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ABSTRACT
We present the 2023 U.S. Geological Survey time-independent earthquake rupture forecast
for the conterminous United States, which gives authoritative estimates of the magnitude,
location, and time-averaged frequency of potentially damaging earthquakes throughout the
region. In addition to updating virtually all model components, a major focus has been to
provide a better representation of epistemic uncertainties. For example, we have improved
the representation of multifault ruptures, both in terms of allowing more and less fault con-
nectivity than in the previous models, and in sweeping over a broader range of viable mod-
els. An unprecedented level of diagnostic information has been provided for assessing the
model, and the development was overseen by a 19-member participatory review panel.
Although we believe the new model embodies significant improvements and represents
the best available science, we also discuss potential model limitations, including the appli-
cability of logic tree branch weights with respect different types of hazard and risk metrics.
Future improvements are also discussed, with deformation model enhancements being par-
ticularly worthy of pursuit, as well as better representation of sampling errors in the gridded
seismicity components. We also plan to add time-dependent components, and assess impli-
cations with a wider range of hazard and risk metrics.

KEY POINTS
• We provide a new earthquake rupture forecast for the

conterminous United States.
• Innovations include better representations of multifault

ruptures and epistemic uncertainties.
• This model will be used in building codes and other risk

mitigation efforts.

MANUSCRIPT ORGANIZATION
Because of manuscript length and model complexity, we begin
with an outline of this report to help readers navigate the various
sections:

1. Introduction
• Broader goals
• Model elements
• Epistemic uncertainties
• Review process and consensus building
• Subregions
• Aftershocks

2. Fault Models (and Geologic Constraints)
• WUS
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INTRODUCTION
This report documents the U.S. Geological Survey (USGS) 2023
time-independent earthquake rupture forecast (ERF) for the
conterminous United States (CONUS), herein abbreviated as
“ERF-CONUS-2023-TI.” An ERF gives the probability of all
possible damaging earthquakes in a region and over a specified
timespan (or a suite of synthetic catalogs for such events), and
by “all” we mean at some level of discretization that is deemed
adequate for hazard and risk quantification. An ERF is one of
the two main model components used in seismic hazard assess-
ment, with the other being a groundmotion model (GMM) pro-
viding an estimate of the shaking produced by each rupture.
Regarding nomenclature, ERFs are also referred to as a “seismic
source model” or “seismic source characterization,” especially in
time-independent analyses. We avoid these names due to ambi-
guity with studies of individual observed earthquakes (e.g., the
“source model” for the Northridge earthquake). Furthermore,
“ERF” better captures the forecasting nature of the model, espe-
cially for the time-dependent extensions we plan to deploy later.
Including “rupture” in the name removes the suggestion that we
are talking about ground motion (earthquake is synonymous
with earthshake). In short, “ERF” is more precise and less
ambiguous, especially for nonexperts.

The work presented here represents an update of the models
utilized in the 2018 USGS National Seismic Hazard Model
(NSHM; Petersen et al., 2020), which largely utilized unmodified
ERF components from the 2014 NSHM (Petersen et al., 2015);
we refer to these previous collective efforts as “NSHM14/18”
hereafter. Although the general goals and strategies articulated
here are applicable to all geographic areas under the USGS earth-
quake hazard purview, specific 2023 ERF details for Hawaii are
given in Petersen et al. (2021), and those for Alaska are being
developed under the leadership of Peter Powers (written comm.,
2023, referred to hereafter as PowersAlaska2023).

Broader goals
The following goals are currently influencing the development
of USGS ERFs:

1. A more comprehensive representation of epistemic uncer-
tainties: A forecast should now be deemed highly questionable
without epistemic uncertainty estimates. The fact that such
uncertainties still grow with each new model indicates that
they have not yet been fully quantified. We want to get to
where these uncertainties are reduced by new scientific studies.

2. More uniformity in model assumptions and methodolo-
gies across regions.

3. More operationalization of model component develop-
ment, which will improve reproducibility, testability, modifi-
ability (e.g., consultants performing site-specific analyses),
and the speed at which we roll out future improvements.
“Operationalization” here means a more “push button” envi-
ronment in which routine processing is moved from
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scientists to computers (freeing the former to focus on
scientific improvements).

4. Impose simplicity wherever we can, even if it means aban-
doning long-cherished assumptions or techniques or logic
tree branches that have been maintained for political expedi-
ency. The main motives here are understandability with
respect to reviewers and practitioners, and getting the next
generation of contributors up to speed (plus the psychological
fact that people tend to dislike what they cannot understand).
The rationalization for simplicity is that a less “realistic”
model can actually be more useful (e.g., less computationally
demanding); we want to find the right balance, which is a
challenge, because this will vary among applications.

5. Deregionalize model component developments, that is,
have the same group of scientists develop like types of com-
ponents for all regions simultaneously rather than having
separate “working groups” doing things independently.
This is more efficient and contributes to uniformity.

6. Deploy models that are extensible with respect to time
dependencies, including elastic rebound, spatiotemporal
clustering, swarms, and induced seismicity.

7. Provide more complete documentation (i.e., minimize the
need to read previous publications for implementation details).

All the above goals are aimed at increasing the rate at which we
can roll out improved andmore useful models, all the while doing
more with less. These goals are admittedly aspirational, or per-
haps even utopian, but we nonetheless believe they are both wor-
thy of pursuit, and that we have at least incrementally manifested
them here. Where we have come up short often reflects time con-
straints, which we intend to address as we evolve intomaintaining
a living “research model” or “forecasting enterprise,” from which
versions can be time stamped for specific official uses (e.g., by
building code committees or for pricing insurance products).

Scientifically, or in terms of improving model realism, the
main improvement here is representing possible multifault
ruptures on explicitly modeled faults. This is not only with

respect to allowing more such ruptures throughout the western
United States (WUS), but alternatively with respect to impos-
ing more segmentation than was applied previously in the
Uniform California Earthquake Rupture Forecast, Version 3
(UCERF3; Field et al., 2014); this improvement reflects the
lively scientific debate over the prevalence of multifault rup-
tures (Schwartz, 2018; Page, 2021).

Model elements
Given the system-level nature of ERF development, a modular-
ized construction is critical to keep things manageable and to
enable different groups of scientists to focus within their respec-
tive areas of expertise. The top-level model components utilized
here include (1) fault model(s), (2) deformation model(s),
(3) earthquake rate model(s); and (4) probability model(s).
These components are depicted and defined further in Figure 1,
which also shows how multicycle physics-based simulators
can be substituted for the earthquake rate and probability com-
ponents. The ERFs presented here are essentially equivalent
to earthquake rate models due to their time independence
(Poisson probabilities, with some possible exceptions as noted
subsequently). Adding elastic rebound and spatiotemporal
clustering time dependencies are planned for the future work.

The earthquake rate models developed here are composed
of one or more of the following types of earthquake sources:

1. fault system solution,
2. classic fault source,
3. fault zone source, or
4. gridded seismicity.

A detailed definition of each of these is given subsequently
(just before describing the specific implementations for 2023),

Fault 

models

of larger, more active faults.

Deformation

models

Provides fault slip rates used to 

calculate seismic moment 

release.

Earthquake-rate 

models

Gives the long-term rate of all 

possible damaging earth-

quakes throughout a region.

Probability 

models

Gives the probability that each 

earthquake in the given 

Earthquake rate model will 

occur during a specified time

Physics-based-simulator

models

Produces synthetic catalogs of events using physics-based 

approaches that track the state of stress and frictional properties 

on faults over time.

Figure 1. The main model components in our earthquake rupture forecast frame-
work. The color version of this figure is available only in the electronic edition.

Volume 114 Number 1 February 2024 www.bssaonline.org Bulletin of the Seismological Society of America • 525

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/1/523/6203283/bssa-2023120.1.pdf
by Indiana University Bloomington user
on 01 May 2024



but we emphasize here that even the seemingly most complex
one (the fault system solution) is conceptually quite simple and
generalized to include everything from classic single-fault mod-
els (Field, Milner, and Page, 2020) to representing results from
multicycle physics-based simulators (e.g., Milner et al., 2021).

These four earthquake source types, as well as the main
components depicted in Figure 1, are influenced by several
subcomponents and/or analyses. A complete list of these for
our 2023 CONUS ERF is given in Table 1, each of which rep-
resents a separate publication. These components are catego-
rized by disciplinary group, again reflecting the system-level
nature of the problem. We reference each of these components
in the detailed explanations subsequently.

Table 1 also lists activities related to ERF construction, with
the greatest effort involving the inversion-based fault system

solutions (with respect to methodology development, compute
time, and analysis of results). Other efforts involve construc-
tion and/or updating other source models, including that for
the Cascadia subduction zone, and deciding how to handle the
influence of creep, aftershocks, and avoiding double counting
of earthquakes when sources are combined. The vast majority
of ERF components have been revamped for this model, and all
were given due consideration.

Epistemic uncertainties
Again, a primary goal is a more thorough and uniform repre-
sentation of epistemic uncertainties, and to this end we use the
standard practice of utilizing logic trees (Fig. 2). A persistent
challenge is how to handle correlation, or lack thereof, between
branches. When uncertainties are both numerous and uncorre-
lated, we will quickly run into the computational impossibility of
systematically traversing all possible branches. As an example,
our 2018 model has three branches for the dip of faults in the
WUS (outside California). The simplest approach is to assume
perfect correlation across the region (all faults have the same dip
deviation on a given branch), leading to three branches. If the
dips are uncorrelated, and say we have 100 faults, we end up
with 1 million branches for this uncertainty alone. In this case
we could switch toMonte Carlo sampling of branches. However,
dips are likely somewhat correlated for nearby faults (e.g., adja-
cent sections of a given fault) but uncorrelated over greater dis-
tances. In this case, we would need to determine the correlation
structure andMonte Carlo sample accordingly, which is not cur-
rently feasible.

We will see that this conundrum potentially applies to
multiple uncertainties, including the newly added fault section
b-value for large earthquakes. Fortunately, this is less of a con-
cern for single site hazard curves (which is what comprises the
USGS hazard maps); that is, hazard at a single site is generally
dominated by nearby faults, and correlation among nearby
faults seems more plausible. The bigger question is how assum-
ing spatial correlation affects spatially distributed hazard and
risk metrics (e.g., statewide portfolio risk analyses)—a concern
that was previously articulated in the context of adding episte-
mic uncertainties to GMMs (Field, Milner, and Porter, 2020).
At the very least, one might consider modifying the weights
assigned to outlier branches in spatially distributed analyses,
because perfect correlation is less likely, otherwise one runs
the risk of exaggerating the width of inferred epistemic uncer-
tainties.

Review process and consensus building
It has become a practical impossibility for any one individual to
fully understand all aspects of a state-of-the-art ERF. This
raises a significant risk that an explicit or implicit assumption
in one ERF component might be inconsistent with that made
in another, which is why a broad, thorough review is critical.
Table 1 represents the discrete elements that have been

TABLE 1
List of Model Components and Associated Publications

Component Authorship

Earthquake geology
WUS geologic constraints Hatem, Collett, et al. (2022)
CEUS geologic constraints Thompson Jobe, et al.

(2022)
CA paleorecurrence intervals McPhillips (2022)
Tectonic geodesy
GPS data compilation Zeng (2022a)
Ghost transient corrections Hearn (2022)
Geodetic creep model Johnson et al. (2022)
Deformation models overview Pollitz et al. (2022)
WUS geologic deformation model Hatem, Reitman, et al.

(2022)
WUS Zeng deformation model Zeng (2022b)
WUS Shen–Bird deformation model Shen and Bird (2022)
WUS Pollitz deformation model Pollitz (2022)
WUS Evans deformation model Evans (2022)
Formal review of WUS deformation models Johnson et al. (2023)
Statistical seismology
Catalog development Shumway and Mueller*

Regional M ≥ 5 rates and b-values Michael2023†

Declustering and smoothing Llenos (2023)†

Earthquake physics
Scaling relationships Shaw (2023)
Rupture plausibility filter Milner et al. (2022)
ERF model construction
Hazard implications of declustering Field et al. (2021)
New inversion methodology Milner and Field (2023)
Geological evaluation of fault-system
solutions

Hatem (2023)†

CEUS fault source models Shumway (2023)†

Cascadia subduction model Powers Cascadia (2023)†

Overview of CONUS ERFs This paper
Formal review of CONUS ERFs Jordan et al. (2023)

CEUS, Central and Eastern United States; CONUS, conterminous United States; ERF,
earthquake rupture forecast; GPS, Global Positioning System; and WUS, Western
United States.
*Available as a part of the NSHM 2023 data release (Petersen et al., 2023b).
†Written communication as described in the main text here.
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reviewed, each of which has also been presented and discussed at
one or more meetings or workshops (most of which were vir-
tual). In addition, the overall model and development process
was overseen by a 19-member participatory review panel, chaired
by Thomas Jordan, and they provided a comprehensive report
including recommendations for future work (Jordan et al., 2023).
But the main charge to this group was to determine whether the
new model represents “best-available science,” the definition of
which they both reviewed and refreshed as representing

“relevance, inclusiveness, verifi-
cation, validation, transparency,
timeliness, and peer review”
(Jordan et al., 2023). This effort
also involved eight different
open-participation briefings
with more than 50 attendees
at each (a link to video record-
ings is provided in Data and
Resources), each of which was
also followed by a closed execu-
tive session of the review panel.

Model results were also scru-
tinized by an ad hoc group of
USGS geologists, who met virtu-
ally several times to examine
earthquake connectivity, size,
and rate implications on indi-
vidual faults; this effort was led
by Alexandra Hatem (USGS,
written comm., 2023, referred
to hereafter as Hatem2023),
and note that all such docu-
ments mentioned in this article
were available to, and consid-
ered by, our participatory review
panel. This level of engagement,
which was also made possible by
an extensive set of web-based
reports, is unique with respect
to NSHM model developments.
This led to several model
improvements as well as future
recommendations.

Subregions
For purposes of model compo-
nent development, analyses,
and comparison with the pre-
vious models, the greater U.S.
region is subdivided into the
following subregions (depicted
in Fig. 3):

• WUS collection,
• Central and Eastern United States (CEUS) collection,
• CEUS,
• UCERF (Greater California),
• Pacific Northwest, and
• Intermountain West.

The first two “Collection” regions are for seismicity data
analyses, and the others are for model analyses. The latter three

LogA+4.1,

from moment

Scaling relationships

(0.166) (0.166) (0.166) (0.166) (0.166)

Mag-area,
average slip

relationships

LogA+4.2,

from moment
Width limited,
from moment

LogA+4.3,

from moment
LogA+4.2,

sqrt length
Width limited,

const stress drop

(0.166)

2023 WUS Logic-Tree Branches

(for long-term model)

W. US 2023 fault model

Earthquake rate models:

Fault models:

Deformation models: 

Segmentation model

(1.0)

M          max 7.3 7.6 7.9

(0.1) (0.8) (0.1)

GK ReasenbergNN
Seismicity declustering

(0.4) (0.4) (0.2)

ZengShen-BirdGeologic EvansPollitz
(0.26) (0.32) (0.32) (0.08) (0.02)

Supra-Seis b-value

0.50.250.0 1.00.75
(0.2) (0.2) (0.2) (0.2) (0.2)

Paleoseismic data fit
Underfit  Evenfit Overfit

(0.33) (0.33) (0.33)

MiddleLowNone ClassicHigh
(0.1) (0.2) (0.3) (0.3) (0.1)

Fixed Adaptive
Seismicity smoothing kernel

(0.4) (0.6)

Low HighPreferred
Total M≥5 rate & b-value

(0.13) (0.74) (0.13)

or -∞ if Classic
Segmentation

Figure 2. Logic tree branches for the western United States (WUS) branch weights are listed in parentheses. The
color version of this figure is available only in the electronic edition.
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regions are referred to collectively as WUS, and note that the
Intermountain West−CEUS boundary utilized here differs
from that applied for GMM selection (Petersen et al., 2023a).
Earthquakes deeper than 35 km in the Pacific Northwest and
UCERF subregions are treated separately as a “Deep” region.
The deregionalization of model component development raises
the question of whether the California portion of the model
should be called “UCERF4”; however, we do not adopt this
acronym here.

Aftershocks
Following UCERF3, aftershocks are now included in the 2023
earthquake rate models, although final ERFs could be “declus-
tered” for hazard computations if so desired, as was done for
UCERF3 in NSHM14/18. Although the declustering algorithm
used previously (Gardner and Knopoff, 1974) does not seem
to influence typical hazard metrics (because it predominantly
only removes smaller events), more scientifically defensible
declustering algorithms (e.g., based on the ETAS model;
Ogata, 1988, 1998) now remove about half of all events, both
large and small, which would not be appropriate for seismic haz-
ard assessment. There is now a substantial body of literature
asserting that we are better off keeping aftershocks and assuming
a Poisson process for 2% or 10% in 50 yr hazard than decluster-
ing with antiquated or biasing methodologies (Marzocchi and
Taroni, 2014; Field et al., 2021; Wang et al., 2021; Michael
and Llenos, 2022). However, at higher probabilities of exceedance
(which may be used for applications such as operating standards)

this approach may not be a good approximation. For this reason,
there is also agreement that the longer-term goal should be to
incorporate time dependencies correctly. In the meantime,
and given the varying consequences of different viable decluster-
ing algorithms, the question of how to handle aftershocks should
be addressed in the context of specific uses, so for now we are
keeping aftershocks to allow the maximum flexibility (although
note that declustering is still required with respect to inferring the
long term spatial distribution of seismicity, as discussed in the
Gridded seismicity sources section).

FAULT MODELS (AND GEOLOGIC CONSTRAINTS)
A fault model gives the 3D geometry of explicitly modeled faults.
More specifically, a fault model is simply a list of fault sections,
for which the latter are defined by a fault trace, dip, upper and
lower seismogenic depth, and a geologically inferred rake. Fault
sections vary widely in length, and some can be quite long if
associated attributes do not vary significantly along strike
(e.g., Maacama and Bartlett Springs are ∼170 km long).
Where faulting is dispersed, meaning that a clear dominant sur-
face is lacking, a fault zone (geographic polygon) is defined
instead, although a “proxy” fault surface may also be provided
(and we have discontinued the UCERF3 practice of assigning a

Figure 3. The various geographic regions utilized in this study as labeled.
CEUS, Central and Eastern United States; UCERF, Uniform California
Earthquake Rupture Forecast; and WUS, western United States. The color
version of this figure is available only in the electronic edition.
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polygon to all faults). This section describes the new fault mod-
els as well as other geologic constraints that are currently avail-
able and utilized.

WUS
A new WUS fault model was recently compiled and published
by Hatem, Collett, et al. (2022), which is shown in Figure 4a.
About 350 new faults have been added (mostly outside
California as can be seen as orange lines in the figure), which
were previously excluded because they lack an explicit geologic
slip-rate constraint. UCERF3 had two fault models (alternative
logic tree branches), but we reduced this to one “preferred”
model here, because the differences were consistently noncon-
sequential among various hazard and risk metrics (e.g., figs. 12,
16, and 17 of Field et al., 2015, fig. 4 of Porter et al., 2017, and
fig. 6 of Field, Milner, and Porter, 2020). There are 1016 fault
sections in this updated fault model.

Hatem, Collett, et al. (2022) also provide an updated com-
pilation of geologic slip-rate estimates at points on faults as well
as a default-range estimate for faults that lack explicit studies
(0 to 0.2, 0.2 to 1.0, and 1 to 5 mm/yr); the locations of all these
are shown in Figure 4b. These slip rates are used to constrain the
deformation models described in the next section.

The paleoseismic event-rate estimates for California faults
have been updated and revised by McPhillips (2022), including
the addition of seven new sites. An innovation of this work is
consideration of whether the event history has been correctly
interpreted (previously assumed), leading to recurrence inter-
vals that are 16% longer, on average, compared with the
UCERF3 estimates (Biasi, 2013), plus the confidence bounds
are wider. This lengthening of recurrence intervals corrects
for possible over interpretations (inferring too many events)
in the previous studies. UCERF3 also utilized average slip-
per-event data compiled by Madden et al. (2013), which
was originally included here in the exact same way (converted
to proxy event rates by dividing slip rate by this average slip).
However, a reexamination of the Madden et al. (2013) meth-
odology and results found that these constraints appear to be
both biased and assigned unrealistically low uncertainty
bounds, making their relatively strong influence highly ques-
tionable. We therefore removed these average-slip constraints
from consideration until such questions can be resolved. The
probability of missed events, an important part of the inversion
fault system solutions described subsequently, remains the
same as applied in UCERF3.

For the Wasatch fault, we apply the 17 paleoseismic event
rate constraints compiled by Valentini et al. (2020), based on
numerous studies referenced therein, and we apply the prob-
ability of missed events model used in that study as well (which
differs from those applied in California). We also utilize the
segmentation boundaries defined by the Working Group on
Utah Earthquake Probabilities (Wong et al., 2016), which
are shown in Figure 5.

CEUS
Updates to the CEUS fault models and associated geologic con-
straints are provided by Thompson Jobe et al. (2022), the
results of which are shown in Figure 6. The most consequential

Figure 4. (a) WUS fault model with orange lines indicate newly added faults.
(b) Geologic slip-rate constraints, for which green circles are locations with
geologic studies and lighter circles are where a generic categorical range of
values is assigned (based on the U.S. Geological Survey [USGS] Quaternary Fault
and Fold Database [QFFD]). Refer to Hatem, Collett, et al. (2022) for details. The
color version of this figure is available only in the electronic edition.
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changes are the addition of two source zones (Central Virginia
and Saline River), plus three other sources that have both an
explicit fault and a polygon zone representation (Joyner Ridge,
Crowley’s Ridge [south] and Crowley’s Ridge [west]). Five fault

zones were converted to explicit
faults (Commerce, Eastern
Margin [north], Eastern
Margin [south], Crittenden
County, and Meeman-Shelby,
the latter of which was previ-
ously called River Picks). The
Meers fault trace was extended
to the west, minor adjustments
were made to the geometries of
four faults (Axial, Bootheel,
New Madrid West, and
Reelfoot), no adjustments were
made to two faults (Charleston
Uplift, New Madrid North),
and no adjustments were made
to four fault zones (Marianna,
Wabash Valley, Charlevoix,
and Charleston). In total, we
have gone from 16 CEUS fault
sources in NSHM14/18 to 21
here. Thompson Jobe et al.
(2022) also summarize the slip
rate and/or paleo event-rate
constraints on each fault source.
How each of these sources is
modeled is discussed in the
Earthquake rate models section.

DEFORMATION MODELS
Model descriptions
Deformation models provide
slip-rate estimates for the explic-
itly modeled faults, and some
also provide “off fault” deforma-
tion as well. Two new and three
revised deformation models
have been developed for the
WUS subregion, each of which
is published in a special issue
of Seismological Research
Letters with an overview paper
by Pollitz et al. (2022). These
models, which are listed and
summarized in Table 2, were
also formally examined by a
semi-independent review team
(Johnson et al., 2023).

All deformation models uti-
lize the Hatem, Collett, et al. (2022) fault model and geologic
slip-rate constraints described earlier (including the ∼350 new
faults that were assigned broad, categorical slip rates due to their
lacking explicit constraints), plus the substantially enhanced

Figure 5. Wasatch fault segment boundaries (white horizontal bars) based on Wong et al. (2016). West Valley fault
in yellow; Wasatch fault sections (as denoted in fault sections database) in green. Inset shows this region location in
relation to WUS states. The color version of this figure is available only in the electronic edition.
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horizontal Global Positioning System (GPS) velocity vectors pro-
vided by Zeng (2022a). The four geodetic-based models also
include corrections for “ghost transients,” meaning time-depen-
dent effects caused by viscoelastic relaxation from large historic
events (Hearn, 2022); this correction increases geodetically
inferred slip rates along the San Andreas corridor, making them
more consistent with geology (refer to Pollitz et al., 2022, their
fig. S4).

Models also utilize a more refined inference and correction
for creep (Johnson et al., 2022), which is based on a factor of

Figure 6. CEUS faults and fault zones. (a) The previous model (“2012 CEUS-SSCn
model” from Coppersmith et al., 2012) versus (b) the new model by Thompson
Jobe et al. (2022). Zoomed-in view near New Madrid, Missouri, for the previous
model (c) and new model (d). Panels (b) and (d) also show the locations of
geologic studies (blue circles). Note that the “lightning bolt”model shown in the
inset of panel (c) is also used in the new model. AF, Axial fault; CC, Crittenden
County; CRS, Crowley’s ridge (south); CRW, Crowley’s ridge (west); CVSZ,
Central Virginia seismic zone; ERF-N, east margin (north); ERM-S, east margin
(south); JR, Joyner ridge; MS, Meeman–Shelby; NMN-L, Charleston uplift; NMN-
S, New Madrid north; NMW, NewMadrid west; RFT-L, Reelfoot; RFT-S, Reelfoot
(south); and RP, River Picks. Refer to Thompson Jobe et al. (2022) for details. The
color version of this figure is available only in the electronic edition.
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∼6 increase in surface creep data (mostly inteferometric
synthetic aperture radar) and an elastic model inversion that
solves for the spatial distribution of interseismic fault creep
on California faults. Substantial creep occurs in northern
California on the central section of the San Andreas fault, along
the Hayward and Calaveras faults through the San Francisco
Bay Area, and along the Maacama and Bartlett Springs faults to
the north. In southern California, creep is observed on the
Coachella segment of the San Andreas fault, the Brawley seis-
mic zone, and along the Imperial and Superstition Hills faults.

Figure 7a shows the average slip rates from the geologic
deformation model, and Figure 7b shows how the other models
differ (ratios with respect to geologic model slip rates). This
comparison reveals considerable variability among models
in many places. This is not surprising, given slip rates are cer-
tainly underdetermined on many faults due to limited obser-
vational constraints, especially in the continental interior
where GPS data are sparser. Agreement between models owes
largely to how much each adheres to the preferred geologic
slip-rate constraints, including the uncertainties, with the
Zeng (2022b) and Shen-Bird (Shen and Bird, 2022) models
effectively applying the narrowest Gaussian prior, the Evans
(2022) model applying a wider Gaussian (that permits slip
rates to fall outside the geologic bounds), and Pollitz (2022)
applying a uniform prior over the bounds (causing the latter
to often produce slip rates at the geologic minimum or maxi-
mum). The geodetic models tend to produce systematically
higher values on very low slip-rate faults (≤0.1 mm/yr), which

appears at least partially required by geodetic data (Pollitz
et al., 2022).

Branch weights
The review team (Johnson et al., 2023) recommended the branch
weights listed as “review team wt” in Table 2 based on a score-
card evaluation of 15 different metrics. In their own words:

We assign the Shen-Bird and Zeng models the highest weight
[0.25] based on their overall favorable comparison across all
metrics. We give the Geologic model a slightly lower weight
[0.2] largely because less information is used to construct this
model and in also because much of the information that con-
strains the Geologic model (preferred slip rates, upper and
lower slip rates, rake) is also used to constrain the geodetic
models. The Pollitz and Evans models provide slip rate esti-
mates that differ most from the other three deformation
models. We give the Pollitz model a modestly lower weight
[0.2] than the Shen-Bird and Zeng models because of system-
atic misfits to the geodetic data and high path integral
weights in some locations. We recommend the lowest weight
be assigned to the Evans model [0.1] because it displays
anomalously high gradients in slip rates along faults, a large
number of slip rate outliers, and numerous faults show slip
sense inconsistent with geology.

The central question is the extent to which the five slip-rate
“samples” available for each fault represent an adequate

TABLE 2
Deformation Models

Name (Weights*) Description

Geologic model (review team wt: 0.2) and (final wt: 0.26) This model, developed by Hatem, Reitman,et al. (2022), assigns the Hatem, Collett, et al.
(2022) geologic slip-rate estimate for faults that have explicit constraints. For other faults, they
did not simply set the preferred slip rate as the midpoint of the default categorical range.
Instead, they derived slip-rate estimates (including uncertainties) by comparing regional
consistency of the categorical ranges with geodetic strain rates in different tectonic
subregions, thereby enabling more subtle adjustments to avoid regional biases.

Shen–Bird (review team wt: 0.25) and (final wt: 0.32) This model, by Shen and Bird (2022), is an update of the Neokinema model by Bird (2009),
which is a kinematic, finite-element code that models neotectonic crustal deformation caused
by fault slip, constrained by geological fault-slip rates, tectonic stress orientations, and GPS
velocities.

Zeng (review team wt: 0.25) and (final wt: 0.32) This model, by Zeng (2022b), utilizes the method of Zeng and Shen (2017) to invert for slip-
rate and strain-rate parameters based on GPS velocities and geologic slip-rate constraints
assuming deep-driven dislocation sources (below a locking depth).

Pollitz (review team wt: 0.2) and (final wt: 0.08) This model, from Pollitz (2022), assumes that interseismic crustal deformation arises from
viscoelastic relaxation of the ductile lower crust and mantle in response to episodic slip events
on faults, compounded by the effect of steady creep on portions of some faults.

Evans (review team wt: 0.1) and (final wt: 0.02) This block model, by Evans (2022), is an inversion-based approach that assumes deformation is
a sum of rigid block rotations plus backslip due to fault locking. The primary improvement over
the previous block models is block-boundary representation for all fault sections, rather than
just a subset, requiring more than 800 blocks that connect the discontinuous faults (generated
with an automated algorithm).

*“Review team wt” is the original deformation-model weight suggested by Johnson et al. (2023), and “Final wt” is the revised, final value applied here.
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approximation of the epistemic uncertainty probability distribu-
tion function (PDF; e.g., what the distribution would be if we had
10,000 credible models). Part of this question is how any null
space is being sampled by each model (the range of solutions
that fit the data equally well). For example, consider two parallel
faults that lack direct geologic slip-rate constraints but are nestled
between two GPS stations; these faults could exhibit a near-per-
fect slip-rate trade-off in terms of satisfying the GPS deformation
(e.g., a maximum slip rate on one with a minim on the other, or
vice versa, or any linear combination of these could fit the data
equally well). Ideally, we would sample multiple models to
represent this epistemic uncertainty, for which the average of
these would split the difference (equal slip rates on each fault).
This average would seemingly reflect what we want from a policy

perspective if we are getting only
one sample from a given model
(as is the case here). The Zeng
and Shen-Bird models sample
the geodetic null space by stay-
ing as close as possible to the
geologic constraint. The Pollitz
and Evans models are less
restrictive, by design, and there-
fore have a greater number of
outliers in both the directions,
and we cannot rule out the pos-
sibility that many of these slip
rates better approximate the sys-
tem. However, questioning the
robustness of high versus low
outliers on nearby faults is war-
ranted, could the slip rates be
swapped without degrading
the fit to data? This gets at the
question of whether currently
reported slip rates represent an
average of all viable samples
from the null space of each
model. This question has not
been thoroughly investigated
and represents an important
challenge to be addressed.

The question here is how to
handle the five slip-rate sam-
ples we have for each fault,
and it turns out that outliers
are quite consequential. This
was discovered by examining
hazard maps generated with
the original weights (Table 2),
for which mean hazard
was appearing far above the
median. Because hazard gener-

ally scales linearly with slip rate, we can illustrate the problem
here without resorting to hazard calculations (slip rate change is
a good proxy for hazard change). Figure 8a shows a scatter plot
of the original branch-averaged slip rate versus the median for
each fault section, indicating that 12% of the means are more
than a factor of 2 above the median, and Figure 8b shows all
the individual model slip rates versus the median (color coded
by deformation model). The most extreme case is the King
Range fault in northwest California, for which the mean
(0.84 cm/yr) is a factor of 60 above the median (0.014 cm/yr)
due to the Evans model having a slip rate that is a factor of 570
above the median (8.0 cm/yr). Thus, high slip rate outliers can
have a disproportionate influence on mean hazard, because the
slip rate can be no less than the product of the outlier value times

Figure 7. (a) Geologic deformation model slip rates and (b) ratio of slip rates for the four other deformation models
(Table 2) relative to geologic slip rates. Adapted from Pollitz et al. (2022). The color version of this figure is available
only in the electronic edition. (Continued)
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that model’s weight. For example, if an outlier is a factor of 100
above the average of the other models, the average is increased
by more than factor of 20 if all five models are equally weighted.
This bias is asymmetric with respect to outliers at the low end,
because a slip rate of zero can only bring the mean down by 20%
if weights are equal, which explains why the means are generally
pulled above the medians in Figure 8a.

One solution is to use a deformation model composed of
median slip rates for our “best estimate” hazard model (propa-
gating this through all other logic tree branches), while keeping
the individual branches with their respective weights to better
understand overall epistemic uncertainties. This makes sense
from a policy perspective in that slip rates effectively stay anch-
ored near geologic values unless at least three models deviate in

the same direction and with
the third-least outlier being
adopted as the slip rate. The
disadvantage is that we have
yet another model to process
and document, and this goes
for any users who want
to implement and explore epi-
stemic uncertainties them-
selves (and we do not want
anyone to ignore deformation
model epistemic uncertainties
because they are among the
most consequential). In other
words, there is a danger that
adding this complexity could
represent a further impedi-
ment to properly exploring
epistemic uncertainties, espe-
cially among user groups.

Another solution suggested
and explored by members of
the participatory review panel
is to apply an outlier replace-
ment scheme, which seems to
work well, but requires some
arbitrary decisions and addi-
tional processing steps. In the
end, we opted for the simplest
approach of downweighting
models that have both
null-space-sampling questions
and concerning outliers.
Specifically, where the mean
is more than a factor of 2 above
the median in Figure 8a, the
Evans and Pollitz models con-
tribute the most consequential
outliers in 64% and 24% of

these cases, respectively. We therefore lowered the weight
on the Evans model from 0.1 to 0.02 and that on the Pollitz
model from 0.2 to 0.08 (and consequently raised the weights
on the other models proportionally; Table 2). A scatter plot of
mean versus median slip rates following this revision is shown
in Figure 8c. The fraction of faults in which the mean is more
than a factor of 2 above the median is now 5% (down from
12%), and the Evans and Pollitz models contribute the most
consequential outliers for 16% and 14% of these cases (down
from 64% and 24%, respectively). We not only used these final
weights in the model presented here, but we also evaluated this
against hazard computed using the median slip-rate model and
the various outlier pruning schemes described earlier to con-
firm overall consistency.

Figure 7. Continued
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One might also be tempted to apply regionally dependent
weights, and in fact there was much discussion of this during
development and review, but this raises challenges that could
not be addressed for the ERF-CONUS-2023-TI (like exactly
how to define the subregions and associated weights). That said,
site specific studies could reweight the complete set of hazard
curves with customized weights (with the implicit assumption
that the weights apply to all faults that influence the hazard
at a site), but this would obviously need to be based on science.

Off-fault deformation
The four geodetic deformation models also provided estimates
of off-fault deformation (fig. 14 of Pollitz et al., 2022 or fig. 4 of
Johnson et al., 2023). However, and as in UCERF3, it is not
clear how much of the implied features are real versus artifacts
of model assumptions and approximations, so we have once
again declined use of these, at least for the ERF-CONUS-
2023-TI. This is consistent with recommendations of the
review team (Johnson et al., 2023), which also discusses what
it might take to improve such estimates.

EARTHQUAKE RATE MODELS
An earthquake rate model gives the long-term rate of every
possible earthquake rupture in a region (and at some level
of discretization). The model is essentially a list of “sources,”
for which each of the latter represents a collection (or list) of
related ruptures. The next four sections define and describe
each of the source model types, and the instances developed
and utilized in this update, followed by a section describing
details and issues associated with combining them into a com-
plete model. The goal has not only been to be as concise as
possible, but also to highlight all salient changes and influential
decisions; many important but potentially distracting imple-
mentation details can be found in the references cited.

Inversion-based fault system solutions
An inversion-based fault system solution is just one type (or
subclass) of fault system solution, with the latter being defined
as a source that represents the long-term rate of every possible

rupture on a potentially interconnected fault system. More
specifically, this generalized source is composed of:

1. a list of fault subsections (including a finite-surface repre-
sentation of each), and

2. a list of fault ruptures (each of which has a magnitude, long
term rate, average rake, and a finite rupture surface defined
as a list of utilized subsection indices).

The primary advantage of this source type is representation
of multifault ruptures, although it is equally applicable to a sin-
gle, isolated fault (e.g., Field, Milner, and Page, 2020). In addi-
tion, this definition says nothing about how the model is
created; traditionally, this was via an inversion approach (dis-
cussed subsequently), but it could also represent a prescriptive
model (e.g., segmented or isolated faults with a prescribed
magnitude–frequency distribution (MFD) and “floating” rup-
ture assumptions) or a model inferred frommulticycle physics-
based simulators, the latter of which might also provide rup-
ture slip-time histories for use in physics-based ground motion
modeling (e.g., Milner et al., 2021). Another important advan-
tage is built-in tools for computing implied attributes such as
slip rates, recurrence intervals, nucleation and participation
MFDs, and slip probability distributions along strike (e.g.,
to predict what would be seen at a paleoseismic site; Hecker
et al., 2013). Depending on how the model is constructed,
potential disadvantages are discretization issues and non-
smooth models (e.g., jagged MFDs).

At present, all WUS faults are modeled as fault system
solutions, with the vast majority being inversion based. The
inversion approach is now well-documented in the literature

Median slip rate (cm/yr) Median slip rate (cm/yr) Median slip rate (cm/yr)

(a) (b) (c)

Figure 8. Deformation model slip-rate scatter plots. (a) Original branch-aver-
aged slip rate versus the median among all models for each fault section
(based on the weights recommended by the deformation model review
team, Table 2). (b) The slip rate from each deformation model (Table 2, color
coded as labeled) versus the median. (c) Branch-averaged slip rates, based
on final revised weights (Table 2), versus the median. The color version of
this figure is available only in the electronic edition.
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(Andrews and Schwerer, 2000; Field and Page, 2011; Field et al.,
2014; Page et al., 2014; Field, Milner, and Page, 2020; Valentini
et al., 2020), and one could argue that these models have under-
gone much more scrutiny and testing than the classic models
discussed subsequently. Significant uncertainties remain, how-
ever, especially with respect to the prevalence of multifault rup-
tures, with Schwartz (2018) arguing that UCERF3 went too far
and Page (2021) countering that it did not go far enough. To
acknowledge this uncertainty, and to better quantify the influ-
ence on hazard, recent papers have endeavored to make the
degree of segmentation and the propensity for multifault rup-
tures an adjustable parameter (Field, Milner, and Page, 2020;
Valentini et al., 2020). Further improvements on this and other
aspects of the inversion have also been made in the context of
this project, leading us to assert that we can now span a complete
range of reasonable models (e.g., from strictly segmented models
to ruptures that can jump up to 15 km). Full details of the new
inversion protocol are given in Milner and Field (2023), includ-
ing a quantification of methodological differences (by compar-
ing UCERF3 results to the new inversion protocol applied with
UCERF3 data constraints). This new inversion protocol and
results for WUS faults are summarized here.

Defining the rupture set. The goal of the inversion is to
quantify the rate of all plausible supra seismogenic ruptures,
which are defined as events that have rupture lengths greater
than or equal to the down-dip width (DDW). To this end, the
1016 fault sections are subdivided into lengths that are equal to
(or just less than) half the DDW, yielding 5572 subsections in
the WUS (and note that, to avoid confusion, the original fault
sections are sometimes referred to as “parent fault sections”).
Supra seismogenic rupture surfaces are defined by two or more
neighboring subsections.

The consequent set of possible earthquakes is effectively
infinite without further considerations, so a plausibility filter
is applied to cull the ruptures to a credible, representative, and
manageable set. A new approach was developed by Milner
et al. (2022) for this purpose, which, relative to that applied
in UCERF3, is more permissive and has more connectivity
(e.g., rupture jumps up to 15 km), yet heavily penalizes long
ruptures that take multiple improbable jumps. It also reduces
the number of nearly identical ruptures by increasing rupture
lengths geometrically at large magnitudes. Milner et al. (2022)
also found the new approach to be more consistent with results
implied by the RSQSim multicycle physics-based simulator
(Dieterich and Richards-Dinger, 2010; Shaw, 2019).

Figure 9 shows which sets of WUS faults are interconnected
by <15 km, implying multifault ruptures are possible almost
everywhere. Applying the Milner et al. (2022) plausibility filter
to the WUS fault model yields 582,004 ruptures, which is
roughly double the number in UCERF3. Again, this is the set
that is considered to have a nonzero probability of occurrence;
the long-term rates will be determined by the inversion.

Treatment of fault creep. The Johnson et al. (2022) analysis
of creep also provided deformation model-specific moment-rate
reductions (creep fraction) for each creeping fault. Following
UCERF3, we partition this between an aseismicity factor (a
reduction in rupture area) and a coupling coefficient (a reduction
of slip rate). The idea is that for slowly creeping faults, creep
occurs predominantly at the top of the seismogenic zone, result-
ing in a reduction of seismogenic area, whereas there is creep at
all depths for highly creeping faults, which effectively reduces
the seismogenic slip rate, and therefore the rate of ruptures
through highly creeping areas. We define a threshold creep frac-
tion (γ), such that if creep fraction ≤γ

aseismicity factor � creep fraction

coupling coefficient � 1:0,

or if creep fraction >γ:

aseismicity factor � γ

coupling coefficient � 1:0 −
1

1 − γ
�creep fraction − γ�:

In UCERF3, the creep fraction threshold was set as γ � 0:9,
meaning rupture areas were reduced by up to 90%. This rather
large reduction was applied to get magnitude (M) ∼6 earth-
quakes from the Parkfield section of the San Andreas fault.
We have lowered γ to a more physically realistic value of
0.4 here, in part, because the new creep and deformation mod-
els imply greater creep fractions at Parkfield, and consequent
magnitudes are within uncertainties. UCERF3 also capped
creep fraction at 0.95 (preventing seismogenic slip rates from
going to zero on the San Andreas fault creeping section); we
have relaxed this cap, because the deformation models now
span a wider range of implied moment-rate reductions. For
faults that lack a creep fraction constraint, we apply a default
value of 0.1 (the approximate average over where it is known),
consistent with UCERF3.

Scaling relationships. The magnitude and average displace-
ment for each rupture are defined by a scaling relationship, the
choices of which are based on the recent revaluation by Shaw
(2023). The four magnitude–area scaling relationships for plate
boundary faults are as follows:

M � log�A� � 4:1

(Working Group on California Earthquake Probabilities
[WGCEP], 2003),

M � log�A� � 4:2

(WGCEP, 2003),
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Figure 9. WUS fault system interconnectivity. Colors represent sets of faults
that are connected by <15 km (measured in three dimensions). There may
not be any single rupture that connects all such sections, but, rather, chains
of ruptures connect the sections. Only the 10 largest clusters are plotted

with bold colors; smaller clusters are plotted in random saturated colors, and
fully isolated faults are plotted in black. The color version of this figure is
available only in the electronic edition.
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M � log�A� � 4:3

(WGCEP, 2003),

M � 3:98� log�A� � �2=3� log
0
@2Max

�
1:0,

�������������
A=W2

o

p �
1�Max

�
1:0,

�
A

7:4W2
o

��
1
A

(Shaw, 2023), in whichM is the magnitude, A is the area (kilo-
meters, and reduced by aseismicity factor), andWo is the origi-
nal DDW (unreduced by aseismicity). These options, plotted
in Figure 10a, are referred to as “LogA + 4.1,” “LogA + 4.2,”
“LogA + 4.3,” and “width limited,” respectively. LogA + 4.3 was
added after Shaw (2023) was published to represent the pos-
sibility of even larger slip for given rupture length, based on
reasons documented by the review panel (Jordan et al., 2023).

Three different approaches (Shaw, 2023) are used to get
average slip for each rupture (Dr). The first, called “from
moment,” is computed from the magnitude-implied moment
(Mor � 101:5M�9:05), rupture area (Ar), and shear modulus
(μ � 3:0 × 1010 Pa) as follows:

Dr �
Mor
μAr

� 101:5M�9:05

μAr
:

The second average slip equation, called “sqrt length,” is

Dr � 0:22
�����
Lr

p
,

in which Lr is rupture length in kilometers, and the third, called
“const stress drop,” is

Dr � 0:151
�
7
3Lr

� 1
30

�
−1
:

The logic tree branches shown in Figure 2 represent the six
scientifically viable combinations of the three magnitude and
three average slip equations, each of which is given equal weight
(refer to Shaw, 2023 for details, including full functional forms
of equations in terms of physical parameters). Figure 10b shows
implied average slip versus rupture length for the six branches.
The “sqrt length” and “const stress drop” relationships, relative
to“frommoment,” generally give smallerDr for longer ruptures.
This difference reflects the epistemic uncertainty regarding the
depth to which large ruptures penetrate; the from moment
model assumes that ruptures do not penetrate below the depth
of microseismicity, necessitating a larger average slip than typ-
ically observed at the surface, whereas the other two models
assume that surface slip is consistent with that at depth, and that
large ruptures must therefore penetrate to greater depths.

The branches are largely consistent with those applied in
UCERF3, with the exception that the Hanks and Bakun (2008)
model has been removed due to unrealistically large slips for
large ruptures (green line in Fig. 10b), and the LogA + 4.1
and LogA + 4.3 options have been added to provide more epi-
stemic uncertainty. We also removed a UCERF3 restriction in
which the sqrt length and const stress models were not used if
average aseismicity was greater than 0.2. All of these scaling
relationships are new for faults outside California, as previous
USGS NSHMs only applied the Wells and Coppersmith
(1994) magnitude–length relationship in those areas (ignoring
DDW variations). The latter has been abandoned for consis-
tency, and because it is insensitive to DDW.

Slip-rate and paleoseismic event-rate matching. The
equations currently used in the inversion are summarized
and described in Table 3. Equation set (1) matches the slip
rates provided by a chosen deformation model. These equa-
tions require a slip along rupture (Dsr) model, which gives
the average slip on the sth subsection for the rth rupture.
UCERF3 utilized two options (logic tree branches): a tapered
(Sin1=2) and a uniform (boxcar) model. These alternatives were
consistently nonconsequential across all hazard and risk met-
rics analyzed, so we now use only the uniform (boxcar) option,
although the tapered option is still maintained for sensitivity
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Figure 10. (a) The magnitude–area and (b) slip–length relationships utilized
here, plus one (Hanks and Bakun, 2008; green) used previously in the
Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3), but now
excluded due to the large, implied slips for long ruptures (refer to Shaw, 2023
for full description). These curves assume a down-dip width (DDW) of 11 km.
The color version of this figure is available only in the electronic edition.
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tests. Although each deformation model provided a fault-spe-
cific slip-rate uncertainty, we originally assumed a 10% stan-
dard deviation due to questions of overall reliability and
consistency between models, and to control the inversion
behavior for which uncertainties are high (essentially overfit-
ting the data with an assumption that a given deformation
model is correct). This 10% uncertainty turned out to be
too large for higher slip-rate faults (poor solution fits), which
we remedied by applying a 10% cap to uncertainties, retaining
the original deformation model uncertainty if it is less than this
threshold, which is often the case for high slip-rate faults.

Equation set (2) matches paleoseismic recurrence intervals as
in the previous studies, and equation set (3) enforces an along-
strike smoothness to prevent strong rate spikes or troughs at
paleoseismic sites (or where segmentation is imposed, as dis-
cussed subsequently); this was applied independently in
UCERF3 for each magnitude bin, but we have since determined
that applying this to the total supra seismogenic rate is adequate
(Field, Milner, and Page, 2020). We also now have three logic
tree branches with respect to how well paleoseismic recurrence
intervals are fit (under-, even-, and overfit; Figure 2) to further
quantify the influence of these data (in UCERF3 results were
effectively slightly underfit); this was achieved by multiplying
data uncertainties in the inversion by 0.2, and 10 for the over
and underfit cases, respectively

Equation set (4) constrains a group of ruptures to have a
specified total rate, which is only used to ensure that M ∼6
ruptures on the Parkfield fault section have a collective rate
of once every 25 yr (as was done in UCERF3).

Target MFDs and b-value branches. Equation set (5) in
Table 3 imposes a total regional MFD constraint for supraseis-
mogenic, on-fault ruptures. This was derived using a reason-
able but somewhat complex and confusing procedure in
UCERF3, which involved summing gridded seismicity rates
inside assumed fault zone polygons and making other assump-
tions to obtain the target MFD. As such, the target MFD was
conditioned on the gridded seismicity branch, increasing the
number of inversions by a factor of 18 (the number of gridded
seismicity branches in UCERF3; here it would be a factor of
54). Our new inversion protocol decouples inversion-based
fault system solutions from the gridded seismicity model; that
is, the gridded seismicity model now depends on the inversion
rather than the other way around.

It is useful to introduce another constraint and logic tree
branch before discussing how the total regional target MFD
is now computed. Equation set (6) allows us to target a specific
nucleation MFD on each fault subsection. In UCERF3, this was
used to constrain results to be as close to the previous model
(UCERF2; Field et al., 2009) as possible, thereby allowing devi-
ations from UCERF2 only to the extent required by other data
constraints. Although this was defensible at the time from a pol-
icy perspective, it did limit the range of epistemic uncertainties
considered and perhaps anchored the model inappropriately.

To map out a more complete set of models, we sweep over a
range of target on-fault b-values for supraseismogenic rupture
nucleation. The target MFD in equation set (6) is generated for
each fault subsection by constructing a truncated Gutenberg–
Richter (GR) distribution between the minimum and the

TABLE 3
Inversion-Based Fault-System Solution Equation Sets

Equation Set* Description
(1)

PR
r�1 Dsr f r � vs Slip-rate matching: vs is the subsection slip rate, and Dsr is the slip on the sth subsection in the rth event, averaged

over multiple occurrences of the rupture and as measured at midseismogenic depth.
(2)

PR
r�1 GsrP

paleo
r f r � fpaleos Paleoseismic event rate matching: fpaleos is a paleoseismically inferred event rate estimate,Gsr specifies whether the

rth rupture utilizes the sth subsection (0 or 1), and Ppaleor is the probability that the rth rupture would be seen in a
paleoseismic trench.

(3) Rs � Rs−1�Rs�1
2 Fault section smoothness constraint: This forces the total participation rate Rs to vary smoothly along a parent fault

section, in which the s−1 and s+1 subsections are adjacent to the sth subsection.
(4)

PR
r f r � f apriori A priori constraint: This constrains a set of ruptures (ˏR) to share a collective target rate (f apriori).

(5)
PR

r�1 M
m
grf r � Rmg RegionalMFD constraint: This enables forcing a group (g) of ruptures (e.g., those in a geographic region or those on

an interconnected set of faults) to have a specified total MFD, such as Gutenberg–Richter. Rmg represents the
nucleation rate for the mth magnitude bin for the gth rupture group. MatrixMm

gr indicates whether the rth rupture is
both part of the gth group and falls in the mth magnitude bin (0 or 1).

(6)
PR

r�1 M
m
sr f r � Rms Fault section MFD constraint: This enables forcing subsections to have a specific nucleation MFDs. Rms is the

nucleation rate for the mth magnitude bin on the sth subsection. MatrixMm
sr contains the product of whether the rth

rupture falls in the mth magnitude bin (0 or 1) multiplied by the fraction of that rupture that nucleates on the sth
subsection.

(7) Rss ≤ FssˏMin�Rs,Rsˏ � Basin segmentation constraint: This constrains the maximum co-rupture rate (Rssˏ ) between two subsections (s and
s
ˏ
) to be less than or equal to a specified fraction (Fssˏ ) of the lowest participation rate on either subsection (Rs and Rsˏ ).

(8) Rssˏ ≤ Min
�
1,e dss

ˏ−δ
do

�
Min�Rs,Rsˏ � Distance-dependent segmentation constraint: Same as equation set (7), but where Fssˏ is replaced with a function

that decreases exponentially with jump distance (dss
ˏ ) according to decay-rate parameter do and offset parameter δ

(the latter relaxes the penalty up to this distance).

*f r represents the frequency or rate of the rth rupture (what we are solving for).
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maximum supraseismogenic magnitude on that subsection,
applying the chosen b-value and scaling the y axis to satisfy
the moment rate implied by the target subsection slip rate
(from the chosen deformation model). By applying a range
of b-values (e.g., branches between 0.0 and 1.0; Fig. 2), we
are effectively sweeping over a range of total rupture rates
(because the latter varies monotonically with b-value). Total
rupture rate is a reasonable proxy for hazard, and varying
b-value allows us to dial between the two extremes: the maxi-
mum rate model (if only the minimummagnitude ever occurs)
and the minimum rate model (if only the maximum magni-
tude occurs); refer to figure 6 of Field, Milner, and Page
(2020) for an illustration of this. Instead of applying the entire
nucleation MFD to each subsection, we also support the option
of applying only total nucleation rate, which was found by
Field, Milner, and Page (2020) to produce equivalent hazard
even though final MFDs can be a bit different (their fig.
16). We use the latter constraint in the inversion results pre-
sented here (i.e., we apply a b-value consistent total rate con-
straint to each subsection rather than a complete target MFD;
this is equivalent to removing them superscript in equation set
6 or having a single magnitude bin that is wide enough to
include all ruptures).

The total regional MFD constraint for supraseismogenic rup-
tures (equation set 5) is simply the sum the subsection MFD

targets just described. We assume that supraseismogenic, on-
fault b-values are correlated across the region, which, as noted
in the Introduction, may not be correct. Although adjacent fault
sections most certainly have correlated b-values, because they
participate in the same larger events, it is reasonable to presume
that distant faults do not. It is not clear how one would define
and sample from some b-value correlation structure, so we are
stuck with assuming perfect spatial correlation, at least for now.
Again, this is a safer assumption for site-specific hazard curves,
but reconsideration of outlier branch weights might be appro-
priate for spatially distributed studies (e.g., portfolio risk analy-
ses), but such adjustments should be based on science.

Segmentation constraints. The simplest segmentation
constraint (equation set 7, Table 3) involves constraining
the co-rupture rate of two subsections (i.e., on opposite sides
of a segmentation boundary) to be less than some specified
fraction (Fss

ˏ) of the minimum final participation rate on either
of those subsections (referred to hereafter as the “fractional
passthrough rate”). As Fss

ˏ goes to zero, no ruptures can pass
through the boundary, and the constraint has no impact as it
goes to 1.0. This constraint is applied at the Wong et al. (2016)
segmentation points on the Wasatch fault (Fig. 5), for which
we apply Fss

ˏ values of 0.0, 0.25, 0.5, 0.75, or 1.0 depending on
the segmentation logic tree branch (Table 4).

For all other faults we apply the jump-distance-dependent
segmentation model represented by equation set (8), for which
the fractional passthrough rate is now distance dependent.
There is no penalty out to some specified distance (δ), beyond
which the maximum passthrough rate falls exponentially
according to the value of the decay parameter (do). This is
an inequality constraint, meaning relative passthrough rates
can be less but not more than the constraint. Figure 11 shows
the passthrough rates versus jump distance for our three inter-
mediate segmentation branches (also described in Table 4).
Recall that UCERF3 had only a strict cutoff distance at
5 km, with no penalty for shorter jumps and zero allowance
for longer ones.

Introducing segmentation constraints creates a potential
inconsistency with how we construct the subsection target
nucleation MFDs (discussed earlier). Recall that the chosen
b-value was said to be applied out to the maximum supra-
seismogenic magnitude available. However, because we dial
up segmentation, we must also be lowering the frequency
of these largest ruptures (plus increasing the rate of smaller
events to match slip rates). In other words, the target MFD
should depend on the segmentation model, with more rolloff
being applied at higher magnitudes for more segmented mod-
els. Milner and Field (2023) explored a variety of options for
correcting this. The simplest option involves using strict
distance cutoffs in the inversion, as in UCERF3, for which
the target MFD algorithm described earlier is most credible
(a strict cutoff in jump distance is more consistent with a

TABLE 4
Segmentation Branch Options

Branch
Name Segmentation Rules Applied

None No segmentation constraint (jumps allowed up to 15 km)
No limit on the maximum rupture length

Low Distance-dependent parameters: do � 4 km; δ � 3 km
Maximum rupture length = 800 km
San Andreas fault (SAF) creeping section: Fssˏ � 0:75*

Wasatch: Fssˏ � 0:75
Medium Distance-dependent parameters: do � 3 km; δ � 2 km

Maximum rupture length = 700 km
SAF creeping section: Fssˏ � 0:5
Wasatch: Fssˏ � 0:5

High Distance-dependent parameters: do � 2 km; δ � 1 km
Maximum rupture length = 600 km
SAF creeping section: Fssˏ � 0
Wasatch: Fssˏ � 0:25

Classic Parent fault sections prevented from rupturing with
neighbors and ruptures are prescribed using target MFDs†

“Special” faults can rupture designated sections
(do � 2 km; δ � 1 km)
Maximum rupture length = 500 km
SAF creeping section: Fssˏ � 0
Wasatch: Fssˏ � 0

*Note that the SAF creeping section fractional passthrough constraint is applied at
each end of the parent fault section (see Milner and Field, 2023 for details).
†Note that if supra-seismogenic b-value = 0, full-fault rupture is applied for nonspecial
faults to be consistent with traditional implementations.
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strict cutoff in the MFD). We then compute a suite of inver-
sions for a range of strict distance cutoffs (e.g., at 1 km incre-
ments between 3 and 15 km) and then weight-average these
solutions by whatever amounts produce the desired distant-
dependent segmentation (average passthrough rates) using
the property that a linear sum of models is also a viable
model. Although conceptually simple (and effective), this
approach requires more inversions and postprocessing steps
(inverting for weights that match the distance decay and sum-
ming the models accordingly). We, therefore, not only
applied one of the more conceptually complicated options
for the results presented here (refer to appendix A of
Milner and Field, 2023 for details), but we also confirmed that
implied differences for the various options are minimal (≤3%)
compared with other epistemic uncertainties.

Two final segmentation branches were applied to bracket
the others with more extreme end members. One branch
(None) applies no segmentation constraint and allows rupture
jumps up to 15 km (with no distance penalty). A justification
for this is that we do not really know the true connectivity at

depth, so this branch errs on the side of caution (e.g., what
appears to be a 10 km gap might be less). The other branch
(Classic) mimics the traditional strict-segmentation approach
in confining ruptures to parent faults sections (no jumps
between them). A range of b-values is still applied in accor-
dance with the logic tree branches, and rupture rates are pre-
scribed in the traditional way (distributed uniformly along the
fault) rather than conducting an inversion, unless one or more
paleoseismic event rates are available. A further modification is
that only full-fault rupture is imposed on the b-value = 0
branch (effectively changing the b-value to −∞), thereby ensur-
ing that we have this traditional full-fault-rupture-only model
as well. Exceptions are made on this Classic branch for the
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dashed line depicts segmentation used in UCERF3. See Table 4 for details. The
color version of this figure is available only in the electronic edition.
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“Special” faults listed in Table 5, each of which was either con-
nected in the previous studies or has had a large historic earth-
quake that extended beyond individual fault sections (refer to
Table 5 caption for details). For these we apply an inversion for
which ruptures are confined to the set of subsections defined
for each special fault (with do � 2 km and δ � 1 km), and we
do not apply the 0 to −∞ b-value override. For the Wasatch
fault, we also apply strict segmentation (Fss

ˏ � 0) in the inver-
sion for this classic branch.

An additional option is whether ruptures can pass through
the San Andreas creeping section, which is handled by effec-
tively varying Fss

ˏ (in equation set 7) between 0 and 1 depend-
ing on the segmentation branch (Table 4). However, on even
the most permissive branch (Fss

ˏ � 1) there are still significant
slip-rate reductions due to creep, the additional penalty pro-
vided Fss

ˏ ≤ 1 accounts for other possible dynamic rupture
impediments.

A final constraint applied for each segmentation branch is
the maximum rupture length, which varies from a hard cutoff
at 500 km on theClassic branch, increases by 100 km increments
on intermediate branches, and ends with no limit on the “None”
branch. This length restriction, which has nearly zero impact on
hazard metrics considered here, was added late in the project
based on feedback from our review panel and for reasons that
are discussed subsequently in the context of results.

Some implementation details. We continue to use the
Page et al. (2014) simulated annealing algorithm to solve the
inversion, but with some enhancements from Field, Milner,
and Page (2020) and even more from Milner and Field
(2023). These include refinements with respect to the various
simulated annealing options (rupture sampler, perturbation
function, cooling schedule, completion criteria, and nonnegativ-
ity constraint). The first author of Milner and Field (2023) has

TABLE 5
Special Faults: The Fault Sections (Index, Name) Associated with Each of These Are Combined for the Classic Segmentation
Model Branch

Name (Inclusion Basis) Index (Name of Parent Sections Included)

San Jacinto (UCERF2 type A)* 154, Lytle Creek (San Jacinto, connector); 803, San Jacinto (Clark); 804, San Jacinto (Anza); 805, San
Jacinto (stepover); 806, San Jacinto (San Jacinto Valley); 807, San Jacinto (San Bernardino); 800, San
Jacinto (Superstition Mountain); 801, San Jacinto (Borrego); 802, San Jacinto (Coyote Creek)

Calaveras (UCERF2 type A) 84, Franklin; 295, West Napa; 346, Southampton; 354, South Napa; 920, Calaveras (south, Paicines);
921, Calaveras (south); 922, Calaveras (center); 923, Calaveras (north)

Hayward-Rodgers creek (UCERF2 type A) 11, Bennett Valley; 155, Maacama; 900, Hayward (south, extension); 901, Hayward (south); 902,
Hayward (north); 903, Rodgers Creek-Healdsburg

Garlock (UCERF2 type A) 880, Garlock (west); 881, Garlock (center); 882, Garlock (east)
San Andreas (UCERF2 type A) 19, Brawley; 126, Imperial; 166, Mill Creek (San Andreas, north branch); 168, Mission Creek; 244, San

Gorgonio Pass; 355, Cox Ranch; 700, San Andreas (Coachella); 701, San Andreas (San Gorgonio Pass -
Garnet Hill); 702, San Andreas (San Bernardino, south); 703, San Andreas (San Bernardino, north); 704,
San Andreas (Mojave, south); 705, San Andreas (Mojave, north); 706, San Andreas (Big Bend); 707, San
Andreas (Carrizo); 708, San Andreas (Cholame); 709, San Andreas (Parkfield); 710, San Andreas
(Creeping); 711, San Andreas (Santa Cruz Mountains); 712, San Andreas (Peninsula); 713, San Andreas
(North Coast); 714, San Andreas (Offshore); 715, San Andreas (Banning)

Elsinore (UCERF2 type A) 840, Elsinore (Coyote Mountains); 841, Elsinore (Julian); 842, Elsinore (Temecula); 843, Elsinore
(stepover); 844, Elsinore (Glen Ivy)

Wasatch (Wong et al., 2016) 2780, Wasatch (Brigham City); 2778, Wasatch (Clarkston Mountain); 2789, Wasatch (Collinston); 2782,
Wasatch (East Bench); 2786, Wasatch (Fayette); 2791, Wasatch (Foothills); 2785, Wasatch (Levan); 2229,
Wasatch (Malad City); 2787, Wasatch (Nephi, north); 2784, Wasatch (Nephi, south); 2783, Wasatch
(Provo, north); 2790, Wasatch (Provo, south); 2792, Wasatch (Salt Lake City, north); 2793, Wasatch (Salt
Lake City, south); 2788, Wasatch (Virginia Street); 2781, Wasatch (Weber)

Landers (Hist. Qk) 27, Camp Rock; 78, Emerson-Copper Mountain; 119, Homestead Valley; 129, Johnson Valley (north);
135, Kickapoo; 23, Burnt Mountain; 79, Eureka Peak

Hector Mine (Hist. Qk) 113, Hector Mine; 210, Pisgah-Bullion Mountain-Mesquite Lake
Hebgen Lake (Hist. Qk) 2305, Hebgen; 2329, Red Canyon
Pleasant Valley (Hist. Qk) 1208, Pleasant Valley (Sou Hills); 1207, Pleasant Valley (Pearce); 1209, Pleasant Valley (Tobin); 1206,

Pleasant Valley (China Mountain)
Cedar Mountains (Hist. Qk) 1080, Monte Cristo Valley; 1260, Gabbs Valley (unnamed); 1171, Gabbs Valley
Lost River (Hist. Qk) 2505, Battle Rock; 2226, Lone Pine
Sonora (Hist. Qk) 2062, Pitaycachi (north); 2063, Pitaycachi (south)
Fairview Peak 1173, Gold King; 1126, West Gate; 1182, Louderback Mountains; 1051, Fairview

Fault sections are either treated as such in the previous studies or based on historical earthquakes (“Hist. Qk”) as noted next to the names.
*“UCERF2 type A” means that it was defined in Field et al. (2009). UCERF2, Uniform California Earthquake Rupture Forecast, Version 2.

542 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 1 February 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/1/523/6203283/bssa-2023120.1.pdf
by Indiana University Bloomington user
on 01 May 2024



also made the following important enhancements: (1) a new
OpenSHA modules framework to track what options were used
for each inversion (for reproducibility); (2) implementation of
dynamic equation set reweighting to ensure more uniform fits to
different data types; (3) improved code efficiencies, which have
reduced compute times by a factor of 200 relative to UCERF3
computations; and (4) operationalized generation of web-based
solution reports (see Data and Resources).

The inversions can be done for the entire WUS or separately
for each group of interconnected faults (those depicted in Fig. 9,
some of which are single, isolated fault sections). We chose the
latter for the results presented here, but differences are negligible
provided other constraints are handled consistently.

UCERF3 applied a slip-rate reduction of 4%–10% (depend-
ing on the logic tree branch) to account for the moment
released by subseismogenic, on-fault ruptures, whereas no such
reduction was made outside California in NSHM14/18. We
tried but failed to come up with a new, defensible approach
for specifying these values on a fault-specific basis (attempts
are fraught with debatable assumptions), so we are currently
applying no such correction, although a single across-the-
board value (e.g., 7%) might be more defensible.

Model nonuniqueness. It is well-documented that fault sys-
tem solutions are nonunique, given the underdetermined nature
of the problem, because there are many more unknowns (rup-
ture rates) than there are data constraints (Field et al., 2014; Page
et al., 2014; Field, Milner, and Page, 2020). This means there is
an effective infinite number of different models that will satisfy
the data constraints (the so-called “null space”), although these
are also bounded by the minimum- and maximum-rate models
discussed earlier (and in Field, Milner, and Page, 2020). Given
that simulated annealing is a random sampling algorithm, one
might hope that multiple runs would sample the null space uni-
formly, thereby mapping out a complete range of models (epi-
stemic uncertainties). However, this in not generally the case,
meaning additional constraints need to be applied to sweep
across the null space, and not doing this can lead to solutions
that are biased by the simulated annealing starting model or
rupture sampler (Field, Milner, and Page, 2020). This is one
of the primary reasons we added the b-value branches because
we believe that these give us more control over where solutions
land, and allow us to sweep across a reasonable range of models
between the minimum- and the maximum-rate solutions.

Another manifestation of nonuniqueness is that solutions
typically have only a small fraction of nonzero rate ruptures
(∼9% on average here), and that different simulated annealing
runs will have a somewhat different set due to the random
sampling. Fortunately, these differences have negligible influ-
ence on hazard, because the latter is generally independent of
the exact endpoint of ruptures (being much more influenced
by the MFD at the nearest point on a fault, which is now more
explicitly constrained). In fact, Field, Milner, and Page (2020)

demonstrated that two solutions with no overlapping ruptures
(i.e., the second run was prevented from sampling ruptures
that had nonzero rates in the first) produce nearly identical
hazard (their fig. 12b). Having a lot of zero rates is good in
terms of faster hazard calculations (fewer ruptures to loop
over) but problematic in terms of testing models against the
future earthquakes (in which case it is unwise to say anything
cannot happen if the data are equivocal). In UCERF3, we
applied a water level to rupture rates to ensure all had nonzero
values, but we have dropped this approach here in part because
it has no effect on hazard. Averaging over all logic tree
branches raises the percentage of nonzero rate ruptures to 99%.

Another attempt we have made is to use the random nature
of simulated annealing to even fit the data, meaning it would
produce a range of models for which misfit statistics exactly
match the uncertainties of applied data. Unfortunately, we have
not been able to get this to work either, as average models can
end up significantly biased with respect to the target constraints
(e.g., fig. 14 of Field, Milner, and Page, 2020). Achieving this
would apparently require random sampling the data constraints
(from the associated uncertainty distribution) and overfitting
these samples in the inversion. The challenge is that data con-
straints are likely correlated (e.g., slip rates on adjacent fault sub-
sections), so again, we have not attempted this here. The bottom
line is that we have largely overfit data constraints in this study,
except where there are incompatibilities between them, and the
set of nonzero rate ruptures for individual branches is certainly
sensitive to this overfitting (data “noise” is affecting which rup-
tures are given a nonzero rate). Averaging over all branches
helps smooth these variations out. None of these issues have
been found to affect hazard inferences.

Other considerations. Given the set of logic tree branches
governing these fault system solutions, we have 2250 different
inversion models. Each takes about 1 hr to compute on a typical
desktop computer. The set presented here was computed on a
cluster computer at the University of Southern California’s
Center for Advanced Computing Research, which took about
2.5 days utilizing 36 nodes (and 1.8 TB of disk space).
Computing all the hazard diagnostics described subsequently
took a few more days.

Also note that, in contrast to the classic fault models discussed
next, the minimum supraseismogenic magnitudes vary between
fault sections here, and we do not account for dip uncertainties
or depth to top of rupture variability (although the latter two
could be handle in the hazard calculations if desired).

Classic fault sources
This source type is the traditional representation for faults, which
is typically composed of a finite-fault surface, an MFD, rules
for computing rupture dimensions from magnitude, and an
assumption about the along-strike probability of occurrence.
The advantages here are construction simplicity and guaranteed
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smooth models due to their being prescriptive (not inversion
based). The disadvantages are difficulties with respect to repre-
senting multifault ruptures, computing the implied attributes
noted earlier, and including a broader set of data constraints
(brokering their potential inconsistencies and understanding
the consequent null space). Our calling these “classic” should
not be interpreted pejoratively, because we acknowledge that a
simpler or less realistic model can be more useful in some appli-
cations.

The following are treated as classic fault sources in the 2023
NSHM update: Alaska faults, most of the New Madrid fault
system, and the Cascadia and Aleutian subduction zones
(although we plan to try fault system solution representations
for each of these). It is worth noting that the New Zealand has
utilized inversion-based fault system solutions for all faults,
including subduction zones, in their 2023 NSHM update
(Gerstenberger et al., 2022).

WUS classic fault sources. All WUS fault-based sources
(excluding Cascadia) are now represented as fault system sol-
utions described earlier, whereas here we describe the previous
implementations for comparison purposes. In NSHM14/18,
the WUS faults outside California had two main source types
(logic tree branches).

1. A full-fault, “characteristic” rupture represented with a
Gaussian MFD, for which the mean magnitude is computed
from the Wells and Coppersmith (1994) magnitude–length
relationship, the standard deviation is assumed to be 0.12,
and the Gaussian is truncated at ±2 standard deviations.
Mean magnitude is capped atM 7.5, in which case the rupture
is floated down the fault (uniform distribution) with a single
magnitude and length from the same Wells and Coppersmith
(1994) relationship. Event rates are scaled to match the target
fault slip rate (generally assuming a lower seis depth of 15 km).

2. A GR MFD with the minimum magnitude of 6.5, a b-value
of 0.9, the maximum magnitude implied by the Wells and
Coppersmith (1994) magnitude–length relationship, and
event rates that match the target slip rate. Smaller ruptures
are floated down the fault (uniform distribution), with
length computed from magnitude using same Wells and
Coppersmith (1994) relationship. The maximum magni-
tude is capped at M 7.5 here too. Depth to top of rupture
is magnitude dependent, being zero at the largest magni-
tudes, and with different options and weights being applied
at lower magnitudes (0, 2, 4, and 6 km at M 6.5 with equal
weights); this is considered aleatory variability.

In both the models, some epistemic uncertainty is also
applied to the maximum or mean magnitude (±0.2 with a
weight of 0.2 on these outer branches and 0.6 for the central
one). Fault dip for reverse and normal faults is generally
assumed to be 35°, 50°, or 65° with branch weights of 0.2,

0.6, and 0.2, although note that the dip variability does not
influence magnitudes or event rates.

A few faults receive further special treatment as follows: (1)
historical magnitudes are used for the characteristic model if
available; (2) if slip rate is unavailable, any paleoseismic event-
rate constraint is applied to the characteristic magnitude, and
the implied moment rate is applied to the GR model; (3) if
maximum or mean magnitude is ≤ 6.7, the associated episte-
mic uncertainty is dropped; and (4) some speculative sources
(e.g., offshore) are further assigned a “probability of activity.”

As discussed in the previous section, we have attempted to
capture the essence of these models in our fault system solution
framework presented earlier. Potentially important implemen-
tation differences include the following: (1) fixed minimum
magnitude here (M 6.5) versus scaling relationship and down-
dip dependent values above; (2) a single magnitude–length
scaling relationship used here (plus epistemic uncertainty added
for maximum and mean magnitudes), whereas a range of mag-
nitude–area and slip-length scaling relationships are utilized
above; (3) a range of depth to top of rupture values are assigned
for smaller floating events here (and not considered above
because they are “supra-seismogenic” ruptures; such variation
could be applied in GMMs); and (4) effective along-strike dis-
cretization of floating ruptures is finer here (1 km) and coarser
above (half of the DDW). With respect to magnitude–length
versus magnitude–area scaling relationships, the questions are
whether shallower dipping faults should have larger maximum
magnitudes than vertically dipping faults (all other things being
equal) and how well DDWs are constrained given uncertainties
in lower seismogenic depths. Our rules for supraseismogenic
ruptures above mean that the minimum magnitude on some
shallow dipping faults can be as large as M 7.

CEUS fault sources. These sources were updated and
described under the leadership of Allison Shumway (USGS,
written comm., 2023, referred to hereafter as Shumway2023),
including quantification of implied changes in mean hazard.
The defining characteristic of all CEUS fault-based sources
(including the fault zone sources described subsequently) is
the repeating large-magnitude earthquake (RLME) hypothesis
introduced by Coppersmith et al. (2012, referred to hereafter
as “CEUS SSCn (2012)”), which assumes that all events that
occur on one of these sources will have a very similar magnitude
(within 0.25 magnitude units with uniform distribution as speci-
fied by CEUS SSCn (2012), but with no such aleatory variability
as applied in NSHM14/18). This assumption, based on the char-
acteristic MFD of Youngs and Coppersmith (1985), is conven-
ient in that whatever magnitude is inferred for any previous
event is that expected for all the future events. Epistemic uncer-
tainty is acknowledged, however, for what this characteristic
magnitude is, with either fault surface area or fault zone length
providing an upper bound, or the spatial extent of paleoliqui-
faction deposits being used to constrain a reasonable range.
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The mean rate of the RLME source is either inferred by
moment balancing if a slip-rate estimate is available, or it is
inferred from an observation of N events having occurred in
some timespan T (e.g., from paleoliquefaction deposits). In
the latter case, a probability density function for the mean rate
of the RLME is computed from N and T assuming a Poisson
process (reflecting the relative likelihood that each rate is con-
sistent with the observation), and five points are typically chosen
from this distribution as event-rate branches for the logic tree.
Epistemic uncertainties on the timespan (T) are also often rep-
resented using a uniform distribution over a range of values, and
sometimes alternative sets of N and T are utilized to represent
whether the future will be more consistent with any quiet versus
more active time periods apparent in the paleoseismic record
(treated as additional epistemic uncertainty). Chapter 5 of the
CEUS SSCn (2012) report describes this all quite well.

Further complications arise when faults sources are deemed
capable of rupturing together. The Meers, Commerce, and
Eastern Margin (north) faults are all considered isolated, and
only theMeers has an influential change since NSHM14/18 (haz-
ard is increased to the west because the fault was extended in that
direction; magnitudes and rates were unchanged). The Eastern
Rift Margin (south) fault always ruptures either with Crittenden
County or with the Meeman-Shelby fault (branch weights of 0.6
and 0.4, respectively), and no changes in hazard are implied since
NSHM14/18 (in spite of these going from a zone to an explicit
fault representation; magnitudes and rate were unchanged).

The remaining faults (Charleston Uplift, New Madrid West,
New Madrid North, Reelfoot, Bootheel, and Axial) are all in the
heart of the New Madrid, Missouri, area, and have been mod-
eled as capable of rupturing alone or together in a handful of
alternative scenarios. One set of branches honors the scenarios
defined by CEUS SSCn (2012), and another set represents a
USGS alternative model that utilizes a simplified “lightning
bolt” fault model (refer to inset in fig. 6c or figs. 22 and 23 of
Petersen et al., 2014). There are no more than three different
ruptures represented among all these faults on any given branch,
and each of these ruptures is assumed to recur with the exact
same magnitude. The CEUS SSCn (2012) set of branches
include temporal variability in the long-term rate of ruptures
(in vs. out of a “cluster sequence”), whereas the USGS model
(Petersen et al., 2014) has a branch where ruptures come in sets
(doublets or triplets) versus their being temporally independent,
the distinction of which is accounted for in hazard calculations.
There are other branches representing epistemic uncertainties in
rates and magnitudes, resulting in a total of 640 logic tree
branches (according to our count) for this set of faults. The only
changes since NSHM14/18 involve fault geometry modifica-
tions, and no changes in rupture rates or magnitudes, with
the biggest change in hazard being an increase where the
Axial fault is extended to the southwest (Shumway2023).

In short, the only consequential changes from a hazard
standpoint are where the Meers and Axial faults have been

extended. None of these sources have been updated to utilize
the set of scaling relationships recommended by Shaw (2023)
for stable continental regions. Although all models are a mere
approximation of the system, one can ask whether the repre-
sentations utilized here represent the best available science.
Perhaps most debatable is the RLME assumption that all rup-
tures for a given source will have very similar magnitudes (as
opposed to a wider range of aleatory variability). Limiting
every branch for the five-fault cluster near NewMadrid to only
three different ruptures seems questionable as well. At the very
least, these assumptions are philosophically inconsistent with
how we are handling faults in the WUS.

A relatively straightforward modification would be to replace
the single magnitude assumption with a wider range of magni-
tudes using a GR distribution with alternative branches for the b-
value (e.g., between 0 and 1 as applied in WUS, or even beyond
this range if deemed appropriate). In addition, the map of faults
near New Madrid (Fig. 6b) implies that nearly all are plausibly
interconnected, which begs the question of whether an inversion
fault system solution is warranted. The fact that nearly all of these
faults lack slip rate estimates is not a problem, because there is no
such requirement for these in the inversion. The bigger question
is how to interpret the N events in time span (T) constraints
provided by paleoliquefaction studies because there is potential
ambiguity in terms of what ruptures could cause each such
observation. Assuming it is an occurrence on the nearest fault
is one approach (and consistent with present assumptions),
but then there is also the question of whether such observations
at different locations represent any of the same events.
Exploration of these questions is ongoing.

Another challenge is the wide heterogeneity in the number of
logic tree branches among these fault sources, making a system-
atic hazard-map assessment of the influence of each a near
impossibility. One might argue that the current models go over-
board with respect to epistemic uncertainties (especially com-
pared with the very limited aleatory variability). This does not
matter much if you are only interested inmean hazard (for which
epistemic uncertainties can be treated as aleatory), but one of our
explicit goals is a better quantification of epistemic uncertainties
with respect to hazard and risk metrics, which we also need to
inform where efforts should be placed to improve the models. It
would therefore be helpful to reduce the branches for all these
sources to a common, necessary, sufficient, and manageable set.

Cascadia subduction zone. The Cascadia subduction zone
model used in NSHM14/18, defined by Petersen et al. (2014)
and Frankel et al. (2015), is composed of two additive (aleatory)
components: full subduction zone ruptures every 526 yr plus
some M ≥ 8 partial ruptures. Logic tree branches were included
for the following: whether M ≥ 8 ruptures are segmented or
unsegmented (floating); the b-value assumed for unsegmented
ruptures (0 or 1); whetherM ≥ 8 ruptures occur on the northern
end of the subduction zone; and whether the overall recurrence
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interval of M ≥ 8 events is set from turbidites (every 500 yr
according to Goldfinger et al., 2012), onshore geology (every
1000 yr based on the tsunami deposits and subsidence data
of Kelsey et al., 2005 and Nelson et al., 2006), or double the latter
(2000 yr, based on expert opinion that some inferred earth-
quakes might not be subduction events). There were also three
branches for down-dip rupture extent and three scaling relation-
ships, leading to nine different magnitudes estimates for full and
segmented ruptures.

Updates for the Cascadia subduction zone, which were pro-
vided under the leadership of Peter Powers (USGS, written
comm., 2023, referred to hereafter as PowersCascadia2023),
are based on new paleoseismic data and discussions at a virtual
workshop in February 2021. These include a new segmenta-
tion-model branch proposed by Goldfinger et al. (2017), which
allows ruptures to extend farther north; the previous segmen-
tation model from Goldfinger et al. (2012) is also retained. The
branch with a 2000 yr recurrence interval forM ≥ 8 events was
replaced with two others based on interpretations of onshore
data by Nelson et al. (2021): an 800 yr recurrence interval
based on data going back 1600 yr and a 2300 yr recurrence
interval based on the last 7000 yr.

A notable modification is that the full subduction-zone rup-
ture branch has been split into two aleatory parts: 90% of the
time this occurs as a full rupture (as before), but 10% of the
time it is occurs as a temporal cluster of M 8–9 events filling
the entire length in a matter of decades. The relative frequency
of the latter is low due to lack of evidence in turbidite data, and
that such events would presumably not satisfy plate-boundary
slip rates. Another notable addition is a branch with a time-
dependent, renewal-model probability for the full subduc-
tion-zone ruptures based on a lognormal distribution with a
recurrence interval of 529 yr, a coefficient of variation of
0.5, and the last event having occurred in 1700; this yields a
probability of 12.5% rather than the time-independent value
of 9%. Questions remain as to whether this is applicable to
the temporal cluster of M 8 events (would these smaller events
really reset the system?), and whether this time dependence
should be applied before doing so with other faults that are
late in their cycles (e.g., the Hayward fault and the Coachella
section of the San Andreas fault); our review panel recom-
mended that we hold off on applying this time-dependent
option (Jordan et al., 2023). No changes were made to other
logic tree branches, except that a LogA + 4.1 scaling relation-
ship option was added based on the Shaw (2023) assessment.
Despite these enhancements, implied changes in mean hazard
are relatively minor (<10%, as shown subsequently).

Fault source zones
This source type is utilized where faulting is clearly present, or
suspected, but dispersed in that a single dominant fault is not
clearly identifiable. These sources are defined with a geo-
graphic polygon and an associated MFD, whereas the latter

is defined to satisfy any event-rate, slip-rate, or moment-rate
constraints. Ruptures are typically assumed to have a uniform
distribution inside the polygon, generally modeled as gridded
seismicity, but where a fixed focal mechanism is usually
applied based on the observed faulting. Rupture dimensions
are computed from magnitude using an assumed scaling rela-
tionship and an assumed DDW, and ruptures are centered on
the grid point. The USGS generally models these as “leaky”
boundaries, meaning ruptures can extend outside the polygon
if they nucleate near the edge.

CEUS fault zone sources. As described in Thompson Jobe
et al. (2022) and as led by Shumway2023, five new fault zone
sources have been added (Joiner Ridge, Crowley’s Ridge [south],
Crowley’s ridge [west], Saline River, and Central Virginia), four
are unchanged (Wabash Valley, Charleston, Charlevoix, and
Marianna), and five that were zones in NSHM14/18 are now
explicit faults (discussed earlier). As discussed in the 2018–
2023 Hazard Changes section subsequently, the main conse-
quence is that hazard has increased where the new fault zone
sources have been added.

Again, the RLME assumption is utilized here (all occurrences
of a source are the same magnitude), and rates are determined
by either moment balancing with slip rate or inferred from N
events in time span T (described earlier). The maximum mag-
nitude is generally determined from the polygon length in the
strike direction, using an assumed scaling relationship and
DDW, which is 15 km here. The Wells and Coppersmith (1994)
magnitude–length relationship (for unknown rake) has been
used in the past, but the new fault zone sources added here uti-
lize the average of the three Shaw (2023) relationships for stable
continental faults (refer to his table 1). Epistemic uncertainty in
the RLME magnitude is generally represented between magni-
tude 6.5 and the maximummagnitude, discretized at 0.25 incre-
ments. All five of these new source zones were downweighted by
50% to reflect uncertainty on whether they represent unique
sources (relative to gridded seismicity).

Charleston has three different sized polygons, and Central
Virginia has two, reflecting additional epistemic uncertainty
for these sources. The larger polygon for the larger Central
Virginia source implies the maximum magnitude of about
7.25, and the observational constraint of one event in 1800–
2800 yr implies the mean recurrence interval of 1333 yr.
Tish Tuttle, the scientist who provided the paleoliquefaction
data, expressed concern that the spatial extent of liquefaction
was not consistent with such a large event, so the maximum
magnitude was reduced to 6.5 (only this magnitude is consid-
ered). This is a consequence of the RLME single-sized event
assumption (i.e., what is implied for the last event is all you
should ever see), and it might also be questionable to apply
the 1333 yr recurrence interval toM 7.25 events anyway (a
moment rate that would imply more topographic relief?).
But are we really sure that events larger than M 6.5 cannot

546 • Bulletin of the Seismological Society of America www.bssaonline.org Volume 114 Number 1 February 2024

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/1/523/6203283/bssa-2023120.1.pdf
by Indiana University Bloomington user
on 01 May 2024



occur in this zone, especially if the polygon is large enough to
accommodate them? Again, a rational alternative would be to
model this with a GR distribution betweenM 6.5 and 7.25, and
constrained so that the total rate of events implies a recurrence
interval of 1333 yr; applying a b-value of 1.0 would make theM
≥ 6.5 events feasible but relatively rare. In terms of hazard
uncertainty quantification, it would also be good to reduce
the number of logic tree branches for these sources to a
common, necessary, sufficient, and manageable set as well.

WUS fault zone sources. The following WUS faults fall in
this category as well (Hatem, Collett, et al., 2022), broken out
by state and shown in Figure 12:

1. Washington:

Figure 12. Map of WUS fault zones (purple polygons) indicating where a
clear predominant surface is lacking. From Hatem, Collett, et al. (2022).
The color version of this figure is available only in the electronic edition.

Volume 114 Number 1 February 2024 www.bssaonline.org Bulletin of the Seismological Society of America • 547

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/114/1/523/6203283/bssa-2023120.1.pdf
by Indiana University Bloomington user
on 01 May 2024



• Seattle
• Southern Whidbey Island

2. California:
• Big Valley
• Pondosa
• South Mono
• Susanville-Eagle Lake

3. Nevada:
• East Carson Valley

4. New Mexico:
• Llano de Albuquerque
• Llano de Manzano
• San Felipe

These zones of distributed deformation were also assigned
proxy faults, the latter of which were used in both the defor-
mation models and fault system solutions (treated the same as
any other fault). Hazard tests show general insensitivity (less
than a few percent) to whether a source is modeled as an
explicit fault or a fault zone given the same MFD (rupture mag-
nitudes and rates). The more consequential influence is
whether these faults can co-rupture with neighbors, which
is only currently supported when proxy faults are utilized.
Thus, the “Classic” inversion-based solution should produce
the same hazard as treating these as source zones, and sensi-
tivity tests have found that removing these particular proxy
faults from fault system inversions does not change implied
hazard significantly (less than a few percent).

Gridded seismicity sources
Gridded seismicity or “background” sources represent the seis-
micity that is not captured by explicitly modeled faults. These
are presently composed of (1) a polygon defining the region and
a spatial discretization interval (0.1° here) to define the grid cells,
(2) a spatial probability distribution defining the relative rate of
earthquake nucleation within each grid cell, (3) a totalM ≥ 5 rate
and b-value for the region, (4) an assumedmaximummagnitude
for the region, (5) a probability distribution of focal mechanisms
for each grid cell, and (6) rules for converting a nucleation point
into a finite rupture surface. Steps are also often taken to ensure
that gridded seismicity sources are not double counted with
fault-based sources. We develop these models separately for
the WUS and CEUS collection regions shown in Figure 3, as
well as for deeper events (>35 km) near the Cascadia subduction
zone, which are processed separately.

Earthquake catalog updates. The WUS and CEUS earth-
quake catalogs have been updated through 2022 using the
methodology of Mueller (2019) and are available as part of
the NSHM 2023 data release (see Data and Resources).
Important elements of this processing include the removal
of duplicate earthquakes, explosions, mining-related events,
and for CEUS, induced earthquakes based on an updated

set of zones for such events. Network reported magnitudes
are converted to uniform moment magnitudes, and bias cor-
rections are made with respect to sampling events from a GR
distribution. The final nondeclustered CEUS catalog contains
26,145 M 0.96–7.5 events since the year 1568, and that for
WUS contains 60,214 M 3–9 events since the year 1700.

Total regional rate and b-value estimates. Following
UCERF3, one improvement here is quantification of total
M ≥ 5 rate and b-value estimates for various regions, provided
by Andrew Michael (USGS, written comm., 2023, referred to
hereafter as Michael2023). More specifically, they provided
three rate and b-value pairs, representing the mean and
95% confidence bounds, for the WUS and CEUS collection
regions, as well as for the deep Cascadia seismicity (Table 6).
The regional b-values were inferred using the recently devel-
oped “b-Positive” technique of van der Elst (2021), and total
regional rates were inferred from a Monte Carlo sampling
algorithm that accounts for uncertainties in b-value, spatially
variable magnitudes of completeness, and individual event
magnitudes.

For model comparison purposes, we apportioned these
rates to analysis subregions (Fig. 3) using the branch-averaged
spatial PDF, and uncertainties for the associated total M ≥ 5
rate are expanded based on the square root of the implied data
reduction. We refer to the result as the “observed” or “target”
MFD for each region.

Gridded seismicity spatial PDFs. Inferring the long-term
spatial probability density function of seismicity rates requires
catalog declustering, otherwise rates will be biased high where
larger events have produced aftershocks during our short
observation period and biased low in areas that were randomly
spared such events (e.g., Frankel, 1995). Lacking a perfect
model for aftershock occurrence, a variety of catalog decluster-
ing algorithms have been developed. NSHM14/18 and other
previous USGS models generally utilized the Gardner and
Knopoff (1974) algorithm. A major improvement for 2023,
as provided under the leadership of Andrea Llenos (USGS,
written comm., 2023, referred to hereafter as Llenos2023), has
been the addition of two other declustering algorithms as alter-
native logic tree branches: Reasenberg (1985), which was also
utilized in previous Hawaii models (Klein et al., 2001; Petersen
et al., 2021) and the nearest neighbor approach of Zaliapin and
Ben-Zion (2020).

TABLE 6
Total M ≥ 5 Rate (per yr), b-Value

Region Mean Mean−2σ Mean� 2σ

WUS collection 12.0, 0.81 10.6, 0.91 13.5, 0.71
CEUS collection 0.45, 0.94 0.26, 1.1 0.75, 0.78
Deep Cascadia 0.23, 0.73 0.13, 0.93 0.41, 0.53
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For each declustered cata-
log, and considering various
magnitude of completeness
models, the number of events
is tallied in each grid cell,
and the result is spatially
smoothed using the same two
approaches utilized in
NSHM14/18, both based on a
2D Gaussian kernel. One uses
a fixed smoothing width as
defined in equation (1) of
Frankel (1995), with 50 km
being applied in WUS and 50
or 75 km being applied in
CEUS (depending on assumed
minimum magnitude of com-
pleteness). The other is an
adaptive smoothing width,
which is defined by the dis-
tance to the Nth nearest earth-
quake (N is 3 and 4 in WUS
and CEUS, respectively). In
areas in which rates are unreal-
istically low using the fixed
smoothing, floor rates are
specified inside associated pol-
ygons; these persist in CEUS,

Figure 13. Branch-averaged M ≥ 5 seismicity rate in 0.1° × 0.1° bins for the WUS and CEUS collection regions
(defined in Fig. 3). The discontinuity at −104° longitude is the boundary between WUS and CEUS, which were
processed independently. The color version of this figure is available only in the electronic edition.

Figure 14. M ≥ 5 seismicity rates for each Declustering and Smoothing
Kernel branch combination normalized by the branch-averaged rates

shown in Figure 13. The color version of this figure is available only in the
electronic edition.
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but those applied previously in WUS are no longer utilized
(Llenos2023).

Each of the three declustering and two spatial smoothing
algorithms were originally given equal weight. However, based
on feedback from our review panel (Jordan et al., 2023),
Reasenberg declustering was downweighted, because it leaves
several aftershock sequences still visible, and the fixed smooth-
ing option was downweighted because it likely spreads seismic-
ity too far, at least in some areas (refer to Fig. 2 for final branch
weights). The branch-averaged smoothed seismicity map is
shown in Figure 13, and the ratio of each branch to this average
is shown in Figure 14. The discontinuity at longitude −104° W
is a result of the different processing in each region. These
results imply that differences between fixed and adaptive
smoothing are generally greater than that between the different
declustering algorithms. Llenos2023 also provided equivalent
results for the deep seismicity near Cascadia, for which only
the fixed smoothing option has been applied.

Maximum magnitudes, focal mechanisms, and finite
rupture surfaces. Three branches are utilized for gridded
seismicity maximum magnitude (Moff−fault

max ), with the options
and weights for WUS being adopted from UCERF3 (Table 3,
Fig. 2). The CEUS Moff−fault

max options are adopted from
NSHM14/18 (four branch options in each seismotectonic zone
defined in the 2014 model, with values ranging from M 6.5 to
8.0). The spatial distribution of relative focal mechanism likeli-
hoods also remains unchanged compared with NSHM14/18. For
example, ruptures in Pacific Northwest are assumed 50% strike
slip and 50% reverse, ruptures in Intermountain West are
assumed 50% strike slip and 50% normal, CEUS events are 100%
strike slip, and the UCERF3 region has the spatial variability
defined originally by Petersen et al. (2008). For the 2023 NSHM,
a random strike is assumed, and rupture lengths are determined
for M ≥ 6 events using the Wells and Coppersmith (1994) mag-
nitude–length relationship (for unknown rake).

Merging with other source models. In regions with
numerous explicitly modeled faults, or perhaps near any indi-
vidual fault, it can be important to avoid double counting
earthquakes. In other words, the sum of the source model
MFDs should be consistent with the total regional MFD esti-
mate, and ensuring or testing this is precisely why we added
total M ≥ 5 rate and b-value estimates for the various sub-
regions.

Each WUS fault system solution has an implied total MFD
(for supraseismogenic on-fault events). Following UCERF3, we
define the total gridded-seismicity MFD as the total regional
target minus the total fault system solution MFD. More spe-
cifically, we construct a total target GR MFD from the regional
b-value and the chosen total M ≥ 5 rate branch, truncated at
the chosen gridded seismicity Moff−fault

max branch; the gridded
seismicity MFD is this target minus the total fault system

solution MFD, for which any consequent negative values
are set to zero (e.g., above Moff−fault

max , or where the fault
system solution MFD exceeds the regional target [the so-called
bulge]).

We could apply this consequent gridded-seismicity MFD
across the region according to the smoothed-seismicity spatial
PDF (such that each grid cell has the same MFD shape).
However, this might still be considered double counting near
faults. Past models have avoided this by capping the maximum
magnitude of gridded seismicity near faults to be just below the
minimum magnitude on the associated fault. This is typically
applied within 12 km of the fault trace (although this buffer
was also dip dependent in UCERF3). The assumption is that
the fault represents a proxy for all supraseismogenic magni-
tudes in that zone, and that gridded seismicity contributes
no such events in this area.

This representation turned out to be problematic when add-
ing a spatiotemporal clustering model to UCERF3 (Field et al.,
2017), because it implied unrealistic MFD shape transitions over
the finer scales needed for such modeling. To produce a
smoother transition between faults and gridded seismicity, we
assume that fault nucleation rates decay linearly with distance
out to some specified maximum distance (12 km here), and that
gridded seismicity rates have the opposite linear trend near faults.
This means that large gridded seismicity events can occur within
12 km of a fault, but with reduced rates that trend linearly toward
zero at the fault surface. This linear partitioning is done in 3D, so
dipping faults are handled more elegantly than in the past. The
bookkeeping, which is achieved by subdividing grid cells into 3D
“cubes,” gets somewhat complicated due to variable supra-seis-
mogenic minimum magnitudes across the fault system plus the
fact that we account for the average depth dependence of earth-
quake nucleation (refer to Field et al., 2017 for details).

There is no attempt to avoid double counting in CEUS,
because gridded seismicity sources are relatively low and do
not generally add much in the way of hazard (and if they
did, then the fault-based sources might not be value added).

WUS RESULTS (EXCLUDING CASCADIA)
Each WUS logic tree branch has 582,004 fault-based ruptures.
There are 2250 different branches for the fault system solutions
and 121,500 total branches when the latter are combined with
the set of gridded seismicity options. We therefore must resort
to aggregate metrics when interpreting results. To this end, an
extensive set of web-based “solution reports” have been created
and made available (a link to which is provided in Data and
Resources). These solution reports include results for the
following:

• full logic tree solutions,
• branch-specific solutions (sensitivity tests),
• hazard maps (and comparisons with NSHM14/18), and
• hazard curves at sites (and comparisons with NSHM14/18).
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These reports embody an immense number of plots and
diagnostics (virtually everything that has been envisioned
and requested during analysis and review, plus this is a living
archive in which things can be added upon request). We
focus on a relatively small but representative subset of results
here.

Model fits to data
constraints
Here, we summarize how well
the WUS models fit the data.
It is important to recognize
that, given the wide range of
constraints (Table 3), it is not
possible to fit all data perfectly
due to potential incompatibil-
ities. For example, a paleoseis-
mic recurrence interval may be
physically incompatible with
an assigned slip rate, or spatial
variability of slip rate in the
system may be incompatible
with the target nucleation
MFD on a fault section. This
means that scatter is expected
between target constraints
and those implied by final
models. This scatter is not
due to limited simulated
annealing runtime (we con-
firmed that longer runs do
not further reduce misfits).
Milner and Field (2023) pro-
vide sensitivity tests on this
and other potentially impor-
tant inversion attributes.

Regional MFDs. The
observed target and model
implied cumulative MFDs for
the three WUS analysis regions
are shown in Figure 15, includ-
ing the contributions from
faults (dashed), gridded seis-
micity (dotted), and the
combined total (solid).
Comparisons with NSHM14/
18-implied MFDs are also
shown with blue lines. For the
UCERF (Greater California)
region (Fig. 15a), the mean rate
of M ≥ 5 events implied by the
new model is 6.38 per year,
in agreement with the new

branch-average target of 6.30, but this is a factor of 1.5 greater
than that of NSHM14/18 (4.26 events per year). This discrep-
ancy is seemingly inconsistent with the fact that the total
branch-averaged M ≥ 5 rate dropped from 8.26 in UCERF3
to 6.38 here. However, the NSHM14/18 rates in Figure 15a also
reflect a declustered model, which effectively reduced theM ≥ 5
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Figure 15. Model and target magnitude–frequency distributions (MFDs) for the three analysis regions in WUS:
(a) UCERF3 (Greater California), (b) Pacific Northwest, and (c) Intermountain West. Blue and red curves are
for the National Seismic Hazard Model (NSHM14/18) and new model, respectively. Solid curves are for the complete
model; dashed curves are for faults; and dotted curves are for gridded seismicity. The red shaded areas represent
various epistemic uncertainty percentiles, as labeled, for the new model. The purple line and shaded region
represent the observed target and 95% confidence intervals, respectively, for each region (extrapolated from M 5
with no taper). The color version of this figure is available only in the electronic edition.
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rates in NSHM14/18 by a factor of 1.9 (compared with the unde-
clustered mean UCERF3 rate). In other words, most of the
change in the M ≥ 5 rate comes from the inclusion of after-
shocks, which also explains why the NSHM14/18 value is near
the lower 95% confidence bound of the new model. This differ-
ence does not necessarily propagate proportionately to larger
magnitudes, because the total target b-value has also changed
(from 1.0 in UCERF3 to 0.9 here); plus the NSHM14/18 declus-
tering also created a magnitude-dependent b-value belowM 6.5.
The rate of M ≥ 7.5 gridded seismicity events has increased by
about an order of magnitude, owing to an increase in overall
rate, a lowering of the regional target b-value, and changes in
how the on- versus off-fault seismicity is defined (e.g., the
newmodel essentially assumes zero MFD rolloff up to the maxi-
mum magnitude for gridded seismicity). Changes in fault-based
supraseismogenic rupture rates are relatively small (<35%). The
red shaded areas in Figure 15a show the range of total MFDs
spanned by the new logic tree branches (for various percentiles,
as labeled), the spread of which mimics, as expected, the
observed rate uncertainties at lower magnitudes, but with some

small fraction of models falling
outside the observed 95% confi-
dence bounds at intermediate
magnitudes. MFD plots show-
ing the epistemic uncertainties
for faults and gridded seismic-
ity, separately, are available in
the solution reports (links 1
and 2 in Data and Resources).
These reveal that gridded seis-
micity rates can be quite low
or even zero at intermediate
magnitudes on some branches.
This occurs when fault system
solutions approach or exceed
the target MFD, producing a
final total MFD that overshoots
the target by the amount of
exceedance (because gridded
seismicity rates cannot be neg-
ative). As demonstrated sub-
sequently, this is a problem
with the more segmented and
higher b-value fault system sol-
utions. The extent to which
consequent gridded seismicity
rates are inconsistent with
observed “off-fault” events
could be used as a basis for
downweighting such models
(something we have not yet
explored).

MFDs for the Pacific
Northwest region are shown in Figure 15b. The new model
matches the target M ≥ 5 rate of 0.34 events per year and
exceeds the NSHM14/18 value of 0.28 by 21%. The contribu-
tion from faults has increased since NSHM14/18, which is
consistent with faults having been added. The new total
average MFD exceeds the target by more than 30% and up
to ∼70% between M 6.3 and 7.1, which we will see is more
of a problem with the more segmented models, but results
are well within the confidence bounds. MFDs for the
Intermountain West region are shown in Figure 15c. Total
M ≥ 5 rates have increased from 1.5 to 2.0 events per year since
the NSHM14/18 model. Changes are otherwise relatively small
for both faults and gridded seismicity. The solution reports
include data files for extracting numerical values plus equiva-
lent results for logic tree subsets and for smaller regions near
Los Angeles, San Francisco, the Puget Lowland, and the New
Madrid seismic zone (green rectangles in Fig. 3).

Figure 16a shows the influence of supraseismogenic
b-value branches on average fault system solution MFDs for
the entire WUS, and Figure 16b shows the same for the

(a)

(b)

Figure 16. Average WUS fault system solution MFDs for (a) b-value branches and (b) segmentation branches. The full logic
tree branch average is shown with the black line. The color version of this figure is available only in the electronic edition.
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segmentation branches. Both plots exhibit expected behavior
(higher rates at lower magnitudes for more segmented and
higher b-value branches, and vice versa at higher magnitudes).
This indicates that these inversion constraints are working
exactly as intended, at least on average throughout the system.
The b-value = 0 branch produces, when all combined, a b-value
of about 0.8 between M 6.5 and 8.0, which is due to variable
maximum magnitudes and slip rates throughout the system, as
well as the segmentation constraints. In addition, the classic
segmentation model has the highest rates at M ≤ 7.3 and is
somewhat of an outlier (e.g., in terms of pulling the overall
mean MFD above the middle segmentation result and making
it just under high segmentation). Consequently, this is also the
most problematic branch in terms of producing fault-system
MFDs that approach or exceed the regional target, which again
leads to low gridded seismicity rates at intermediate magni-
tudes and perhaps an MFD over prediction.

Slip rates. Figure 17 shows a scatter plot of mean solution slip
rates versus the mean target value for all 5572 fault subsections.
Again, this reveals that the inversion is working properly, with
discrepancies reflecting inconsistency with other constraints
(specific examples are discussed in the next section). A map view
of these misfits and a variety of other slip-rate plots are available
in the solution reports (e.g., link 3 in Data and Resources for
branch-averaged model).

Although each deformation model generally provided slip-
rate uncertainty estimates, these were not used to weight the
inversion for several reasons. One is that it is not clear exactly
what these uncertainties represent (just data misfits or also
some representation of any null space?), especially in the
absence of covariance estimates. It is also not clear whether
uncertainties were handled consistently between models. A
more practical reason is that in areas with high uncertainties
(relative to slip rates, like in the Intermountain West), the

inversion will tend to over- or underfit all slip rates, and such
a systematic bias is unlikely to be correct (and violates likely
correlation between neighboring slip rates). Consequently, we
cap uncertainties at 10% (one sigma values) as noted earlier,
meaning we generally overfit the slip-rate data. This issue
was discussed originally in Field et al. (2020) and more recently
in the context of this model in Milner and Field (2023). The
latter also has a more detailed discussion solution misfits
(including z-scores with respect to the original slip rate uncer-
tainty estimates; their table 3).

Paleo event rates. A scatter plot depicting paleoseismic
event-rate misfits is shown in Figure 18a for the branch-aver-
aged model, as well as for the underfit and overfit paleoseismic
data fit branches (Fig. 18b,c, respectively; the result for the even-
fit branch is similar the branch-averaged plot). As expected, the
scatter is the greatest for the underfit branch and the smallest for
the overfit branch. Figure 18 also shows scatter plots of associated
slip rates (at collocated fault subsections), which clearly reveal the
trade-off in fits between paleoseismic event rates and slip rates
(e.g., slip rates are fit best when paleoseismic data are underfit).
Perhaps most importantly, Figure 18 indicates where the two
types of data constraints are incompatible. For example, two
paleosites on the Wasatch fault (Alpine and Corner Canyon)
are never fit within the 95% confidence bounds, even on the
overfit branch. Similarly, the slip rate at the Green Valley
Mason Road site is never fit within the 95% confidence bounds
either. With respect to the branch-averaged model, other sites
outside the 95% bounds include Little-Salmon-Strongs and four
additionalWasatch sites with respect to paleo event rates, and the

Figure 17. Branch-averaged solution slip rate for each subsection versus the
average target value (the average deformation model slip rate including
creep reductions), shown in both log and linear plots.
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Elsinore-Glen Ivy site with respect to slip rate. These sites war-
rant further scrutiny in the future studies. Map views of the mis-
fits shown in Figure 18a, as well as tabulated values for each
paleoseismic site, are provided in the solution reports (e.g., link

4 in Data and Resources for
branch-averaged solution); also
available are fault-specific mis-
fits plots, including along fault
trends, for all parent fault sec-
tions and for the special faults
defined in Table 5.

Fits to other inversion
constraints
Supraseismogenic b-val-
ues. Recall that the supraseis-
mogenic b-value constraint is
simply a mechanism to sweep
over a range of viable models
(between the minimum and
maximum rate models), and
we use it to compute a total
nucleation rate constraint for
each fault subsection. The logic
tree defines target supraseismo-
genic b-values between 0 and 1
with uniform weights (Fig. 2).
These get modified for consis-
tency with the chosen segmen-
tation model, as discussed
earlier, which generally
increases the target b-value
due to the consequent MFD
rolloff at higher magnitudes.
Furthermore, the ability of the
inversion to match target values
depends on other factors,
including nearby paleoseismic
event-rate constraints and
slip-rate heterogeneity (e.g., a
greater proportion of smaller
events will be needed where slip
rates vary over smaller spatial
scales). All of this produces sub-
stantial variability among post-
inversion supraseismogenic b-
values among subsections,
making their evaluation com-
plicated. We already saw from
Figure 16a that, on average over
the system, these b-values con-
straints are having the intended
effect, but are there individual

faults in which this is not the case? Because the whole point
of this constraint is to vary the total rate of events on each fault,
we check for this by comparing average fault participation rates
among these branches (participation indicates the frequency at
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Figure 18.WUS paleoseismic data fits (solution vs. target rate) shown on the left with associated slip-rate fits (at the
associated subsection) shown on the right. Results for the (a) branch-averaged model, (b) under-fit paleoseismic
data fit branch, and (c) over-fit branch. The even-fit result, not shown, is similar to that of branch averaged. Symbol
colors indicate for which solution values land with respect to 68% and 95% confidence bounds (see legend in top
right panel). The paleosites for some values that are outside the 95% confidence bounds are labeled. The color
version of this figure is available only in the electronic edition.
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which events pass by a point on a fault, even if the events
nucleated some distance away). To this end, Figure 19a shows
M ≥ 6 fault participation rates for the b-value = 0 branch, and
Figure 19b shows those for the b-value = 1 branch, both nor-
malized by equivalent average rates from the full branch-aver-
aged logic tree. As intended, theM ≥ 6 participation rates for b-
value = 0 are lower than average across the region, and those for
b-value = 1 are relatively high, and the reverse occurs at higher
(M ≥ 7.5) magnitudes (which must be true because moment is
balanced). This gives us confidence that this constraint is indeed
allowing us to map out a wider range of models than considered
in the UCERF3 inversion.

Segmentation constraints. The distance dependence of
segmentation (i.e., the relative passthrough rate among neigh-
boring faults as a function of separation) is shown in Figure 20
for the branch-averaged model as well as for each segmentation
branch. The smaller circles in each plot are values for each con-
nection between faults in the fault system, the larger circles are
mean values as a function of distance, and larger squares are
median values. Recall that this is an inequality constraint, such
that all passthrough rates must fall below the target line for the
low, mid, and high branches (and mean results are consequently
below the lines as well, but with about the same distance trend as
the target). As expected, the no segmentation (None) branch

shows almost no trend with distance, and the Classic branch
shows relatively few connections (only within the special faults
defined in Table 5). Again, these plots give us confidence that
the inversion is working as intended.

The solution reports contain a variety of other plots relating to
segmentation, including a map view of fractional passthrough
rates (e.g., link 5 in Data and Resources for branch averaged sol-
ution). The pages for each parent fault section also include a map
showing the frequency of co-ruptures with neighboring faults, as
well as examples of individual ruptures for a range of likelihoods
including the most extreme case (e.g., links 6 and 7 in Data and
Resources for the Cucamonga fault).

Fits to data not used in the inversion
Figure 21 shows how the cumulative frequency distribution of
rupture length implied by the model compares with the Wells
and Youngs (2013) global compilation of 258 observed earth-
quakes (curves have been normalized for comparison purposes).
For the nonclassic models, the agreement for WUS (Fig. 21a) is
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Figure 19. AverageM ≥ 6 fault participation rates for the two extreme supra-
seismogenic b-value branches (0.0 in panel a vs. 1.0 in panel b), both
normalized with respect to values from the full logic tree. This demonstrates
that this constraint is systematically dialing over a range of total rates. The
color version of this figure is available only in the electronic edition.
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Figure 20. Fractional passthrough rates at each WUS fault connection (small
circles) as a function of distance for each segmentation branch as labeled.
Solid lines represent the upper bounds for the low (red), middle (purple), and

high (blue) segmentation branches. Large circles and squares represent
average and median values, respectively, for 1 km distance bins. The color
version of this figure is available only in the electronic edition.
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Figure 21. Cumulative distribution of rupture lengths for the full model (thick
black line) and for the different segmentation branches (colored lines as
labeled), normalized by total rate. Gray histograms represent the global data

compilation of Wells and Youngs (2013), also normalized. (a) WUS and
(b) excludes ruptures in the UCERF (Greater California) region. The color
version of this figure is available only in the electronic edition.

(a) (b)

Figure 22.WUS branch-averaged fault participation rates for (a)M ≥ 6.5 and
(b) M ≥ 8.0 earthquakes. Gray color indicates a rate of zero. The color

version of this figure is available only in the electronic edition.
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quite good up to about 450 km, beyond which there is a discrep-
ancy due to a lack of observation of such events. The latter
implies there might be a physical upper bound on rupture
length, which would be an easy constraint to add to the model.
Figure 21b shows the same result, except that California rup-
tures are excluded, revealing a steeper trend.

Two salient questions are whether the Wells and Youngs
(2013) data set represents an unbiased global sample and
whether it is applicable to WUS. Another question is whether
the lack of observations above 450 km is a sampling issue with
respect to rare events; in other words, can we reject our model by
demonstrating that it implies a significant probability of having
seen such an event by now? Until these questions can be
adequately addressed, it seems prudent to avoid over interpreting
the match implied by Figure 21a. One question we can address is
the fraction of super long ruptures (e.g., ≥ 700 km) that traverse
the creeping section of San Andreas fault; the answer is 72% for
the branch-averaged model (thick black line), meaning 28% take
a different path (but all are within the UCERF region).

We also endeavored to utilize the detailed surface rupture
observations and statistical analyses of Biasi and Wesnousky
(2016, 2017). For example, they found for strike-slip faults that
“steps of 1 km or greater will be effective in stopping rupture
about 46% of the time” (Biasi and Wesnousky, 2016, p. 1110).
However, these are based on fresh, high-resolution surface-
rupture maps (obtained soon after large events and before

substantial erosion); therefore, it is not obvious how to com-
pare these to our highly simplified fault representations. In
other words, if any one of the fault ruptures in our model
was to occur, we do not expect surface rupture features to look
anything like our simplified fault traces. Furthermore, it is not
clear what these surface features tell us about rupture connec-
tivity at depth (where the dynamics play out). We have, there-
fore, thus far, been unsuccessful in utilizing the Biasi and
Wesnousky (2016, 2017) studies to evaluate our model, but
future efforts may be more fruitful.

Hazard-related metrics
This section discussed the implications of the model in terms
of various hazard-related metrics.

Fault section participation MFDs. Hazard at a site is often
dominated by one or more nearby faults, so a particularly rel-
evant metric is the participation MFD, which quantifies the
rate at which ruptures involve (or pass by) each fault section,

Figure 23. (a) The peak ground acceleration (PGA) that has a 2% chance of
exceedance in 50 yr according to the new WUS branch-averaged model
(computed using the Abrahamson et al., 2014 ground-motion model (GMM)
with VS30 � 760 m=s). (b) The coefficient of variation (COV) implied by the full
logic tree. The color version of this figure is available only in the electronic edition.
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Figure 24. The percent change for the map in Figure 23a (the PGA that has a
2% chance of being exceeded in 50 yr), if each branch choice is found to be
correct (others branch options removed). Branch options are shown in

Figure 2. The color version of this figure is available only in the electronic
edition. (Continued)
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even if they nucleate elsewhere. It is not practical to look at the
participation MFDs for all 5572 fault subsections, so we take
two approaches here. One is to plot subsection participation
rates above a specified magnitude threshold in map view,
examples of which are shown in Figure 22 for M ≥ 6.5 and
M ≥ 8 events in the branch-averaged model. The M ≥ 6.5 par-
ticipation rates are a pretty good proxy of the hazard posed by
each fault, particularly in a relative sense. The plot for M ≥ 8
reveals which faults participate in these more extreme events
and at what frequency; for example, the Wasatch fault is

expected to have an M ≥ 8 event every ∼1 million years.
Participation rate maps for other thresholds are available in
the solution reports (link 8 in Data and Resources for the
branch-averaged model).

The other approach taken here is to aggregate MFD results
for the 5572 fault subsections back onto the 1016 parent fault
sections, which also aids in making meaningful comparisons to
previous models. These participation MFDs, as well as nucle-
ation MFDs and incremental and cumulative versions of each,
are included for each parent fault section in the solution

Figure 24. Continued
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reports (link 9 in Data and Resources for the branch-averaged
model). For example, the participation MFD for the Wasatch
(Salt Lake City, north) fault section (link 10 in Data and
Resources) can be used to confirm the ∼1 million yr recurrence
interval for M ≥ 8 events plus the range of values implied by
epistemic uncertainties; such aggregate plots are also available
for the special faults listed in Table 5 (link 11 in Data and
Resources for the branch-averaged model).

Hazard maps and sensitivities. Figure 23a shows a map of
the peak ground acceleration (PGA) that has a 2% chance of
being exceeded in 50 yr, abbreviated as 2in50 hereafter, and
we may refer to these as “hazard maps” even though they really
represent a ground motion at a particular hazard level. The
WUS hazard calculations presented in this section utilize the
Abrahamson et al. (2014) GMM with default site parameters
(e.g., VS30 � 760 m=s), although test calculations indicate that
this choice has no effect on our overall conclusions. Hazard
comparisons with the NSHM14/18model are presented and dis-
cussed in the 2018–2023 hazard changes section. The point here
is to illustrate sensitivity with respect to WUS model choices. To
this end, Figure 24 shows the influence of each logic tree branch
or, more specifically, how the mean hazard map would change if
each branch choice was proven correct (and all others zeroed
out). Keep in mind that this ignores branch weights. For exam-
ple, the Evans deformation model may not only imply large
changes in hazard, but it also has a relatively low likelihood of
being correct (a weight of 2%). With this caveat in mind, the
deformation models generally have the biggest influence on haz-
ard near faults (Fig. 24a). The next most influential uncertainty
is the segmentation model, with the Classic branch implying the
greatest hazard near faults (higher frequency of events due to
lower maximum magnitudes) and lower hazard away from
faults due to fewer events available to gridded seismicity (to
honor the total regional MFD target); the opposite is true for
the other extreme segmentation branch (None). The supraseis-
mogenic b-value and scaling relationship branches are also
influential, at least, in some areas. The paleoseismic data fit
appears to be the least influential, which is expected in that it
is only relevant where such constraints are incompatible with
slip rates (as exemplified earlier), and such areas are harder
to discern in broader-scale maps.

Figure 24b shows the influence of the various gridded seis-
micity logic tree branches. The rank of overall impact, going
from most to least influential, is generally the seismicity
smoothing kernel, the seismicity declustering, the regional total
M ≥ 5 rate and b-value, and Moff−fault

max .
Figure 23b shows the coefficient of variation (COV) implied

by all epistemic uncertainties (the standard deviation divided
by the mean). The minimum value is 0.035 at a site near San
Francisco, California. If a Gaussian distribution is applicable,
the 95% confidence bounds are about 1� 2COV, or ∼7%
above and below the mean for this site. The highest COV is

1.7 (in eastern Arizona at latitude and longitude of 34.3 and
−109.3, respectively), which is above the color-scale saturation
in Figure 23b (COV ≥ 1 is magenta); the Gaussian approxima-
tion obviously fails for such cases, given 2in50 PGA cannot be
negative.

The results presented here are for only one hazard metric
(2in50 PGA). Results for 1 Hz spectral acceleration, as well as
for 2%, 10%, and 40% in 50 yr probability levels, are available
in the solution reports (although the 40% in 50 yr values war-
rant careful consideration given the full catalog and Poisson
assumption). Hazard curves, including thorough epistemic
uncertainty analyses, are also available for a number of sites
(link 12 in Data and Resources). It is important to emphasize
that the inferences described here, including the relative influ-
ence of various epistemic uncertainties, will certainly vary
among different hazard and risk metrics. The goal here has
not been an exhaustive investigation with respect to all poten-
tial model uses, but rather to demonstrate that model makes
sense with respect to one commonly used metric, especially
with respect to branch sensitivities, and to showcase how
the solution can be used for further investigations. It is prob-
ably best to assume that each logic tree branch could be most
influential at some location, or for some other hazard or risk
metric, meaning it is premature to start trimming branches at
this point.

CEUS AND CASCADIA RESULTS
Although we endeavor to apply more uniform methodologies
in all regions, updates in CEUS and Cascadia have been more
modest, which means our level of model interrogation is more
limited as well. The logic tree branches for CEUS-gridded seis-
micity are identical to those in WUS (the bottom half of Fig. 2).
For CEUS faults and area sources, however, the logic trees are
highly variable and are therefore not reproduced here. Most are
unchanged since NSHM14/18 and are therefore available in
Petersen et al. (2014), and uncertainties for the new sources
were developed by Shumway2023. The new logic tree for
Cascadia was developed by PowersCascadia2023.

Given this logic tree heterogeneity, as well as unspecified
correlation structure between nearby sources, we have not been
able to conduct the type of branch sensitivity analyses shown in
Figure 24. Doing so would require redefining these sources to
have a more common, minimum, necessary, and sufficient set
of branches, as mentioned in the CEUS fault sources section, or
the ability to handle Monte Carlo sampling of logic trees. Both
the options are planned to be pursued in the future.

One thing we can plot are the model implied MFDs. Those
for CEUS are shown in Figure 25a, revealing a totalM ≥ 5 event
rate of 0.32 and 0.35 per year for the target and model average,
respectively, up from 0.23 in NSHM14/18, which is consistent
with the new model now including aftershocks. The regional
b-value is relatively unchanged because the rate change for
gridded seismicity is weakly dependent on magnitude. As
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expected, the MFD for CEUS faults (including fault area
sources) is relatively unchanged since NSHM14/18, except
at lower magnitudes where the new Central Virginia and per-
haps Saline River sources are influential. However, that the
incremental MFD for faults in both the models exceeds the
regional target over most magnitudes, as well as the associate
upper 95% confidence bound just above M 7.5, implies a sig-
nificant model overprediction (often referred to as a “bulge”),
although one could argue that the observational uncertainties
should be greater at higher magnitudes, given there are very
few observations.

The MFDs for Cascadia are plotted in Figure 25b. This
shows no change for the gridded seismicity (intraslab) model;
the work by Llenos2023 has not yet been incorporated. The
changes for the fault (subduction interface) are modest at
larger magnitudes, and as shown in the next section sub-
sequently, do not produce ≥10% changes with respect to 2%
in 50 yr ground motions.

2018–2023 HAZARD CHANGES
This section documents where and why CONUS hazard
has changed relative to NSHM14/18, holding GMMs constant
so that we can focus on ERF-related differences. Only branch-
averaged comparisons are made, and here we utilize the full
logic tree set of GMMs from NSHM14/18. Figure 26 shows
a map of 2in50 PGA for the new ERF, plus ratio and difference
maps relative to NSHM14/18. The ratio map (Fig. 26b) satu-
rates at plus and minus 50%, whereas ratios are up to a factor of
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Figure 25.Model MFDs for (a) the CEUS and (b) the Cascadia subduction zone.
Blue and red curves are for the NSHM14/18 and new model, respectively. Solid
curves are for the complete model; dashed curves are for faults; and dotted
curves are for gridded seismicity (or intra slab seismicity in panel b, for which
the blue dotted line is hidden behind the red dotted line). The purple line and
shaded region in panel (a) represent the observed target and 95% confidence
intervals, respectively, CEUS (extrapolated from M 5 with no taper). The color
version of this figure is available only in the electronic edition.
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8.1 in some areas (this highest value being near the southern tip
of Texas). However, the higher ratios are generally in lower
hazard areas, meaning absolute differences are small as indi-
cated in Figure 26c. The discontinuity in M ≥ 5 rates at −104°
longitude in Figure 13 is not visible in Figure 26, because the
GMMs effectively smooth it out. The goal of our analysis has
been to understand and explain all changes of more than 10%.

Figure 27a shows where
fault model changes are influ-
ential; this map was generated
using the new gridded seismic-
ity model in both the numera-
tor and denominator, which
masks fault-related changes in
areas dominated by gridded
seismicity. The changes in
CEUS are easy to explain; haz-
ard has increased where
sources were added (Central
Virginia and Saline River in
southern Arkansas) and where
fault traces were extended (the
Meers fault in Oklahoma and
the Axial fault in the New
Madrid area). Three sources
added in the New Madrid
area—Joiner Ridge and
Crowley’s Ridge (south) and
(west)—did not increase haz-
ard by more than 10%.

Explaining fault-related
changes in WUS is much more
complicated due to methodo-
logical changes, particularly out-
side California, and the strong
influence of deformation mod-
els. Fortunately, the bottom line
is simple: most differences are
explained by fault moment-rate
changes (the addition, removal,
or modification of faults or
changes inmean slip rates), with
just a few areas influenced by
other factors. Parsing this out
required careful analysis (refer
to recording number 8 under
Video Recordings of Review
Panel Briefings in Data and
Resources). In short, we first
made an approximate predic-
tion of hazard changes caused
only by fault moment-rate
changes (involving mapping

the moment rates in each fault model to grid cells and computing
hazard using grid sources with otherwise identical MFD param-
eters). Examining correlation between this and hazard map ratio
in Figure 27a allowed us to identify areas that may not be
explained by fault moment-rate changes. Next, we held the defor-
mation model constant (the average used in NSHM14/18) and
incrementally stepped through other changes in going from

(a)

(b)

Figure 26. (a) The PGA that has a 2% chance of exceedance in 50 yr according to the new conterminous United States
(CONUS) branch-averaged model (and the set of GMMs used in NSHM14/18 with VS30 � 760 m=s). (b) The percent
change and (c) difference relative to that of the NSHM14/18 earthquake rupture forecast. All sources, such as
Cascadia, are included. The color version of this figure is available only in the electronic edition. (Continued)
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NSHM14/18 to the new model. This revealed the following with
respect to non-California fault sources: (1) we can reproduce the
previous classic model within our new fault system solution
framework (a verification step); (2) adding alternative segmen-
tation branches generally lowers hazard a bit (by 5%–15%),
because allowing multifault ruptures lowers overall rates; and
(3) replacing the Wells and Coppersmith (1994) magnitude–
length model with the set of magnitude–area relations utilized
here also generally lowers hazard by 5%–15% (because magni-
tude–length models predict lower maximum magnitudes for the
predominantly dipping faults outside California). This analysis,
and that conducted by Milner and Field (2023) with respect to
hazard changes in the UCERF region, enabled us to identify the
few areas that are dominated by something other than moment-
rate differences; these cases are labeled in Figure 27a, and Milner
and Field (2023) provide additional details for California.

Figure 27b shows areas in which hazard changes are domi-
nated by gridded seismicity (computed using the new fault
sources in both the numerator and denominator to mask areas
dominated by faults). The causes of these differences, which
determined by Llenos2023, are one or more of the following:
(1) new earthquakes observed since 2018; (2) the addition
of two new declustering algorithms (the Reasenberg, 1985
method tends to remove fewer aftershocks); (3) the removal
of floor-rate zones in WUS; (4) updated induced seismicity
zones; and (5) a change in the boundary between WUS and
CEUS (now defined by –104° longitude). Areas dominated
by each of these are identified in Figure 27b.

Again, the goal here has not
been to document and describe
changes with respect to a com-
plete set of hazard and risk met-
rics, but rather to demonstrate
an understanding and comfort
with those of one commonly
used metric (2in50 PGA). Our
solution reports provide results
for some other hazard metrics,
and additional information
on 2018–2023 NSHM hazard
changes, including the influence
of new GMMs, is given by
Petersen et al. (2023a).

DISCUSSION AND
CONCLUSIONS
Improvements over
previous models
The new CONUS ERF pre-
sented here embodies a number
of significant improvements,
including an increase in the
number of explicitly modeled

faults, updates to other geologic constraints, the addition of
two new deformation modeling techniques, a new fault creep
model, and consideration of ghost transient (viscoelastic) effects.
We also have new regional seismicity rate and b-value estimates,
including uncertainties, which allows us to compare model
MFDs with observations (for the first time outside California).
Additional declustering algorithms were also added, as well as
a revamped set of scaling relationships.

We have also improved the representation of multifault
ruptures in WUS, both in terms of allowing more and less fault
connectivity than in the previous models, and in sweeping over
a broader range of total-rate models (rather than being con-
strained to stay as close as possible to the previous model,
as in UCERF3). The inversion methodology has been com-
pletely overhauled for efficiency, reproducibility, and the gen-
eration of exhaustive web-based reports that include hazard
analyses.

A semi-independent review team evaluated the deformation
models (Johnson et al., 2023), involving a novel scorecard
approach in which each model was evaluated against 16 differ-
ent metrics. An ad hoc group of USGS geologists (Hatem2023)
evaluated the fault system solutions, which led to several model
adjustments and future recommendations including: (1) refin-
ing the Wasatch segmentations because large ruptures were
sneaking around boundaries via subsidiary faults, (2) removal
of average paleo slip constraints as already noted, and (3)
refinement of Wasatch andWest Valley fault subsurface geom-
etries near Salt Lake City.

(c)

Figure 26. Continued
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The 19-member participatory review panel participated
heavily indeed (Jordan et al., 2023) and had substantial impact
on the final model, some of which involved our heeding the
following suggestions:

1. downweight the deformation models in accordance with
slip-rate outlier analyses,

2. fix some erroneous fault
rakes,

3. add rupture-length limits to
the segmentation branch
constraints (to suppress
questionable rates of very
long ruptures),

4. address a problem in which
higher slip-rate faults were
being systematically underfit,

5. add a scaling relationship
that allows even higher aver-
age slip for large ruptures,

6. update the induced seismic-
ity zones,

7. downweight the Reasenberg
(1985) declustering and the
fixed-smoothing branch,

8. downweight the classic seg-
mentation branch (uniform
weights were applied origi-
nally), and

9. verify model MFDs against
historical observations at
high magnitudes.

Downweighting the Classic
segmentation branch (item 8)
was one of the more controver-
sial decisions, as many came
into the project suggesting that
the weight should be increased,
at least outside California.
However, this model is consis-
tently problematic with respect
to the following: (1) overpre-
dicting the regional MFD (the
“bulge” problem illustrated in
Fig. 16b); (2) possible rupture
length distribution issues (e.g.,
Fig. 21a); and (3) defining the
exceptions (Table 5), which
largely amounts to assuming
faults cannot co-rupture until
nature proves us wrong. The lat-
ter issue was the most frustrat-

ing for those implementing the model because a reproducible
algorithm for defining the exceptions was not provided.
Again, the extreme segmentation branches are partly a proxy
for over- or underestimated connectivity in the fault model,
and the exact branch weights are not highly influential with
respect to the mean hazard metrics considered for the 2023
USGS NSHM. For these reasons, we were somewhat ambivalent

Figure 27. The 2% in 50 yr PGA percent changes, as in Figure 26b, but separated out by the (a) contribution from faults
and (b) from gridded seismicity, constructed using the new gridded seismicity in both the numerator and denominator in
panel (a), and doing similarly with respect to the new fault sources in panel (b). In panel (a), and outside California, all
differences are caused by fault moment rate changes (addition, removal, or extension of faults or a change in mean slip
rate), except where labeled differently. The color version of this figure is available only in the electronic edition.
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about final segmentation weights. As implied by the final branch
weights (Fig. 2, Table 4), we ended up heeding the review panel
advice, but with the stipulation that the other end members
(None and High) be downweighted as well.

Regarding panel recommendation (item 8), the issue is that
our total M ≥ 5 rate and b-value constraints are effectively
inferred from smaller (M < 5) earthquakes (Michael2023), which
raises the question of how well our model is matching observa-
tions at higher (e.g., supraseismogenic) magnitudes. Figure 28
provides the answer for WUS and CEUS, for which the branch
averaged model (red curve) is compared with the historically
observed rate of M > 6 events (black circles representing raw
counts divided by the associated catalog-completeness interval),
with uncertainties on the latter derived by assuming a Poisson
model as developed by Michael2023. For WUS, the observed
cumulative rates are systematically lower than the model predic-
tion up toM 7.5 but well within the uncertainties. For CEUS, the
observed rate is not only lower nearM ≥ 6.25 (perhaps reflecting
missed events) and higher at the largest magnitudes, but also
well within the uncertainties at all magnitudes.

The review process also revealed remaining concerns over
using undeclustered models for USGS NSHM hazard calcula-
tions, so some additional comments are provided here. The
problem is illustrated in Figure 29, which compares the unde-
clustered MFD with those from declustered catalogs for
the WUS and CEUS Collection regions (based on the total
M ≥ 5 rate and b-value inferences of Michael2023. In WUS,
the GK declustering (red line in Fig. 29a) lowers total M ≥ 5
rate by about 50%, but it also lowers the b-value, causing a
crossover point above which rates are erroneously high
(declustering cannot lead to an increase in rates). This issue
was recognized and handled properly in UCERF3, so applying

GK filtering in NSHM hazard
calculations was both reason-
able and needed for consis-
tency with other regions. The
bigger issue now is that the
newly added NN declustering
algorithm (Zaliapin and Ben-
Zion, 2020) removes about half
of all events at all the magni-
tudes (blue line in Fig. 29a),
which we already noted is
consistent with other modern
declustering approaches
(essentially because aftershocks
can be larger than their main-
shocks). However, no one is
advocating that we remove half
of all events from our hazard
calculations. The same effect
is seen for the CEUS region
(Fig. 29b), but where the GK

crossover point is nearM 4.5, implying it erroneously overpre-
dicts rates at higher magnitudes, which we do not want in haz-
ard calculations either. The only solution is to calibrate models
to the total MFD (including aftershocks). If treating the result
as a Poisson process is problematic, then the proper solution is
to develop and deploy models that explicitly and realistically
represent spatiotemporal clustering. In fact, the latter is needed
to explore whether the Poisson assumption is problematic in
the first place, as exemplified by Field et al. (2021). As already
noted in the Aftershocks section above, several studies have
concluded that, with respect to USGS NSHM 2023 hazard met-
rics (2% and 10% in 50 yr ground motions), we are better
off keeping aftershocks and assuming a Poisson process
than declustering with antiquated or biasing methodologies
(Marzocchi and Taroni, 2014; Field et al., 2021; Wang et al.,
2021; Michael and Llenos, 2022). Although we consider this
modification a model improvement, additional work is war-
ranted with respect to deploying fully time-dependent ERFs
nationwide.

Model limitations
Despite improvements, the new model is a limited represen-
tation of the system in terms of embodying assumptions,
approximations, and data uncertainties. For example, we
continue to differentiate between “on-fault” and “off-fault”
ruptures, whereas nature will surely violate this model
distinction. We also acknowledge that our fault model is a
simplification of reality, and that future large ruptures will
not exactly match it.

Although we believe the logic tree branch weights are
applicable in general, adjustments may be warranted in cer-
tain situations. For example, further scrutiny may justify a

(b)(a)

Figure 28. Comparison of (a) WUS and (b) CEUS branch-averaged model MFDs (thick red lines) with event-count-
based rates (black circles) for M ≥ 6 seismicity (number of events divided by the time period as labeled for each
region). Uncertainties on the latter (shaded region) are based on a Poisson assumption, and model uncertainties are
shown with the lighter red lines (for WUS only), both of which represent 95% confidence. The color version of this
figure is available only in the electronic edition.
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different set of deformation model weights near specific
faults, especially given questions about how each model sam-
ples the null space (described in the Deformation models sec-
tion). Correlation assumptions may also justify branch weight
modifications. For example, a 10% weight on the Classic and
no-segmentation branches seems rational for site-specific
hazard (because the actual connectivity of nearby faults
may be more or less than implied by the fault model), but
the likelihood that either of these branches applies to all fault
in a region is more doubtful, so weight adjustments might be

appropriate for spatially distributed hazard and risk metrics
(e.g., statewide portfolio losses). Of course, any such adjust-
ments should be based on science (not desired outcomes),
and the USGS can provide authoritative judgments as broadly
needed.

Another presently unresolved issue is the best way to com-
bine sources that have completely different (uncorrelated) logic
tree branches. For example, if Cascadia has X branches, do we
combine these with all N WUS branches, yielding N × X
branches? Alternatively, should we keep them separate and
combine the consequent hazard PDFs, or use Monte Carlo
sampling, both of which might complicate quantifying the
influence of different branches? Or do we construct philo-
sophically similar sets of branches for each source and assume
correlation? Until we address these questions, full considera-
tion of all epistemic uncertainties will remain a challenge in
hazard and risk analyses.

Each inversion-based fault system solution includes quan-
titative metrics on how well the final model fits each data con-
straint. In principle, these misfits could be used to adjust logic
tree branch weights a posteriori (e.g., using Bayes theorem with
a priori branch weights). This has proven challenging in prac-
tice, however, because better fits do not always reflect a better
model. For example, a target MFD with higher b-value appears
superior, but this is only because it has more, smaller earth-
quakes with which to fit noisy slip-rate fluctuations. That said,
several branches were assigned uniform weights because we
lacked a good basis for doing otherwise. Further scrutiny of
the model, particularly in terms of data fits, will presumably
lead to some desirable adjustments.

Finally, given the questions associated with using nonde-
clustered models and the correlation assumptions on the seg-
mentation and b-value branches, care might be in order when
applying the model to shorter-term probabilities (e.g., 40% in
50 yr ground motions) and to spatially broad hazard and risk
metrics (e.g., statewide portfolio losses).

Future improvements
As mentioned in the Introduction, we plan to add time-depen-
dent components in future versions (e.g., elastic rebound, spa-
tiotemporal clustering, induced seismicity, and swarms). Fully
time-dependent models are needed not only as a potential basis
for operational earthquake forecasting (Jordan et al., 2014),
should that be deemed useful, but to also evaluate assumptions
made in our time-independent model (e.g., assuming a Poisson
process with a non-declustered model). But in terms of improv-
ing the time-independent model presented here, effort is war-
ranted with respect to improving the deformation models
because fault-slip rates continue to be one of the most influential
factors on seismic hazard. Given the outlier problem with
respect to the five models applied here, attention could be given
to not only the viability of different modeling approaches but
also with respect to how each maps out any solution null space;

(a)

(b)

Figure 29. The influence of declustering on (a) WUS and (b) CEUS regional
MFDs, as implied by the analysis of Micheal (written comm., 2023, as
described in the Gridded seismicity sources section). Black shows the total
MFD (including aftershocks) plus the 95% confidence bounds (dotted)
implied by the total M ≥ 5 rate and b-values listed in Table 6 (assuming the
maximum magnitude of 8.5 for plotting purposes). Red and blue show the
MFDs implied by the GK (Gardner and Knopoff, 1974) and NN (the nearest-
neighbor approach of Zaliapin and Ben-Zion, 2020) declustering algorithms,
respectively. Results for Reasenberg (1985) are not shown but are relatively
close to the total MFD. Note that GK exhibits a crossover point, as labeled,
above which there is an erroneous overprediction of larger events. The color
version of this figure is available only in the electronic edition.
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in fact, it would be ideal if each approach provided a suite of
viable models that represents both a systematic traversal of null
spaces and a basis for representing slip-rate covariance. We also
want to improve the reliability of the off-fault deformation esti-
mates from these models, both in terms of total moment rate
and the spatial distribution of off-fault earthquakes (on which
we have made no progress since UCERF3).

In developing this ERF, we were continually asking whether
a decision or model option is consequential with respect to
hazard or risk estimates. Although we were often able to
answer this question with respect to more traditional hazard
metrics, the extent to which we can operationalize this capabil-
ity, and with a broader set of risk metrics, would increase the
rate at which we can provide even more useful models. For
example, we are still unsure of the consequences of having
exceptionally long (e.g., ≥ 700 km) ruptures with respect to
statewide losses in California and of the influence of the vari-
ous logic tree branches on this risk metric. Again, operation-
alized processing would be beneficial with respect to a
necessary and sufficient set of hazard and risk metrics.

We also plan to explore applicability of fault system
solutions in other areas (New Madrid and Alaska faults,
and the Cascadia and the Aleutian subduction zones), in part
to enable computing implied attributes, such as subduction
slip rates, and for adding time dependencies. Another high
priority is better quantification of epistemic uncertainties
associated with the gridded seismicity model, especially given
the limited sample of instrumental and historical earth-
quakes; we need better procedures for quantifying the impli-
cations of this sampling error, and fully time-dependent
models would be highly useful for this purpose. We also need
to determine the value of developing site-specific models for
the probability of missed events at paleoseismic trenches (we
are still using generic models).

Of course, model testing is of paramount importance,
including everything from component-specific evaluations,
based on traditional science, to more formalized, objective
evaluations from entities like the Collaboratory for the
Study of Earthquake Predictability (Zechar et al., 2013;
Savran et al., 2022). Longer term, multicycle physics-based
simulators (e.g., Tullis, 2012 and references therein) are per-
haps our best opportunity for addressing many enduring
ERF-related questions, including the propensity of multifault
ruptures, earthquake scaling, the influence of creep, the shape
of MFDs on faults, elastic rebound predictability, and spatio-
temporal clustering details at larger magnitudes (e.g., Field,
2019). A more comprehensive list of research priorities can
be found in the ERF section of the annual external grants
announcement of the USGS Earthquake Hazards Program.

DATA AND RESOURCES
Web-based solution reports are available at https://data.opensha.org/
nshm23/reports/reports.html. Solution report links referred to in

the article are as follows: link 1: https://data.opensha.org/nshm23/
reports/misc_plots/reg_mfds_comp_nshm18/CONUS_U3_RELM_
mfds_SUPRA_ONLY_cml.pdf; link 2: https://data.opensha.org/
nshm23/reports/misc_plots/reg_mfds_comp_nshm18/CONUS_U3_
RELM_mfds_GRID_ONLY_cml.pdf; link 3: https://data.opensha.org/
nshm23/reports/branch_averaged_gridded/#slip-rates; link 4: https://
data.opensha.org/nshm23/reports/branch_averaged_gridded/#paleo-
seismic-data-comparison; link 5: https://data.opensha.org/nshm23/
reports/branch_averaged_gridded/resources/conn_passthrough_
MIN_supra_seis.png; link 6: https://data.opensha.org/nshm23/
reports/branch_averaged_gridded/parent_sect_pages/Cucamonga/
#connectivity; link 7: https://data.opensha.org/nshm23/reports/
branch_averaged_gridded/parent_sect_pages/Cucamonga/#rupture-
examples; link 8: https://data.opensha.org/nshm23/reports/
branch_averaged_gridded/#fault-participation-rates; link 9: https://
data.opensha.org/nshm23/reports/branch_averaged_gridded/#parent
-section-detail-pages; link 10: https://data.opensha.org/nshm23/
reports/branch_averaged_gridded/parent_sect_pages/Wasatch_Salt
_Lake_City_north/#cumulative-rates-and-recurrence-intervals-table;
link 11: https://data.opensha.org/nshm23/reports/branch_averaged
_gridded/#special-fault-detail-pages; link 12: https://data.opensha.
org/nshm23/reports/site_hazard_full_gridded/. All the websites were
last accessed in May 2023. The National Seismic Hazard Model
(NSHM) 2023 Data Release is available at doi: 10.5066/
P9GNPCOD (Petersen et al., 2023b). The video recordings of review
panel briefings are available at https://earthquake.usgs.gov/
static/lfs/nshm/workshops/workshop-recordings/erf/ (last accessed
September 2023). The computer codes are as follows: most calcula-
tions were made using OpenSHA (http://www. OpenSHA.org, last
accessed August 2023; Field et al., 2003), which in turn utilizes the
following for making plots: Generic Mapping Tools (GMT; https://
www.generic-mapping-tools.org) and JFree-Chart (http://www.
jfree.org/jfreechart/). Both the websites were last accessed in May
2023. Calculations were also based on the U.S. Geological Survey
(USGS) nshmp-haz codes (Powers et al., 2022, doi: 10.5066/
P9STF5GK).
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