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ABSTRACT: This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic
monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical prin-
ciples of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble
and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column
(SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one
includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average
equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behav-
ior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameteriza-
tions most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES.
Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under
realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during
wind-driven deepening of the mixed layer and 2) under strong diurnal forcing.

KEYWORDS: Ocean; Boundary layer; Langmuir circulation; Mixed layer; Monsoons; Numerical analysis/modeling;
Single column models; Subgrid-scale processes

1. Introduction

The ocean surface boundary layer (OSBL) dictates the
short-term heat capacity of the upper ocean and modulates
the communication between the atmospheric and oceanic sys-
tems (Umlauf and Burchard 2005; Belcher et al. 2012; Li et al.
2019; Fox-Kemper et al. 2021a; Hall and Fox-Kemper 2021,
manuscript submitted to Geophys. Res. Lett.). Fluid motions
within the OSBL are dominated by small-scale turbulence
[from O(1) cm to O(100) m] and so are rarely resolved and
therefore parameterized in regional and global numerical mod-
els. Under realistic surface forcing, only large-eddy simulations
(LES) and direct numerical simulations (DNS) seek to directly
simulate the important scales of boundary layer turbulence, and
presently only LES can handle domains large enough to include
a realistic OSBL resembling typical oceanographic conditions.

There are many approaches to approximating turbulence
physics in oceanic boundary layers. LES and single-column
parameterization models (SC models) traditionally consider

turbulence generated by wind stress and buoyancy forcing
(recognized here as shear turbulence models, ST). Newer
LES and SC models may also include the enhanced turbu-
lence contribution from surface wave forcing, usually called
Langmuir turbulence (LT), under the assumption that surface
wave forcing can be approximated through the waves’ Stokes
drift in the wave-averaged equations (Leibovich 1980; Craik
1982; Holm 1996; McWilliams et al. 1997; Suzuki and Fox-
Kemper 2016; D’Asaro et al. 2014; Li et al. 2019). Extensions
of these equations to include stochastic waves (Holm and
Hu 2021), wave breaking (Sullivan et al. 2007), and phase-
dependent turbulence–wave interactions (Teixeira and Belcher
2002; Qiao et al. 2016) illuminate what is missing from the tra-
ditional wave-averaged approach. It is common to isolate the
upper-ocean response to atmospheric forcing in an SC model-
ing framework [i.e., one-dimensional (1D) models; Li et al.
2019]. Validating these approaches across the wide range of
ocean states and atmosphere forcing conditions or understand-
ing the impact of an SC model on the ocean–atmosphere sys-
tem is difficult due to the complexities of both the turbulence
and the evolution of the OSBL. Attempts to validate modeled
OSBL evolution against observations are inhibited by the diffi-
culties in measuring turbulent motions, or confounded by other
processes prevalent in the OSBL but missing inherently in the
1D framework, such as horizontal advection, fronts, and other
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submesoscale structures (e.g., Jaeger et al. 2020; Johnson et al.
2016). In the absence of this observational truth, OSBL SC
models are compared with high-resolution LES or DNS simu-
lations that partially resolve or resolve turbulent motions. Such
simulations are computationally expensive and, except for a
few examples (e.g., Rabe et al. 2015; Large et al. 2019; Pham
et al. 2023; Fan et al. 2020; Whitt et al. 2022), are typically run
under idealized constant forcing conditions that occupy a nar-
row region of the vast range of possible ocean states [estimates of
regimes covered by steady-state LES are given in Li et al. (2019)].
Despite these many approaches, there is still a limited under-
standing of how well OSBL SC models work universally, under
realistic conditions, or how the choice of an OSBL parameteriza-
tion influences the simulated weather and climate system.

The variety of theoretical underpinnings that each turbulence
parameterization is built on further complicates SC model com-
parison. For example, consider the common relation of turbulent
motions of a variable f to an eddy diffusivity kf dependent
on a velocity scale and a length scale of the turbulent motion,
kf 5 cql, where c is a nondimensional coefficient, q is the turbu-
lent velocity scale, and l is a typical turbulence length scale
(Tennekes and Lumley 2018). While this fundamental turbulence
concept is utilized by second-moment closure schemes (e.g., Rodi
1987) as well as by k-theory schemes (e.g., Large et al. 1994), each
formulation’s definition of length scale and turbulent velocity
scale are unique to each parameterization. A unifying framework
(the generic length scale; Umlauf and Burchard 2003, 2005) was
developed to connect different second-moment closure schemes.
Yet, when including a broader class of SC models, key turbulent
control parameters in the OSBL, such as Richardson number and
turbulent velocity and length scales, are applied in widely differ-
ent contexts in each specific scheme of turbulence closure. It is
possible to treat each SC model as a black box and evaluate how
separate SC models run under identical forcing diverge and result
in different ocean states. With this method, it can be challenging
to interpret diverging ocean states after a long period of time as
the turbulent fluxes (and parameterizations) that define the
OSBL are nonlinear, path dependent, and exhibit hysteresis.
Here, an approach is adopted to 1) understand the local behavior
of a nonlinear dynamical system (i.e., numerical model) and 2) lo-
calize approximately in time so as to quantify and evaluate the di-
vergence across an ensemble of numerical models.

Specifically, this study presents a framework to compare
models of the OSBL by evaluating the local (i.e., finite-time)
behavior of the modeled OSBL subject to different turbulence
physics. The goal of this work is not to identify the “best”
model, but to isolate where in the state and forcing space mod-
els disagree in order to evaluate the robustness, or alternatively,
the uncertainty, in the parameterized physics. Section 2 presents
the mathematical foundation for understanding the modeled
OSBL as a nonlinear system of equations. Leveraging dynami-
cal systems theory, the ensemble system is first presented as a
linearized one using a Taylor series expansion to highlight the
distinct sources of sensitivity in the modeled OSBL system. Fo-
cusing on the sensitivity due to parameterization physics alone,
a method is proposed to evaluate intermodel uncertainty.

This method is applied to a specific suite of 10 OSBL SC
models within the General Ocean Turbulence Model (GOTM;

Burchard et al. 1999; Umlauf and Burchard 2005) compared
against LES (Pham et al. 2023), and implemented in a case-study
using in situ observations of the 2018 monsoon onset collected
during the ONR Oceanic Control of Monsoon Intraseasonal Os-
cillations in the Tropical Indian Ocean and the Bay of Bengal
(MISO-BOB) campaign (section 3). Results are presented in
section 4 and discussed in section 5. It will be shown that the
finite-time ensemble method successfully isolates two regimes in
the case study where models disagree 1) during wind-driven deep-
ening of the mixed layer (ML) and 2) under strong diurnal forcing.

2. The ocean surface boundary layer system

Assuming horizontal homogeneity of mean fields, no mean
vertical velocity, and neglecting molecular viscosity, the Bous-
sinesq, hydrostatic, and Reynolds-averaged equations for
mean variables in the OSBL are

­u
­t

5 fy 2
­w′u′

­z
, (1)

­y

­t
52fu 2

­w′y ′

­z
, (2)

­T
­t

52
­w′T′

­z
1

­R
­z

, (3)

­S
­t

52
­w′S′

­z
, (4)

r 5 r(S, T, p), (5)

with boundary conditions at the ocean–atmosphere surface (not-
ing that here the frictional or numerical scheme sublayers that
are not to be resolved, and thus the turbulent fluxes outside of
the sublayers are matched by conservation to the surface fluxes):

w′u′ 52tu(t) at z 5 0, (6)

w′y ′ 52ty (t) at z 5 0, (7)

w′T′ 5 FT(t) at z 5 0, (8)

w′S′ 5 FS(t) at z 5 0: (9)

The variables are given as follows: T is temperature (8C), S is
salinity (g kg21), u is zonal velocity (m s21), y is meridional
velocity (m s21), and w is vertical velocity (m s21), p is pres-
sure (Pa or kg m21 s22), R is penetrative radiative heat flux
(8C m s21), r is density (kg m23), t is wind input (m2 s22), and
FT (8C m s21) and FS (psu m s21) are the surface heat and
(virtual) salt fluxes, respectively. See Fox-Kemper et al.
(2021a) for a wider discussion of these equations. Primes de-
note turbulent properties, and overbars are the horizontal av-
erage (dropped from mean variables for clarity). All averaged
variables are horizontally homogeneous but depend on verti-
cal position z and time t.

A set of equations also predicting the flux divergence terms
in Eqs. (1)–(4) requires knowledge of an infinite number of
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higher-order moments leading to the well-known turbulence
closure problem. There are many avenues to turbulence clo-
sures that attempt to capture the unresolved turbulent mo-
tions in the boundary layer. Parameterizations used in this
manuscript include first-order models and second-moment
schemes. These models tend to utilize k-theory, where the tur-
bulent flux of a variable f is approximated by

w′f′ 52kf
­f

­z
: (10)

First-order models have a diagnostic equation for turbulent diffu-
sivities kf and may include the addition of nonlocal fluxes [e.g.,
KPP and its implementation in the Community Vertical Mixing
Project (CVMix); Large et al. 1994; Van Roekel et al. 2018]. In
second-moment schemes, prognostic equations, such as for a ve-
locity scale and a length scale, can be used to estimate the stresses
and fluxes, w′f′ (e.g., Umlauf and Burchard 2003; Harcourt
2013). Of interest here is understanding how the choice in the
closure approach impacts the trajectory of the OSBL system.

a. Understanding the OSBL as a dynamical system

A state vector x is taken to be all variables needed to solve
the turbulence closure and Eqs. (1)–(4), evaluated at all z grid
points. This set is discretized in space and with a chosen time-
stepping method to form a nonlinear diagnostic process:

xfj 5 Aj(xij; Fi:f
m ; b), (11)

where A, the system map from an initial (superscript i) to final
(superscript f) time, is a nonlinear operator that depends on the ini-
tial value of all the state variables at all z locations (subscript j de-
notes both different variables and different locations). Due to the
turbulence closure problem, a turbulence parameterization is em-
bedded in the system A. The nonlinear operator A also depends
on the forcing F between the initial and final times through dif-
ferent surface conditions and radiation (subscript m; i.e., R, FT,
FS, tu, ty), and on time-independent model parameters b. So,
given xij, Fi:f

m and b, the mapA will determine the final state, xfj .
In many cases, the nonlinear equations are quite complex and

subject to numerical concerns. As such, it can be convenient to
understand the local behavior, rather than the full nonlinear na-
ture, of A. In dynamical systems, this is done formally through a
Taylor series expansion, thereby linearizing Eq. (11) around state
xa, forcing Fa and parameters ba. Bold text indicates matrices
and vectors in the (approximate) linearized system, distinguishing
it from the exact solution in (11). The Jacobian, gain, and param-
eter sensitivity matrices result from partial derivatives of A with
respect to its arguments evaluated at the state xa, forcing Fa, and
parameters ba. The term A|a is simply the nonlinear function A
evaluated with this standard state, forcing, and parameters. Dots
indicate matrix multiplication:

xf 5 A|a 1 J|a ? (xi 2 xa) 1 G|a ? (Fi 2 Fa) 1
­A

­b

∣∣∣∣
a
? (b 2 ba):

(12)
For the local linearization to be accurate the initial state vec-
tor xi and final state vector xf both must be nearby the

standard state vector xa, and similarly the forcing and param-
eters must not be altered much.

For a state xa on the system map, the terms in the Taylor se-
ries expansion highlight the various aspects of a single nonlinear
SC model that can impact the trajectory from xi to around xa.
This provides a useful framework for identifying sensitivities in
the simulated OSBL system that are otherwise obscured by eval-
uating continuous simulations. Potential choices of xa might
arise (e.g., multimodel mean state, LES state, etc.) and the inter-
pretation of Eq. (12) depends on this choice [see Johnson and
Fox-Kemper (2022) for a more generalized discussion of xa].

The Jacobian J|a is the evaluation at the standard state,
forcing and parameters of the partial derivative of the nonlin-
ear function A:

Jmn(xi; Fi:f ; b) 5 ­Am(xi; Fi:f ; b)
­xin

: (13)

The partial derivative captures the sensitivity of a model tra-
jectory outcome at the final time to the initial state, but, un-
like its form in the local linearization J|a, the derivative in
(13) still depends on the state, forcing, and parameters. For
example, the amount of deepening of the ML by the end of
an interval will be sensitive to the stratification of the ML
base at the beginning of the interval.

For the surface forced OSBL, the dependence of A for
each state variable due to infinitesimal changes in each forcing
agent over every increment of time from the initial to the final
condition can be captured by the infinite-dimensional “gain
function.” The gain matrix G|a has a nonlinear gain function
form which depends on the state, forcing, and parameters:

Gi:f
mg(xi; Fi:f ; b) 5 ­Am(xi; Fi:f ; b)

­Fi:f
g

: (14)

It is interesting to note that the arguments to Gmg(x; F; b) indi-
cate that the influence of forcing on the system is not limited to
dependence on the boundary conditions necessarily, but also
through parameter- and state-dependent responses to the sur-
face fluxes. For example, SC models based on Monin–Obukhov
(MO) similarity theory (Monin and Obukhov 1954) such as
KPP are limited in the kinds of parameter and state dependence
allowed through a small set of dimensionless relationships that
may depend on surface forcing. Similarly, if the Taylor series
were evaluated to higher, nonlinear order beyond (12), then the
correlations between altered state and forcing would arise.

Tunable time-independent parameters, b, that appear on the
right-hand side of Eq. (12) can also impact the trajectory of x. For
the discretized equations, this includes time-stepping schemes and
vertical coordinates. This also includes parameters specific to each
closure approach, such as Ri criteria in KPP-based formulations
(Large et al. 1994; Van Roekel et al. 2018), or stability parameters
in second-moment formulations (Umlauf and Burchard 2003).

The sensitivity of x to perturbations in the state or forcing
space depends on the behavior of the OSBL system, which
can be evaluated locally and formally through the eigenvalues
of the Jacobian [Eq. (13)] and gain matrices [Eq. (14)].
Appendix A explores this local approach for the highly
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simplified two-equation bulk ML model of Kraus and Turner
(1967, hereafter KT67), with results that suggest the KT67 sys-
tem is stable to small perturbations in state space. While many
current SC models are not tractable under the same analytical
techniques, it is anticipated that they exhibit the same behav-
ior: that the forced dissipative OSBL can be described by
mean variables that evolve continuously and deterministically,
and the fast time scales and stochastic, chaotic behavior (espe-
cially sensitivity to initial conditions and forcing) that charac-
terize turbulent motions are not characteristic of the later,
finite-duration SC model evolution. This is consistent with as-
sumptions in the Reynolds averaged equations where the time
scale of turbulence is less than that of the evolving BL (i.e.,
BL evolution is longer than the large-eddy turnover time
scale). BL forcing can be represented as the friction velocity,
u* 5

""""""
t/ro

√
, and convective velocity w* 5 (BoH)1/3. For typical

values of u* 5 0:01ms21 andH5 40m, a time scale for the evolu-
tion of turbulence statistics can be estimated as teddy ;H/u* ; 1 h
(Wyngaard 2010). Yet the time scale of each SC model will
differ according to the physics and numerics employed; this
work seeks to formulate a system approach to illustrate and
compare these across models. The trajectory of the mean fields
and turbulent fluxes beyond the turbulent eddy time scale is
the focus of this system analysis.

b. The ensemble vector approach for
intermodel comparison

As highlighted in Eq. (11), sensitivities in numerical simula-
tions of the OSBL are defined by their physics (e.g., choice of
parameterizations for unresolved processes), initial conditions,
forcing conditions, as well as numerics (e.g., temporal and spatial
discretization and resolution) captured in the map A. When dif-
ferent systems (i.e., SC models with different turbulence param-
eterizations) begin at xi 5 xa with identical spatial resolution,
time-stepping schemes and forcing (Fi 5 Fa), their initial trajec-
tories will depend on the first term in the Taylor series expan-
sion only (mirroring related approaches such as bred vectors
and Lyapunov vectors). Under these conditions, two different
ocean states can emerge and then diverge solely due to the
choice of turbulence parameterization. While the method below
can be expanded to explore different sensitivities in Eq. (12), the
diverging ocean states resulting from different parameterized
turbulence (i.e., across multiple models) is the focus of the rest
of this manuscript. The analysis will include finite, rather than in-
finitesimal, duration simulations. As such, the idealized localiza-
tion of Eq. (12), where model, forcing, and parameters are
distinct objects for analysis, becomes increasingly poor with the
duration of the analysis window. Likewise, analysis of the local
objects, e.g., the eigenvalues of the matrices in Eq. (12), is not a
complete description of the finite time behavior.

The impact of different systems An on the trajectory of x
starting at xi 5 xa is explored here. It is helpful to establish a
reference system,

xreff 5 Aref(xa; Fi:f ; b): (15)
For simplicity, we assume the system maps are deterministic,
rather than stochastic, as they depend only on the behavior
on time scales slower than the turbulence time scales.

From this, it is helpful to define an SC ensemble difference vec-
tor yf 5 xnf 2 xreff . The trajectory of yf, which is the main interest
of a multimodel comparison, can also be represented as a dynami-
cal system as explored in (Johnson and Fox-Kemper 2022), which
shows how linearization about a few different states and forcing
conditions allow the sensitivities of the dynamical system that de-
fines yf, to be compared with more commonly used methods such
as Lyapunov vectors and exponents, bred vectors, and singular
vectors (e.g., Wolfe and Samelson 2007; Norwood et al. 2013).
While many of these approaches diagnose consequences of the
Jacobian solely, SC models tend to respond as much to forcing as
to initial conditions, so the gain matrix must also play a role. Yet,
after an infinitesimal interval of time, the difference in trajectories
between the two systems will continue to be influenced by the dif-
ferent gradients surrounding xa between the two maps approxi-
mated by Ja, Ga, and ­An/­b and like any nonlinear system,
becomes increasingly challenging to evaluate.

A more computationally simple and appropriate approach
evaluates the finite, nonlinear growth of error in state space
between different SC models (i.e., system maps An), defined
here as an ensemble vector (EV). The finite, nonlinear growth
of error captured by the EV is analogous to bred vectors,
commonly used for weather ensemble forecasts (Toth and
Kalnay 1993, 1997). It is shown (in appendix C) that the
short-time behavior of SC models converges to each model’s
own stable trajectory. Therefore, a multimodel SC EV meas-
ures the spread across an ensemble of SC models’ trajectories.

For intermodel comparison, the EV is obtained by running the
model An initiated with state variables from the reference (either
ensemble mean or truth) run Aref mirroring the locus of lineariza-
tion xa, Fa in (12), referred to as a branch run. After a characteristic
time scale (to be determined by the system and SC models), the
difference between the modeled state and the reference state is the
EV which captures deviations between the nonlinear trajectories
of each systemmap (Fig. 1). In other words, the EV represents the
fastest growing nonlinear deviations between the states (i.e.,
yf 5 xnf 2 xreff ) evolved by different turbulence parameterizations.

So far, the discussion of model comparison has been general-
ized, yet the execution of this method in practice will depend on
the nature of the model formulations to be considered (e.g., the
chosen base run and SC models and their numerical realization)
and the focus of the comparison (e.g., sensitivity). The rest of this
manuscript presents an example that compares a suite of ST and
LT parameterizations for a case study during the 2018 monsoon
onset in the Bay of Bengal. The EVmethod for intermodel com-
parison is performed using an LES as the reference base run. SC
models run through GOTM (Burchard et al. 1999; Li et al. 2019)
are branched from the base run to create the EV as described in
section 3. The largest EVs provide a targeted examination of
where and why turbulence parameterizations deviate from the
LES as explored in section 4 and discussed in section 5.

3. Methodology

a. Data processing

This analysis is motivated by the 2018 MISO-BOB field
campaign that captured the upper-ocean response to the
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onset of the monsoon intraseasonal oscillations (MISO).
The details of the ocean response can be found in Shroyer
et al. (2021) and are summarized here (Fig. 2). A northward
propagating rainband that signaled the onset of the mon-
soon was associated with strong variable surface forcing
(referred to as the active period). During this period,
upper-ocean mixing from unsteady winds and surface cool-
ing competed with buoyancy input from strong, yet short-

lived precipitation events. Later in the survey, the atmo-
spheric forcing regime shifted to one characterized by low
winds and a strong diurnal cycle (referred to as the break
period). These two phases typify the oscillating wet and dry
patterns that characterize the MISO and therefore provide
an opportunity to evaluate the performance of upper-ocean
mixing parameterizations to unsteady and variable mon-
soon forcing.

FIG. 1. Schematic of the ensemble vector method for use in intermodel comparison studies. A
base run (which could be an SC model from which branches are perturbed, an SC model with
reduced state space from an imperfect restart, a multi-SC-model ensemble mean, or an LES
“truth”) provides state variables to initialize a suite of models at different times. This example
shows how the evolution of different models results in different ML depths. After a time interval
(e.g., 6 h), a difference in (nondimensional) state space between each model n and the base run
form the EV for that time interval, as described in section 3.

FIG. 2. Surface forcing and initial profiles motivated by observations collected during the 2018 MISO-BOB campaign in the Bay of
Bengal used to drive the LES and SC models. The time series is divided into an active period which captured the monsoon onset, followed
by a calm break period with strong diel forcing. (a) Zonal (dark green), meridional (light green), and total (black) wind stress; (b) surface
heat fluxes, shortwave (red; Qsw), longwave (navy; Qlw), latent (blue; Qlat), and sensible heat (light blue; Qsen); and (c) precipitation
minus evaporation. Initial profiles of (d) temperature, (e) salinity, and (f) stratification.
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Surface fluxes of heat, wind speed, and precipitation were
collected from the meteorological system on board the R/V
Thompson. Surface heat fluxes and wind stresses were calcu-
lated using the COARE 3.5 algorithm and filtered in time to
smooth out higher frequencies using a Butterworth filter with a
cutoff frequency of 1 h. Precipitation was not filtered as to cap-
ture significant rainfall events typical of the monsoon. Wave data
were not collected during the survey; therefore, an assumption of
wind-wave alignment is made. Stokes drift profiles are computed
from wind speeds at 10 m (u10) using an empirical wave spectrum
assuming equilibrated wind and waves (Donelan et al. 1985) sim-
ilar to that described in Li and Fox-Kemper (2017). Wind-wave
direction is important for LT studies, but in the absence of truth,
the assumption here is appropriate for LES-SC model compari-
son as all LT models use the same Stokes drift profiles.

In situ measurements collected by a fast CTD (Pinkel et al.
2012; Lucas et al. 2016) provided motivation for idealized ini-
tial vertical profiles of temperature and salinity constructed
using a tanh function (Pham et al. 2023). These surface fluxes,
Stokes shear, and initial profiles were used to force a combi-
nation of LES and SC model (Table 1).

b. Large-eddy simulation

Large-eddy simulations solve the three-dimensional grid-
filtered nonhydrostatic incompressible Navier–Stokes equations
under the Boussinesq approximation. Further details of the
LES are in appendix B.

Two LES simulations were performed (Fig. 4): one with Lang-
muir turbulence (LES-LT)}that is, including the Stokes vortex
force, Stokes Coriolis force, and Stokes advection of the wave-
averaged Boussinesq equations}and one with shear turbulence
only (LES-ST). Both simulations were initialized with observa-
tionally motivated salinity and temperature profiles which consist
of a 20-m OSBL on top of a 30-m remnant layer. The remnant
layer is bounded by the thin layers of elevatedN2 at 20- and 50-m
depths (Figs. 3a,e). The LES-LTmodel uses the same Stokes drift
as the SC-LT models. Overall, the evolution of the OSBL is qual-
itatively similar in the two simulations. However, there are impor-
tant quantitative differences between the two LES simulations
due to the effects of Langmuir turbulence, for example, deeper
MLs and stronger rates of turbulent mixing in the LT simulation.
Detail of the differences can be found in Pham et al. (2023).

c. Single-column models

This study explores the impact of 10 different SC models
on the evolution of the upper ocean using a common frame-
work GOTM (Burchard et al. 1999; Umlauf and Burchard
2005) with the extension by Li et al. (2019) to incorporate a
set of Langmuir turbulence SC models (SC-LT). Three classes
of SC models used here include 1) a set of KPP variants,
2) the energetic planetary boundary layer (ePBL) models, and
3) a set of second-moment closure (SMC) models. Within each
class, both ST and LT formulations are included. A comprehen-
sive overview of these parameterizations can be found in Burchard
et al. (1999), Umlauf and Burchard (2005), and Li et al. (2019).
Note that SC-LT models solve Eqs. (1)–(4) and do not include
the Stokes vortex as in the LES. Therefore, the effect of en-
hanced mixing due to Langmuir turbulence is incorporated im-
plicitly in the turbulent fluxes. The list of parameterizations used
in this study and the references are summarized in Table 1.

The simulations were run with a uniform vertical grid spac-
ing of 0.5 m, a time step of 60 s, and initialized with profiles of
mean T, S, u, and y from the LES-ST and LES-LT as de-
scribed in the next section. A comparison of the simulated
ML depth in these SC models and LES is shown in Fig. 4.

d. Implementation

A challenge in implementing an EV method for model
comparison is consolidating the many possible states that SC
models rely on, each with different degrees of freedom that
increase with the level of closure. Turbulence in KPP-type
models relies on mean fields (to calculate a BL depth) and
empirical coefficients based on surface forcing. Higher-order
closures contain prognostic turbulent quantities that depend
on turbulence production and dissipation. The intermodel
comparison requires a reduced state space through which to
compare these different maps and variables. Here, that space
is reduced to the mean and turbulent fields for T, S, u, and y :

x 5 [T,S,u,y ,w′T′ ,w′S′ ,w′u′ ,w′y ′ ]T: (16)

The components of the state vector in Eq. (16) are then non-
dimensionalized by surface forcing, layer depth H, and the
time scale of the EV interval, DtEV, such that mean variables

TABLE 1. List of parameterizations used in this study. Three second moment closure (SMC) schemes: k–« (KEPS), Mellor–Yamada
(MY), and Langmuir turbulence (LT). Five KPP schemes: community vertical mixing (CVMIX), Regional Ocean Modeling System
(ROMS), entrainment (ENTR), e-factor (EFACTOR), and Reichl (R). Two ePBL schemes for shear and Langmuir turbulence.

Name Type ST LT References

SMC-KEPS-ST Second-moment 3 Rodi (1987)
SMC-MY-ST Second-moment 3 Mellor and Yamada (1982)
SMC-LT Second-moment 3 Harcourt (2013)
KPP-CVMIX-ST K-profile 3 Van Roekel et al. (2018)
KPP-ROMS-ST K-profile 3 McWilliams et al. (2009)
KPP-ENTR-LT K-profile 3 Li and Fox-Kemper (2017)
KPP-EFACTOR-LT K-profile 3 Li et al. (2016)
KPP-R-LT K-profile 3 Reichl et al. (2016)
ePBL-ST Energetic PBL 3 Reichl and Hallberg (2018)
ePBL-LT Energetic PBL 3 Reichl and Li (2019)
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scale as T ; (Bo/ga)DtEV/H, S; (Bo/gb)DtEV/H, u, y ; u2*DtEV/H,
and turbulence variables scale as w′T′ ; Bo/ga , w′S′ ; Bo/gb,
and w′u′ , w′y ′ ; u2* . Here, H is defined as a mixed layer
depth (MLD) using a density criteria of 0.1 kg m23, Bo is the
surface buoyancy flux, u2* is the friction velocity, a is the ther-
mal expansion coefficient, and b is the haline contraction co-
efficient. Models are categorized into SC-ST and SC-LT to be
compared with their respective LES-ST and LES-LT simulation.
The EV is then defined to be a large single-column vector com-
bining the difference between the SC models and the reference
LES (see Fig. 1). The reduced state space will be specific to the
limitations of the SC model and experimental design. In some
cases, it may be informative to look at a single variable only. For
example, EVSST uses a reduced state space of sea surface temper-
ature. Specific details about the experimental setup are described
in appendix B. For implementation, SC models were branched
off of LES every 3 h using Dt 5 60 s. A 6 h window was chosen
as the EV time scale (see appendix C). Choosing a time scale of
4 and 8 h did not significantly alter the interpretation of the results.

4. Results

Mixed layer evolution

A full analysis of the LES is detailed in Pham et al. (2023)
and summarized here (Fig. 3). For the first 24 h after LES ini-
tiation, shear builds up in the ML (Fig. 3) as the LES adjusts
from the zero-momentum initial condition. By the first inertial

period (Ti ’ 40 h), shear has reached the pycnocline and begins
to interact with stratification at the ML base. This study will fo-
cus on ML evolution after this initial spinup. The monsoon on-
set is distinguished by an increase in winds and intermittent
precipitation that leads to a competition between shear produc-
tion {P52w′u′­u/­z2 w′y ′­y /­z’ km[(­u/­z)

2 1 (­y /­z)2]}
and buoyancy production [G5 w′b′ ’2ks(­b/­z)] within the
active ocean surface boundary layer, where km is the eddy vis-
cosity for momentum and ks is the eddy diffusivity for scalars.
Near-inertial oscillations develop at the local inertial fre-
quency and are associated with enhanced shear at the ML
base and rapid deepening. The injection of buoyancy by large
rain events is seen as sharp streaks inG and P, yet these events
are relatively short lived and the near-surface rain pools are
mixed away by the turbulence within 8 h. The transition from
an active phase to a break phase in the monsoon occurs around
14 June, and the remainder of forcing exhibits low winds, no
precipitation, and a strong diurnal surface warming (Fig. 2).

In both the LES and SC simulations (Fig. 4), the ML deep-
ens during the active period of high winds and cooling, then
remains steady with midday shoaling during the break period
of strong diurnal warming and reduced winds. The continuous
ST and LT SC model runs deviate from the LES-ST and
LES-LT, respectively, during mixed layer deepening and per-
sists through the model run, with a spread of DH ’ 20 m for
ST and DH ’ 10 m for LT SC models. From this example, it
is impossible to isolate how the models perform under a range

FIG. 3. Mean and turbulent fields from the (left) LES-ST and (right) LES-LT “truth” runs. During the active period, there is strong iner-
tial shear at the ML base and ML deepening. The break period is characterized by strong diel forcing. (a),(e) Stratification N2.
(b),(f) Buoyancy fluxG. (c),(g) Shear |uz|. (d),(h) Shear production P.
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of forcing regimes as the ocean’s states between models
quickly diverge, and then subsequent behavior and sensitivity
to forcing accumulates upon this initial divergence. This dis-
agreement in MLs highlights the importance of an alternative
approach to intermodel comparison as discussed in section 3c
and below.

Different estimates of model error are represented in Fig. 5.
The standard deviation (s) of the full SC model ensemble differ-
ence from the LES (Fig. 4) is interpolated onto EV time inter-
vals (Fig. 5a) and compared with the EV and EVSST (Figs. 5b,c,
respectively). The full model run variance represents the model
divergence over time. Alternately, the EV error highlights par-
ticular moments where BL parameterizations disagree with LES
and offers an alternative depiction of the conditions in which BL
parameterizations break compared to continuous runs. The
EVSST is also considered here to bring attention to times when

SST, an essential variable for air–sea coupling, is sensitive to
model physics. Two hotspots that arise provide case studies for
discussion: 1) during ML deepening in the monsoon active phase
as variable winds, precipitation squalls, and a damped diurnal cy-
cle create near-inertial shear and boundary layer turbulence that
erodes the pycnocline, and 2) during the subsequent break pe-
riod, as reduced winds and diel warming produce a strong diur-
nal warm layer. Exploring these two cases provides examples of
how model physics influences the trajectory of the mixed layer
system.

Case 1 (Fig. 6) exhibits one of the most fundamental prob-
lems in mixed layer physics, the deepening of the wind-driven
mixed layer (Pollard et al. 1973), and has been a testing
ground for SC model validation (Price et al. 1986; Mellor and
Yamada 1982; Umlauf and Burchard 2003; Large et al. 1994).
During case 1, u* was larger than the convective velocity |w*|,
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the Monin–Obukhov length LMO was more than twice H,
and the turbulent Langmuir number [La5 (u*/us)

1/2], which
scales the relative importance of ST to LT, was approximately
0.275. These scalings predict the dominance of wind-driven
and wave-driven turbulence in the OSBL over convection
(Belcher et al. 2012). Near-inertial shear reached the base of
the mixed layer, resulting in enhanced shear production and
buoyancy production that converted kinetic energy into po-
tential energy. Between 9 and 10 June, during wind-driven
deepening (Figs. 6d,i), buoyancy production near the ML
base is not well represented by the SC models compared to
LES-ST. For the ST models, KPP-CVMIX-ST produces the

least vertically integrated w′b′ and KPP-ROMS-ST produces
the largest vertically integrated w′T′ (consistent with MLDs
in Fig. 4), with SMC-KEPS-ST, SMC-MY-ST, and ePBL-ST
performing closer to LES. The turbulent heat flux at the base
of the ML that drives entrainment is more consistent among
the LT models than the ST ones. The SC-ST ensemble is
closer to LES-ST in terms of velocity than the SC-LT ensem-
ble is from LES-LT, but the SC-LT ensemble is closer to
LES-LT in terms of temperature, especially near the mixed
layer base where entrainment occurs.

The initial monsoon onset is followed by a break period
where deep mixed layers respond to strong daytime surface
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FIG. 5. MLD for LES-ST (circles) and LES-LT (triangles) colored with different measures of
uncertainty, normalized such that the highest value of uncertainty for that metric is equal to 1.
(a) Blue; the standard deviation of the difference between continuous SC models (i.e., not
branched) and the LES as seen in Fig. 4. (b) Purple; the L2 norm of the EV at each branch run.
(c) Orange; the component of the EV containing sea surface temperature EVSST. For the contin-
uous runs (blue), the model spread increases over time. The EV (purple) highlights model
disagreement during wind deepening (case study 1). The EVSST (orange) is largest during diel
surface warming (case study 2) and strong precipitation.
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warming: case study 2 (Fig. 7). The wind speed has reduced
such that u* is smaller than the peaks in |w*| and a positive
LMO indicates that buoyancy forcing restratifies and acts
against shear and Stokes production. The EV in the ST and
LT SC simulations during this stage is less than during case 1,
but their influence on SST is clear in EVSST, the component
of the EV reflecting sea surface temperature anomalies, as
shown in Fig. 5. Both ST and LT SC models overestimate the
downward turbulent heat flux and result in a damped diurnal
cycle. This is consistent with the larger turbulent heat fluxed
for all models between 5- and 20-m depth compared with
LES. The temperature tendency depends on the flux diver-
gence, and therefore the gradients in w′T′ . The enhanced cur-
vature in turbulent heat flux between 5 and 20 m would result
in more heat fluxed away from the surface (i.e., not as much
warming). Note that the SC models agree with each other more
than they do with LES in both LT and ST cases. The SC-LT en-
semble is closer to LES-LT in terms of temperature and veloc-
ity than the SC-ST ensemble is to LES-ST (Figs. 7d–j), and has
a smaller EV and EVSST during this phase (Fig. 5c).

When averaged over the entire simulation, disagreements
in T and S, and therefore r, between SC models and LES are
largest at the ML base (Figs. 6, 7, and 8a,b). SC models tend
to be less dense above the ML and more dense below the ML
indicating insufficient entrainment, with implications for strat-
ification across the ML base and the potential energy of the
water column (as discussed in section 5). Additionally, SC

model velocities disagree with LES near the surface (Figs. 8c,d),
suggesting parameterized momentum flux divergences are not
consistent with LES. These discrepancies in mean fields are sig-
nificant for the state and energetics of the OSBL. Implications
of these results are explored in the next section.

5. Discussion

A main motivation for the EV analysis is to isolate model
disagreement under different forcing conditions and ocean
states to identify where parameterized physics can be im-
proved. Using the EV method to identify when SC models
disagree isolates two cases: during wind-driven deepening
(case 1) and strong diel forcing (case 2). Model disagreements
in the context of boundary layer theory and parameterization
implementation are discussed here.

During case study 1, different variants of KPP ST formula-
tions set the upper and lower limit of entrained turbulent heat
flux during wind-driven deepening. This is consistent with the
evolution of model spread in the continuous runs (Fig. 4) and
suggests events such as this could kick a model state into a dif-
ferent trajectory over time. In this case, KPP-CVMIX-ST
underestimates turbulence throughout the ML, while KPP-
ROMS-ST overestimates entrainment flux. The shallow ML
in KPP-CVMIX-ST is coincident with subcritical local gradi-
ent Ri at the depth of the KPP OSBL even though the bulk
Richardson number criteria is met (not shown). It is common

FIG. 6. Case study 1 during wind-driven deepening of the OSBL (active period) for (left) ST and (right) LT. All models disagree on
how to deepen the ML and induce entrainment, leading to a large EV during this time with implications for SST. (a),(f) u* and w*.
(b),(g) EV, the nondimensional L2 norm of the EV at end of each branch run. (c),(h) DSST, the difference between SC models and LES
at end of each branch run. (d),(i) The difference between the average of SC model temperatures and the LES temperature (colored). Con-
tours are D|w′T′| with spacing of 3 3 10268C m s21; solid lines are positive, and dashed lines are negative. (e),(j) The difference between
the average of SC model velocity magnitudes and the LES velocity magnitude (colored). Contours are mean Eulerian D|w′u′| with spacing
of 93 1026 m2 s22; solid lines are positive, and dashed lines are negative.
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to implement a local gradient Ri number mixing criteria in
KPP models for internal wave mixing, but this is effective be-
low the OSBL depth and does not alter the results here (in
GOTM).

Like many first-order mixing schemes, KPP uses a diagnostic
definition for turbulence, which does not consider past turbu-
lence statistics but instead depends on instantaneous mean
variables and surface forcing. A KPP turbulence profile can,
through the mean equations Eqs. (1) and (2) induce an Ekman
spiral and near-inertial shear, yet the translation of near-inertial
energy into turbulence can only occur through the mean varia-
bles at the top and bottom of the OSBL through the bulk Ri cri-
teria rather than through localized Ri anomalies in three
dimensions as LES might. As the bulk OSBL definition in
KPP-CVMIX-ST fails to deepen the mixed layer, shear builds
at the ML base. This is not the case in KPP-ROMS-ST, which
adopts an integral form definition for Ri (McWilliams et al.
2009). In the presence of complicated vertical shear (e.g., during
times of strong wind forcing), this definition can result in a
deeper OSBL depth than KPP-CVMIX-ST and therefore a dif-
ferent shape of kf. In this case study, the KPP-ROMS-ST defi-
nition of bulk Ri results in significantly more mixing (as kf in
KPP is inherently linked to BL depth) than the LES and other
parameterizations (e.g., Figs. 4 and 6). Conversely, higher-order
turbulence closure schemes tend to have stability parameters
tuned to obey local gradient Ri criteria, which may be the rea-
son why SMC-ST and KEPS-ST (and ePBL-ST which is tuned

to behave like KEPS-ST) agree more with LES during wind-
driven deepening than KPP-based models do. However, in pro-
files (Figs. 9d,h) the local nature of second-moment closure
models can produce spurious extrema.

Langmuir turbulence models are in better agreement with
the LES-LT and among other SC-LT models than the shear
turbulence models. KPP-based LT models (KPP-R-LT and
KPP-ENTR-LT) set the upper and lower limits of the EV
spread during ML deepening (Fig. 6), but the EV direction
(i.e., order of model spread) is not consistent throughout case
study 1. Overall, LT models agree on how to deepen the ML
compared to ST models under this forcing (i.e., wind and
wave-driven deepening) and state.

The active phase of the monsoon is followed by a break
phase, with weak surface winds and a strong diurnal heat flux
(case study 2). During this time, SC models underestimate the
amplitude of diurnal sea surface temperature (Fig. 7) as a re-
sult of greater heat and momentum flux from the surface than
LES during the nighttime and morning hours and less heat
and momentum flux from the surface during the afternoon
and evening transition. This leads to an underestimation of
shear and stratification (not shown) in SC models during peak
warming. This diurnal cycle of overestimation–underestima-
tion in the turbulent fluxes does not cancel out upon averag-
ing but results in a persistent cold SST bias in SC models
compared to LES when averaged over the entire diurnal cy-
cle. This bias is larger in ST models than LT models.

FIG. 7. Case study 2 during strong diel warming (break period) for (left) ST and (right) LT. SC models tend to flux more heat away
from the surface than LES, resulting in a cool SST bias. Though the L2 norm of the EV is not as large as in case 1, the localized disagree-
ment has implications for diel SST amplitudes. (a),(f) u* and w*. (b),(g) EV, the nondimensional L2 norm of the EV at end of each branch
run. (c) DSST, the difference between SC models and LES at end of each branch run. (d),(i) mean temperature difference between SC
models and LES (colored). Contours are mean D|w′T′| with spacing of 3 3 10268C m s21; solid lines are negative, and dashed lines are
positive. (e),(j) Mean velocity difference between SC models and LES. Contours are mean D|w′u′| with spacing of 9 3 1026 m2 s22; solid
lines are positive, and dashed lines are negative.
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Unlike the wind-driven deepening case, turbulent heat flux
profiles within SC models (both ST and LT) agree more
among different parameterizations than with LES in the
strong diel warming case. Because the LES and SC models
use the same light attenuation curves in the temperature ten-
dency equation, this artifact can only result from their repre-
sentations of turbulence. The agreement among SC models
suggests that turbulence parameterizations are built to obey
similar scaling laws near the boundary. More work on near-
boundary behavior is needed to understand the correct scal-
ing and curvature of kf during strong diurnal forcing. This
challenge is a prospect for comparison between models and
observations as well, as lateral effects are not expected to be
important to these near-surface diel processes. The represen-
tation of these processes is likely also important for marine
heatwaves (Fox-Kemper et al. 2021b).

The shape of the flux divergence determines the conversion
of wind power to turbulence kinetic energy through shear and
buoyancy production and turbulent transport. Since quantities
w′f′ in Eqs. (1)–(4) are directly related to the turbulence ki-
netic energy budget, these examples confirm the importance
of parameterized flux divergence on the partitioning of energy
between mean and turbulent reservoirs. During the active pe-
riod, buoyancy production correlates with t ? uz50/H (not
shown), signifying the importance of the alignment of near-
surface velocity and wind stress for buoyancy production

(Crawford and Large 1996; Skyllingstad et al. 2000). From a
turbulence energetics view, vertically averaged shear produc-
tion in KPP-ROMS-ST is not different from other mixing
schemes, yet buoyancy production is enhanced significantly
compared to LES and other parameterizations (Fig. 10), lead-
ing to deeper mixing and more change in mean PE. The rela-
tionship between model energetics and ML depth is apparent;
models with more turbulent shear and buoyancy production
have deeper MLs, larger mean potential energy, and lower
mean kinetic energy (Fig. 10c). A simple assumption for tur-
bulence in the steady-state BL is that shear production and
buoyancy production are balanced by dissipation, such that
P 1 G 2 e 5 0. KPP formulations do not maintain this
balance as fundamentally as second-moment closures do.
Instead, energetics in KPP models are expressed through the
MO-derived diagnostic turbulence and bulk Richardson num-
ber criteria that can result in unrealistic physical states (e.g.,
subcritical Ri numbers at the base of the ML). As such, ener-
getic analysis, including EVs of energetic quantities, provide a
more informative criteria for model evaluation beyond typical
state variables such as ML depth and SST commonly used to
discuss SC model comparison. Reichl et al. (2022) show that
an energetic framework is useful even in the definition of
mixed layer depth.

The ensemble vector method provides error bounds on SC
model evolution that are not available when modeling any
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single SC model. Cases with large EV errors provide target
regions for parameterization and SC model improvement.
More recent work uses novel techniques such as machine
learning, artificial neural networks, ensemble Kalman filters,

and superparameterizations, to constrain parameterization
variables to fit LES under an array of forcing conditions (e.g.,
Liang et al. 2022). A commonality between parameterization
fitting efforts and the ensemble error estimates presented

FIG. 9. Mean turbulent flux profiles for (a),(b),(e),(f) ST models and (c),(d),(g),(h) LT models, with SC models in colors and LES in
thick gray. (top) Case 1 (8–11 Jun; see Fig. 6). (bottom) Case 2 (14–18 Jun; see Fig. 7). (a) Case 1 ST w′T′ , (b) Case 1 ST |w′u′ |, (c) Case 1
LT Eulerian w′T′ , (d) Case 1 LT |w′u′ |, (e) Case 2 ST w′T′ , (f) Case 2 ST |w′u′ |, (g) Case 2 LT w′T′ , (h) Case 2 LT Eulerian |w′u′ |.
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here is acknowledging the vast array of forcing and state space
that OSBL parameterizations must be able to span to accu-
rately predict upper-ocean evolution.

6. Conclusions

This work outlines an ensemble vector approach for OSBL
model comparison that uses an ensemble vector methodology
to isolate the nonlinear trajectories of the OSBL subject to
different turbulence parameterizations. Within the ensemble
vector time scale, each model exhibits initial transience, usu-
ally characterized by rapid changes in the state before return-
ing to the state of its own base run. This initial transience
hinders the application of alternative dynamical systems ap-
proaches that depend on the linearization-based analysis
methods (i.e., Lyapunov vectors, singular vectors), as they
often dominate the tangent linear system. The relaxation of
the trajectories back to their base run as seen in Fig. C1

contrasted with the divergences of trajectories noted in the
EV (Fig. 5) implies that trajectories in the OSBL are more sen-
sitive to the choice in turbulence parameterization than to per-
turbations in state space resulting from initial transience. In
terms of the dynamical systems framework outlined in section 2,
the state x is more sensitive to different maps An than the
Jacobian, Eq. (13), or gain matrix, Eq. (14), within a single map
for the parameter, state and forcing space explored here.

As such, perturbed model states are not expected to di-
verge exponentially over time as assumed in the Lyapunov
vector and bred vector approaches, but to remain diffusive as
explored in the KT67 equations. Though the OSBL is a diffu-
sive system that does not appear to exhibit chaotic behavior
(i.e., appendixes A and C), the nonlinearity of the turbulence
parameterization alters the system’s trajectory so that a mod-
el’s state at a given time depends on an accumulation of
historical errors. This EV method identifies the nonlinear dif-
ference between stable trajectories of various maps subject to
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FIG. 10. Model differences in (top) mean kinetic and potential energy and (bottom) turbulent kinetic and potential
energy for (left) ST and (right) LT models. (a) Difference in mean kinetic and potential energy between SC-ST mod-
els and LES-ST. Models with more potential energy (deeper ML) have less kinetic energy. (b) Difference in mean ki-
netic and potential energy between SC-LT models and LES-LT. All SC models have greater kinetic energy and mixed
potential energy biases. (c) Difference in shear production (P) and buoyancy production (G) between SC-ST models
and LES-ST. (d) Difference in shear production (P) and buoyancy production (G) between SC-LT models and LES-LT.
All SC-ST models underestimate both types of production compared to LES-ST. Note the different scale for shear pro-
duction in LT models which is enhanced by Stokes shear.
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specific forcing conditions. The forcing here is key and pro-
vides a source of energy for the EV as momentum and buoy-
ancy input at the surface are distributed differently by
parameterized flux divergence formulations. The EV method
highlights the key forcing when SC models diverge, unlike di-
rect continuous simulations of transient forcing where errors
build upon errors and obfuscate the interpretation of ensem-
ble spread (Fig. 4). This work focused specifically on parame-
terization choice, but the Taylor series expansion in Eq. (12)
sets up a framework to design other EV experiments. For ex-
ample, the EV method could be adapted to explore gain matri-
ces and evaluate sensitivity to surface forcing (e.g., uncertainty
caused by reanalysis products, bulk formula or light extinction
coefficients). Additionally, ­A/­b could be used to evaluate
sensitivities to parametric error (Souza et al. 2020), or spatial
and temporal evolution (Van Roekel et al. 2018).

This case study identified windows of forcing where models
deviate: 1) during wind-driven deepening and 2) under strong
diurnal forcing. The isolated times of maximum EV contrast
the ML spread in Fig. 4, which grows in time as model choices
during the early monsoon onset are propagated throughout
the continuous run. For wind-driven deepening, models dis-
agree on how to redistribute wind power into turbulent buoy-
ancy production, resulting in varied relationships between
mean and turbulent energy in the upper ocean. Future work
to improve parameterizations could consider energetic crite-
ria to constrain mixing during these times. Under strong diel
warming, SC models overestimate turbulence in the early part
of the day and underestimate turbulence in the evening, with
a net negative SST bias when averaged over an entire cycle.
During this cycle, turbulence parameterizations agree more
among each other than with LES. This suggests a need for fur-
ther research on how near-surface turbulent heat flux behaves
in SC models, LES, and observations.

This study did not aim to identify the best model, yet it is
helpful to relate model behavior here in the context of previ-
ous studies. SMC-KEPS-ST and ePBL-ST tend to agree most
with LES-ST, while ePBL-LT and KPP-ENTR-LT agree
most with LES-LT in this study. These results are fairly con-
sistent with the SC model versus idealized LES comparisons
in Li et al. (2019) where ePBL-LT and KPP-ENTR-LT were
closest to the LES-LT simulations. The agreement between
SMC-KEPS-ST and ePBL-ST is expected since ePBL-ST was
designed to mimic SMC-KEPS-ST but under more robust nu-
merical implementation. The two end members of the full en-
semble spread in Fig. 4 are KPP-CVMIX-ST (shallowest ML)
and KPP-ROMS-ST (deepest ML), again consistent with re-
sults of Li et al. (2019). This model spread originates during
stage 1 as the different Ri criteria under enhanced shear due
to wind-driven deepening result in drastically different OSBL
depths. KPP-based models agree more during modest wind
and strong diel forcing (stage two, Fig. 7). The sometimes dis-
parate behaviors of different KPP models reinforce the im-
portance of numerical implementation (KPP-CVMIX-ST
versus KPP-ROMS-ST in particular, which have identical the-
oretical foundings but different implementations), in addition
to foundational aspects of OSBL theory (e.g., KPP versus
SMC. versus ePBL versus LES), on the trajectory of the ML

system. Though this study identified two forcing regimes
where models disagree, it is anticipated that the direction and
magnitude of ensemble spread would shift under different
forcing conditions. Therefore, any statement about the “best”
model requires an EV analysis across a range of state and
forcing spaces, and could be the focus of future work.

In weather forecasting, ensemble methods offer uncertainty
bounds not offered by a single deterministic run (e.g., Toth and
Kalnay 1997; Molteni et al. 1996). In Fig. 4, the ensemble mean
(of the continuous run) is closer to LES than any single model. A
rule-of-thumb that ensemble means tend to outperform individ-
ual models has long been noted in model ensembles where every
model has good reason to be included (e.g., Gleckler et al. 2008),
but the rule can be violated with pathological choices of models
to include. Therefore, an ensemble mean of several continuous
runs may provide a reliable base run along with uncertainty
bounds in lieu of more computationally expensive LES. Further-
more, this suggests the potential of intermodel OSBL parameteri-
zation ensembles as a robust way to employ SCmodels.

The influence of turbulence parameterizations impacts
upper-ocean predictions during the monsoon intraseasonal
oscillation. This work spans one active-break cycle as the
onset of the northward propagating monsoon deepened the
mixed layer, and the following break period reduced mixing
and warmed the upper ocean. The amount of deepening pre-
dicted by the models decides the fate of air–sea interaction
during the break period and the heat capacity of the upper
ocean for the following monsoon period. The OSBL system,
though not chaotic, is highly nonlinear and exhibits hysteresis.
As such, small differences in state space identified by the EV
method capture tendencies for turbulence parameterizations to
set different trajectories for the OSBL system. This analysis is
meant to highlight these distinctions and lead to better model-
ing of the OSBL and monsoon intraseasonal oscillation overall.
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APPENDIX A

Example: The Kraus–Turner Model

Understanding the simulated OSBL as a nonlinear dynami-
cal system provides a principal framework for contextualizing
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the often chaotic behavior of turbulent flows. But unlike
other geophysical fluid or turbulent regimes, the Reynolds av-
eraged OSBL tends toward diffusive behavior or at least
nonchaotic behavior. A simple example of OSBL behavior
can be recognized by the highly simplified ML equations of
KT67. Without loss of generality, the KT67 equations are
written here in terms of bT (buoyancy influenced by tempera-
ture only), the friction velocity u* 5

""""""
t/ro

√
, the surface buoy-

ancy flux Bo, and mixed layer depth H. The variables are
nondimensionalized (denoted by ĥ i) by dividing the dimensional
variable by its scale (denoted by h;i) using the following rela-
tionships u* ; ũ*û*, H; H̃Ĥ , t; (H̃/ũ*)t̂ , bT ; (ũ2

*/H)b̂T

and Bo ; (ũ3
*/H̃)B̂o:

db̂
T

dt̂
52

2

Ĥ
2 (û

3
* 1 B̂oĤ), (A1)

L
dĤ
dt̂

( )
dĤ
dt̂

5
1

Db̂
T
Ĥ

(2û3
* 1 B̂oĤ)

[ ]
, (A2)

where L is the Heaviside step function, such that L(dĤ/dt̂)
is equal to zero when dH/dt , 0 (i.e., shoaling ML) and
equal to one when dH/dt . 0 (i.e., deepening ML), and
Db̂

T
is the (prescribed) buoyancy jump at the base of the

ML. The state and forcing space for the KT67 are simply
x5 [b̂T

, Ĥ] and F5 [û*, B̂o]. The Heaviside function is an
essential nonlinearity of this model, but it can be avoided
by considering only shoaling or deepening conditions sepa-
rately. In the KT67 equations, shoaling MLs collapse to the
diagnostic relationship for ML depth, H522u3*/Bo, which
is proportional to the MO depth LMO 5 u3*/kykBo, where
kyk 5 0.4 is the Von Kármán constant. We note that this is
not a fixed point of the system, as the ML buoyancy contin-
ues to evolve under Bo according to Eq. (A1). For a deepen-
ing ML, the depth tendency Eq. (A2) becomes prognostic
and Eqs. (A1) and (A2) form a coupled system.

The eigenvalues for the Jacobian lJ and gain matrix lG

of this system are

lJ1,2 5
û3
*
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2 21 6 1 2
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Ĥ 2 6û2
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(A4)

During ML deepening (i.e., when BoĤ .22u3*), lJ1,2 are
negative (i.e., stable), implying nearby initial conditions will
converge eventually rather than separate (i.e., not chaotic
sensitivity). Asymptotically convergent solutions for lJ1,2 are
expected due to the diffusive, nonchaotic nature of the ML
equations recognized when assuming a gradient form for
the flux divergence (e.g., K-theory), transforming Eq. (3)
into a heat equation that would equilibrate under constant tem-
perature boundary conditions. Eigen values for the gain func-
tion, lG1,2 can be both positive or negative, and are determined

by complicated relationships between u* and the ML buoyancy
jump (Db). Unlike the Jacobian matrix, the sign of eigenvalues
of the gain matrix do not indicate stability, but they do indicate
sensitivity. So, surface forcing perturbations might drive neigh-
boring trajectories together or apart, and the sign of which
kind of forcing depends on the sign of lG1,2. Therefore, small
perturbations in forcing may cause diverging trajectories for
specific forcing regimes. The complicated interpretation of lG1,2
demonstrates that in a forced-dissipative system, the solution
dependencies on the boundary conditions and parameters
(here just Db̂

T
) are critical to the interpretation of SC en-

semble behavior.
The phase space for the deepening KT67 system (using

dimensional u* 5 0:013 m s21 and Bo 5 5:63 1028 m2 s23 is
demonstrated in Fig. A1) highlights the behavior of the
deepening ML and sensitivity to Db̂

T
and H. The stable tra-

jectories of small perturbations in state and forcing space
are also shown. Trajectories respond to perturbations in shal-
low ML particularly but become less sensitive with deeper H
and larger Db̂

T
.

APPENDIX B

Large-Eddy Simulation

Large-eddy simulations solve the three-dimensional grid-
filtered nonhydrostatic incompressible Navier–Stokes equations

FIG. A1. A phase diagram for the Kraus–Turner (KT67) system
as in Eqs. (A1) and (A2) (black lines) during a case of ML deepen-
ing with u* 5 0:013m s21 and Bo 5 5:63 1028 m2 s23 (taken as the
mean of the first 5 days of forcing in Fig. 2). For an initial condition
at some point (denoted by circles), the line points to the final state
xf after a single time step. Initial conditions in shallow MLDs will
change more rapidly in one time step than in deeper MLDs. The
linear trajectories of perturbations to state space, in terms of the
Jacobian (J; blue), and to the forcing, in terms of the gain matrix
(G; red), are also included.
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under the Boussinesq approximation. The wave-phase aver-
aged equations are solved in LES to include the effects of
wave-induced Stokes drift.

Subgrid momentum flux is obtained using the filtered
structure function parameterization in Ducros et al. (1996).
The subgrid Prandtl and Schmidt numbers are taken to be
unity in the computation of subgrid heat and salinity fluxes,
respectively. Further details of the numerical methods and
the subgrid fluxes of the LES can be found in Pham and
Sarkar (2018) and VanDine et al. (2020).

The LES shown here are run on a computational domain in
a rectangular box with dimensions of 192 m 3 192 m 3 147 m
in the zonal, meridional, and vertical directions, respectively.
The horizontal grid spacing is 0.75 m while the vertical grid
spacing is 0.3 m in the top 50 m and is slightly stretched in the
region below. The flow is homogeneous in the horizontal direc-
tions, to arrive at the same equations as Eqs. (1)–(5) after hori-
zontal averaging, but with turbulent covariances solved for in
the full 3D computation. Surface fluxes which include the wind
stress, the solar and nonsolar heat fluxes, and the net amount
of precipitation minus evaporation as shown in Fig. 2 are ap-
plied at the top surface. The transmissive solar heat flux is pa-
rameterized using a Jerlov type-I model (Paulson and Simpson
1977). A sponge region is implemented near the bottom sur-
face to maintain constant temperature and salinity gradients in
the pycnocline throughout the simulations.

APPENDIX C

Model Transience and the Ensemble Vector Timescale

The final ensemble vectors (one for SC-ST and a separate
one for SC-LT) combine all SC model difference vectors
yj 5 xnj 2 xrefj at all depths j, with a total size determined by
(the number of SC models) 3 (number of depth intervals) 3
(length of x). The reduced state space x and therefore the
representation of y and EV, is not the full state space of all
SC models. Instead, defining x by Eq. (16) evaluates models’
ability to simulate mean and turbulent fields in relation to
LES. Here the xrefj reference state is taken from the LES-ST
or LES-LT model for the ST and LT ensemble vectors, re-
spectively, so these are truth-informed ensemble vectors. This
state space can be reduced further to focus on particular var-
iables. For sea surface temperature, EVSST is defined with
yz50 5 Tn

z50 2 Tref
z50. Finally, the model error can be approxi-

mated as a single value through the L2 norm of the entire
(dimensionless) EV.

It is also important to define the ensemble vector time
scale DtEV, which must be longer than the initial transience
of each SC model, yet short enough to capture the full non-
linear response to a narrowly defined ocean state (e.g., the
sampling interval of evolving surface forcing, stratification,
etc.). A linear EV eigenanalysis is not possible with the
GOTM simulations as SC models are not initialized with
each model’s full state in GOTM and thus require some ad-
justment, particularly as higher-order schemes spinup to sta-
tistical equilibrium. This transient behavior is evaluated by
performing branch runs of each parameterization off of its

own base run for a length of 24 h, at 3-h intervals. For ex-
ample, KPP-CVMIX-ST is initialized with a state from the
continuous KPP-CVMIX-ST simulation in Fig. 4c every 3 h
(as opposed to KPP-CVMIX-ST being initialized by LES as
in case studies above). The L2 norms of the EVs for all
branch runs highlight how initial model trajectories do not
always follow the trajectory of the continuous run (Fig. C1).
In other words, each SC model undergoes initial transience
before it equilibrates onto its own stable trajectory (e.g., its
own map An). As might be expected, models with diagnostic
turbulence (KPP-type and ePBL), and therefore fewer de-
grees of freedom and less state space reduction during re-
start, exhibit shorter transience than higher-order schemes
(Fig. C1), with the exception of KPP-ROMS-ST that tends
to deepen the ML rapidly during its transience with a long-
lasting imprinted effect on its EV. Models that relax back to
near zero EV have initial transience that does not affect the
ultimate trajectory. For higher-order models that do retain a
perturbed state after transience, we note that this value is
an order of EV magnitude less than what is shown for inter-
model comparison, reinforcing that small perturbations in
the model state are not the largest sources of error in these
examples. However, these initial transients can constitute the
fastest eigenvalues, hence the finite-time aspect of the EV
method is needed.

Bred vector calculations are traditionally performed in
unforced systems with a chaotic divergence of nearby initial
conditions and therefore require a breeding method. In this
method, growing perturbations over a bred vector interval
are rescaled to the initial perturbation repeatedly to find
the fastest growing perturbation. The repeated rescaling
identifies the direction of the largest error growth of the
system and has been shown to correspond to a system’s
leading Lyapunov vector which can be constructed directly
from the tangent linearization without repeated simulations
(Kalnay et al. 2002). The forced nature of an SC model is
somewhat incompatible with a breeding method because of
the dual dependency on not only x (as in traditional breed-
ing), but also on F. This forcing, and the differential state-
dependence sensitivity to forcing, add energy to the breeding
cycle that differentiates it from traditional breeding ap-
proaches. For a given EV time interval, the growth of SC
model error is explored by adding the average SC model
error at the end of an ensemble vector time scale to the
initial profile and rerunning the simulation under the same
forcing. These repeated simulations would not identify the
direction of the fastest growing errors of the SC model
(like traditional breeding), but instead the direction of the
fastest growing errors between SC models under a specific
forcing condition. Repeated simulations (10) tested for a 6 h
interval during rapid ML deepening shows that the direction
of SC model spread does not evolve upon iteration. This
suggests that the forced, dissipative SC model systems rap-
idly settle after transients onto a stable trajectory during the
initial DtEV interval (Fig. C1), thereby capturing the true di-
rection of model spread under a set of forcing and initial
conditions. This is consistent with the behavior of model
transience, both supporting that the largest errors between
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models are a result of the SC model formulation and re-
duced-restart issues and not a chaotic sensitivity to small per-
turbations in state space. Thus, the ensemble vector method
(no rescaling and restart needed) and the bred vector
method (rescaling and restart to identify chaotic divergence)
are importantly distinct, while both seek to use finite-time
simulations using the actual numerical model system to un-
derstand its nonlinear behavior.

The stabilizing tendencies in Fig. C1 also demonstrate how
the different models, and therefore the EV approach, inte-
grate statistical noise. The slow degrees of freedom within the
system defined by Eq. (16) persist after the collapse of fast,
transient eigenmodes. A prognostic higher moment order
equation with eight or more equations to constrain turbulence
would probably exhibit initially chaotic behavior (though not
shown here formally, but implied by divergent transience in
second-moment closure models), but as the system reaches
statistical equilibrium, the mixed layer system defined by x in
Eq. (16) represents a diffusive system captured in Fig. A1.
For example, the long-term behavior of k–« does not improve
by including « into the initial conditions, suggesting its impact
on the initial eigenvector (i.e., initial transience) but not the
trajectory of the EV over longer time scales. Therefore, it is
assumed for this analysis that the transients do not impor-
tantly affect the model trajectory and that the reduced state
space in Eq. (16) provides a representative subspace of the
ocean surface boundary layer system suitable for initialization
from restarts, LES “truth,” or SC ensemble means. It is also

interesting to note that the time scale of transience depends
on the SC model time step, where longer time steps result in
longer relaxations}this dependence reflects the fact that
many of the initial transients stem from numerical spinup
techniques that depend on time step rather than representing
physical processes which are agnostic to numerical implemen-
tation. For implementation, SC models were branched off of
LES every 3 h using a Dt 5 60 s, and a 6-h window was cho-
sen as the EV time scale. Choosing a time scale of 4 and 8 h
did not significantly alter the interpretation of the results.
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