

where the first map is self-bracket (i.e., v — [v,v]), the second map is the GIT quotient map,
and the third is the isomorphism coming from the Chevalley restriction theorem. We note
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that b /20 is the spectrum of the invariant ring Sym(h*)¥®. As Z is a subvariety of g;, we
thus obtain a natural map Z — h//20. We have similar maps

pi = pg — b/

where 2" is the subgroup of 20 associated to Fy. Since each element of Y belongs to some
p?, these maps define a map Y — /20, and this map factors through Z since the target is
affine. This leads to a commutative diagram

YD)
(2.6) L l
Z —= /2.

As we will see in §5, this diagram is not cartesian in general. However, in all cases we have
considered, a slight modification is cartesian.
We thus have the following general plan for studying H*(X, Ox):

(a) Show that H'(Y, Oy) vanishes for i > 0.
(b) Determine the minimal free resolution of O over S = Sym(g7).
(c) Analyze the spectral sequence in Theorem 2.4.

In the remainder of this paper, we carry out this plan in detail for X = Gr,s(C"™).

3. SPLITTING RINGS

In §5, we study Grothendieck—Springer theory in detail for the super Grassmannian. In
this section and the next section, we gather some preliminary material that will be needed
for that. This section develops the theory of splitting and factorization rings. These have
also been considered in [EL, GSS, Lk]|.

3.1. Splitting rings. Let A be a ring and let f ="  a,_;u’ be a monic polynomial with
coefficients in A (so ayp = 1). We define the splitting ring of f, denoted Split 4(f), to be
the quotient A[y,...,&,]/I where I is the ideal generated by the elements

ai_(_l)iei(gla-'wgn)a 1 SZSTL,

where e; is the ith elementary symmetric function. Thus Split 4(f) is the universal quotient of
A[¢;] in which we have f(u) = [, (u—¢&). If Ais graded and a; has degree 2i then Split ,( f)
is naturally graded, with &; of degree 2. (We include a factor of 2 here for later convenience.)
The symmetric group &,, acts on Split ,(f) by permuting the &’s and fixing A. Formation
of the splitting ring is compatible with base change: if A — A’ is a homomorphism, and f’
is the image of f under Afu] — A’[u], then we have a natural isomorphism

Split 4, (f') = A @4 Split (f).

We fix A and f for the remainder of this section, and let B = Split 4(f). We also assume A
to be noetherian.
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3.2. The universal case. Let A" = Z[ay, ..., a,], let f™ € A"V[y] be the polynomial
w4+ 3" a,_ut, and let B™Y be the splitting ring of f™. The map Z[¢,, .. .,&,] — B™Y

is surjective, and has no kernel since B"™" @ C clearly has Krull dimension n. Thus B™" =
Z[§1>"'>€n]~ ) ]
The polynomial f € A[u] is the image of f*™™" under a unique ring homomorphism A"™" —
A. Since formation of splitting rings is compatible with base change, we have B = A ® guniv
B"V, This can be a useful tool for proving results about general splitting rings.
The above discussion shows that we have a cartesian diagram

Spec(B) — Spec(B"™Y)

! |

Spec(A) — Spec(A™Y)

We can identify Spec(B™") with A™ and Spec(A™") with the quotient A"/&,, (which is
isomorphic to A™). Here, A™ and &,, can be identified with the Cartan subalgebra and Weyl
group of gl,,. The above diagram is thus similar to (2.6) (with P, a Borel, so that 20’ = 1),
and this is essentially how splitting rings will be relevant in §5.

3.3. Basic results. Let A € A be the discriminant of f. We have A = [],_;(§& — &) in B.
Recall that a ring homomorphism is syntomic if it is flat, of finite presentation, and all of
the fibers are local complete intersections [SP, Tag 00SL].

Proposition 3.1. We have the following:

(a) As an A-module, B is free of rank n!.

(b) The map A — B is a syntomic.

(c) If A satisfies Serre’s condition (Sk), then so does B. In particular, if A is Cohen—
Macaulay, then so is B.

(d) If A is a unit of A then A — B is étale.

(e) If A is reduced and A is a non-zerodivisor then B is reduced.

(f) The inclusion A — B admits an A-linear splitting.

Proof. (a) It suffices, by base change, to prove the statement in the universal case where
A = Zlay,...,a,] and f = u™ + Z?:_(]l an_;u'. This is well-known, and there are several
proofs, but we include one. The map A — B is finite, as each &; satisfies the universal
polynomial. Since A — B is a finite map of polynomial rings of the same dimension, it
is flat [SP, Tag 00R4]. Therefore B is projective as an A-module, and thus free, as any
projective A-module is free (this statement is easy in this case as everything is graded). The
rank can be computed over the generic point, where it is well-known to be n!.

(b) Suppose that p is a prime of A. Then B® 4 x(p) is finite over x(p) by (a), and therefore
of Krull dimension 0. This ring is a quotient of k(p)[1, - . ., &,] by n relations, and is therefore
a complete intersection. It follows that A — B is syntomic.

(c) Since (Sy) is syntomic local [SP, Tag 036A], the result follows from (b).

(d) We have 0 = f(&;) and so 0 = f(§;)d;. However, f'(§;) = [[;(& —¢&;) divides A and
is therefore a unit. Thus d§; = 0. We conclude that {2p,4 = 0. Since B is finite flat over A
by (a), it is therefore étale.

(e) Since A is reduced, it satisfies (Rp) and (S7). Thus B satisfies (S1) by part (c). Since
V(A) C Spec(A) has codimension 1 and A[1/A] — B[1/A] is étale, it follows that B satisfies
(Ro). Thus B is reduced.
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(f) This follows from the existence of the Gysin homomorphism constructed in [Lk, Theo-
rem 8.1] (it has to be precomposed with multiplication by [ [, £~ which is also A-linear). [

Proposition 3.2. Suppose that n! is invertible in A. Then B is free of rank one as an
A[S,,]-module.

Proof. Let A = Z[1/n!] and let S* be the Specht module for &, over A. If M is any
A[S,]-module, then the natural map

@ HomA[Gn](S’\, M) & Sr 5 M
[Al=n

is an isomorphism. To see this, note that S* is a projective A[&,,]-module: Young idempo-
tents are defined over A[G,] (see [FH, Lemma 4.26]), so S* is a direct summand of A[G,,].
Hence both sides above are exact functors of M. It thus suffices to prove the result for
M = S* (since these are enough projectives), where it is clear.

Now, it suffices to prove the proposition in the universal case A = Alay,...,a,]. By
the above isomorphism, we see that Ny = Homyg,)(S*, B) is a summand of B, and thus
projective as an A-module; since N, is also graded, it is free. To prove the result, it is enough
to show that the A-rank of N, coincides with the A-rank of S*. This can be checked over
Frac(A), where it is well known: Q(&i,...,&,) is isomorphic to the regular representation of
S, over Q(ay,...,a,) = Q(&y, ..., &) by the normal basis theorem in Galois theory. [

Remark 3.3. The hypothesis that n! is invertible is necessary: indeed, if n =2, A = F,, and
f = u? then B = Fy[t]/t? with trivial Gy-action, but Fy[Ss] has non-trivial Gy-action. [

We pause to give a geometric source of splitting rings (see [GSS, Theorem 6.1]). Let X be
a smooth variety over an algebraically closed field and let € be a rank n vector bundle on X.
Let A be the Chow ring of X and let a; = (—1)¢;(€), where ¢;(€) is the ith Chern class of €.
Then the splitting ring B is the Chow ring of the relative flag variety F1(€). Furthermore, on
F1(&), the pullback of € has a complete flag of subbundles (i.e., whose successive quotients
are line bundles), and the Chern classes of these line bundles are identified with the —¢&;.

An important case for us is when X = Spec(C) and €& = C", so that f = u™. In that
case, this discussion gives the following result (we note that the Chow ring and singular
cohomology ring of F1(C™) are isomorphic since it has a cellular decomposition).

Proposition 3.4. Suppose that f = u™. Regard A as graded and concentrated in degree 0,
and B as graded with each & of degree 2. Then we have a natural isomorphism of graded
Tings

3.4. First normality criterion. We now turn our attention to the question of when A is
normal. We will give an initial criterion here, and a variant in §3.6 that is somewhat more
convenient. Let E C Spec(B) be the closed set where at least three of the &’s coincide or
there are two pairs of & which coincide, and let E C Spec(A) be the image of E. Note that
E is closed since A — B is finite. We say that an element f of a normal ring R is squarefree
if v,(f) € {0, 1} for all height one primes p of R, where v, denotes the valuation associated
to p. We say that a subset of Spec(A) has codimension > c if all primes it contains have
height > c.

Proposition 3.5. Suppose the following conditions hold:
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(a) A is normal,
(b) A is squarefree and a non-zerodivisor,
(¢) E has codimension > 2 in Spec(A).

Then B is normal.

Proof. First suppose that A is a strictly henselian discrete valuation ring. We show that B
is regular. If A is a unit of A then B is étale over A and thus regular. Assume then that A is
not a unit; by hypothesis (b), it is a uniformizer of A. Let f be the image of f in x[u], where
k is the residue field of A. Since A maps to 0 in x it follows that f has a repeated root; by
hypothesis (c), it has only one (i.e., it has n — 1 distinct roots). We thus have a factorization
f =77 over s, where 7 is a degree 2 polynomial with a repeated root over % and § has
distinct roots over K. Since k is separably closed, it follows that § = (u — Z3) - -+ (u — Ty,)
splits completely for Zs,..., T, € k distinct (and distinct from the unique root of §). By
the henselian property, we thus have a factorization f(u) = q(u)(u — x3) - - - (u — x,,), where
x; € A lifts T; for i > 3 and ¢(u) is a quadratic polynomial with coefficients in A.

Now let p be a prime of B above the maximal ideal of A, and work in B, in what follows.
Applying a permutation if necessary, we can assume that &, = T; for i > 3, where ¢, is the
image of & in B,/p = k. For i > 3, it follows that ¢(¢;) and & — z;, for j # ¢, are non-zero
in x, and thus units of By; since f(&;) = 0, we conclude that & = x;. This shows that B, is
generated as an A-algebra by & and &. We have

aw) [ - &) = [J(u - &).

i>3 i>1

Since monic polynomials are non-zerodivisors, it follows that ¢(u) = (u — &) (u — &). From
this, we see that B, = Au]/q.

We consider two cases. If § is irreducible (this is only possible if x has characteristic 2),
then B,/mB, is a degree 2 field extension of x and hence mB, is the maximal ideal of B,
which is generated by a single non-nilpotent element, so B, is a DVR.

Otherwise, we may assume that § = (u —T;)? for some Z; € k. Let 7 be the discriminant
of g. This is an element of A that divides A and is 0 in k, and is therefore a uniformizer.
Up to a linear substitution in A, we may assume that § = u?. Write ¢ = u® + aju + ao.
Then aj, s € m but ay ¢ m? since 7 = a? — 4ay is a uniformizer, and hence ay is also a
uniformizer for A. The maximal ideal of B, is generated by w and mB,, but the latter is
generated by as = —(u + a1)u, and so just u suffices to generate. Finally, u is not nilpotent
since ap is not, which shows that B, is a DVR.

We now treat the general situation. Let p be a height one prime of A. We show that B,
is regular. Let A;h be the strict henselization of the DVR A,. By the previous paragraphs,
we see that B, ®4, A" is regular. Now, A" is the direct limit of a family {A4;} of rings,
each of which is an étale cover of A,. The above arguments apply with A; in place of A;h
for 7 sufficiently large. We conclude that B, ®4, A; is regular for some ¢. Since regularity
is étale local, we conclude that B, is regular. Thus B is regular in codimension 1. Finally,
since A is normal, it satisfies Serre’s condition (S), and hence the same is true for B by
Proposition 3.1(c), so B is therefore normal. O

3.5. Preliminaries on discriminants. In the following subsection, we refine the above
normality criterion. Here we prove a few lemmas that will be needed to do this.
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Lemma 3.6. Let S be a local ring with mazimal ideal m, and let X be an n X n matriz with
entries in S. Suppose that the reduction of X modulo m has nullity > r. Then det(X) € m".

Proof. We argue by induction on n. For n = 0 the result is vacuous. Suppose now the result
is known for matrices of size < n and let us prove it for matrices of size n.

Suppose that the first column of X has entries in m. Let X; be the matrix obtained from
X by deleting the first column and the ith row. Then each X; has nullity > r — 1 modulo
m. Thus, by induction, det(X;) € m"! for each i. Taking the Laplace expansion for det(X)
along the first column, we see that det(X) € m".

Now suppose that some entry in the first column of X is a unit. Performing row operations,
we can reduce to the case where the first column is the first standard basis vector. Let X’
be the matrix obtained by deleting the first row and column of X. Then det(X’) = det(X).
But X’ has nullity > r modulo m, so det(X’) € m" by induction. O

We recall some basic facts about Sylvester matrices and discriminants. Let S be a com-
mutative ring and let f(u) = apz™ + -+ + a, and g(u) = bpz™ + --- + by, be univariate
polynomials with coefficients in S such that ag # 0 (we do not require anything about g and
in fact allow the case that it is identically 0). We define their Sylvester matrix to be the
square matrix of size n + m as follows:

a a; as -+ a, 0 0 --- 0
0 ag ap - a, 0 - 0
SyL,m(f,9) =10 0 0 e ay
bo by by -
0 0 0 o b
In other words, the first m rows consist of shifts of the sequence aq,...,a, and the last n
rows consist of shifts of the sequence by, . .., b,.

The following is well-known, but we include proofs to keep the discussion self-contained.
Proposition 3.7. (a) If S is a field, then
deg(ged(f,g)) = dimker Syl,, .. (f, ).

(b) If S is graded such that deg(a;) = deg(b;) = i, then det(Syl, ,,(f, g)) is homogeneous
of degree mn.

(c) If n = deg(f), then the discriminant of f is det(Syl, ,_,(f, f')) (up to a sign) where
f" is the derivative of f with respect to x.

Proof. (a) Let a = apu™ 4+ - +ay,,_1 and B = Bou" '+ - -+ B,_1. The coefficients of a f+ 3¢
are the entries of [ag -+ am—1 Bo - Bu-1] Sylym(f,9), so that ker Syl, . (f, g)" is
the space of pairs («, ) with dega < m and deg S < n such that af + fg = 0. Let
h = ged(f,g) and fy = f/h and go = g/h. Then we get afy = —fgo which implies that
there is a polynomial v such that a = goy and 5 = fyy and

degy = deg 8 — deg fo < degh.

On the other hand, if v is any polynomial with degvy < degh, then o = goy has degree
< degg <m and 8 = fyy has degree < deg f = n, and so we have an isomorphism between
the polynomials of degree < degh and ker Syl,, ..(f, g)-
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(b) Scaling each a; and b; by A* in Syl,,.(f,g) is the same as scaling the ith column
by XN=1, the first m rows by 1, A~%, ..., A=Y and the last n rows by 1, \~%, ... A==,
Hence we see that det(Syl,, ,,(f,9)) is homogencous of degree ("3™) — (5) — (%) = mn.

(c) It suffices to prove this in the universal case S = Z]ay, . . ., a,] since both the discrim-
inant of f and det(Syl, , ,(f, f')) are polynomials in the coefficients of f. We grade S by
deg(a;) = 4. In this case, both expressions are homogeneous polynomials of degree n(n — 1),
this holds for det(Syl,,,,_;(f, f')) by (b). The discriminant is an irreducible polynomial and
vanishes whenever f has a multiple root. By (a), det(Syl,, ,(f,f’)) vanishes whenever
ged(f, f') has positive degree, which is equivalent to f having a multiple root. Hence the
two polynomials agree up to sign. U

Lemma 3.8. Suppose S is a local ring with mazimal ideal m and let g € S[u] be a monic
polynomial of degree n. Suppose that the reduction of g modulo m has at most r distinct
roots in the algebraic closure of S/m. Then the discriminant of g belongs to m"~".

Proof. Let f be the reduction of ¢ modulo m. By Lemma 3.6 and Proposition 3.7, the
discriminant of g belongs to m? where d = deg(ged(f, f')). For X in the algebraic closure of
S/m, if (u— N\)¢ divides f, then (u — \)¢~! divides f’, and so d > n — r. O

3.6. Second normality criterion. We now give a variant of Proposition 3.5. Define
V(A,0A) C Spec(A) to be the set of points x at which A vanishes to order two, in the
sense that it belongs to m2. If A is finitely generated over a field £ and x is a smooth
point of Spec(A) then x belongs to V(A,0A) if and only if A = 0 in k(z) and dA = 0 in
Qh/k ®4 K(x); since leq/k is locally free on the smooth locus, this shows that V (A, 0A) is
closed in the smooth locus. Recall the set E C Spec(A) from §3.4.

Lemma 3.9. We have E C V(A,0A).

Proof. Let x € F, and let p = p, be the corresponding prime ideal of A. By the definition of
E, the polynomial f € A,[u] has at most deg(f) — 2 distinct roots in the residue field. Thus
by Lemma 3.8, we see that A € p?A, = m?2, and so z € V(A,IA). O

Proposition 3.10. Suppose the following conditions hold:

(a) A is normal,
(b) A is a non-zerodivisor,
(c) V(A,0A) has codimension > 2.

Then A is squarefree and B is normal.

Proof. We apply Proposition 3.5. The set E there has codimension > 2 by the present
assumption (c¢) and Lemma 3.9. It thus suffices to prove that A is squarefree.

Let p be a height one prime of A. If V(p) is not an irreducible component of V' (A) then
vy(A) = 0. Suppose now that V(p) is an irreducible component of V(A). Then v,(A) > 1,
and we show that equality holds. Suppose by way of contradiction that v,(A) > 2. We can
then write A = ab® where k > 2, a is a rational function on Spec(A) that is a unit at p, and
b is a rational function on Spec(A) that is a uniformizer at p. Since a is a unit of A, and b
belongs to pA,, we see that A belongs to p?A,. Thus p € V(A,dA), which contradicts (c).
We conclude that A is squarefree. O
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3.7. Factorization rings. Let p and ¢ be non-negative integers such that p + ¢ = n, and
put g = > 7 b,_u' and h = Y ! ¢, u', where by = ¢o = 1 and the remaining b; and ¢;
are formal symbols. We define the (p, ¢)-factorization ring of f, denoted Fact??(f) to be
Alby, ... by, c1, ..., ¢4)/1, where I is the ideal generated by the elements

7
noi— Y bpjCeivy 0<i<n—1
=0

Thus Fact’;?(f) is the universal quotient of A[b;,¢;] in which we have f(u) = g(u)h(u). It
follows from the above formula and the condition by = 1 that Fact;?(f) is generated as an
A-algebra by by, ..., b,. If Ais graded and a; is homogeneous of degree 2i then Fact’;?(f) is
graded and b; and ¢; have degree 2i. Formation of the factorization ring is compatible with
base change, as with the splitting ring.

In what follows, we let B = Split ,(f) and C' = Fact’}(f).

Proposition 3.11. We have the following:

(a) We have a natural A-algebra isomorphism B = Split.(g) ®c Splita(h).

(b) As an A-module, C' is free of rank (Z)

(¢) The map A — C' is syntomic.

(d) If A satisfies Serre’s condition (Sy), then so does C. In particular, if A is Cohen—
Macaulay, then so is C.

(e) If B is reduced (resp., integral, normal), then C' is reduced (resp., integral, normal).

Proof. (a) Let ny, ..., n, be the generators of Split,(g) and 7,41, . . ., P+, those for Split-(h).
Put B’ = Split(g) ®c Splite(h). Since f(u) = [[;,(u — n;) holds over B’, we have an
A-algebra homomorphism ¢: B — B’ given by ¢(§;) = ;. Let ¢*(u) = [[}_,(u — &) and
h*(u) = [Ti=,1 (u—&) be polynomials in Bu]. The factorization f(u) = g*(u)h*(u) gives an
A-algebra homomorphism C' — B mapping g(u) to ¢*(u) and h(u) to h*(u). The tautological
splittings of ¢g*(u) and h*(u) over B yield an A-algebra homomorphism ¢ : B’ — B given by
Y(n;) = &;. Since ¢ and 9 are clearly inverses, the result follows.

(b) By Proposition 3.1(a), we have an A-module isomorphism B = A®" and C-module
isomorphisms Split(g) & C®" and Splito(h) = C®¢. Comparing with (a), we obtain an
A-module isomorphism C®P'¢' = A®™ Tt follows that C' is projective as an A-module of
constant rank (Z) As in the proof of Proposition 3.1(a), it follows that C' is free in the
universal case, and thus in all cases.

(c) Let p be a prime of A. Then C'® 4 k(p) is finite over x(p) by (b), and therefore of Krull
dimension 0. This ring is a quotient of k(p)[b,..., by, c1,..., ¢, by p + ¢ relations, and is
therefore a complete intersection. Thus A — C' is syntomic.

(d) This follows since the property is syntomic local.

(e) From (a), C' is isomorphic to a subring of B, which handles the reduced and integral
conditions. For the normality condition, we use that B is an iterated splitting ring over C

by (a), and hence the inclusion C' — B admits a C-linear splitting by Proposition 3.1(f). O

Remark 3.12. Using Proposition 3.2 and Proposition 3.11(a), we can show that C' =
B®r*Sa if ! is invertible in A. This gives a C-linear splitting of C' — B and an alternative
proof of Proposition 3.11(e). In fact, the assumption that n! is invertible is relaxed substan-
tially in [EL, Theorem 3.1]: it suffices to know that either 2 or the discriminant of f is a
non-zerodivisor in A to show that C' = B®»*Sq, O
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As with splitting rings, there is a geometric source of factorization rings (see [GSS, Theo-
rem 6.1]). Let X be a smooth variety over an algebraically closed field and let € be a rank n
vector bundle on X. Then the (p, n —p) factorization ring C' (again taking A to be the Chow
ring of X and a; = (—1)'¢;(€)) is the Chow ring of the relative Grassmannian Gr(p, &).
When X = Spec(C), we get the following result.

Proposition 3.13. Suppose that f = u™. Regard A as graded and concentrated in degree 0,
and C' as graded in the usual manner. Then we have a natural isomorphism of graded rings
C=A®H, (Gr,(C"),Z).

sing

Remark 3.14. One can also form partial splitting rings which are intermediate between B
and C', and all of the above properties generalize. For these rings, one sees the cohomology
of a partial flag variety in the analog of Proposition 3.13. U

4. SOME ADDITIONAL PREPARATORY MATERIAL

In this section, we give a bit more material that will be needed in §5.

4.1. Rational singularities. We first recall some generalities on rational singularities. Let
X be an irreducible variety over the complex numbers. We say that X has rational singu-
larities if there exists a proper birational map 7: Y — X with Y smooth (i.e., a resolution
of singularities) such that 7,(Oy) = Ox and Rim,(Oy) = 0 for ¢ > 0. If X has rational
singularities then for any resolution of singularities 7’: Y’ — X we have 7,(Oy+) = Ox and
R/ (Oy+) = 0 for ¢ > 0; furthermore, X is normal and Cohen-Macaulay [KM, Theorem
5.10]. We require the following two additional results concerning rational singularities:

Proposition 4.1. Suppose that X is normal and Cohen—Macaulay and let m:Y — X be
a resolution of singularities. Let U C X be a subset which has rational singularities and
suppose that 7=1(X \ U) has codimension > 2 in'Y. Then X has rational singularities.

Proof. Since X is Cohen—Macaulay, let wx be its dualizing sheaf. We have a natural map
m,wy — wyx obtained by duality from Ox — 7,0y, and X has rational singularities if and
only if this map is surjective [KM, Theorem 5.10]. This property is local, so we may assume
that X is affine. Consider the following commutative diagram:

(Y, wy) [(X, wx)

l l

L(r=Y(U),wy) —T(U,wx)

The bottom map is an isomorphism since U has rational singularities. The vertical maps are
isomorphisms since the complements of U and 7! (U) have codimension > 2 (for example, by
[Ha, Proposition 1.11]). We conclude that the top map is an isomorphism, as required. [

Proposition 4.2. Let m: Y — X be a proper morphism of varieties, where Y is smooth and
X has rational singularities. Suppose that there is an open dense subset U of X such that
7 Y(U) is isomorphic (as a variety over U) to U x W for some irreducible projective variety
W with rational singularities and satisfying H(W, Ow) = 0 fori > 0. Then Rr,(Oy) = Ox.
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Proof. Let Z CY x W =Y xx (X x W) be the closure of the graph of the isomorphism
71 (U) = U x W, and let Z — Z be a resolution of singularities. Consider the diagram

7—" X xW
/| .
Y T X
Since Z is the closure of the graph of an isomorphism of open sets, the projection maps

Z —Y and Z — X x W are birational. Thus 7" and p’ are birational; also, all maps above
are proper. We now have

R, (Oy) = Rm.(Rp.(02)) = Rp.(R7(02)) = Rpu(Oxxw) = Ox.

In the first step we used that Rp,(O4) = Oy since p’ is a proper birational map of smooth
varieties; in the second step, we used the commutativity of the diagram; in the third step we
used that Rz, (03) = Oxxw since 7’ is a resolution of X x W, which has rational singularities;
and in the final step, we used the assumption on the cohomology of Oy . U

4.2. Some linear algebra. In this section, we work over an algebraically closed field k of
arbitrary characteristic. Consider linear maps f: Vo — V; and ¢g: Vi — Vj such that V4, and
V; are finite-dimensional vector spaces. By picking bases, what form can we put the matrices
in?

To answer this question, note that the tuples (Vp, Vi, f, ¢g) form an abelian category A.
Concisely, we can regard Vo @ V] as a Z/2-graded module over k[t], where ¢ has degree 1; t
acts on Vy by f and on V] by g. We define some basic objects in this category.

e For A € k let A,()) be the object with V; = V; = k™, and where f is the identity
matrix and ¢ is a single Jordan block with eigenvalue A.

e Let A, (00) be the object with V5 = V; = k™, and where f is a single nilpotent Jordan
block and g is the identity.

e Let B, be the module k[t]/(¢t?>"*1). This has basis g, ..., Z2,, where x; has parity i,
and tx; = x; 41 for i < 2n, and txy, = 0.

For an object M of A, we let M[1] be the object where the even and odd pieces of M are
swapped. One easily verifies that A, (\)[1] is isomorphic to A, (A7) for A € kU {oc}.

Proposition 4.3. The A,()\), B,, and B,[1] are exactly the indecomposable objects of A.

Proof. Consider an object (Vo, V4, f,g). Then V; and V; are k[t?]-modules, and f and g are
maps of modules such that fg = gf = t>. By the structure theorem for modules over a PID,
Vo decomposes as Vj @ V' where t? is invertible on V and nilpotent on V’; of course, V;
decomposes similarly. Since f and g are maps of modules, they respect these decompositions.
Thus the whole object decomposes into two pieces, and it suffices to consider these pieces
separately.

First suppose that t? is invertible. Since fg = t2, it follows that f: Vo — Vj is an
isomorphism. We thus see that our object is isomorphic to the object (V4,V1,1id, fg), which
is easily seen to decompose in terms of the A, (\) with A € k \ {0}.

Now suppose that ¢? is nilpotent. Then the usual proof of the structure theorem for

modules over a PID applies, and we see that our module decomposes into cyclic modules,
which are B,,, By,[1], A,(0), or A, (c0). O
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Remark 4.4. The category A is the representation category of the extended Dynkin quiver
A;. For more in this direction, see [DW, §7.1]. O

5. GROTHENDIECK—SPRINGER THEORY FOR THE SUPER (GRASSMANNIAN

In this section we study the Grothendieck—Springer theory associated to the super Grass-
mannian Gr,(;(C"™) (see §2.4). We prove a number of results about the various spaces.
These results are used to compute the coherent cohomology of GrT‘S(C"‘m) in the next
section. This section takes place entirely in the world of ordinary (non-super) mathematics.

5.1. Statement of results. We introduce a number of objects:

e Let 1V and V; be complex vector spaces of dimensions n and m.
e Let r and s be non-negative integers with r > s. Put

5— m-n+r—s ifr—s>n—m
10 ifn—m>r—s

Note that m — ¢ < min(n, m).

e Put Wy = Hom(Vp, V1) and Wy = Hom(Vi, V) and W = Wy x W;. We regard these
as affine varieties.

o Let Zy C Wy be the determinantal variety consisting of linear maps of rank < m — 4.
Let Z; = Wi and put Z = Zy x Z;. (Note: when 6 = 0 we have Zy = W;. This case
is still interesting, though somewhat simpler.)

o Letting f: Vy® 0z - Vi1®0z and g: V1 ® Oz — Vy® Oz denote the universal linear
maps, let x(u) € Oz[u] be the characteristic polynomial of fg, and let ¥ (u) = u°x(u).
Since fg has rank < m — 4, it follows that Y (u) is a polynomial.

e Let Z be the affine scheme whose coordinate ring is the (s,m — & — s)-factorization
ring for Y (u) introduced in §3.7. Thus for a C-algebra T', a T-point of Z is a triple
(f,g,p) where (f,g) is a T-point of Z and p = p(u) is a degree s monic polynomial
over T that divides X (u) € T[u]. There is a natural map Z — Z given by forgetting
.

e Let Y be the scheme defined as follows: a T-point of Y is a tuple (f, g, Ro, R;) where:

— Ry C (V)7 is a T-submodule that is locally a rank r summand.

— Ry € (V})7 is a T-submodule that is locally a rank s summand.

— f: (Vo)r = (Vi)7 is a map of T-modules such that f(Ry) C R;.

—g: V1)r — (Vo)r is a map of T-modules such that g(R;) C Ry.
One easily sees that Y is the total space of a vector bundle over Gr,. (V) x Gr,(V}),
and is thus smooth and irreducible.

e Let m: Y — Z be the map taking (f, g, Ro, R1) to (f, g, p), where p is the characteristic
polynomial of fg on R;. We show that this is well-defined in Corollary 5.6.

This set-up turns out to be the Grothendieck—Springer theory associated to the super Grass-
mannian, as explained in §6.2. The purpose of this section is to study the above situation,
especially the varieties Y and Z. Our main results are summarized in the following theorem:

Theorem 5.1. We have the following:
(a) Z is integral and has rational singularities (and is thus normal and Cohen-Macaulay).
(b) The map Z — Z is finite and flat; in fact, O is a free Oz-module of rank (m 5)
(¢c) The graded ring O; ®g, C is isomorphic to H,, (Gry(C™%), C).

sing
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(d) The map 7:Y — Z is projective and satisfies 7.(Oy) = O and Rim,(Oy) = 0 for
i >0. If6 >0 orr =s then 7 is birational. If 5 = 0 then there is an open dense
subset U of Z such that 7= (U) is isomorphic to U x Gr,_,(C"™™).

Remark 5.2. The proofs for the various parts are spread out:
(a): Integrality is the content of §5.4 and rational singularities is proven in Proposition 5.15.
(b) and (c) are deduced in §5.3.
(d): The first claim is Proposition 5.17, the second claim is Proposition 5.13, and the third
claim is Proposition 5.16. O

Remark 5.3. We make a clarifying remark about gradings. As W is a vector space, it
carries a natural G,, action via usual scalar multiplication, and this action induces all the
gradings. In terms of rings, we have

Ow, = Sym(Vo @ Vi), Ow, =Sym(Vi ® V), Ow = Ow, ® Ow,,

and the elements of V, ® V;* and V; ® V" are given degree 1. The space Y is a subbundle of
Xo x W, where Xy = Gr,(V) x Grs(V}); again, the G,, action on W induces the grading
on O; =I'(Y,Oy). Precisely, writing ¥ = Sym(n), where 7 is a quotient of Ox, ® W*, the
degree d piece of O is I'( Xy, Sym?(n)). We note that the gradings we use do not necessarily
coincide with the gradings induced by the central tori in GL(V;) and GL(V}). O

5.2. Some auxiliary spaces. To prove Theorem 5.1, we will use a few auxiliary spaces,
which we now introduce. Conceptually, these spaces come from the Grothendieck—Springer
theory associated to a flag supervariety.

e Let Z be the affine scheme whose coordinate ring is the splitting ring for X () intro-
duced in §3.1.
e Let Y be the scheme defined as follows: a T-point of Y is a tuple (f, g, Fy, Go) where:
—F_CF 31 C-CF_gims C (Vo)ris a flag of T-submodules which are
locally summands with ranks prescribed by the subscript.
- 0=GyC Gy C -+ CGps C (V)ris a flag of T-submodules which are locally
summands with ranks prescribed by the subscript.
— f: (Vo)r = (V1)r is a map of T-modules such that f(F;.,_s) C G; for all i > 0.
—g: V1)r — (Vo)r is a map of T-modules such that ¢(G;) C F,,_, for all i > 0.
In fact, Y is the total space of a vector bundle over a product of partial flag varieties
Fl(r —s,...,r—s+m—20;Vy) x FI(1,2,...,m — 0; V).
e Let p: Y — Z be the map taking (f,9,Fe,Gs) to (f, g, H?:lé(u —\;)), where \; is the
eigenvalue of fg on G;/G;_1. We show that this is well-defined in Proposition 5.5.

We prove the following analog of Theorem 5.1:

Theorem 5.4. We have the following:

(a) Z is integral and has rational singularities (and is thus normal and Cohen-Macaulay).

(b) The map Z — Z is finite and flat; in fact, O3 is a free Oz-module of rank (m — 6)!.

(¢) The graded ring Oz ®o, C is isomorphic to Hy,,(F1(C™°), C).

(d) The map p:Y — Z is projective and satisfies p,(Oy) = Oz and Rip.(Oy) = 0 for
i >0. Ifd >0 orr = s then p is birational. If 6 = 0 then there is an open dense
subset U of Z such that p~'(U) is isomorphic to U x Gr,_,(C"™™).

See Remark 5.2 for the locations of the proofs of the various statements (we handle this
and the previous case in parallel).
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5.3. First observations. It is well-known that Z, has rational singularities [We, Proposi-
tion 6.2.3], and is in particular normal and Cohen—Macaulay. Since Z; is an affine space, it
follows that the same holds for Z = Z, x Z;. Theorem 5.1(b,c) and Theorem 5.4(b,c), as well
as the fact that Z and Z are Cohen-Macaulay, follow immediately from Propositions 3.1, 3.4,
3.11, and 3.13. The following proposition and corollary ensure that p and 7 are well-defined.

Proposition 5.5. Suppose (f, g, Fe, G,) is a T-point of Y. Let \; be the eigenvalue of fg on
Gi/Gi_y. Then T[] (u— A) = X(u).

Proof. If § =0, then G,,,_s = V; and Y(u) = x(u), so there is nothing to prove. Otherwise,
suppose that 6 = m —n+r —s > 0. Then F,_,,,,_s = Vy, so that the image of f is
contained in G,,_s. So fg induces the zero endomorphism on V;/G,,_s, which implies that
the characteristic polynomial of fg on G,,_s is X(u), and which proves the result. U

Corollary 5.6. Suppose (f, g, Ry, R1) is a T-point of Y. Let p be the characteristic polyno-
mial of fg on Ry. Then p(u) divides X (u).

Proof. This is immediate from the fact that we have a surjective map Y — Y given by
(.f’gaFMG')'_)(fagaFraGs)- |:|

5.4. Integrality. We now show that Z and Z are integral. Let A € O be the discriminant
of X¥. We begin with the following:

Proposition 5.7. We have A # 0, and so Z and Z are reduced.

Proof. We construct a C-point of Z where A # 0. Let x1,...,z, and y,...,y, be bases
for Vo and Vi. Let A, ..., \,_s be distinct complex numbers. Define f: Vj — Vj by
f(x;) =Ny; for 1 <i<m—¢ and f(z;) =0 for i > m — 9. Define g: Vi — Vi by g(z;) = v;
for 1 <i<m—9 and g(y;) = 0 for i > m — . Note that (f,g) defines a C-point of Z.
The composition fg has characteristic polynomial y(u) = u’ Hf:lé(u —Ai). Thus A # 0
at (f,g). Since Z is integral, it follows that A is a non-zerodivisor, and so Z is reduced
(Proposition 3.1(e)), and so Z is as well by Proposition 3.11(e). O

To complete the proof of integrality, it suffices to show that Z and Z are irreducible. Since
Y and Y are irreducible, this follows from the following result:

Proposition 5.8. The maps p: Y — Zand Y — Z are surjective.

Proof. Let (f, g, H?:l‘s(u—)\i)) be a C-point of Z. Recall the category A from §4.2. Let M be
the object (Vg, Vi, f,g). We inductively construct a chain of subobjects M° C --- Cc M™™
of M, with the following properties:

(a) dim(M{) =i+ r — s and dim(Mj) = 1.

(b) For 1 <i < m — 4, the eigenvalues of t* on M*/M~! are ;.
To begin, we take M to be a subspace of ker(f) of dimension r — s (which exists since
f € Zy) and MY = 0. Suppose now that we have defined M*~! for some 1 <i <m — 4.

We claim that there is an A-subobject of M/M*! of dimension 1|1 such that the eigen-
values of t? are both \;; granted this, we take M?/M*~! to be this subobject. By considering
the characteristic polynomial of t> = fg on M;, we see that \; occurs as an eigenvalue of ¢
on M{/M™'. If \; # 0 then the claim follows from the form of indecomposables given in
§4.2. Suppose now \; = 0. For an object N of A, let ®(NN) be the generalized 0-eigenspace
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of t* and let U(N) be the sum of the generalized A-eigenspaces with A\ # 0. We have
dim(W(N)p) = dim(W(N);). Let k be the number of \;’s that are zero. Then

dim(®(M);) =6+ k, dim(V(M))=m—(d+k), dim(®(M)y)=n—m+J+k.

We thus find
dim(®(M/M%)g) =n—m+s—r+0+k >k

Now, since \; = 0, it follows that < k of Ai,..., \;_; are 0, and so dim(®(M /M 1)) > 0.
We thus see that ®(M /M*~1) has non-zero even and odd parts, and thus (by the classification
of indecomposables) has a subobject of dimension 1|1.

We now define a C-point (f, g, Fy, G,) of Y by taking F,_,; = M} and G; = M}. Tt is
clear that this is indeed a C-point of Y and lifts the point of Z under consideration. Thus P
is surjective. We have a commutative diagram

Yy—Y

17

2 —Z
where the top map takes (f, g, Fs,G,o) to (f, g, F,,Gs) and the bottom map is the natural
one. Since the bottom map is clearly surjective, so is 7. O

5.5. Normality. We now aim to show that Z and Z are normal. We will use the criterion
in Proposition 3.10. We therefore begin by studying the geometry of V(A) and V (A, 0A).

Proposition 5.9. Let (f,g) be a C-point of Z. We can choose bases of Vo and Vy such that
the matrices for f and g have the form

x %

0 B

b 3)

where A and B are upper-triangular square matrices with m — § rows and columns (this
determines the sizes of the other blocks). Moreover, if (f,g) € V(A) then one can also
assume that the first two diagonal entries of AB are equal.

Proof. Since f has rank < m — § its kernel has dimension > n — m + J; similarly, since
fg has rank < m — 9, its kernel has dimension > 6. Let U; C ker(fg) be a subspace of
dimension 0. Then g¢(U;) is a subspace of ker(f) of dimension < §. Let Uy C ker(f) be a
subspace of dimension n — m + d containing g(U;). Now, pick a basis z1, ..., z, of V; such
that x1,...,2,_mus is a basis of Uy, and pick a basis vy, ...,y of Vi such that yy,...,ys is
a basis for U;. In these bases, the matrices for f and g have the stated form, except that
A and B may not be upper-triangular. Let U] be the span of z, 1541, ..., 2y, and let Uj
be the span of ys11,...,Ym. We can then regard (A, B, U[,U]) as an object of the category
considered in §4.2. By decomposing into indecomposables, and choosing bases for these
indecomposables, we can make A and B upper-triangular. (The one subtlety here is that
the matrices for B, and B], are not square. However, since dim(U))) = dim(U;j) whenever we
have a B,, we can pair it with some B/ , and the matrices for B, @& Bj, are square and can
be taken to be upper-triangular.)

Finally, suppose that (f,g) € V(A). If ¥ has a non-zero repeated root A then by taking
the A, (\)’s first in the decomposition, we see that the first two diagonal entries of AB are
A. Otherwise, 0 is a repeated root of X, and by putting the A,(0), A,(c0), B,, and B,’s
first in the decomposition, the first two diagonal entries of AB are 0. O
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Proposition 5.10. The closed set V(A) C Z is irreducible; in fact, any two points of V(A)
can be joined by an irreducible rational curve in V(A).

Proof. Fix bases for V and V; and let (f;, g;) for i = 1,2 be two points of V(A). Applying
the previous proposition, we can find 7; € GL(V;) x GL(V;) such that

vhi=\g 4) w=\o B

where A; and B; are upper-triangular square matrices of size m—4¢, and the first two diagonal
entries of A;B; are equal. We define matrices A(t),..., E(t) with polynomial entries such
that:

e At t = 0 they coincide with Ay, ..., E;

e At t =1 they coincide with A, ..., Es.

e The matrices A(t) and B(t) are upper-triangular.

e The first two diagonal entries of A(t)B(t) agree.

We take C(t) = tCy + (1 — t)Cy. We use the same formula everywhere else, except for
the first two diagonal entries of A(t) and B(t). Consider the subvariety of A% defined by
a1 = (1. Any two points on this variety can be joined by a map from Spec(ClJt]), as it
is the affine cone over P! x P. We take (A1 1(t), Aaa(t), B11(t), B22(t)) to be such a curve
joining (Ai,Lla Az’,2,2> Bi,l,la Bz’,2,2)-

Now, define
(0 C(1) _ (D(t) E(t)
F(t) = (0 A(t)) . Gl = < 0 B(t))

Since ker(F(t)) contains the first n —m + ¢ basis vectors, the rank of F'(t) is < m — 4. Thus
(F'(t),G(t)) defines a point of Z. The polynomial Xy ¢ is the characteristic polynomial
of A(t)B(t), which has a repeated root since the first two diagonal entries coincide. Thus
(F'(t),G(t)) is a point of V(A).

Finally, let v: Spec(C[t]) — GL(V;) x GL(V;) be a curve such that v(0) = ~; and
(1) = y2. Then y(F(t),G(t)) is a curve in V(A) joining (f1, g1) to (f2, g2). This completes
the proof. 0

Proposition 5.11. Z and Z are normal.

Proof. Tt suffices to show that Z is normal (due to Proposition 3.11(e)). If m — ¢ < 1 then
deg(y) <1 and 2 = Z is normal. We thus assume that m — ¢ > 2 in what follows.

We verify the conditions of Proposition 3.10. We already know that Oy is normal and
that A is a non-zerodivisor (Proposition 5.7). It thus suffices to show that V(A,dA) has
codimension > 2 in Z. Since Z is normal, its singular locus has codimension > 2. It is thus
enough to show that Z.., N V(A, OA) has codimension > 2 in Z,.,, where Z,, is the regular
locus (we will use below that Z,., is the set of matrices with maximal possible rank). The
set Zreg NV (A, 0A) is closed in Z,e, (see the first paragraph of §3.6) and contained in V(A).
Since V(A) is irreducible of codimension 1, it thus suffices to show that Z,, NV (A, JA) is a
proper subset of Z,, N V(A). We do this by writing down a point in Z,., N V(A) that does
not belong to V(A, 0A).

Pick bases for V; and Vi. We define a Cle|/(e?) point of Z by

-G8 -0
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where A and [ are square matrices of size m — 4, [ is the identity matrix, and

A1l
A=1|e A
D

where A € C\ {0} and D is a diagonal matrix with distinct non-zero complex entries that
are not \. Let 2 = (f,g) be the C-point of Z obtained by putting ¢ = 0. It is clear that
x belongs to V(A), since fg has a repeated eigenvalue. Since f has maximal possible rank,
it is a smooth point of Zj, and so x € Z,¢. The value of A on (f, g) is a non-zero multiple

of e: the key point is that the discriminant of the characteristic polynomial of the top 2 x 2
block of A is 4e. This shows that dA is non-zero at (f, g), and so x &€ V(A,0A). O

5.6. Rational singularities. We now show that Z and Z have rational singularities. To
this end, we introduce the following closed subsets of Z:

e Let D; be the locus of points such that 0 is a root of X(u).
e Let D, be the locus such that y(u) has a repeated root.
e Let D3 C Dy be the locus where there is
— a triple root, or
— two repeated roots, or
— a unique repeated root, but the corresponding Jordan block of fg is a scalar.
This set is closed, as we now explain. The first two conditions define a closed set.
Letting U be the complement, it suffices to show that D; N U is closed in U. Let
V C U x A! be the set of pairs (f, g, \) where ) is a root of ¥ and its derivative. The
map V' — U is finite and injective with image V(A)NU. Let V4 C V be the closed
set where fg — A has nullity > 2. Then D3 N U is the image of V} in U, and thus
closed.
o Let D4 = D1 N D2 and let D5 = D1 U D3.

Put U; = Z \ D;. For any space X over Z, we let D;(X) or U;(X) denote the inverse image
of D; or U; in X.

Proposition 5.12. The sets D3(Y) and D4(Y) have codimension > 2 in Y.

Proof. By equivariance, the restrictions of D3(Y) or D4(Y) to any fiber over F1(r —s, ..., r—
s+m—29;Vy) xFI(1,...,m—9;V}) is isomorphic to any other. So it suffices to show that in
a given fiber of the vector bundle, these restrictions have codimension > 2. In that case, by
picking bases of V and V; adapted to the particular pair of flags, f and g have the following
form:

the first r — s columns of f are 0,

the next m — § columns of f are upper-triangular,

the remaining columns of f (if they exist) are arbitrary,
the first r — s rows of g are arbitrary,

the next m — ¢ rows of g are upper-triangular,

the remaining rows of g (if they exist) are 0.

So fg is determined by the contents of the upper-triangular m — ¢ columns of f and the
upper-triangular m — 0 rows of g. Let x1,...,2,,_s and yi,...,¥ym_s be the corresponding
diagonal entries of f and g, respectively.
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Hence over this fiber, the condition that a root is repeated has one component for each
equation x;y; = z;y; for i < j. Then D,(Y) is cut out in this component by [, z;y;, and
hence has codimension 2. Having a triple root or two repeated roots corresponds to imposing
two equations x;y; = ;y; and Y, = 24Ye, so has codimension 2. If there is a repeated root
which is unique, the condition that the Jordan block is scalar is a nontrivial condition on an
irreducible component and hence also has codimension > 2. OJ

Proposition 5.13. Assume that 7 = s or § > 0. Then p: Us(Y) — Us(Z) is an isomor-
phism, and so p is birational. Similarly, 7: Us(Y') — Us(Z) is an isomorphism, and so T is
birational.

Proof. We first prove the statement about p. Since Z is normal and p is projective, it suffices
to show that p induces an isomorphism on C-points on these two sets. By Proposition 5.8,
we know that p is surjective, so it suffices to prove injectivity. .

First suppose that » = s. Consider a point (f,g, H:’:lé(u — X)) in Us(Z), and let
(f,9,Fe,Gs) be an inverse image under p . If the \; are distinct then G; must be the
span of the fg-eigenspaces for A;,..., \; and F; must be the span of the gf-eigenspaces for
A1, - -+, Ao Now suppose there is a repeated root. Since our point belongs to Us(Z), there is
only one repeated root, and the corresponding Jordan block for fg is non-scalar. The spaces
F; and G; are again uniquely determined: for the repeated eigenvalue, we use the eigenvector
first, and the generalize eigenvector second. This shows that there is a unique inverse image
under p.

Now suppose instead that § > 0. As before, there is a unique choice of the flag GG;. Also by
our definition of U;, we have rank(fg) = m — 0 = rank(gf) and hence dimker(gf) =r — s.
Hence F; must be the span of ker(gf) and the eigenspaces for Ay, ..., \;.

The claim about 7 follows from similar reasoning. U

Corollary 5.14. Assume that r = s or § > 0. Then Us(Z) and Us(Z) have rational singu-
larities.

]~3r00f. By Proposition 5.13, Us(Z) is smooth, and hence has rational singularities. Next,

Z — Z is étale over Uy, and since Z has rational singularities, the same is true for Uy(Z). O
Proposition 5.15. The varieties Z and Z have rational singularities.

Proof. First suppose that § > 0 or r = s. By Corollary 5.14, Z has rational singularities
on U(Z) U Us(Z). The complement is D3(Z) N Dy(Z), and the inverse image of this set
under p has codimension > 2 by Proposition 5.12. Hence Z has rational singularities by
Proposition 4.1. Next if § = 0 and r # s, the variety Z is the same as the variety Z with
(r,s) changed to (s, s), and thus has rational singularities as well. Finally, Z is a quotient

of Z by a finite group, so has rational singularities by [KM, Proposition 5.13]. U

5.7. Cohomology of Y and Y. We now finish off the proofs by computing the cohomology
of Oy and Oy. The following result is required to treat the 6 = 0 case, and is part of
Theorem 5.1(d) and 5.4(d). Recall that § = 0 is equivalent to the condition n —m > r — s.

Proposition 5.16. Suppose 6 = 0.

(a) Let U C Z be the locus where fg: Vi — Vi is an isomorphism, A # 0, and X (0) # 0.
Then U is an open dense subset of Z.
(b) There is a vector bundle € on U of rank n —m whose fiber at (f,g) is the kernel of f.
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Let U' be a dense open subset of U where & is trivial and let U and U be the inverse images
of U'in Z and Z. Then

(c) W_l([?) = Gr,_,(C"™™) x {7, and
(d) p~(U) = Gr,_,(C"™) x U.

Proof. (a) It is clear that U is open. We show that it is non-empty. Since 6 = 0, we have
n > m. Let x1,...,x, be a basis of V and y,..., 4, a basis of V;. Define f: Vj — Vi by
f(x;) =y; for 1 <i <m and f(x;) =0 for i > m. Define g: Vi — V; by g(v;) = \iz; where
A1y .-+ Ay are distinet non-zero complex numbers. Then (f, g) belongs to U.

(b) If (f,g) € U then f is surjective and ker(f) has dimension n —m, so we can take € to
be the kernel of the generic map f: Vo ® Oy — V1 ® Oy,

(c) Suppose (f,g,p) is a point in U. Consider a point (f, g, Ry, R1) in Y above (f,g,p).
Then Ry is uniquely determined: it is the sum of the eigenspaces of fg corresponding to
eigenvalues that are roots of p. Since fg is an isomorphism, ¢ is injective and its image is
linearly disjoint from ker(f). Thus Ry = g(R;) @ K where K is a subspace of ker(f) of
dimension r — s. Moreover, any choice of K leads to a point above (f,g,p). We thus see
that the fiber above (f, g, p) is Gr,_,(C"™). The isomorphism 7~ (U) = Gr,_,(C"™) x U
comes from combining this analysis with a choice of trivialization of & over U’.

(d) This is similar to (c): the flag G4 is uniquely determined, F,_, is an r — s dimensional
subspace of ker(f), and F,_,; = g(G;) + F,_s for 1 <i <m — 9. O

Proposition 5.17. We have Rm,(Oy) = O and Rp,(Oy) = O5.

Proof. If § > 0 or r = s then m and p are birational (Proposition 5.13), and the result
follows from generalities on rational singularities (see §4.1). For § = 0, the result follows
from Propositions 4.2 and 5.16. U

6. COHOMOLOGY OF THE SUPER (GRASSMANNIAN

6.1. Statement of results. We use notation as in §5.1. Additionally, we introduce the
following notation:

e Let V be the super vector space Vy @ V.

e Let X be the super Grassmannian Gr, (V') (see §6.2 for background).

e Let G be the super group GL(V'), and let Gy = GL(V) x GL(V}) be the underlying
ordinary group.

o Let A=H (Gr,(C"7?),C), regarded as a graded C-algebra.

sing

e Let S = Sym(W*) be the coordinate ring of W.

The main result of this section is Theorem 1.2, which computes the cohomology of Ox. We
restate the theorem here in our current notation:

Theorem 6.1. We have the following:

(a) We have a natural isomorphism H*(X,0x)¢ = A of graded algebras.

(b) There is a canonical graded G-subrepresentation E of H*(X, Ox) such that the natural
map A® E — H*(X,0x) is an isomorphism.

(¢) We have a canonical isomorphism of Go-representations

E' = P Tor} (07, C)isp

p=>0
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We note that if § = 0 then Z = W, and so E? = 0 for i > 0 and E° = C. Moreover, Gg
acts trivially on E°, and so G does as well. Thus, in this case, we have H*(X, Oy) = A with
trivial G action, as in Theorem 1.2(a).

A corollary of the theorem is that the Gg-action on the linear strands of the resolution of
Oz extends to an action of G. This result was first proved by Pragacz—Weyman [PW]. We
discuss this in more detail in §6.5.

6.2. Grothendieck—Springer theory. We now give some background on the super Grass-
mannian and connect it to varieties studied in §5. While the super Grassmannian can be
expressed in the form G/P for an appropriate parabolic subgroup P of G, we use an alter-
native approach here. We do this to be more direct, and also because we do not know of
existing literature where quotients of supergroups have been treated carefully. We refer to
[Ma, Ch. 4, §3] for general background on the super Grassmannian.

The super Grassmannian X = Gr, (V) is the super scheme representing the functor that
attaches to a super algebra T the set of T-submodules of T'® V' that are locally summands
of rank r|s. It is not difficult to see that this functor is indeed representable. One can show
that X is smooth using the criterion for formal smoothness in the super setting; this is also
proved in [Mal]. The super scheme X is smooth of dimension dy|d; where

dog =r(n—r)+s(m—s), di =r(m—s)+s(n—r).
Let
0=-R—=-0x0V —=-0—=0

be the tautological sequence on X, so that R is a vector bundle of rank r|s. Also, let X be
the ordinary scheme Gr,(V;) and let

0—=>Ro—>0x,@Vp—9Q—0
be its tautological sequence. Similarly define X; = Gr,(V]) and let

0—=>R —-0x,@V7 -9 —0

be its tautological sequence. Restricting the functor of points of X to ordinary algebras, one
sees that X,q = Xo X X;. One also finds Qg = Qo @ Qy, and similarly Ryqg = Ro B Ry, (We
simply write Qq for the pullback of Qy to Xy x X7, and similarly in other cases.)

We now determine gr(Ox). The result of the calculation below can be found in [Ma] but
we prefer to give a short self-contained explanation. We begin with the following observation:

Lemma 6.2. Let T be a super algebra, let J = Jr, and let
0=-M-—=>TRV —=>N—=0
be an ezxact sequence of T-modules. Then there exists a unique map of T/ J-modules
w: M/JM — JN/J*N

satisfying the following condition: if x is a homogeneous element of M of degree d and
r =yo+ 1y withy; € Tyy, ®V; then ¢(T) = Yy, where the bar denotes the image in the
quotient module.

Proof. Define ¢o: M — J®V as follows: given z € My, write x = yo+y; with y; € T, 4@V},
and put p(x) = ygr1. Note that ygy € 11 ® Vgiq does indeed belong to J ® V. One
easily sees that ¢ is a map of Tj-modules. Now, suppose x = yo + y; is as above and
a € Ty. Then ax = ayy + ay; has degree d + 1 and so p(ar) = ayy = axr — ayq.1 belongs to
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JM + J* @ V. Tt follows that ¢(JM) C JM + J> ® V, and so ¢ induces a Ty-linear map
0: M/JM — JN/J*N. Since Ty — T'/J is surjective, it follows that ¢ is 7'/ J-linear as well.
It is clear that ¢ is the unique map satisfying the stated condition. U

Proposition 6.3. We have a natural isomorphism
L (Q Q@ Re) @ (@ Ry) — /5

of coherent Ox,_ ,-modules.

Proof. Since R/JR = Ry @ Ry and Q/JQ = Qy & Q, Lemma 6.2 gives a canonical map
Ro @ Ry = (0 © Q1) @oy/g3/3°

where Rg maps to Q; and Ry maps to Q5. We can thus convert it into a map
P: (9 @ Ry) @ (Y @Ry) — /5

We claim that ® is an isomorphism.

First, we show that & is injective. Note that ® is Gg-equivariant, and that QF ® R, and
Qp ® Ry are both irreducible homogeneous bundles which are not isomorphic to each other.
So it suffices to show that ® is not identically 0 on either summand. Using the universal
property of Gr,5(V), it suffices to give a single superalgebra T" together with a rank r|s
summand M of T'® V such that the pullback of ® to each summand is non-zero.

This can be done with 7' = Cle]/(¢?) where € has degree 1. Pick bases ey, ..., e, for 1}
and fi,..., f,, for V4. Then we let M be the free T-submodule of T"® V' with basis elements
v, =1®e+e®@fifori=1,...,randw;, =e®e; +1® f; for j =1,...,s. Then ¢(v;) = €f;
and p(w;) = ee; so that both components are indeed non-zero.

Surjectivity now follows since both sides are equivariant vector bundles of the same di-
mension. (Note that the rank of J/J? is the odd part of the dimension of X.) O

From the above, we see that we are in the setting of Theorem 2.4. Indeed, X is a smooth
supervariety and X,.q is projective, and we have a short exact sequence

03/ =>e—n—0

where e = W* ® Ox_ , with W as in §5. We remind that we are assuming that » > s. From
this sequence, one easily sees that Spec(Sym(n)) is identified with the variety Y. Thus the
varieties Z and Z in appearing in §2.2 and Theorem 2.4 match those studied in §5 in our
setting. We thus find:

Proposition 6.4. There is a natural isomorphism
HI(X, g7+ (0x)) = Tor (07, Cpig
and spectral sequence
EP? = Tor® (04,C), = HPM(X,0x).

Proof. This follows from Theorem 2.4. The key hypothesis, that the higher cohomology of
Oy vanishes, is provided by Theorem 5.1(d). O

Recall the super Euler characteristic y defined in §2.3.
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Proposition 6.5. Assume that r > s. We have

(m) ifn—m>r—s

s

X(Grr‘S(C’”m)) =49 (") ifr=sandm>n.

0 otherwise

Proof. This follows immediately from Corollary 2.5 and Theorem 5.1. U

6.3. The Lascoux resolution. To make use of Proposition 6.4, we need to know something
about the minimal free resolution of O: specifically, we need to know its terms, i.e., the Tor
groups (the differentials will not concern us). Since O is a free O z-module (Theorem 5.1(b)),
its Tor groups are direct sums of the Tor groups of Oz. Lascoux determined the Tor groups
of Oz, and we now review his results.

Let a and b be non-negative integers. Given (integer) partitions a and 5 with £(a) < b
and ; < b, define the partitions

Pa,b<avﬁ) = (b_'_alv .. '7b+ab7bavﬁlv e 75@(5))7
Qupla, 8) = (b+ B, b+ B, al,... al,),

which we visualize in terms of Young diagrams as follows:

T
bxb| a bxb| P
Pa,b(&7ﬁ): axb Qa,b(OC?ﬁ): axb
B Jojr
For a partition A\, we let Sy denote the corresponding Schur functor. With this notation, we
can state Lascoux’s result:

Theorem 6.6 (Lascoux). Put a =m — 4. If ¢ = ab for some non-negative integer b then

Tor} (02, Clprg = €D  Sruues (Vo) © Sq, (s (V1)

a,B
p=b>+|al+|5|

as representations of Go. If q is not divisible by b then TorgW(OZ, C)piq = 0.

Proof. See [We, Proposition 6.1.3] which contains the description of Tor;9 "0 (9y,,C). Note
that since Z = Z; x W3, the minimal free resolution for Oz over Oy is obtained from the
minimal free resolution for Oz, over Oy, by tensoring with Oy,. In particular, the Tor
groups agree, and this conversion preserves the grading. 0

Corollary 6.7. The Go-representation P~ Torf; (07, C) is multiplicity-free.
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6.4. Proof of Theorem 6.1. Put
ik = @ TOI";?(OZ, C)p+k, Lk = @ TOl"g(OZ, C)p+k.

p=>0 p=>0

These vector spaces carry algebraic representations of Gg. In particular, they are semi-simple
as Go-representations, as are all algebraic representations.

Proposition 6.8. The graded vector space Torf;(OZ, C) is naturally a graded A-module, and
the induced map

(6.8a) A®c Tor;?((‘)z, C)— Tor;?((‘)z, C)
s an isomorphism of graded A-modules.

Proof. The space Torg(OZ, C) is naturally a module over Tor; (95, C) = O;®p, C, which we
have seen (Theorem 5.1(c)) is isomorphic to A. Let A’ C O; be a homogeneous C-subspace
such that the map A" — 0; ®y, C = A is an isomorphism. Then A’ is a minimal generating
space for O as an Oz-module. Since O3 is free as an O z-module (Theorem 5.1(b)), it follows
that the natural map

A®RcO;, =0 7
is an isomorphism of Oz-modules. We thus see that the induced map

A’ ®¢ Tor} (04, C) — Tori (04, C)

is an isomorphism. This map is isomorphic (in the obvious manner) to (6.8a), and so (6.8a)
is an isomorphism of vector spaces. The map (6.8a) is a homomorphism of graded A-modules
simply by its definition. 0

Proposition 6.9. The Go-representations Ly, and Ly+1 have no simple factors in common.

Proof. Proposition 6.8 shows that Ek = @izo Ap_; ®c L;. Since A is concentrated in even

degrees, we see that Ly is a sum of L;’s with i of the same parity as k. Since @izo L; is
multiplicity-free as a Gg-representation (Corollary 6.7), the claim follows. O

Proposition 6.10. The spectral sequence in Proposition 6.4 degenerates at the first page.

Proof. Let E be the spectral sequence from Proposition 6.4, and put EF = @p gk E7Y, 80

that the differential is a map EF — E*t!. We have EF = L. Since E* is a subquotient of
E%. we see that E¥ is a semi-simple Gg-representation, and E* and E**! have no irreducible
factors in common. It follows that the differential E¥ — E**! must vanish, as it is a map of
Gy-representations. This completes the proof. [l

Corollary 6.11. We have canonical Gg-equivariant isomorphisms

H'(X,0x) = gr(H' (X, 0x)) = L;

Proof. Proposition 6.10 gives a canonical isomorphism gr(H (X, Ox)) = L;. It follows that
gr(H' (X, Ox)) is multiplicity free as a representation of Gy, and so the same is true of
H(X,0x). Thus the filtration on H'(X,Oy) canonically splits, which yields a canonical
isomorphism H' (X, Ox) = gr(H (X, Ox)). O

Proposition 6.12. We have H(X, 0x)¢ = H{(X, Ox)o.
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Proof. First assume that m > §. Let £ = H'(X, Ox)%°. The action of the upper-triangular
nilpotent piece of the Lie algebra of G on W is a Gy-equivariant map

VieV,®E — H(X,0x).

First note that H (X, Ox) does not contain a Gg-subrepresentation isomorphic to V;* @ Vj:
in the notation of Theorem 6.6, this is only possible if P, (c, 5) = Qup(a, ) = (1), which
is only possible if a = m — 0 = 0. It follows that this map must be 0. Similarly, the
corresponding map for the lower-triangular piece is 0. Thus F is annihilated by the Lie
algebra of G. It follows that G acts trivially on F.

Finally, if m = 9§, this means that » = n and s = 0. In this case, X is a point and its
structure sheaf is the exterior algebra on V;* ® V. The Gy-invariant space is spanned by the

unit element, and since G acts via algebra automorphisms, the unit must also be invariant
under G. O

Let U be a graded vector space. We define the trivial filtration on U by Fil'(U) =
b i>; Uj. With respect to this filtration, we have a natural isomorphism U = gr(U).

Proposition 6.13. We have a natural isomorphism H*(X,0x)¢ = A of graded algebras.
Moreover, the filtration on H*(X, Ox) induces the trivial filtration on A.

Proof. Let B = H*(X,Ox)€¢. By Proposition 6.12, we have B = H*(X, Ox)%°. We have

gi?(B,) = g’ (H(X, 0x))®* = HI(X, gr”(0x)) <
= Tor] ,(07,C)5 = P A; @ Tor; (07, C)5*.
i+j=p

In the first step we used the the G action is semi-simple; in the second, that the spectral
sequence degenerates (Proposition 6.10); in the third, Proposition 6.4; and in the fourth,
Proposition 6.8. Now, it is easy to see directly that Torf (04, C)%0 vanishes for k # 0, and

that Torg (O, C)° is one-dimensional and concentrated in degree 0; this can also be read

off of Theorem 6.6. We thus find that
grp(Bq) = {

A, iftp=gq
0 otherwise -

This shows that gr(B) = A, and the isomorphism is one of rings by Remark 2.3. It also
shows that the filtration on B is trivial, and so B is isomorphic to gr(B) as a ring. O

We regard H*(X, Ox) as a graded A-module via the above proposition. We have isomor-
phisms of Gy-representations

H'(X, 0x) = gr(H'(X,0x)) = L = P Ay @ L;.
j=0

It follows that H'(X, Ox) contains a unique Gg-subrepresentation isomorphic to L;. (Corol-
lary 6.7 is important here.) Call this subspace E*, and let E = @, E".

Proposition 6.14. The natural map A ® E — H*(X,Ox) is an isomorphism.
Proof. We have

gr(H*(X,0x)) = @) Tor) (04,C), = A® €P Tor,(07,C), = Ax P Li.

,9>0 ,9>0 >0



FLAG SUPERVARIETIES AND DETERMINANTAL IDEALS 31

We note that the L; in the final direct sum belongs to gr(H(X,Ox)). We thus see that
gr(H*(X, Ox)) is a free A-module (this relies on Remark 2.3). Moreover, if E* C gr(H (X, Ox))
is the associated graded of E’ then E’ corresponds to the copy of L; in the final direct sum
above. Letting E = @,., E*, we thus see that the natural map A ® E — gr(H*(X,0x)) is
an isomorphism. The result follows from this. O

Proposition 6.15. Suppose that M and M’ are representations of G such that M = L; and
M' = L; as Gg-representations, with i # j. Then Extg (M, M') = 0.

Proof. Consider an extension
0—>M —>N-—=>M-—=0.

Since ¢ # 7, there is a unique Gy-splitting of this sequence. We thus regard M as a Gg-
subrepresentation of N. Consider the map

VieVo®M — N

giving the action of the upper-triangular nilpotent piece of the Lie algebra of G on M.
Since this map is Gg-equivariant, it follows from Theorem 6.6 and Pieri’s rule [FH, Equa-
tion (6.8)] that this map is zero. Similarly for the lower-triangular piece. Thus M is G-
subrepresentation of /N, which completes the proof. O

Proposition 6.16. E is a G-subrepresentation of H*(X, Ox).

Proof. Put H* = H(X, Ox). We prove that E’ is a G-subrepresentation of H* by induction
on . Thus suppose that ¢ is given and EJ is a G-subrepresentation of H7 for all j < i. Let
X = Z;_:B A;_;E’, which is a G-subrepresentation of H' by the inductive hypothesis, and
let Y = H'/X. We thus have a short exact sequence

0 X—>H Y =0

of G-representations. Since the map A ® E' — H”* is an isomorphism, we see that X =
@;;B A;_; ® E7 and that E' is a complementary subspace to X in H'. In particular, the
map E? — Y is an isomorphism of Gy-representations. It now follows from Proposition 6.15
that Extg (Y, X) = 0. Indeed, we have E7 = L; and Y = L; as Go-representations and
i # j. We thus see that there is a G-splitting 0: Y — H®. Since E’ is the unique Gg-
subrepresentation of H' isomorphic to L;, we see that o is unique and o(Y) = E*. Thus E'
is a G-subrepresentation, as required. 0

6.5. The G action on the Lascoux resolution. Our original motivation for this work
was to give a geometric explanation for the result of [PW] (and [Sal]) that the linear strands
of the Tor groups of the determinantal variety Z, carry an action of G. Of course, it
is equivalent to do this for Z, since Z and Z, have the same Tor groups. This follows
from Proposition 6.16, as E* = L; is a G-subrepresentation of H'(X, Ox). If one is simply
interested in constructing the G action on L;, it suffices to consider the case where s = 0;
here we have
L; = H (X, Ox),
and so the obvious G action on the right induces one on the left.
Remark 6.17. The action of G of L; induces an action of its Lie superalgebra on L;. With

respect to the decomposition gl(n|m) = Hom(C", C™) & (gl(n) x gl(m)) & Hom(C™,C"),
the middle piece corresponds to the obvious action of GL(n) x GL(m) on determinantal
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varieties, while one of the other pieces (depending on conventions) corresponds to the action
of the Tor algebra on linear strands by Remark 2.3. With that structure in place, the L;
are highest weight representations of G, and if m > ¢, the results of [PW, Sal] show that
they are irreducible (and hence there is a unique way to extend the action of 2 out of the
3 pieces to the third). If m = 4, then L; is only non-zero for ¢ = 0, in which case it is a
Koszul complex, which we can understand as a Kac module, i.e., induced from the trivial
representation of Hom(C", C™) & (gl(n) x gl(m)) (again depending on conventions). It is

indecomposable, but not irreducible in general. O
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