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COHOMOLOGY OF FLAG SUPERVARIETIES AND
RESOLUTIONS OF DETERMINANTAL IDEALS

STEVEN V SAM AND ANDREW SNOWDEN

Abstract. We study the coherent cohomology of generalized flag supervarieties. Our main
observation is that these groups are closely related to the free resolutions of (certain gen-
eralizations of) determinantal ideals. In the case of super Grassmannians, we completely
compute the cohomology of the structure sheaf: it is composed of the singular cohomology
of a Grassmannian and the syzygies of a determinantal variety. The majority of the work
involves studying the geometry of an analog of the Grothendieck–Springer resolution as-
sociated to the super Grassmannian; this takes place in the world of ordinary (non-super)
algebraic geometry. Our work gives a conceptual explanation of the result of Pragacz–
Weyman that the syzygies of determinantal ideals admit an action of the general linear
supergroup. In a subsequent paper, we will treat other flag supervarieties in detail.
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1. Introduction

Super geometry is a compelling generalization of algebraic geometry, with important con-
nections to physics and pure mathematics. However, a number of fundamental objects in
super geometry are still poorly understood. For example, the cohomology of natural vector
bundles on flag supervarieties is not known in general. In this paper, we develop a general
method for attacking this problem in some new cases, and use it to completely compute the
cohomology of the structure sheaf on the super Grassmannian.

1.1. General approach. Let G be a complex reductive supergroup, let P be a parabolic
subsupergroup, and let X = G/P be the associated flag supervariety. We outline a general
approach to study H7(X,OX).

Let G0, P0, and X0 be the reduced subschemes of G, P , and X . Then G0 is a complex
reductive group, P0 is a parabolic subgroup, and X0 = G0/P0 is a flag variety. Let I be
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2 STEVEN V SAM AND ANDREW SNOWDEN

the ideal sheaf defining X0 inside of X . Since X is a smooth supervariety, I/I2 is a locally
free coherent sheaf on X0, and gr(OX) (formed with respect to the I-adic filtration) is the
exterior algebra on I/I2. It follows that we have a spectral sequence

Ep,q
1 = Hp+q(X0,

∧p(I/I2)) =ó Hp+q(X,OX).

This is our primary tool for connecting the cohomology of supervarieties to ordinary varieties.
To make use of this spectral sequence, we need to understand the cohomology of

∧
(I/I2).

The genesis of this paper was the observation that the cohomology of exterior algebras,
especially on flag varieties, appears in another context: namely, the calculation of syzygies
of determinantal varieties (and similar varieties) via the geometric method developed by
Kempf, Lascoux, and Weyman, among others (see [We] for an exposition). This allows us
to relate the cohomology of

∧
(I/I2) to syzygies, in certain cases.

We now explain how this works. Let g and p be the Lie superalgebras of G and P . For a
point x = gP0 of X0, let p

x be the Lie superalgebra of gPg21. Let Y be the vector bundle
over X0 whose fiber over x is px1, the odd part of px; this is a closed subvariety of X0 × g1.
Let Z be the image of Y in g1; explicitly, Z is the union of all G0-conjugates of p1. In
many cases, Z is a determinantal variety, or something of a similar flavor. Let Z̃ be the
affinization of Y , which is a finite cover of Z. We refer to this ensemble of varieties as the
Grothendieck–Springer theory forX , since it is analogous to the classical Grothendieck–
Springer resolution (and contains some instances of it). We emphasize that X0, Y , Z, and
Z̃ are ordinary (not super) varieties.

Combining the above spectral sequence and the geometric method, we obtain the following
theorem. It establishes a link between the cohomology of flag supervarieties and syzygies of
determinantal-like varieties.

Theorem 1.1. Suppose that Hi(Y,OY ) = 0 for i > 0. Letting S = Sym(g71), we have a
canonical isomorphism

Hq(X,
∧p+q(I/I2)) = TorSp (OZ̃ ,C)p+q

and a spectral sequence

Ep,q
1 = TorS2q(OZ̃ ,C)p =ó Hp+q(X,OX).

1.2. The case of Grassmannians. Suppose now that X = Grr|s(C
n|m) is the super Grass-

mannian. We apply the method discussed above to study H7(X,OX). Since Grr|s(C
n|m) >=

Grs|r(C
m|n), we may assume, without loss of generality, that r g s. We summarize some of

the key points here.
Let V0 = Cn and V1 = Cm, and put

W0 = Hom(V0, V1), W1 = Hom(V1, V0), W = W0 ×W1.

Thus W is identified with the odd part of the Lie superalgebra gln|m. The space Y defined
in §1.1 can be described as follows: a point corresponds to a tuple (f, g, R0, R1) where

" R0 is an r-dimensional subspace of V0
" R1 is an s-dimensional subspace of V1
" f : V0 ³ V1 is a linear map satisfying f(R0) ¢ R1

" g : V1 ³ V0 is a linear map satisfying g(R1) ¢ R0.

The projection map Y ³ W takes (f, g, R0, R1) to (f, g). The only condition on points in
the image is that the nullity of f must be at least r2 s. Hence Z = Z0×W1 where Z0 is the
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determinantal variety consisting of linear maps with nullity at least r2 s; if n2m g r 2 s,
then Z0 = W0 and hence Z =W .

It turns out that the affinization Z̃ of Y is typically not Z; that is, there are global
functions on Y that do not factor through Z. To see this, suppose that (f, g, R0, R1) is
a point of Y . Then fg is an operator on V1 that preserves the subspace R1. Thus the
characteristic polynomial of fg|R1

is a factor of the characteristic polynomial of fg, and
its coefficients give additional global functions on Y . We show that these generate all the
additional functions on Y ; this is a non-trivial theorem. From this, we see that Z̃ can be
described as the space of tuples (f, g, p) where f * Z0, g * Z1, and p is an appropriate factor
of the characteristic polynomial of fg.

We prove a number of results about the geometry of this situation. Notably, we show that
Z̃ has rational singularities, which allows us to show that Hi(Y,OY ) = 0 for i > 0. We also
show that OZ̃ is a free OZ-module of finite rank, and that OZ̃·OZ

C is the singular cohomology
ring of a certain Grassmannian. Thus the free resolution of OZ̃ over S = Sym(W 7) can be
determined from that of OZ , which was explicitly computed by Lascoux [Ls]. Applying
Theorem 1.1, we obtain a spectral sequence computing H7(X,OX), where the terms are
composed of the resolution of OZ and the singular cohomology of a Grassmannian. Using
Lascoux’s work, we show that this spectral sequence degenerates. The final result is the
following theorem:

Theorem 1.2. Let X = Grr|s(C
n|m) with r g s. We have the following:

(a) Suppose n2m g r 2 s.
(i) H7(X,OX) is naturally isomorphic to H7

sing(Grs(C
m),C) as a graded algebra.

(ii) The GLn|m action on H7(X,OX) is trivial.

(b) Suppose r 2 s g n2m, and let A7 = H7
sing(Grs(C

n+s2r),C).

(i) We have a natural isomorphism H7(X,OX)
GLn|m = A7 of graded algebras.

(ii) There is a graded GLn|m-representation E7 such that H7(X,OX) is isomorphic
to A7 ·E7, as a graded GLn|m-equivariant A

7-module.
(iii) Let Z0 ¢ Hom(Cn,Cm) be the determinantal variety consisting of linear maps of

rank f n+ s2 r, and regard OZ0
as a quotient of S = Sym(Cn · (Cm)7). Then

we have an isomorphism of GLn ×GLm representations

Ei =
⊕

pg0

TorSp (OZ0
,C)i+p,

where the subscript on Tor denotes the appropriate graded piece. That is, Ei is
the ith linear strand of the free resolution of OZ0

.

We note that in (b) above, Z0 = Hom(Cn,Cm) if r = s (and m g n). In particular,
Ei = 0 for i 6= 0 and E0 = C and so this situation behaves like case (a).

1.3. Supergroup representations on syzygies. In 1985, Pragacz and Weyman [PW]
discovered that the free resolutions of determinantal ideals carry a natural (but very much
non-obvious) representation of a general linear Lie superalgebra. Their construction was
generalized and simplified in some subsequent work of Akin–Weyman [AW1, AW2, AW3] and
Raicu–Weyman [RW]. Theorem 1.2 leads to a much more direct and conceptual construction
of this action. Indeed, by considering the case where s = 0, we find that the ith linear strand
of the resolution of a determinantal variety is identified with Hi(X,OX) for an appropriate
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super Grassmannian X , and this obvious carries an action of the super general linear group
(as it acts on X). See §6.5 for more details.

The first author generalized the results of Pragacz–Weyman to (skew-)symmetric matrices
in [Sa1]. Here the resolution carries an action of the periplectic superalgebra. The methods
of this paper also apply to that case. The details will be carried out in [SS1].

Rather than compute syzygies of determinantal ideals with respect to a polynomial ring,
one can consider them with respect to an intermediate quotient ring. Using a certain class
of complete intersections as such an intermediate quotient ring, a third class of superalgebra
actions was discovered in [Sa2] using the orthosymplectic Lie superalgebra. These represen-
tations are infinite-dimensional and do not appear to fall into the mold of the current paper.
However, one can attempt to treat the orthosymplectic Lie superalgebra using the methods
of this paper; see the comments in the next section.

1.4. Further work. We have used Theorem 1.1 to compute the cohomology of various other
flag supervarieties. The details of this work will appear in a subsequent paper [SS1]. We
summarize some of the results here:

" Let X be the partial flag supervariety parametrizing flags V1 ¢ · · · ¢ Vk in Cn|m

where dim(Vi) = ri|si. Suppose that n g m and n2m g ri 2 si for each i. Then we
compute H7(X,OX) completely. The result is similar to Theorem 1.2(a), in that no
interesting syzygies appear.

" Let V be a super vector space of dimension n|n equipped with a periplectic form, and
let X be the Grassmannian parametrizing totally isotropic subspaces of V of dimen-
sion r|n2 r. Then we compute H7(X,OX) completely, and the result is analogous to
Theorem 1.2. In this case, the cohomology is composed of the singular cohomology
of an isotropic Grassmannian for a symplectic group and the syzygies of a determi-
nantal ideal of (skew-)symmetric matrices. This result gives a conceptual explanation
of the work of the first author [Sa1] that these syzygies carry a representation of the
periplectic supergroup.

" Consider an isotropic super Grassmannian X associated to the orthosymplectic super-
group. In this case, the variety Z is a somewhat mysterious analog of a determinantal
variety that we have not previously encountered. Our results in this case are more
limited, as we do not know the syzygies of Z in general, and there are examples where
the spectral sequence computing H7(X,OX) does not degenerate.

" Let X be a Grassmannian associated to the isomeric (also known as type Q, see [NSS,
§1.5]) supergroup. In this case, X0 is an ordinary Grassmannian and I/I2 is the sheaf
of 1-forms on X0. We thus see that H7(X,

∧
(I/I2)) is the de Rham cohomology of X0

and the map Y ³ Z is the usual Grothendieck–Springer map for the general linear
Lie algebra. This gives a very direct connection between H7(X,OX) and the singular
cohomology of X0. We can also handle partial flag varieties associated to the isomeric
supergroup.

" We can also treat some exceptional supergroups. For example, if X is a complete flag
supervariety associated to D(2, 1;³) then we compute H7(X,OX) completely. The
variety Z in this case is the zero locus of the hyperdeterminant on (C2)·3.

There is one other direction coming out of Theorem 1.2 that we are currently pursuing.
Let X = Grr|s(C

>|>) be the infinite super Grassmannian (still with r g s), and let R and
Q be the tautological sub and quotient bundles on X . A natural problem is to study the
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cohomology of the equivariant bundle E = S»(Q)·Sµ(R), where S» denotes a Schur functor.
Theorem 1.2 implies that H7(X,OX) is isomorphic to a polynomial ring C[c1, . . . , cs] in this
case, where r g s and ci has degree 2i. We thus see that H7(X,E) is a module over this
polynomial ring. In [SS2], we study H7(X,E) from this perspective. The module structure
allows us to prove interesting results about the cohomology groups, and offers a kind of
explanation for the failure of the classical Borel–Weil–Bott theorem in this setting.

Remark 1.3. Generalizations of Borel–Weil–Bott to flag supervarieties appear in the liter-
ature: see, for instance, [Co, GS, Pe, PS]. However, the existing work (that we are aware
of) is of a quite different flavor than this paper, and generally does not treat the case of
the structure sheaf, or the vector bundles considered above, with the exception of super
projective space, see [GS, MS, Se]. �

1.5. Questions and comments. The results of this paper raise a few issues that deserve
further exploration.

" We show that the spectral sequence in Theorem 1.1 degenerates for the super Grass-
mannian. Our proof is rather special and relies on the fact that the representations
appearing in the Tor group of a determinantal ideal are multiplicity-free. Is this a
more conceptual reason for this degeneration that does not rely on such explicit com-
binatorial calculation? One obstacle is that, as noted above, there are examples for
the orthosymplectic group in which the spectral sequence does not degenerate.

" Theorem 1.2 shows that the coherent cohomology of a super Grassmannian is related
to the singular cohomology of some ordinary Grassmannian. The path between these
two objects in our proof is somewhat circuitous. Is there a more direct connection?
As noted above, in the case of isomeric Grassmannians, the connection to singular
cohomology (through de Rham cohomology) is quite clear.

" Are there other homogeneous bundles on the super Grassmannian whose cohomology
can be completely computed using the methods of this paper, such as Ω1? Each
bundle still has a filtration and associated graded, but the problem is getting a good
description of the cohomology of the resulting sheaf.

" A morphism from a superscheme X to the super Grassmannian is equivalent to the
data provided by the pullback of the tautological sequence. Hence, given a subbundle
of a trivial superbundle on X , we get a morphism from the coherent cohomology
of a super Grassmannian to H0(X,OX). This allows one to define “coherent Chern
classes” for superbundles.

1.6. Outline. In §2, we develop our general method for studying the cohomology of flag
supervarieties. The rest of the paper is devoted to carrying out this method in the case of
super Grassmannians. In §3 and §4, we give some preparatory material needed for this. The
heart of the paper is §5, where we study the Grothendieck–Springer theory associated to the
super Grassmannian. Finally, in §6, we apply this work to compute the cohomology of the
super Grassmannian.

1.7. Conventions. Since we treat both superalgebras and ordinary (non-super) algebras,
we will reserve the term “algebra” or “ring” to mean an ordinary structure, and always use
the prefix “super” when it is used. The same applies to other objects, such as groups and
schemes.
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If X is an affine scheme, we use OX to denote both its structure sheaf and also the ring
of global sections; the meaning will be clear from context.

2. Cohomology of flag supervarieties and syzygies

In this section we outline a general approach to studying the cohomology of flag superva-
rieties by connecting them to certain determinantal-like varieties appearing in an analog of
Grothendieck–Springer theory.

2.1. Super geometry. We begin by recalling some fundamental notions from super geome-
try. For our purposes, a (commutative) super algebra is a Z/2-graded associative unital
C-algebra R such that xy = (21)|x||y|yx holds for all homogeneous elements x, y * R, where
|x| * Z/2 denotes the degree of x. We use the term ordinary algebra to describe a super
algebra concentrated in degree 0. Let R be a super algebra. We let J = JR be the ideal of R
generated by its degree 1 elements. Every element of J is nilpotent, and the quotient R/J
is an ordinary algebra. We let Spec(R) be the topological space Spec(R/J) equipped with a
sheaf of super algebras derived from localizations of R in the usual manner.

A super scheme over C is a topological space equipped with a sheaf of super algebras
that is locally isomorphic (in a suitable sense) to a space of the form Spec(R), where R is
a super algebra. We use the term ordinary scheme to describe a super scheme for which
the structure sheaf is concentrated in degree 0; such an object is a scheme in the classical
sense. Let X be a super scheme. We let J = JX be the ideal sheaf generated by the degree 1
elements of OX . The quotient OX/JX is a sheaf of ordinary rings, and (X,OX/JX) is an
ordinary scheme. We call this the underlying ordinary scheme and denote it by Xord.
We let grn(OX) = Jn/Jn+1 and gr(OX) =

⊕
ng0 gr

n(OX). Each grn(OX) is a quasi-coherent
sheaf on Xord and gr(OX) is a quasi-coherent sheaf of super algebras.

We define a super scheme to be smooth if Xord is a smooth algebraic variety, J/J2 is a
locally free coherent sheaf, and the natural map

∧
(J/J2) ³ gr(OX) is an isomorphism. We

sometimes use the term “supervariety” when speaking of smooth super schemes. Suppose
X is smooth and irreducible. We define its dimension to be the pair d0|d1, where d0 is
the dimension of Xord and d1 is the rank of J/J2. Given a point x * X , the cotangent
superspace of x is the super vector space mx/m

2
x, where mx is the maximal ideal at x; this

is easily seen to have dimension d0|d1. The tangent superspace of x is the dual of the
cotangent superspace.

The following proposition, which is immediate from the definitions, is our primary tool
for connecting the coherent cohomology of super varieties to ordinary algebraic geometry:

Proposition 2.1. Let X be a smooth super scheme. There is a natural E1 spectral sequence

(2.1a) Ep,q
1 = Hp+q(X,

∧p(J/J2)) =ó Hp+q(X,OX).

2.2. The geometric method. Let X be a complex projective variety, and suppose that

0 ³ ¿ ³ ë³ · ³ 0

is an exact sequence of locally free coherent sheaves on X , with ë = W 7 · OX globally free.
We make the following definitions:

" Let S = Sym(W 7), a polynomial ring, and W = Spec(S), an affine space.
" Let Y = Spec(Sym(·)). This is the total space of a vector bundle over X , and a
closed subvariety of X ×W .
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" Let Z ¢ W be the image of Y under the projection map X ×W ³ W . This is a
closed subvariety of W as X is projective.

" Let Z̃ be the affinization of Y , i.e., Z̃ is the affine variety with coordinate ring OZ̃ =
Γ(Y,OY ). The Stein factorization shows that the map Y ³ Z factors through a finite

morphism Z̃ ³ Z. In particular, OZ̃ is a finite S-module.

The following proposition describes how to determine the terms of the minimal free resolution
of OZ̃ , in certain situations. We remark that Hi(Y,OY ) = Hi(X, Sym(·)).

Proposition 2.2. Suppose that Hi(Y,OY ) = 0 for i > 0. Then we have a natural isomor-
phism of vector spaces

TorSp (OZ̃ ,C)p+q = Hq(X,
∧p+q¿),

for all p, q * Z, where the subscript indicates the appropriate graded piece.

Proof. We briefly sketch the proof. Consider the cartesian diagram

X
g2

//

f 2

��

X ×W

f

��

Spec(C)
g

// W

where g2 is the zero section and g is the inclusion of 0 in W . Regard OY as a coherent sheaf
on X ×W . Then we have a natural base change isomorphism [SP, Tag 08IB]

(2.2a) Lg7Rf7(OY ) = Rf 2
7L(g

2)7(OY ).

By our assumptions, Rf7(OY ) = OZ̃ , and so the left side above computes TorS7 (OZ̃ ,C). Now,
we have a Koszul resolution OW ·

∧
(¿) ³ OY . Since this is a flat resolution, it can be used to

compute L(g2)7. We find that L(g2)7(OY ) =
∧
(¿), where

∧
(¿) is the complex with

∧k(¿) in
cohomological degree 2k and all differentials zero. The derived pushforward of this under f 2

is
⊕

kg0H
7(X,

∧k(¿)) (ignoring degrees). We refer to [We, Ch. 5] for additional details. �

Remark 2.3. The functors Lg7Rf7 and Rf 2
7L(g

2)7 are both lax monoidal, and the base
change map Lg7Rf7 ³ Rf 2

7L(g
2)7 is one of lax monoidal functors. It follows that the two

sides of (2.2a) are algebras in the derived category of vector spaces, and the isomorphism is
one of algebras. From this, it follows that the isomorphism in Proposition 2.2 is compatible
with the multiplicative structures on each side. This compatibility is used at two points in
the proof of Theorem 1.2. �

2.3. The geometric method in super geometry. Combining Propositions 2.1 and 2.2,
we obtain the following important result:

Theorem 2.4. Let X be a smooth super variety with Xord projective. Suppose that

0 ³ J/J2 ³ ë³ · ³ 0

is an exact sequence of locally free coherent sheaves on Xord, with ë = W 7 · OXord
globally

free. Let S = Sym(W 7), let Y = Spec(Sym(·)), and let Z̃ be the affinization of Y . Suppose
that Hi(Y,OY ) = 0 for i > 0. Then we have a natural isomorphism

TorSp (OZ̃ ,C)p+q = Hq(X,
∧p+q(I/I2)),

and a spectral sequence

Ep,q
1 = TorS2q(OZ̃ ,C)p =ó Hp+q(X,OX).
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We note one corollary of the theorem. Define the super dimension of a super vector
space V by sdim(V ) = dim(V0)2 dim(V1), and define the super Euler characteristic of a
super variety X by

Ç(X) =
∑

ig0

(21)i sdimHi(X,OX).

Corollary 2.5. Suppose we are in the setting of Theorem 2.4. Then Ç(X) is the degree of
the map Z̃ ³W over the generic point of W .

Proof. From the spectral sequence, we find Ç(X) =
∑

pg0(21)p dimTorSp (OZ̃ ,C), which is

easily seen to coincide with the dimension of the vector space Frac(S)·S OZ̃ . �

We note that the corollary implies that Ç(X) = 0 if Z is a proper subvariety of W , i.e.,
if Y ³ W is not surjective. In this case, assuming sdimH0(X,OX) 6= 0, we find that OX

necessarily has higher cohomology. One can prove a number of variants of the above corollary,
e.g., allowing for cases where Hi(Y,OY ) is non-vanishing, or replacing “super dimension” with
“super character” in the definition of Ç(X) when there is a group acting.

2.4. Grothendieck–Springer theory for flag supervarieties. Let G be a connected
reductive supergroup, let P be a parabolic subsupergroup of G, and let X = G/P be the
associated flag supervariety. We now take a look at what Theorem 2.4 amounts to in this
case. We note that this discussion is included only to sketch the general situation and provide
context; our main results do not depend on it.

Let G0, P0, and X0 be the ordinary varieties underlying G, P , and X . Then G0 is a
connected reductive group, P0 is a parabolic subgroup of G0, andX0 = G0/P0 is a generalized
flag variety. Let x = gP0 be a complex point of X0. Let P x = gP and P x

0 = gP0, where
g(2) denotes conjugation by g. In this way, X0 can be seen as parametrizing G0-conjugates
of either P or P0. Let g, p, and px be the Lie superalgebras of G, P , and P x. The tangent
superspace to G/P at x is g/px, while the tangent space to G0/P0 at x is g0/p

x
0 . Since

J/J2 is the conormal bundle to X0 ¢ X , we see that the fiber of J/J2 at x is (g1/p
x
1)

7. Let
ë = g71 · OX and let · be the locally free coherent sheaf on X0 whose fiber at x is p71. We
then have a short exact sequence

0 ³ J/J2 ³ ë³ · ³ 0.

So far, we have just explained that there is such a sequence for each fiber. However, since
the sheaves are all G0-equivariant and G0 acts transitively on X0, it follows that there is
such a sequence of the sheaves.

We thus see that we are indeed in the setting of Theorem 2.4. The space W is g1. The
space Y is the vector bundle over X0 whose fiber at x is px1 . In other words, Y consists of
points (x, v) where x * X0 and v * px1 . Recall that Z ¢ g1 is the image of Y under the
projection map X0 ×W ³W . From the description of Y , we see that Z =

⋃
g*G0

gp1.

The space Z̃ is more subtle. Let h ¢ p0 be a Cartan subalgebra of g0 and let W be its
Weyl group. We have maps

g1 ³ g0 ³ g0//G0

>=
2³ h//W,

where the first map is self-bracket (i.e., v 7³ [v, v]), the second map is the GIT quotient map,
and the third is the isomorphism coming from the Chevalley restriction theorem. We note
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that h//W is the spectrum of the invariant ring Sym(h7)W. As Z is a subvariety of g1, we
thus obtain a natural map Z ³ h//W. We have similar maps

px1 ³ px0 ³ h//W2

where W2 is the subgroup of W associated to P0. Since each element of Y belongs to some
px1 , these maps define a map Y ³ h//W2, and this map factors through Z̃ since the target is
affine. This leads to a commutative diagram

(2.6)

Z̃ //

��

h//W2

��

Z // h//W.

As we will see in §5, this diagram is not cartesian in general. However, in all cases we have
considered, a slight modification is cartesian.

We thus have the following general plan for studying H"(X,OX):

(a) Show that Hi(Y,OY ) vanishes for i > 0.
(b) Determine the minimal free resolution of OZ̃ over S = Sym(g71).
(c) Analyze the spectral sequence in Theorem 2.4.

In the remainder of this paper, we carry out this plan in detail for X = Grr|s(C
n|m).

3. Splitting rings

In §5, we study Grothendieck–Springer theory in detail for the super Grassmannian. In
this section and the next section, we gather some preliminary material that will be needed
for that. This section develops the theory of splitting and factorization rings. These have
also been considered in [EL, GSS, Lk].

3.1. Splitting rings. Let A be a ring and let f =
∑n

i=0 an2iu
i be a monic polynomial with

coefficients in A (so a0 = 1). We define the splitting ring of f , denoted SplitA(f), to be
the quotient A[¿1, . . . , ¿n]/I where I is the ideal generated by the elements

ai 2 (21)iei(¿1, . . . , ¿n), 1 f i f n,

where ei is the ith elementary symmetric function. Thus SplitA(f) is the universal quotient of
A[¿i] in which we have f(u) =

∏n
i=1(u2¿i). If A is graded and ai has degree 2i then SplitA(f)

is naturally graded, with ¿i of degree 2. (We include a factor of 2 here for later convenience.)
The symmetric group Sn acts on SplitA(f) by permuting the ¿i’s and fixing A. Formation
of the splitting ring is compatible with base change: if A ³ A2 is a homomorphism, and f 2

is the image of f under A[u] ³ A2[u], then we have a natural isomorphism

SplitA2(f 2) = A2 ·A SplitA(f).

We fix A and f for the remainder of this section, and let B = SplitA(f). We also assume A
to be noetherian.
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3.2. The universal case. Let Auniv = Z[a1, . . . , an], let f
univ * Auniv[u] be the polynomial

un+
∑n21

i=0 an2iu
i, and let Buniv be the splitting ring of funiv. The map Z[¿1, . . . , ¿n] ³ Buniv

is surjective, and has no kernel since Buniv ·C clearly has Krull dimension n. Thus Buniv =
Z[¿1, . . . , ¿n].

The polynomial f * A[u] is the image of funiv under a unique ring homomorphism Auniv ³
A. Since formation of splitting rings is compatible with base change, we have B = A·Auniv

Buniv. This can be a useful tool for proving results about general splitting rings.
The above discussion shows that we have a cartesian diagram

Spec(B) //

��

Spec(Buniv)

��

Spec(A) // Spec(Auniv)

We can identify Spec(Buniv) with An and Spec(Auniv) with the quotient An//Sn (which is
isomorphic to An). Here, An and Sn can be identified with the Cartan subalgebra and Weyl
group of gln. The above diagram is thus similar to (2.6) (with P0 a Borel, so that W2 = 1),
and this is essentially how splitting rings will be relevant in §5.

3.3. Basic results. Let ∆ * A be the discriminant of f . We have ∆ =
∏

i 6=j(¿i 2 ¿j) in B.
Recall that a ring homomorphism is syntomic if it is flat, of finite presentation, and all of
the fibers are local complete intersections [SP, Tag 00SL].

Proposition 3.1. We have the following:

(a) As an A-module, B is free of rank n!.
(b) The map A³ B is a syntomic.
(c) If A satisfies Serre’s condition (Sk), then so does B. In particular, if A is Cohen–

Macaulay, then so is B.
(d) If ∆ is a unit of A then A³ B is étale.
(e) If A is reduced and ∆ is a non-zerodivisor then B is reduced.
(f) The inclusion A³ B admits an A-linear splitting.

Proof. (a) It suffices, by base change, to prove the statement in the universal case where
A = Z[a1, . . . , an] and f = un +

∑n21
i=0 an2iu

i. This is well-known, and there are several
proofs, but we include one. The map A ³ B is finite, as each ¿i satisfies the universal
polynomial. Since A ³ B is a finite map of polynomial rings of the same dimension, it
is flat [SP, Tag 00R4]. Therefore B is projective as an A-module, and thus free, as any
projective A-module is free (this statement is easy in this case as everything is graded). The
rank can be computed over the generic point, where it is well-known to be n!.

(b) Suppose that p is a prime of A. Then B·A»(p) is finite over »(p) by (a), and therefore
of Krull dimension 0. This ring is a quotient of »(p)[¿1, . . . , ¿n] by n relations, and is therefore
a complete intersection. It follows that A³ B is syntomic.

(c) Since (Sk) is syntomic local [SP, Tag 036A], the result follows from (b).
(d) We have 0 = f(¿i) and so 0 = f 2(¿i)d¿i. However, f

2(¿i) =
∏

j 6=i(¿i2 ¿j) divides ∆ and
is therefore a unit. Thus d¿i = 0. We conclude that ΩB/A = 0. Since B is finite flat over A
by (a), it is therefore étale.

(e) Since A is reduced, it satisfies (R0) and (S1). Thus B satisfies (S1) by part (c). Since
V (∆) ¢ Spec(A) has codimension 1 and A[1/∆] ³ B[1/∆] is étale, it follows that B satisfies
(R0). Thus B is reduced.
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(f) This follows from the existence of the Gysin homomorphism constructed in [Lk, Theo-
rem 8.1] (it has to be precomposed with multiplication by

∏
i ¿

n2i
i which is also A-linear). �

Proposition 3.2. Suppose that n! is invertible in A. Then B is free of rank one as an
A[Sn]-module.

Proof. Let Λ = Z[1/n!] and let S» be the Specht module for Sn over Λ. If M is any
Λ[Sn]-module, then the natural map

⊕

|»|=n

HomΛ[Sn](S
»,M)· S» ³M

is an isomorphism. To see this, note that S» is a projective Λ[Sn]-module: Young idempo-
tents are defined over Λ[Sn] (see [FH, Lemma 4.26]), so S» is a direct summand of Λ[Sn].
Hence both sides above are exact functors of M . It thus suffices to prove the result for
M = Sµ (since these are enough projectives), where it is clear.

Now, it suffices to prove the proposition in the universal case A = Λ[a1, . . . , an]. By
the above isomorphism, we see that N» = HomΛ[Sn](S

», B) is a summand of B, and thus
projective as an A-module; since N» is also graded, it is free. To prove the result, it is enough
to show that the A-rank of N» coincides with the Λ-rank of S». This can be checked over
Frac(A), where it is well known: Q(¿1, . . . , ¿n) is isomorphic to the regular representation of
Sn over Q(a1, . . . , an) = Q(¿1, . . . , ¿n)

Sn by the normal basis theorem in Galois theory. �

Remark 3.3. The hypothesis that n! is invertible is necessary: indeed, if n = 2, A = F2, and
f = u2 then B >= F2[t]/t

2 with trivial S2-action, but F2[S2] has non-trivial S2-action. �

We pause to give a geometric source of splitting rings (see [GSS, Theorem 6.1]). Let X be
a smooth variety over an algebraically closed field and let E be a rank n vector bundle on X .
Let A be the Chow ring of X and let ai = (21)ici(E), where ci(E) is the ith Chern class of E.
Then the splitting ring B is the Chow ring of the relative flag variety Fl(E). Furthermore, on
Fl(E), the pullback of E has a complete flag of subbundles (i.e., whose successive quotients
are line bundles), and the Chern classes of these line bundles are identified with the 2¿i.

An important case for us is when X = Spec(C) and E = Cn, so that f = un. In that
case, this discussion gives the following result (we note that the Chow ring and singular
cohomology ring of Fl(Cn) are isomorphic since it has a cellular decomposition).

Proposition 3.4. Suppose that f = un. Regard A as graded and concentrated in degree 0,
and B as graded with each ¿i of degree 2. Then we have a natural isomorphism of graded
rings

B = A·H7
sing(Fl(C

n),Z).

3.4. First normality criterion. We now turn our attention to the question of when A is
normal. We will give an initial criterion here, and a variant in §3.6 that is somewhat more
convenient. Let Ẽ ¢ Spec(B) be the closed set where at least three of the ¿i’s coincide or

there are two pairs of ¿i which coincide, and let E ¢ Spec(A) be the image of Ẽ. Note that
E is closed since A³ B is finite. We say that an element f of a normal ring R is squarefree
if vp(f) * {0, 1} for all height one primes p of R, where vp denotes the valuation associated
to p. We say that a subset of Spec(A) has codimension g c if all primes it contains have
height g c.

Proposition 3.5. Suppose the following conditions hold:
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(a) A is normal,
(b) ∆ is squarefree and a non-zerodivisor,
(c) E has codimension g 2 in Spec(A).

Then B is normal.

Proof. First suppose that A is a strictly henselian discrete valuation ring. We show that B
is regular. If ∆ is a unit of A then B is étale over A and thus regular. Assume then that ∆ is
not a unit; by hypothesis (b), it is a uniformizer of A. Let f be the image of f in »[u], where
» is the residue field of A. Since ∆ maps to 0 in » it follows that f has a repeated root; by
hypothesis (c), it has only one (i.e., it has n21 distinct roots). We thus have a factorization
f = q · g over », where q is a degree 2 polynomial with a repeated root over » and g has
distinct roots over ». Since » is separably closed, it follows that g = (u 2 x3) · · · (u 2 xn)
splits completely for x3, . . . , xn * » distinct (and distinct from the unique root of q). By
the henselian property, we thus have a factorization f(u) = q(u)(u2 x3) · · · (u2 xn), where
xi * A lifts xi for i g 3 and q(u) is a quadratic polynomial with coefficients in A.

Now let p be a prime of B above the maximal ideal of A, and work in Bp in what follows.

Applying a permutation if necessary, we can assume that ¿i = xi for i g 3, where ¿i is the
image of ¿i in Bp/p >= ». For i g 3, it follows that q(¿i) and ¿i 2 xj , for j 6= i, are non-zero
in », and thus units of Bp; since f(¿i) = 0, we conclude that ¿i = xi. This shows that Bp is
generated as an A-algebra by ¿1 and ¿2. We have

q(u)
∏

ig3

(u2 ¿i) =
∏

ig1

(u2 ¿i).

Since monic polynomials are non-zerodivisors, it follows that q(u) = (u2 ¿1)(u2 ¿2). From
this, we see that Bp

>= A[u]/q.
We consider two cases. If q is irreducible (this is only possible if » has characteristic 2),

then Bp/mBp is a degree 2 field extension of » and hence mBp is the maximal ideal of Bp

which is generated by a single non-nilpotent element, so Bp is a DVR.
Otherwise, we may assume that q = (u2 x1)

2 for some x1 * ». Let Ã be the discriminant
of q. This is an element of A that divides ∆ and is 0 in », and is therefore a uniformizer.
Up to a linear substitution in A, we may assume that q = u2. Write q = u2 + ³1u + ³2.
Then ³1, ³2 * m but ³2 /* m2 since Ã = ³2

1 2 4³2 is a uniformizer, and hence ³2 is also a
uniformizer for A. The maximal ideal of Bp is generated by u and mBp, but the latter is
generated by ³2 = 2(u+ ³1)u, and so just u suffices to generate. Finally, u is not nilpotent
since ³2 is not, which shows that Bp is a DVR.

We now treat the general situation. Let p be a height one prime of A. We show that Bp

is regular. Let Ash
p be the strict henselization of the DVR Ap. By the previous paragraphs,

we see that Bp ·Ap
Ash

p is regular. Now, Ash
p is the direct limit of a family {Ai} of rings,

each of which is an étale cover of Ap. The above arguments apply with Ai in place of Ash
p

for i sufficiently large. We conclude that Bp ·Ap
Ai is regular for some i. Since regularity

is étale local, we conclude that Bp is regular. Thus B is regular in codimension 1. Finally,
since A is normal, it satisfies Serre’s condition (S2), and hence the same is true for B by
Proposition 3.1(c), so B is therefore normal. �

3.5. Preliminaries on discriminants. In the following subsection, we refine the above
normality criterion. Here we prove a few lemmas that will be needed to do this.
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Lemma 3.6. Let S be a local ring with maximal ideal m, and let X be an n×n matrix with
entries in S. Suppose that the reduction of X modulo m has nullity g r. Then det(X) * mr.

Proof. We argue by induction on n. For n = 0 the result is vacuous. Suppose now the result
is known for matrices of size < n and let us prove it for matrices of size n.

Suppose that the first column of X has entries in m. Let Xi be the matrix obtained from
X by deleting the first column and the ith row. Then each Xi has nullity g r 2 1 modulo
m. Thus, by induction, det(Xi) * mr21 for each i. Taking the Laplace expansion for det(X)
along the first column, we see that det(X) * mr.

Now suppose that some entry in the first column ofX is a unit. Performing row operations,
we can reduce to the case where the first column is the first standard basis vector. Let X 2

be the matrix obtained by deleting the first row and column of X . Then det(X 2) = det(X).
But X 2 has nullity g r modulo m, so det(X 2) * mr by induction. �

We recall some basic facts about Sylvester matrices and discriminants. Let S be a com-
mutative ring and let f(u) = a0x

n + · · · + an and g(u) = b0x
m + · · · + bm be univariate

polynomials with coefficients in S such that a0 6= 0 (we do not require anything about g and
in fact allow the case that it is identically 0). We define their Sylvester matrix to be the
square matrix of size n+m as follows:

Syln,m(f, g) =

þ
ÿÿÿÿÿÿÿÿÿø

a0 a1 a2 · · · an 0 0 · · · 0
0 a0 a1 · · · an 0 · · · 0
...
0 0 0 · · · an
b0 b1 b2 · · ·
...
0 0 0 · · · bm

ù
úúúúúúúúúû

.

In other words, the first m rows consist of shifts of the sequence a0, . . . , an and the last n
rows consist of shifts of the sequence b0, . . . , bm.

The following is well-known, but we include proofs to keep the discussion self-contained.

Proposition 3.7. (a) If S is a field, then

deg(gcd(f, g)) = dimker Syln,m(f, g).

(b) If S is graded such that deg(ai) = deg(bi) = i, then det(Syln,m(f, g)) is homogeneous
of degree mn.

(c) If n = deg(f), then the discriminant of f is det(Syln,n21(f, f
2)) (up to a sign) where

f 2 is the derivative of f with respect to x.

Proof. (a) Let ³ = ³0u
m21+· · ·+³m21 and ³ = ³0u

n21+· · ·+³n21. The coefficients of ³f+³g
are the entries of

[
³0 · · · ³m21 ³0 · · · ³n21

]
Syln,m(f, g), so that ker Syln,m(f, g)

T is
the space of pairs (³, ³) with deg³ < m and deg ³ < n such that ³f + ³g = 0. Let
h = gcd(f, g) and f0 = f/h and g0 = g/h. Then we get ³f0 = 2³g0 which implies that
there is a polynomial ³ such that ³ = g0³ and ³ = f0³ and

deg ³ = deg ³ 2 deg f0 < deg h.

On the other hand, if ³ is any polynomial with deg ³ < deg h, then ³ = g0³ has degree
< deg g f m and ³ = f0³ has degree < deg f = n, and so we have an isomorphism between
the polynomials of degree < deg h and ker Syln,m(f, g).
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(b) Scaling each ai and bi by »i in Syln,m(f, g) is the same as scaling the ith column

by »i21, the first m rows by 1, »21, . . . , »2(m21), and the last n rows by 1, »21, . . . , »2(n21).
Hence we see that det(Syln,m(f, g)) is homogeneous of degree

(
n+m
2

)
2

(
n
2

)
2

(
m
2

)
= mn.

(c) It suffices to prove this in the universal case S = Z[a0, . . . , an] since both the discrim-
inant of f and det(Syln,n21(f, f

2)) are polynomials in the coefficients of f . We grade S by
deg(ai) = i. In this case, both expressions are homogeneous polynomials of degree n(n2 1),
this holds for det(Syln,n21(f, f

2)) by (b). The discriminant is an irreducible polynomial and
vanishes whenever f has a multiple root. By (a), det(Syln,n21(f, f

2)) vanishes whenever
gcd(f, f 2) has positive degree, which is equivalent to f having a multiple root. Hence the
two polynomials agree up to sign. �

Lemma 3.8. Suppose S is a local ring with maximal ideal m and let g * S[u] be a monic
polynomial of degree n. Suppose that the reduction of g modulo m has at most r distinct
roots in the algebraic closure of S/m. Then the discriminant of g belongs to mn2r.

Proof. Let f be the reduction of g modulo m. By Lemma 3.6 and Proposition 3.7, the
discriminant of g belongs to md where d = deg(gcd(f, f 2)). For » in the algebraic closure of
S/m, if (u2 »)e divides f , then (u2 »)e21 divides f 2, and so d g n2 r. �

3.6. Second normality criterion. We now give a variant of Proposition 3.5. Define
V (∆, "∆) ¢ Spec(A) to be the set of points x at which ∆ vanishes to order two, in the
sense that it belongs to m2

x. If A is finitely generated over a field k and x is a smooth
point of Spec(A) then x belongs to V (∆, "∆) if and only if ∆ = 0 in »(x) and d∆ = 0 in
Ω1

A/k ·A »(x); since Ω1
A/k is locally free on the smooth locus, this shows that V (∆, "∆) is

closed in the smooth locus. Recall the set E ¢ Spec(A) from §3.4.

Lemma 3.9. We have E ¢ V (∆, "∆).

Proof. Let x * E, and let p = px be the corresponding prime ideal of A. By the definition of
E, the polynomial f * Ap[u] has at most deg(f)2 2 distinct roots in the residue field. Thus
by Lemma 3.8, we see that ∆ * p2Ap = m2

x, and so x * V (∆, "∆). �

Proposition 3.10. Suppose the following conditions hold:

(a) A is normal,
(b) ∆ is a non-zerodivisor,
(c) V (∆, "∆) has codimension g 2.

Then ∆ is squarefree and B is normal.

Proof. We apply Proposition 3.5. The set E there has codimension g 2 by the present
assumption (c) and Lemma 3.9. It thus suffices to prove that ∆ is squarefree.

Let p be a height one prime of A. If V (p) is not an irreducible component of V (∆) then
vp(∆) = 0. Suppose now that V (p) is an irreducible component of V (∆). Then vp(∆) g 1,
and we show that equality holds. Suppose by way of contradiction that vp(∆) g 2. We can
then write ∆ = abk where k g 2, a is a rational function on Spec(A) that is a unit at p, and
b is a rational function on Spec(A) that is a uniformizer at p. Since a is a unit of Ap and b
belongs to pAp, we see that ∆ belongs to p2Ap. Thus p * V (∆, "∆), which contradicts (c).
We conclude that ∆ is squarefree. �
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3.7. Factorization rings. Let p and q be non-negative integers such that p + q = n, and
put g =

∑p
i=0 bp2iu

i and h =
∑q

i=0 cq2iu
i, where b0 = c0 = 1 and the remaining bi and ci

are formal symbols. We define the (p, q)-factorization ring of f , denoted Factp,qA (f) to be
A[b1, . . . , bp, c1, . . . , cq]/I, where I is the ideal generated by the elements

an2i 2

i∑

j=0

bp2jcq2i+j 0 f i f n2 1.

Thus Factp,qA (f) is the universal quotient of A[bi, cj] in which we have f(u) = g(u)h(u). It
follows from the above formula and the condition b0 = 1 that Factp,qA (f) is generated as an
A-algebra by b1, . . . , bp. If A is graded and ai is homogeneous of degree 2i then Factp,qA (f) is
graded and bi and ci have degree 2i. Formation of the factorization ring is compatible with
base change, as with the splitting ring.

In what follows, we let B = SplitA(f) and C = Factp,qA (f).

Proposition 3.11. We have the following:

(a) We have a natural A-algebra isomorphism B = SplitC(g)·C SplitC(h).
(b) As an A-module, C is free of rank

(
n
p

)
.

(c) The map A³ C is syntomic.
(d) If A satisfies Serre’s condition (Sk), then so does C. In particular, if A is Cohen–

Macaulay, then so is C.
(e) If B is reduced (resp., integral, normal), then C is reduced (resp., integral, normal).

Proof. (a) Let ·1, . . . , ·p be the generators of SplitC(g) and ·p+1, . . . , ·p+q those for SplitC(h).
Put B2 = SplitC(g) ·C SplitC(h). Since f(u) =

∏n
i=1(u 2 ·i) holds over B2, we have an

A-algebra homomorphism × : B ³ B2 given by ×(¿i) = ·i. Let g7(u) =
∏p

i=1(u 2 ¿i) and
h7(u) =

∏n
i=p+1(u2¿i) be polynomials in B[u]. The factorization f(u) = g7(u)h7(u) gives an

A-algebra homomorphism C ³ B mapping g(u) to g7(u) and h(u) to h7(u). The tautological
splittings of g7(u) and h7(u) over B yield an A-algebra homomorphism Ë : B2 ³ B given by
Ë(·i) = ¿i. Since × and Ë are clearly inverses, the result follows.

(b) By Proposition 3.1(a), we have an A-module isomorphism B >= A·n! and C-module
isomorphisms SplitC(g)

>= C·p! and SplitC(h)
>= C·q!. Comparing with (a), we obtain an

A-module isomorphism C·p!q! >= A·n!. It follows that C is projective as an A-module of
constant rank

(
n
p

)
. As in the proof of Proposition 3.1(a), it follows that C is free in the

universal case, and thus in all cases.
(c) Let p be a prime of A. Then C·A »(p) is finite over »(p) by (b), and therefore of Krull

dimension 0. This ring is a quotient of »(p)[b1, . . . , bp, c1, . . . , cq] by p + q relations, and is
therefore a complete intersection. Thus A³ C is syntomic.

(d) This follows since the property is syntomic local.
(e) From (a), C is isomorphic to a subring of B, which handles the reduced and integral

conditions. For the normality condition, we use that B is an iterated splitting ring over C
by (a), and hence the inclusion C ³ B admits a C-linear splitting by Proposition 3.1(f). �

Remark 3.12. Using Proposition 3.2 and Proposition 3.11(a), we can show that C =
BSp×Sq if n! is invertible in A. This gives a C-linear splitting of C ³ B and an alternative
proof of Proposition 3.11(e). In fact, the assumption that n! is invertible is relaxed substan-
tially in [EL, Theorem 3.1]: it suffices to know that either 2 or the discriminant of f is a
non-zerodivisor in A to show that C = BSp×Sq . �
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As with splitting rings, there is a geometric source of factorization rings (see [GSS, Theo-
rem 6.1]). Let X be a smooth variety over an algebraically closed field and let E be a rank n
vector bundle on X . Then the (p, n2p) factorization ring C (again taking A to be the Chow
ring of X and ai = (21)ici(E)) is the Chow ring of the relative Grassmannian Gr(p,E).
When X = Spec(C), we get the following result.

Proposition 3.13. Suppose that f = un. Regard A as graded and concentrated in degree 0,
and C as graded in the usual manner. Then we have a natural isomorphism of graded rings

C = A·H7
sing(Grp(C

n),Z).

Remark 3.14. One can also form partial splitting rings which are intermediate between B
and C, and all of the above properties generalize. For these rings, one sees the cohomology
of a partial flag variety in the analog of Proposition 3.13. �

4. Some additional preparatory material

In this section, we give a bit more material that will be needed in §5.

4.1. Rational singularities. We first recall some generalities on rational singularities. Let
X be an irreducible variety over the complex numbers. We say that X has rational singu-
larities if there exists a proper birational map Ã : Y ³ X with Y smooth (i.e., a resolution
of singularities) such that Ã7(OY ) = OX and RiÃ7(OY ) = 0 for i > 0. If X has rational
singularities then for any resolution of singularities Ã2 : Y 2 ³ X we have Ã2

7(OY 2) = OX and
RiÃ2

7(OY 2) = 0 for i > 0; furthermore, X is normal and Cohen–Macaulay [KM, Theorem
5.10]. We require the following two additional results concerning rational singularities:

Proposition 4.1. Suppose that X is normal and Cohen–Macaulay and let Ã : Y ³ X be
a resolution of singularities. Let U ¢ X be a subset which has rational singularities and
suppose that Ã21(X \ U) has codimension g 2 in Y . Then X has rational singularities.

Proof. Since X is Cohen–Macaulay, let ËX be its dualizing sheaf. We have a natural map
Ã7ËY ³ ËX obtained by duality from OX ³ Ã7OY , and X has rational singularities if and
only if this map is surjective [KM, Theorem 5.10]. This property is local, so we may assume
that X is affine. Consider the following commutative diagram:

Γ(Y, ËY ) //

��

Γ(X,ËX)

��

Γ(Ã21(U), ËY ) // Γ(U, ËX)

The bottom map is an isomorphism since U has rational singularities. The vertical maps are
isomorphisms since the complements of U and Ã21(U) have codimension g 2 (for example, by
[Ha, Proposition 1.11]). We conclude that the top map is an isomorphism, as required. �

Proposition 4.2. Let Ã : Y ³ X be a proper morphism of varieties, where Y is smooth and
X has rational singularities. Suppose that there is an open dense subset U of X such that
Ã21(U) is isomorphic (as a variety over U) to U ×W for some irreducible projective variety
W with rational singularities and satisfying Hi(W,OW ) = 0 for i > 0. Then RÃ7(OY ) = OX .
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Proof. Let Z ¢ Y ×W = Y ×X (X ×W ) be the closure of the graph of the isomorphism

Ã21(U) ³ U ×W , and let Z̃ ³ Z be a resolution of singularities. Consider the diagram

Z̃
Ã2

//

Ã2

��

X ×W

Ã

��

Y
Ã

// X

Since Z is the closure of the graph of an isomorphism of open sets, the projection maps
Z ³ Y and Z ³ X ×W are birational. Thus Ã2 and Ã2 are birational; also, all maps above
are proper. We now have

RÃ7(OY ) = RÃ7(RÃ
2
7(OZ̃)) = RÃ7(RÃ

2
7(OZ̃)) = RÃ7(OX×W ) = OX .

In the first step we used that RÃ27(OZ̃) = OY since Ã2 is a proper birational map of smooth
varieties; in the second step, we used the commutativity of the diagram; in the third step we
used that RÃ2

7(OZ̃) = OX×W since Ã2 is a resolution ofX×W , which has rational singularities;
and in the final step, we used the assumption on the cohomology of OW . �

4.2. Some linear algebra. In this section, we work over an algebraically closed field k of
arbitrary characteristic. Consider linear maps f : V0 ³ V1 and g : V1 ³ V0 such that V0 and
V1 are finite-dimensional vector spaces. By picking bases, what form can we put the matrices
in?

To answer this question, note that the tuples (V0, V1, f, g) form an abelian category A.
Concisely, we can regard V0 · V1 as a Z/2-graded module over k[t], where t has degree 1; t
acts on V0 by f and on V1 by g. We define some basic objects in this category.

" For » * k let An(») be the object with V0 = V1 = kn, and where f is the identity
matrix and g is a single Jordan block with eigenvalue ».

" Let An(>) be the object with V0 = V1 = kn, and where f is a single nilpotent Jordan
block and g is the identity.

" Let Bn be the module k[t]/(t2n+1). This has basis x0, . . . , x2n, where xi has parity i,
and txi = xi+1 for i < 2n, and tx2n = 0.

For an object M of A, we let M [1] be the object where the even and odd pieces of M are
swapped. One easily verifies that An(»)[1] is isomorphic to An(»

21) for » * k * {>}.

Proposition 4.3. The An(»), Bn, and Bn[1] are exactly the indecomposable objects of A.

Proof. Consider an object (V0, V1, f, g). Then V0 and V1 are k[t2]-modules, and f and g are
maps of modules such that fg = gf = t2. By the structure theorem for modules over a PID,
V0 decomposes as V 2

0 · V 22
0 where t2 is invertible on V 2

0 and nilpotent on V 22
0 ; of course, V1

decomposes similarly. Since f and g are maps of modules, they respect these decompositions.
Thus the whole object decomposes into two pieces, and it suffices to consider these pieces
separately.

First suppose that t2 is invertible. Since fg = t2, it follows that f : V0 ³ V1 is an
isomorphism. We thus see that our object is isomorphic to the object (V1, V1, id, fg), which
is easily seen to decompose in terms of the An(») with » * k \ {0}.

Now suppose that t2 is nilpotent. Then the usual proof of the structure theorem for
modules over a PID applies, and we see that our module decomposes into cyclic modules,
which are Bn, Bn[1], An(0), or An(>). �
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Remark 4.4. The category A is the representation category of the extended Dynkin quiver
Ã1. For more in this direction, see [DW, §7.1]. �

5. Grothendieck–Springer theory for the super Grassmannian

In this section we study the Grothendieck–Springer theory associated to the super Grass-
mannian Grr|s(C

n|m) (see §2.4). We prove a number of results about the various spaces.

These results are used to compute the coherent cohomology of Grr|s(C
n|m) in the next

section. This section takes place entirely in the world of ordinary (non-super) mathematics.

5.1. Statement of results. We introduce a number of objects:

" Let V0 and V1 be complex vector spaces of dimensions n and m.
" Let r and s be non-negative integers with r g s. Put

· =

{
m2 n+ r 2 s if r 2 s > n2m

0 if n2m g r 2 s
.

Note that m2 · f min(n,m).
" Put W0 = Hom(V0, V1) and W1 = Hom(V1, V0) and W = W0 ×W1. We regard these
as affine varieties.

" Let Z0 ¢W0 be the determinantal variety consisting of linear maps of rank f m2 ·.
Let Z1 = W1 and put Z = Z0 × Z1. (Note: when · = 0 we have Z0 = W0. This case
is still interesting, though somewhat simpler.)

" Letting f : V0·OZ ³ V1·OZ and g : V1·OZ ³ V0·OZ denote the universal linear
maps, let Ç(u) * OZ [u] be the characteristic polynomial of fg, and let Ç(u) = u2·Ç(u).
Since fg has rank f m2 ·, it follows that Ç(u) is a polynomial.

" Let Z̃ be the affine scheme whose coordinate ring is the (s,m 2 · 2 s)-factorization
ring for Ç(u) introduced in §3.7. Thus for a C-algebra T , a T -point of Z̃ is a triple
(f, g, p) where (f, g) is a T -point of Z and p = p(u) is a degree s monic polynomial
over T that divides Ç(u) * T [u]. There is a natural map Z̃ ³ Z given by forgetting
p.

" Let Y be the scheme defined as follows: a T -point of Y is a tuple (f, g, R0, R1) where:
– R0 ¢ (V0)T is a T -submodule that is locally a rank r summand.
– R1 ¢ (V1)T is a T -submodule that is locally a rank s summand.
– f : (V0)T ³ (V1)T is a map of T -modules such that f(R0) ¦ R1.
– g : (V1)T ³ (V0)T is a map of T -modules such that g(R1) ¦ R0.

One easily sees that Y is the total space of a vector bundle over Grr(V0)×Grs(V1),
and is thus smooth and irreducible.

" Let Ã : Y ³ Z̃ be the map taking (f, g, R0, R1) to (f, g, p), where p is the characteristic
polynomial of fg on R1. We show that this is well-defined in Corollary 5.6.

This set-up turns out to be the Grothendieck–Springer theory associated to the super Grass-
mannian, as explained in §6.2. The purpose of this section is to study the above situation,
especially the varieties Y and Z̃. Our main results are summarized in the following theorem:

Theorem 5.1. We have the following:

(a) Z̃ is integral and has rational singularities (and is thus normal and Cohen–Macaulay).
(b) The map Z̃ ³ Z is finite and flat; in fact, OZ̃ is a free OZ-module of rank

(
m2·
s

)
.

(c) The graded ring OZ̃ ·OZ
C is isomorphic to H7

sing(Grs(C
m2·),C).
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(d) The map Ã : Y ³ Z̃ is projective and satisfies Ã7(OY ) = OZ̃ and RiÃ7(OY ) = 0 for
i > 0. If · > 0 or r = s then Ã is birational. If · = 0 then there is an open dense
subset U of Z̃ such that Ã21(U) is isomorphic to U ×Grr2s(C

n2m).

Remark 5.2. The proofs for the various parts are spread out:
(a): Integrality is the content of §5.4 and rational singularities is proven in Proposition 5.15.
(b) and (c) are deduced in §5.3.
(d): The first claim is Proposition 5.17, the second claim is Proposition 5.13, and the third

claim is Proposition 5.16. �

Remark 5.3. We make a clarifying remark about gradings. As W is a vector space, it
carries a natural Gm action via usual scalar multiplication, and this action induces all the
gradings. In terms of rings, we have

OW0
= Sym(V0 · V 7

1 ), OW1
= Sym(V1 · V 7

0 ), OW = OW0
· OW1

,

and the elements of V0 · V 7
1 and V1 · V 7

0 are given degree 1. The space Y is a subbundle of
X0 ×W , where X0 = Grr(V0) ×Grs(V1); again, the Gm action on W induces the grading
on OZ̃ = Γ(Y,OY ). Precisely, writing Y = Sym(·), where · is a quotient of OX0

·W 7, the
degree d piece of OZ̃ is Γ(X0, Sym

d(·)). We note that the gradings we use do not necessarily
coincide with the gradings induced by the central tori in GL(V0) and GL(V1). �

5.2. Some auxiliary spaces. To prove Theorem 5.1, we will use a few auxiliary spaces,
which we now introduce. Conceptually, these spaces come from the Grothendieck–Springer
theory associated to a flag supervariety.

" Let Z̃ be the affine scheme whose coordinate ring is the splitting ring for Ç(u) intro-
duced in §3.1.

" Let Y be the scheme defined as follows: a T -point of Y is a tuple (f, g, F", G") where:
– Fr2s ¢ Fr2s+1 ¢ · · · ¢ Fr2s+m2· ¢ (V0)T is a flag of T -submodules which are
locally summands with ranks prescribed by the subscript.

– 0 = G0 ¢ G1 ¢ · · · ¢ Gm2· ¢ (V1)T is a flag of T -submodules which are locally
summands with ranks prescribed by the subscript.

– f : (V0)T ³ (V1)T is a map of T -modules such that f(Fi+r2s) ¦ Gi for all i g 0.
– g : (V1)T ³ (V0)T is a map of T -modules such that g(Gi) ¦ Fi+r2s for all i g 0.

In fact, Y is the total space of a vector bundle over a product of partial flag varieties
Fl(r 2 s, . . . , r 2 s+m2 ·;V0)× Fl(1, 2, . . . , m2 ·;V1).

" Let Ã : Y ³ Z̃ be the map taking (f, g, F", G") to (f, g,
∏m2·

i=1 (u2»i)), where »i is the
eigenvalue of fg on Gi/Gi21. We show that this is well-defined in Proposition 5.5.

We prove the following analog of Theorem 5.1:

Theorem 5.4. We have the following:

(a) Z̃ is integral and has rational singularities (and is thus normal and Cohen–Macaulay).

(b) The map Z̃ ³ Z is finite and flat; in fact, OZ̃ is a free OZ-module of rank (m2 ·)!.
(c) The graded ring OZ̃ ·OZ

C is isomorphic to H7
sing(Fl(C

m2·),C).

(d) The map Ã : Y ³ Z̃ is projective and satisfies Ã7(OY) = OZ̃ and RiÃ7(OY) = 0 for
i > 0. If · > 0 or r = s then Ã is birational. If · = 0 then there is an open dense
subset U of Z̃ such that Ã21(U) is isomorphic to U ×Grr2s(C

n2m).

See Remark 5.2 for the locations of the proofs of the various statements (we handle this
and the previous case in parallel).
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5.3. First observations. It is well-known that Z0 has rational singularities [We, Proposi-
tion 6.2.3], and is in particular normal and Cohen–Macaulay. Since Z1 is an affine space, it
follows that the same holds for Z = Z0×Z1. Theorem 5.1(b,c) and Theorem 5.4(b,c), as well

as the fact that Z̃ and Z̃ are Cohen–Macaulay, follow immediately from Propositions 3.1, 3.4,
3.11, and 3.13. The following proposition and corollary ensure that Ã and Ã are well-defined.

Proposition 5.5. Suppose (f, g, F", G") is a T -point of Y. Let »i be the eigenvalue of fg on

Gi/Gi21. Then
∏m2·

i=1 (u2 »i) = Ç(u).

Proof. If · = 0, then Gm2· = V1 and Ç(u) = Ç(u), so there is nothing to prove. Otherwise,
suppose that · = m 2 n + r 2 s > 0. Then Fr2s+m2· = V0, so that the image of f is
contained in Gm2·. So fg induces the zero endomorphism on V1/Gm2·, which implies that
the characteristic polynomial of fg on Gm2· is Ç(u), and which proves the result. �

Corollary 5.6. Suppose (f, g, R0, R1) is a T -point of Y . Let p be the characteristic polyno-
mial of fg on R1. Then p(u) divides Ç(u).

Proof. This is immediate from the fact that we have a surjective map Y ³ Y given by
(f, g, F", G") 7³ (f, g, Fr, Gs). �

5.4. Integrality. We now show that Z̃ and Z̃ are integral. Let ∆ * OZ be the discriminant
of Ç. We begin with the following:

Proposition 5.7. We have ∆ 6= 0, and so Z̃ and Z̃ are reduced.

Proof. We construct a C-point of Z where ∆ 6= 0. Let x1, . . . , xn and y1, . . . , ym be bases
for V0 and V1. Let »1, . . . , »m2· be distinct complex numbers. Define f : V0 ³ V1 by
f(xi) = »iyi for 1 f i f m2 · and f(xi) = 0 for i > m2 ·. Define g : V1 ³ V0 by g(xi) = yi
for 1 f i f m 2 · and g(yi) = 0 for i > m 2 ·. Note that (f, g) defines a C-point of Z.

The composition fg has characteristic polynomial Ç(u) = u·
∏m2·

i=1 (u 2 »i). Thus ∆ 6= 0

at (f, g). Since Z is integral, it follows that ∆ is a non-zerodivisor, and so Z̃ is reduced

(Proposition 3.1(e)), and so Z̃ is as well by Proposition 3.11(e). �

To complete the proof of integrality, it suffices to show that Z̃ and Z̃ are irreducible. Since
Y and Y are irreducible, this follows from the following result:

Proposition 5.8. The maps Ã : Y ³ Z̃ and Ã : Y ³ Z̃ are surjective.

Proof. Let (f, g,
∏m2·

i=1 (u2»i)) be a C-point of Z̃. Recall the category A from §4.2. LetM be
the object (V0, V1, f, g). We inductively construct a chain of subobjects M0 ¢ · · · ¢ Mm2·

of M , with the following properties:

(a) dim(M i
0) = i+ r 2 s and dim(M i

1) = i.
(b) For 1 f i f m2 ·, the eigenvalues of t2 on M i/M i21 are »i.

To begin, we take M0
0 to be a subspace of ker(f) of dimension r 2 s (which exists since

f * Z0) and M
0
1 = 0. Suppose now that we have defined M i21 for some 1 f i f m2 ·.

We claim that there is an A-subobject of M/M i21 of dimension 1|1 such that the eigen-
values of t2 are both »i; granted this, we take M i/M i21 to be this subobject. By considering
the characteristic polynomial of t2 = fg on M1, we see that »i occurs as an eigenvalue of t2

on M i
1/M

i21
1 . If »i 6= 0 then the claim follows from the form of indecomposables given in

§4.2. Suppose now »i = 0. For an object N of A, let Φ(N) be the generalized 0-eigenspace
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of t2 and let Ψ(N) be the sum of the generalized »-eigenspaces with » 6= 0. We have
dim(Ψ(N)0) = dim(Ψ(N)1). Let k be the number of »i’s that are zero. Then

dim(Φ(M)1) = · + k, dim(Ψ(M)1) = m2 (· + k), dim(Φ(M)0) = n2m+ · + k.

We thus find
dim(Φ(M/M0)0) = n2m+ s2 r + · + k g k.

Now, since »i = 0, it follows that < k of »1, . . . , »i21 are 0, and so dim(Φ(M/M i21)0) > 0.
We thus see that Φ(M/M i21) has non-zero even and odd parts, and thus (by the classification
of indecomposables) has a subobject of dimension 1|1.

We now define a C-point (f, g, F", G") of Y by taking Fr2s+i = M i
0 and Gi = M i

1. It is

clear that this is indeed a C-point of Y and lifts the point of Z̃ under consideration. Thus Ã
is surjective. We have a commutative diagram

Y //

Ã
��

Y

Ã
��

Z̃ // Z̃

where the top map takes (f, g, F", G") to (f, g, Fr, Gs) and the bottom map is the natural
one. Since the bottom map is clearly surjective, so is Ã. �

5.5. Normality. We now aim to show that Z̃ and Z̃ are normal. We will use the criterion
in Proposition 3.10. We therefore begin by studying the geometry of V (∆) and V (∆, "∆).

Proposition 5.9. Let (f, g) be a C-point of Z. We can choose bases of V0 and V1 such that
the matrices for f and g have the form

(
0 7
0 A

) (
7 7
0 B

)

where A and B are upper-triangular square matrices with m 2 · rows and columns (this
determines the sizes of the other blocks). Moreover, if (f, g) * V (∆) then one can also
assume that the first two diagonal entries of AB are equal.

Proof. Since f has rank f m 2 · its kernel has dimension g n 2 m + ·; similarly, since
fg has rank f m 2 ·, its kernel has dimension g ·. Let U1 ¢ ker(fg) be a subspace of
dimension ·. Then g(U1) is a subspace of ker(f) of dimension f ·. Let U0 ¢ ker(f) be a
subspace of dimension n 2m + · containing g(U1). Now, pick a basis x1, . . . , xn of V0 such
that x1, . . . , xn2m+· is a basis of U0, and pick a basis y1, . . . , ym of V1 such that y1, . . . , y· is
a basis for U1. In these bases, the matrices for f and g have the stated form, except that
A and B may not be upper-triangular. Let U 2

0 be the span of xn2m+·+1, . . . , xn, and let U 2
1

be the span of y·+1, . . . , ym. We can then regard (A,B, U 2
0, U

2
1) as an object of the category

considered in §4.2. By decomposing into indecomposables, and choosing bases for these
indecomposables, we can make A and B upper-triangular. (The one subtlety here is that
the matrices for Bn and B2

n are not square. However, since dim(U 2
0) = dim(U 2

1) whenever we
have a Bn we can pair it with some B2

m, and the matrices for Bn · B2
m are square and can

be taken to be upper-triangular.)
Finally, suppose that (f, g) * V (∆). If Ç has a non-zero repeated root » then by taking

the An(»)’s first in the decomposition, we see that the first two diagonal entries of AB are
». Otherwise, 0 is a repeated root of Ç, and by putting the An(0), An(>), Bn, and Bn’s
first in the decomposition, the first two diagonal entries of AB are 0. �
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Proposition 5.10. The closed set V (∆) ¢ Z is irreducible; in fact, any two points of V (∆)
can be joined by an irreducible rational curve in V (∆).

Proof. Fix bases for V0 and V1 and let (fi, gi) for i = 1, 2 be two points of V (∆). Applying
the previous proposition, we can find ³i * GL(V0)×GL(V1) such that

³ifi =

(
0 Ci

0 Ai

)
, ³igi =

(
Di Ei

0 Bi

)

where Ai and Bi are upper-triangular square matrices of size m2·, and the first two diagonal
entries of AiBi are equal. We define matrices A(t), . . . , E(t) with polynomial entries such
that:

" At t = 0 they coincide with A1, . . . , E1

" At t = 1 they coincide with A2, . . . , E2.
" The matrices A(t) and B(t) are upper-triangular.
" The first two diagonal entries of A(t)B(t) agree.

We take C(t) = tC1 + (1 2 t)C2. We use the same formula everywhere else, except for
the first two diagonal entries of A(t) and B(t). Consider the subvariety of A4 defined by
³1³2 = ³1³2. Any two points on this variety can be joined by a map from Spec(C[t]), as it
is the affine cone over P1 ×P1. We take (A1,1(t), A2,2(t), B1,1(t), B2,2(t)) to be such a curve
joining (Ai,1,1, Ai,2,2, Bi,1,1, Bi,2,2).

Now, define

F (t) =

(
0 C(t)
0 A(t)

)
, G(t) =

(
D(t) E(t)
0 B(t)

)
.

Since ker(F (t)) contains the first n2m+ · basis vectors, the rank of F (t) is f m2 ·. Thus
(F (t), G(t)) defines a point of Z. The polynomial ÇF (t),G(t) is the characteristic polynomial
of A(t)B(t), which has a repeated root since the first two diagonal entries coincide. Thus
(F (t), G(t)) is a point of V (∆).

Finally, let ³ : Spec(C[t]) ³ GL(V0) × GL(V1) be a curve such that ³(0) = ³1 and
³(1) = ³2. Then ³(F (t), G(t)) is a curve in V (∆) joining (f1, g1) to (f2, g2). This completes
the proof. �

Proposition 5.11. Z̃ and Z̃ are normal.

Proof. It suffices to show that Z̃ is normal (due to Proposition 3.11(e)). If m 2 · f 1 then

deg(Ç) f 1 and Z̃ = Z is normal. We thus assume that m2 · g 2 in what follows.
We verify the conditions of Proposition 3.10. We already know that OZ is normal and

that ∆ is a non-zerodivisor (Proposition 5.7). It thus suffices to show that V (∆, "∆) has
codimension g 2 in Z. Since Z is normal, its singular locus has codimension g 2. It is thus
enough to show that Zreg + V (∆, "∆) has codimension g 2 in Zreg, where Zreg is the regular
locus (we will use below that Zreg is the set of matrices with maximal possible rank). The
set Zreg+V (∆, "∆) is closed in Zreg (see the first paragraph of §3.6) and contained in V (∆).
Since V (∆) is irreducible of codimension 1, it thus suffices to show that Zreg+V (∆, "∆) is a
proper subset of Zreg + V (∆). We do this by writing down a point in Zreg + V (∆) that does
not belong to V (∆, "∆).

Pick bases for V0 and V1. We define a C[ë]/(ë2) point of Z by

f =

(
0 0
0 A

)
g =

(
0 0
0 I

)
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where A and I are square matrices of size m2 ·, I is the identity matrix, and

A =

û
ý
» 1
ë »

D

þ
ø

where » * C \ {0} and D is a diagonal matrix with distinct non-zero complex entries that
are not ». Let x = (f, g) be the C-point of Z obtained by putting ë = 0. It is clear that
x belongs to V (∆), since fg has a repeated eigenvalue. Since f has maximal possible rank,
it is a smooth point of Z0, and so x * Zreg. The value of ∆ on (f, g) is a non-zero multiple
of ë: the key point is that the discriminant of the characteristic polynomial of the top 2× 2
block of A is 4ë. This shows that d∆ is non-zero at (f, g), and so x 6* V (∆, "∆). �

5.6. Rational singularities. We now show that Z̃ and Z̃ have rational singularities. To
this end, we introduce the following closed subsets of Z:

" Let D1 be the locus of points such that 0 is a root of Ç(u).
" Let D2 be the locus such that Ç(u) has a repeated root.
" Let D3 ¢ D2 be the locus where there is

– a triple root, or
– two repeated roots, or
– a unique repeated root, but the corresponding Jordan block of fg is a scalar.

This set is closed, as we now explain. The first two conditions define a closed set.
Letting U be the complement, it suffices to show that D3 + U is closed in U . Let
V ¢ U ×A1 be the set of pairs (f, g, ») where » is a root of Ç and its derivative. The
map V ³ U is finite and injective with image V (∆) + U . Let V1 ¢ V be the closed
set where fg 2 » has nullity g 2. Then D3 + U is the image of V1 in U , and thus
closed.

" Let D4 = D1 +D2 and let D5 = D1 *D3.

Put Ui = Z \Di. For any space X over Z, we let Di(X) or Ui(X) denote the inverse image
of Di or Ui in X .

Proposition 5.12. The sets D3(Y) and D4(Y) have codimension g 2 in Y.

Proof. By equivariance, the restrictions of D3(Y) or D4(Y) to any fiber over Fl(r2s, . . . , r2
s+m2 ·;V0)×Fl(1, . . . , m2 ·;V1) is isomorphic to any other. So it suffices to show that in
a given fiber of the vector bundle, these restrictions have codimension g 2. In that case, by
picking bases of V0 and V1 adapted to the particular pair of flags, f and g have the following
form:

" the first r 2 s columns of f are 0,
" the next m2 · columns of f are upper-triangular,
" the remaining columns of f (if they exist) are arbitrary,
" the first r 2 s rows of g are arbitrary,
" the next m2 · rows of g are upper-triangular,
" the remaining rows of g (if they exist) are 0.

So fg is determined by the contents of the upper-triangular m 2 · columns of f and the
upper-triangular m 2 · rows of g. Let x1, . . . , xm2· and y1, . . . , ym2· be the corresponding
diagonal entries of f and g, respectively.
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Hence over this fiber, the condition that a root is repeated has one component for each
equation xiyi = xjyj for i < j. Then D4(Y) is cut out in this component by

∏
i xiyi, and

hence has codimension 2. Having a triple root or two repeated roots corresponds to imposing
two equations xiyi = xjyj and xkyk = x3y3, so has codimension 2. If there is a repeated root
which is unique, the condition that the Jordan block is scalar is a nontrivial condition on an
irreducible component and hence also has codimension g 2. �

Proposition 5.13. Assume that r = s or · > 0. Then Ã : U5(Y) ³ U5(Z̃) is an isomor-

phism, and so Ã is birational. Similarly, Ã : U5(Y ) ³ U5(Z̃) is an isomorphism, and so Ã is
birational.

Proof. We first prove the statement about Ã. Since Z̃ is normal and Ã is projective, it suffices
to show that Ã induces an isomorphism on C-points on these two sets. By Proposition 5.8,
we know that Ã is surjective, so it suffices to prove injectivity.

First suppose that r = s. Consider a point (f, g,
∏m2·

i=1 (u 2 »i)) in U5(Z̃), and let
(f, g, F", G") be an inverse image under Ã . If the »i are distinct then Gi must be the
span of the fg-eigenspaces for »1, . . . , »i and Fi must be the span of the gf -eigenspaces for
»1, . . . , »i. Now suppose there is a repeated root. Since our point belongs to U5(Z̃), there is
only one repeated root, and the corresponding Jordan block for fg is non-scalar. The spaces
Fi and Gi are again uniquely determined: for the repeated eigenvalue, we use the eigenvector
first, and the generalize eigenvector second. This shows that there is a unique inverse image
under Ã.

Now suppose instead that · > 0. As before, there is a unique choice of the flag Gi. Also by
our definition of U1, we have rank(fg) = m2 · = rank(gf) and hence dim ker(gf) = r 2 s.
Hence Fi must be the span of ker(gf) and the eigenspaces for »1, . . . , »i.

The claim about Ã follows from similar reasoning. �

Corollary 5.14. Assume that r = s or · > 0. Then U2(Z̃) and U5(Z̃) have rational singu-
larities.

Proof. By Proposition 5.13, U5(Z̃) is smooth, and hence has rational singularities. Next,

Z̃ ³ Z is étale over U2, and since Z has rational singularities, the same is true for U2(Z̃). �

Proposition 5.15. The varieties Z̃ and Z̃ have rational singularities.

Proof. First suppose that · > 0 or r = s. By Corollary 5.14, Z̃ has rational singularities
on U2(Z̃) * U5(Z̃). The complement is D3(Z̃) + D4(Z̃), and the inverse image of this set

under Ã has codimension g 2 by Proposition 5.12. Hence Z̃ has rational singularities by
Proposition 4.1. Next if · = 0 and r 6= s, the variety Z̃ is the same as the variety Z̃ with
(r, s) changed to (s, s), and thus has rational singularities as well. Finally, Z̃ is a quotient

of Z̃ by a finite group, so has rational singularities by [KM, Proposition 5.13]. �

5.7. Cohomology of Y and Y. We now finish off the proofs by computing the cohomology
of OY and OY. The following result is required to treat the · = 0 case, and is part of
Theorem 5.1(d) and 5.4(d). Recall that · = 0 is equivalent to the condition n2m g r 2 s.

Proposition 5.16. Suppose · = 0.

(a) Let U ¢ Z be the locus where fg : V1 ³ V1 is an isomorphism, ∆ 6= 0, and Ç(0) 6= 0.
Then U is an open dense subset of Z.

(b) There is a vector bundle E on U of rank n2m whose fiber at (f, g) is the kernel of f .
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Let U 2 be a dense open subset of U where E is trivial and let Ũ and Ũ be the inverse images
of U 2 in Z̃ and Z̃. Then

(c) Ã21(Ũ) >= Grr2s(C
n2m)× Ũ , and

(d) Ã21(Ũ) >= Grr2s(C
n2m)× Ũ.

Proof. (a) It is clear that U is open. We show that it is non-empty. Since · = 0, we have
n g m. Let x1, . . . , xn be a basis of V0 and y1, . . . , ym a basis of V1. Define f : V0 ³ V1 by
f(xi) = yi for 1 f i f m and f(xi) = 0 for i > m. Define g : V1 ³ V0 by g(yi) = »ixi where
»1, . . . , »m are distinct non-zero complex numbers. Then (f, g) belongs to U .

(b) If (f, g) * U then f is surjective and ker(f) has dimension n2m, so we can take E to
be the kernel of the generic map f : V0 · OU ³ V1 · OU .

(c) Suppose (f, g, p) is a point in Ũ . Consider a point (f, g, R0, R1) in Y above (f, g, p).
Then R1 is uniquely determined: it is the sum of the eigenspaces of fg corresponding to
eigenvalues that are roots of p. Since fg is an isomorphism, g is injective and its image is
linearly disjoint from ker(f). Thus R0 = g(R1) · K where K is a subspace of ker(f) of
dimension r 2 s. Moreover, any choice of K leads to a point above (f, g, p). We thus see
that the fiber above (f, g, p) is Grr2s(C

n2m). The isomorphism Ã21(Ũ) = Grr2s(C
n2m)× Ũ

comes from combining this analysis with a choice of trivialization of E over U 2.
(d) This is similar to (c): the flag G" is uniquely determined, Fr2s is an r2 s dimensional

subspace of ker(f), and Fr2s+i = g(Gi) + Fr2s for 1 f i f m2 ·. �

Proposition 5.17. We have RÃ7(OY ) = OZ̃ and RÃ7(OY) = OZ̃.

Proof. If · > 0 or r = s then Ã and Ã are birational (Proposition 5.13), and the result
follows from generalities on rational singularities (see §4.1). For · = 0, the result follows
from Propositions 4.2 and 5.16. �

6. Cohomology of the super Grassmannian

6.1. Statement of results. We use notation as in §5.1. Additionally, we introduce the
following notation:

" Let V be the super vector space V0 · V1.
" Let X be the super Grassmannian Grr|s(V ) (see §6.2 for background).
" Let G be the super group GL(V ), and let G0 = GL(V0)×GL(V1) be the underlying
ordinary group.

" Let A = H7
sing(Grs(C

m2·),C), regarded as a graded C-algebra.
" Let S = Sym(W 7) be the coordinate ring of W .

The main result of this section is Theorem 1.2, which computes the cohomology of OX . We
restate the theorem here in our current notation:

Theorem 6.1. We have the following:

(a) We have a natural isomorphism H7(X,OX)
G = A of graded algebras.

(b) There is a canonical graded G-subrepresentation E of H7(X,OX) such that the natural
map A·E ³ H7(X,OX) is an isomorphism.

(c) We have a canonical isomorphism of G0-representations

Ei =
⊕

pg0

TorSp (OZ ,C)i+p.
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We note that if · = 0 then Z = W , and so Ei = 0 for i > 0 and E0 = C. Moreover, G0

acts trivially on E0, and so G does as well. Thus, in this case, we have H7(X,OX) = A with
trivial G action, as in Theorem 1.2(a).

A corollary of the theorem is that the G0-action on the linear strands of the resolution of
OZ extends to an action of G. This result was first proved by Pragacz–Weyman [PW]. We
discuss this in more detail in §6.5.

6.2. Grothendieck–Springer theory. We now give some background on the super Grass-
mannian and connect it to varieties studied in §5. While the super Grassmannian can be
expressed in the form G/P for an appropriate parabolic subgroup P of G, we use an alter-
native approach here. We do this to be more direct, and also because we do not know of
existing literature where quotients of supergroups have been treated carefully. We refer to
[Ma, Ch. 4, §3] for general background on the super Grassmannian.

The super Grassmannian X = Grr|s(V ) is the super scheme representing the functor that
attaches to a super algebra T the set of T -submodules of T · V that are locally summands
of rank r|s. It is not difficult to see that this functor is indeed representable. One can show
that X is smooth using the criterion for formal smoothness in the super setting; this is also
proved in [Ma]. The super scheme X is smooth of dimension d0|d1 where

d0 = r(n2 r) + s(m2 s), d1 = r(m2 s) + s(n2 r).

Let
0 ³ R ³ OX · V ³ Q ³ 0

be the tautological sequence on X , so that R is a vector bundle of rank r|s. Also, let X0 be
the ordinary scheme Grr(V0) and let

0 ³ R0 ³ OX0
· V0 ³ Q0 ³ 0

be its tautological sequence. Similarly define X1 = Grs(V1) and let

0 ³ R1 ³ OX1
· V1 ³ Q1 ³ 0

be its tautological sequence. Restricting the functor of points of X to ordinary algebras, one
sees that Xord = X0×X1. One also finds Qord = Q0·Q1, and similarly Rord = R0·R1. (We
simply write Q0 for the pullback of Q0 to X0 ×X1, and similarly in other cases.)

We now determine gr(OX). The result of the calculation below can be found in [Ma] but
we prefer to give a short self-contained explanation. We begin with the following observation:

Lemma 6.2. Let T be a super algebra, let J = JT , and let

0 ³M ³ T · V ³ N ³ 0

be an exact sequence of T -modules. Then there exists a unique map of T/J-modules

× : M/JM ³ JN/J2N

satisfying the following condition: if x is a homogeneous element of M of degree d and
x = y0 + y1 with yi * Td+i · Vi then ×(x) = yd+1, where the bar denotes the image in the
quotient module.

Proof. Define ×̃ : M ³ J·V as follows: given x *Md, write x = y0+y1 with yi * Ti+d·Vi,
and put ×̃(x) = yd+1. Note that yd+1 * T1 · Vd+1 does indeed belong to J · V . One
easily sees that ×̃ is a map of T0-modules. Now, suppose x = y0 + y1 is as above and
a * T1. Then ax = ay0 + ay1 has degree d + 1 and so ×̃(ax) = ayd = ax2 ayd+1 belongs to
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JM + J2 · V . It follows that ×̃(JM) ¢ JM + J2 · V , and so ×̃ induces a T0-linear map
× : M/JM ³ JN/J2N . Since T0 ³ T/J is surjective, it follows that × is T/J-linear as well.
It is clear that × is the unique map satisfying the stated condition. �

Proposition 6.3. We have a natural isomorphism

» : (Q7
1 · R0)· (Q7

0 · R1) ³ J/J2

of coherent OXord
-modules.

Proof. Since R/JR >= R0 · R1 and Q/JQ >= Q0 · Q1, Lemma 6.2 gives a canonical map

R0 · R1 ³ (Q0 · Q1)·OX/J J/J
2

where R0 maps to Q1 and R1 maps to Q0. We can thus convert it into a map

Φ: (Q7
1 · R0)· (Q7

0 ·R1) ³ J/J2.

We claim that Φ is an isomorphism.
First, we show that Φ is injective. Note that Φ is G0-equivariant, and that Q7

1 · R0 and
Q7
0 ·R1 are both irreducible homogeneous bundles which are not isomorphic to each other.

So it suffices to show that Φ is not identically 0 on either summand. Using the universal
property of Grr|s(V ), it suffices to give a single superalgebra T together with a rank r|s
summand M of T · V such that the pullback of Φ to each summand is non-zero.

This can be done with T = C[ë]/(ë2) where ë has degree 1. Pick bases e1, . . . , en for V0
and f1, . . . , fm for V1. Then we let M be the free T -submodule of T ·V with basis elements
vi = 1· ei+ ë·f1 for i = 1, . . . , r and wj = ë· e1+1·fj for j = 1, . . . , s. Then ×(vi) = ëf1
and ×(wj) = ëe1 so that both components are indeed non-zero.

Surjectivity now follows since both sides are equivariant vector bundles of the same di-
mension. (Note that the rank of J/J2 is the odd part of the dimension of X .) �

From the above, we see that we are in the setting of Theorem 2.4. Indeed, X is a smooth
supervariety and Xord is projective, and we have a short exact sequence

0 ³ J/J2 ³ ë³ · ³ 0

where ë = W 7 ·OXord
, with W as in §5. We remind that we are assuming that r g s. From

this sequence, one easily sees that Spec(Sym(·)) is identified with the variety Y . Thus the
varieties Z and Z̃ in appearing in §2.2 and Theorem 2.4 match those studied in §5 in our
setting. We thus find:

Proposition 6.4. There is a natural isomorphism

Hq(X, grp+q(OX)) = TorSp (OZ̃ ,C)p+q

and spectral sequence

Ep,q
1 = TorS2q(OZ̃ ,C)p =ó Hp+q(X,OX).

Proof. This follows from Theorem 2.4. The key hypothesis, that the higher cohomology of
OY vanishes, is provided by Theorem 5.1(d). �

Recall the super Euler characteristic Ç defined in §2.3.
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Proposition 6.5. Assume that r g s. We have

Ç(Grr|s(C
n|m)) =

ù
üú

üû

(
m
s

)
if n2m g r 2 s(

n
s

)
if r = s and m > n

0 otherwise

.

Proof. This follows immediately from Corollary 2.5 and Theorem 5.1. �

6.3. The Lascoux resolution. To make use of Proposition 6.4, we need to know something
about the minimal free resolution of OZ̃ : specifically, we need to know its terms, i.e., the Tor
groups (the differentials will not concern us). Since OZ̃ is a free OZ-module (Theorem 5.1(b)),
its Tor groups are direct sums of the Tor groups of OZ . Lascoux determined the Tor groups
of OZ , and we now review his results.

Let a and b be non-negative integers. Given (integer) partitions ³ and ³ with 3(³) f b
and ³1 f b, define the partitions

Pa,b(³, ³) = (b+ ³1, . . . , b+ ³b, b
a, ³1, . . . , ³3(³)),

Qa,b(³, ³) = (b+ ³ 
1, . . . , b+ ³ 

b , b
a, ³ 

1, . . . , ³
 
³1
),

which we visualize in terms of Young diagrams as follows:

Pa,b(³, ³) =

b× b

a× b

³

³

Qa,b(³, ³) =

b× b

a× b

³ 

³ 

For a partition », we let S» denote the corresponding Schur functor. With this notation, we
can state Lascoux’s result:

Theorem 6.6 (Lascoux). Put a = m2 ·. If q = ab for some non-negative integer b then

TorSp (OZ ,C)p+q =
⊕

³,³
3(³)fb, ³1fb
p=b2+|³|+|³|

SPa,b(³,³)(V0)· SQa,b(³,³)(V
7
1 )

as representations of G0. If q is not divisible by b then TorOW

p (OZ ,C)p+q = 0.

Proof. See [We, Proposition 6.1.3] which contains the description of Tor
OW0
p (OZ0

,C). Note
that since Z = Z0 ×W1, the minimal free resolution for OZ over OW is obtained from the
minimal free resolution for OZ0

over OW0
by tensoring with OW1

. In particular, the Tor
groups agree, and this conversion preserves the grading. �

Corollary 6.7. The G0-representation
⊕

pg0Tor
S
p (OZ ,C) is multiplicity-free.
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6.4. Proof of Theorem 6.1. Put

L̃k =
⊕

pg0

TorSp (OZ̃ ,C)p+k, Lk =
⊕

pg0

TorSp (OZ ,C)p+k.

These vector spaces carry algebraic representations ofG0. In particular, they are semi-simple
as G0-representations, as are all algebraic representations.

Proposition 6.8. The graded vector space TorSp (OZ̃ ,C) is naturally a graded A-module, and
the induced map

(6.8a) A·C TorSp (OZ ,C) ³ TorSp (OZ̃ ,C)

is an isomorphism of graded A-modules.

Proof. The space TorSp (OZ̃ ,C) is naturally a module over TorS0 (OZ̃ ,C) = OZ̃·OZ
C, which we

have seen (Theorem 5.1(c)) is isomorphic to A. Let A2 ¢ OZ̃ be a homogeneous C-subspace
such that the map A2 ³ OZ̃ ·OZ

C = A is an isomorphism. Then A2 is a minimal generating
space for OZ̃ as an OZ-module. Since OZ̃ is free as an OZ-module (Theorem 5.1(b)), it follows
that the natural map

A2 ·C OZ ³ OZ̃

is an isomorphism of OZ-modules. We thus see that the induced map

A2 ·C TorSp (OZ ,C) ³ TorSp (OZ̃ ,C)

is an isomorphism. This map is isomorphic (in the obvious manner) to (6.8a), and so (6.8a)
is an isomorphism of vector spaces. The map (6.8a) is a homomorphism of graded A-modules
simply by its definition. �

Proposition 6.9. The G0-representations L̃k and L̃k+1 have no simple factors in common.

Proof. Proposition 6.8 shows that L̃k =
⊕

ig0Ak2i ·C Li. Since A is concentrated in even

degrees, we see that L̃k is a sum of Li’s with i of the same parity as k. Since
⊕

ig0 Li is
multiplicity-free as a G0-representation (Corollary 6.7), the claim follows. �

Proposition 6.10. The spectral sequence in Proposition 6.4 degenerates at the first page.

Proof. Let E be the spectral sequence from Proposition 6.4, and put Ek
r =

⊕
p+q=k E

p,q
r , so

that the differential is a map Ek
r ³ Ek+1

r . We have Ek
1 = L̃k. Since Ek

r is a subquotient of
Ek

1 , we see that E
k
r is a semi-simple G0-representation, and E

k
r and Ek+1

r have no irreducible
factors in common. It follows that the differential Ek

r ³ Ek+1
r must vanish, as it is a map of

G0-representations. This completes the proof. �

Corollary 6.11. We have canonical G0-equivariant isomorphisms

Hi(X,OX) = gr(Hi(X,OX)) = L̃i

Proof. Proposition 6.10 gives a canonical isomorphism gr(Hi(X,OX)) = L̃i. It follows that
gr(Hi(X,OX)) is multiplicity free as a representation of G0, and so the same is true of
Hi(X,OX). Thus the filtration on Hi(X,OX) canonically splits, which yields a canonical
isomorphism Hi(X,OX) = gr(Hi(X,OX)). �

Proposition 6.12. We have Hi(X,OX)
G = Hi(X,OX)

G0.
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Proof. First assume that m > ·. Let E = Hi(X,OX)
G0 . The action of the upper-triangular

nilpotent piece of the Lie algebra of G on W is a G0-equivariant map

V 7
1 · V0 · E ³ Hi(X,OX).

First note that Hi(X,OX) does not contain a G0-subrepresentation isomorphic to V 7
1 · V0:

in the notation of Theorem 6.6, this is only possible if Pa,b(³, ³) = Qa,b(³, ³) = (1), which
is only possible if a = m 2 · = 0. It follows that this map must be 0. Similarly, the
corresponding map for the lower-triangular piece is 0. Thus E is annihilated by the Lie
algebra of G. It follows that G acts trivially on E.

Finally, if m = ·, this means that r = n and s = 0. In this case, X is a point and its
structure sheaf is the exterior algebra on V 7

1 ·V0. The G0-invariant space is spanned by the
unit element, and since G acts via algebra automorphisms, the unit must also be invariant
under G. �

Let U be a graded vector space. We define the trivial filtration on U by Fili(U) =⊕
jgi Uj . With respect to this filtration, we have a natural isomorphism U = gr(U).

Proposition 6.13. We have a natural isomorphism H7(X,OX)
G = A of graded algebras.

Moreover, the filtration on H7(X,OX) induces the trivial filtration on A.

Proof. Let B = H7(X,OX)
G. By Proposition 6.12, we have B = H7(X,OX)

G0 . We have

grp(Bq) = grp(Hq(X,OX))
G0 = Hq(X, grp(OX))

G0

= TorSp2q(OZ̃ ,C)G0

p =
⊕

i+j=p

Ai · TorSp2q(OZ ,C)G0

j .

In the first step we used the the G0 action is semi-simple; in the second, that the spectral
sequence degenerates (Proposition 6.10); in the third, Proposition 6.4; and in the fourth,
Proposition 6.8. Now, it is easy to see directly that TorSk (OZ ,C)G0 vanishes for k 6= 0, and
that TorS0 (OZ ,C)G0 is one-dimensional and concentrated in degree 0; this can also be read
off of Theorem 6.6. We thus find that

grp(Bq) =

{
Ap if p = q

0 otherwise
.

This shows that gr(B) = A, and the isomorphism is one of rings by Remark 2.3. It also
shows that the filtration on B is trivial, and so B is isomorphic to gr(B) as a ring. �

We regard H7(X,OX) as a graded A-module via the above proposition. We have isomor-
phisms of G0-representations

Hi(X,OX) >= gr(Hi(X,OX)) = L̃i =
⊕

jg0

Ai2j · Lj .

It follows that Hi(X,OX) contains a unique G0-subrepresentation isomorphic to Li. (Corol-
lary 6.7 is important here.) Call this subspace Ei, and let E =

⊕
ig0E

i.

Proposition 6.14. The natural map A· E ³ H7(X,OX) is an isomorphism.

Proof. We have

gr(H7(X,OX)) =
⊕

p,qg0

TorSp (OZ̃ ,C)q = A·
⊕

p,qg0

Torp(OZ ,C)q = A·
⊕

ig0

Li.
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We note that the Li in the final direct sum belongs to gr(Hi(X,OX)). We thus see that
gr(H7(X,OX)) is a freeA-module (this relies on Remark 2.3). Moreover, ifEi ¢ gr(Hi(X,OX))
is the associated graded of Ei then Ei corresponds to the copy of Li in the final direct sum
above. Letting E =

⊕
ig0E

i, we thus see that the natural map A· E ³ gr(H7(X,OX)) is
an isomorphism. The result follows from this. �

Proposition 6.15. Suppose that M and M 2 are representations of G such that M >= Li and
M 2 >= Lj as G0-representations, with i 6= j. Then Ext1

G
(M,M 2) = 0.

Proof. Consider an extension

0 ³ M 2 ³ N ³M ³ 0.

Since i 6= j, there is a unique G0-splitting of this sequence. We thus regard M as a G0-
subrepresentation of N . Consider the map

V 7
1 · V0 ·M ³ N

giving the action of the upper-triangular nilpotent piece of the Lie algebra of G on M .
Since this map is G0-equivariant, it follows from Theorem 6.6 and Pieri’s rule [FH, Equa-
tion (6.8)] that this map is zero. Similarly for the lower-triangular piece. Thus M is G-
subrepresentation of N , which completes the proof. �

Proposition 6.16. E is a G-subrepresentation of H7(X,OX).

Proof. Put H i = Hi(X,OX). We prove that Ei is a G-subrepresentation of H i by induction
on i. Thus suppose that i is given and Ej is a G-subrepresentation of Hj for all j < i. Let
X =

∑i21
j=0Ai2jE

j , which is a G-subrepresentation of H i by the inductive hypothesis, and

let Y = H i/X . We thus have a short exact sequence

0 ³ X ³ H i ³ Y ³ 0

of G-representations. Since the map A · E ³ H7 is an isomorphism, we see that X >=⊕i21
j=0Ai2j · Ej and that Ei is a complementary subspace to X in H i. In particular, the

map Ei ³ Y is an isomorphism of G0-representations. It now follows from Proposition 6.15
that Ext1

G
(Y,X) = 0. Indeed, we have Ej >= Lj and Y >= Li as G0-representations and

i 6= j. We thus see that there is a G-splitting Ã : Y ³ H i. Since Ei is the unique G0-
subrepresentation of H i isomorphic to Li, we see that Ã is unique and Ã(Y ) = Ei. Thus Ei

is a G-subrepresentation, as required. �

6.5. The G action on the Lascoux resolution. Our original motivation for this work
was to give a geometric explanation for the result of [PW] (and [Sa1]) that the linear strands
of the Tor groups of the determinantal variety Z0 carry an action of G. Of course, it
is equivalent to do this for Z, since Z and Z0 have the same Tor groups. This follows
from Proposition 6.16, as Ei = Li is a G-subrepresentation of Hi(X,OX). If one is simply
interested in constructing the G action on Li, it suffices to consider the case where s = 0;
here we have

Li = Hi(X,OX),

and so the obvious G action on the right induces one on the left.

Remark 6.17. The action of G of Li induces an action of its Lie superalgebra on Li. With
respect to the decomposition gl(n|m) = Hom(Cn,Cm) · (gl(n) × gl(m)) · Hom(Cm,Cn),
the middle piece corresponds to the obvious action of GL(n) × GL(m) on determinantal
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varieties, while one of the other pieces (depending on conventions) corresponds to the action
of the Tor algebra on linear strands by Remark 2.3. With that structure in place, the Li

are highest weight representations of G, and if m > ·, the results of [PW, Sa1] show that
they are irreducible (and hence there is a unique way to extend the action of 2 out of the
3 pieces to the third). If m = ·, then Li is only non-zero for i = 0, in which case it is a
Koszul complex, which we can understand as a Kac module, i.e., induced from the trivial
representation of Hom(Cn,Cm) · (gl(n) × gl(m)) (again depending on conventions). It is
indecomposable, but not irreducible in general. �
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