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Abstract—Spiking Neural Networks (SNNs) offer a promising
alternative to Artificial Neural Networks (ANNSs) for deep learn-
ing applications, particularly in resource-constrained systems.
This is largely due to their inherent sparsity, influenced by factors
such as the input dataset, the length of the spike train, and the
network topology. While a few prior works have demonstrated
the advantages of incorporating sparsity into the hardware
design, especially in terms of reducing energy consumption,
the impact on hardware resources has not yet been explored.
This is where design space exploration (DSE) becomes crucial,
as it allows for the optimization of hardware performance by
tailoring both the hardware and model parameters to suit specific
application needs. However, DSE can be extremely challenging
given the potentially large design space and the interplay of
hardware architecture design choices and application-specific
model parameters.

In this paper, we propose a flexible hardware design that
leverages the sparsity of SNNs to identify highly efficient,
application-specific accelerator designs. We develop a high-level,
cycle-accurate simulation framework for this hardware and
demonstrate the framework’s benefits in enabling detailed and
fine-grained exploration of SNN design choices, such as the layer-
wise logical-to-hardware ratio (LHR). Our experimental results
show that our design can (i) achieve up to 76% reduction in
hardware resources and (ii) deliver a speed increase of up to
31.25x%, while requiring 27% fewer hardware resources compared
to sparsity-oblivious designs. We further showcase the robustness
of our framework by varying spike train lengths with different
neuron population sizes to find the optimal trade-off points
between accuracy and hardware latency.

Index Terms—Spiking neural networks, design space explo-
ration, resource-efficient machine learning, TLM modeling, neu-
ral network sparsity.

I. INTRODUCTION

Artificial Neural Networks (ANNs) have grown exponen-
tially in popularity, as machine learning (ML)-based methods
become applicable to an increasing number of new application
domains. Ever-increasing workload demands in edge com-
puting require ANN accelerators to further reduce inference
latency and energy consumption. However, ANNs are not
always viable in resource-constrained systems, as they are
extremely compute-intensive and can be prohibitive for edge
computing applications despite their high prediction accuracy.

Spiking Neural Networks (SNNs) are gaining a lot of atten-
tion as an efficient alternative to ANNs for machine learning in
resource-constrained systems [1]. SNNs are a special kind of
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neural networks that differ from ANNS in their communication
and computation schemes. Neurons in SNNs transmit discrete
binary events (or spikes) to communicate with each other,
rather than continuous variables as in ANNs. Whereas neurons
in ANNSs require complex multiply-and-accumulation (MAC)
operations, SNNs only require simple addition operations.
Furthermore, SNNs reflect biological neural networks by
implementing sparse coding [2] and sparse connectivity [3].
In sparse coding, only a fraction of neurons are activated at
a time, and each neuron connects with only a subset of other
neurons in sparse connectivity. This sparsity can further reduce
computational complexity and decrease energy consumption
compared to ANNSs, particularly in handling high-dimensional
data. This sparsity can be leveraged to facilitate the design
of efficient hardware accelerators for ML, which are ideal
for power-constrained devices such as the Internet of Things
(IoT) systems and edge computing devices. Therefore, SNNs
not only provide a better analog of the biological neuronal
communication and computation mechanisms but also offer an
excellent opportunity for hardware implementation of highly
efficient machine learning accelerators.
Major issue with current SNN accelerators: The design of
SNN architectures has been an active area of research due to
the benefits of SNNs for low-overhead ML. Both industry and
academia have proposed various SNN accelerators, such as
IBM’s Truenorth [4], Intel’s Loihi [5], Spinnaker [6], Minitaur
[7], S2N2 [8], etc. However, prior studies (e.g., [9], [10]) have
demonstrated the complexity of training SNNs and shown that
while SNNs can be trained to achieve similar accuracy as
ANN:Z, this is usually at the expense of energy efficiency due to
the processing time steps intrinsic to SNNs. In order to close
the energy efficiency gap, SNN hardware must be carefully
designed to match the application behavior and exploit such
characteristics as the intensity of firing activity. Therefore,
early design space exploration methodologies are needed to
investigate the application-driven hardware performance and
to provide opportunities for model updates before hardware
synthesis and deployment on edge devices.
Limited work on SNN design space exploration: Prior work
on SNN design space exploration (DSE) studied the hardware
efficiency implications of model parameters, but these DSE
methods are limited to a small number of parameters such as
spike encoding mechanisms, degree of parallelism [11], and
spike train length [12], [13]. In contrast, we adopt an expanded
view of the neuronal dynamics of SNNs and how they affect
and are affected by hardware designs, especially considering



the network’s sparsity. We propose a cycle-accurate simulation
approach for exploring various neural parameters, including
the degree of parallelism, and the ratio of logical neurons
to physical hardware neurons. Importantly, our approach can
study the impacts of these model parameters at a fine, layer-
wise granularity.

Sparsity-aware SNN hardware: A neuron’s workload in an
SNN is primarily determined by the spiking intensity (partic-
ularly the pre-synaptic layer’s spikes), which is influenced by
factors like the dataset/application and input encoding mecha-
nism. A higher spiking activity results in a larger accumulation
delay for post-synaptic neurons, as more neurons are activated
in the pre-synaptic layer. We argue that hardware resources
(i.e., neuron processor, memory blocks) can be allocated based
on a layer’s sparsity level, alleviating high resource demands
and enabling optimal performance of the SNN models. For
example, recent studies [14], [15] have shown reductions
in both hardware resources and inference time by simply
considering sparsity in input layer in a two layer network (e.g.,
only input and output layers).

We present a highly flexible sparsity-aware and cycle-
accurate simulation framework for rapidly exploring the design
space of application-specific SNN accelerators. The frame-
work leverages the Transaction-Level Modeling (TLM) [16]
formalism, which can model complex digital systems that
involve complex data communication. TLM abstracts away the
communication details from those of the functional units and
communication architecture. This enables an abstraction that
enhances modularity, composability, reusability, and interop-
erability of design. We implement our framework in SystemC
and validate it extensively against both software and hardware
implementations of SNNs.

Through detailed experiments and analysis using our frame-
work, we draw two key insights that may elude state-of-the-art
SNN DSE methods. First, the implications of an SNN’s neural
dynamics on the hardware implementations vary for different
layers within a network. This insight requires exploring param-
eters such as the total number of memory blocks and the num-
ber of physical neuron processors per layer to improve overall
network efficiency. Second, increasing the logical-to-hardware
neuron ratio for the deeper layers in a deep network can
reduce the hardware footprint substantially without degrading
the inference latency. This insight enables deploying larger and
more accurate models on hardware-limited systems. To our
knowledge, we are the first to perform rapid experimentation
through various model configurations for an application dataset
to find the sweet spot across hardware area, latency, and model
accuracy. Moreover, this is also the first time that the layer-
wise dynamics and sparsity of the SNN are taken into account
in the design of SNN accelerators.

In summary, this work makes the following important
contributions:

o We propose a modular hardware design that enables the
flexibility to easily adjust the allocation of hardware
neurons according to layer-specific sparsity. The proposed
hardware architecture takes advantage of SNN’s binary
communication scheme and implements it using simple

hardware primitives, like shift register, priority encoder,
and concatenation.

e« We implement a cycle-accurate simulation framework
for this hardware with a high degree of automation and
introduce a logical-to-hardware neuron ratio (LHR) knob
which controls the total number of hardware neurons
allocated to each network layer.

o Using three different datasets, MNIST, FashionMNIST,
and DVSGesture we analyze the sparsity and show area-
efficient hardware with a trade-off in inference delay.

¢ Our experiments show that compared to prior works with
fixed hardware configurations, our design can achieve
(1) up to 76% reduction in hardware resources with
similar latency for MNIST, (ii)) up to 31.25x speed
up, while requiring 27% fewer hardware resources for
FashionMNIST, and (iii) 2.34x speed up for DVSGesture
by simply tuning the layer-wise LHR knob.

o Furthermore, we employ a population of neurons for
the classification layer and conduct a trade-off analysis
between spike train length and population size and their
impact on classification accuracy and hardware perfor-
mance.

« Finally, we open-source our code to flourish research in
the area https://github.com/githubofaliyev/SNN-DSE

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe SNNs and discuss some
related work on SNN design space. We then motivate and de-
scribe TLM, which we leverage in our work. We also explain
its abstraction levels and their associated characteristics and
review prior work on TLM-based architecture modeling.

A. Overview of Spiking Neural Networks

SNNs are inspired by how neurons in the brain communi-
cate via sparse, discrete electrical signals, or spikes [17]. Mod-
eled after the structure and functionality of biological neurons,
the neurons in a typical SNN operate as simple integrate-and-
fire units. This means that they accumulate incoming spikes
over time and emit an outgoing spike when the integrated
value reaches a certain threshold [18]. A sequence of spikes
forms a spike train. Information is relayed through these spike
trains via various coding schemes: rate coding, which concerns
the frequency of transmitted spikes transmitted [19], temporal
coding or TTFS coding, which focuses on the timing of the
spikes, often in relation to the time-to-first-spike [20], burst
coding, which counts the number of spikes and the inter-spike
interval within a burst of spikes [21], or phase coding, which
encodes information in the spike times relative to an oscillatory
background activity [22].

A major advantage of using SNNs over traditional ANNs
is their event-driven communication: they only communicate
when necessary rather than continuously. This means that
the neurons in SNNs only activate when a spike is present
[23]. Moreover, unlike ANNs that require hardware-expensive
Multiplier and Accumulate (MAC) operations for regular
computations, SNNs can rely solely on accumulate operations
[24]. Therefore, SNNs have lower power requirements and



computational costs than ANNs, which makes them ideal for
edge computing applications on resource-constrained devices
[25].

B. Prior work on SNN Hardware Design Space Exploration

Despite the computational simplicity of spiking neurons,
a few recent studies have argued that SNNs require higher
energy and longer inference latency to achieve similar clas-
sification accuracy to ANNs [9], [10], [13]. While these
studies may highlight the challenge of designing SNNs with
comparable accuracy to ANNS, it is critical to note that these
findings underscore the need for more in-depth and targeted
exploration of SNNs’ design space with a focus on hardware-
software co-design. Given the complexity and breadth of
SNN accelerators’ design space—encompassing factors like
network topologies, memory configurations, parallelization of
computation resources, neuronal dynamics—it is clear that in-
novative approaches are essential for efficient DSE in SNNS, to
foster the creation of effective and highly-tailored accelerators.

Li et al. [9] compared convolutional neural network (CNN)
accelerators with their spike-coding equivalents (SNNs) in
terms of processing and energy efficiency using high-level
synthesis (HLS) to generate CNNs and SNNs on field-
programmable gate arrays (FPGAs). The study used three
types of deep neural network accelerators: CNN hardware
generated with HL.S, SNN hardware generated with HLS, and
SNN RTL hardware manually developed in VHDL. They eval-
uated all three accelerator configurations with the same layer-
based architecture across three benchmark datasets: MNIST,
GTSRB, and CIFAR-10.

The authors found that SNNs offer comparable accuracy but
may be less efficient than CNNSs in terms of execution time due
to the spike encoding scheme and the lack of parallelism. They
used rate coding as the spike encoding scheme, which results
in relatively larger spike trains and higher activity, leading to
long execution times. However, the authors do not measure
how many time steps are needed for SNNs to match ANN
accuracy. [13] study spiking activity per layer to find (i) spike
train length and (ii) hardware resources needed. For example,
they suggest fully parallel and flat serial hardware. They show
that parallel SNNs use less energy than parallel ANNs for a
complex dataset like Spoken MNIST. However, serial SNNs
use more energy than serial ANNs

Another work by the authors [11] examines two main
parameters in SNN design: input data encoding and parallelism
degree. They propose three configurations: fully parallel, time-
multiplexed, and hybrid. In the fully parallel one, each logical
neuron has a physical neuron. In the time-multiplexed one,
one hardware neuron serves a whole layer. In the hybrid one,
the first hidden layer is fully parallel, but the rest are time-
multiplexed. However, both works only consider flat paral-
lelization or serialization of layers without exploring sparsity
per layer. Unlike these prior works, our framework enables
better flexibility and allows users to explore the layer-wise re-
source allocation scheme at a finer granularity, providing more
control over the trade-offs in the exploration process and the
output design efficiency. Moreover, our approach streamlines

the design process by letting users specify parameters such as
the total number of neurons and memory blocks per layer. The
framework then automatically performs the mapping of the
corresponding hardware neurons. Therefore, we can change
the architectural configuration easily, allowing rapid pruning
of optimal hardware that matches the neural structure for the
target application.

The authors in [15] and [14] investigate how sparsity affects
FPGA hardware resources and inference time. Both works use
a Selective input Sparsity approach [15] on a two-layer MLP
network and present quantitative analyses. Across different
datasets, results show that, at the cost of lower accuracy, a
sparse connection reduces hardware area and inference time
compared to a full connection. In our work, we do not use any
selection mechanism but simple hardware logic to compress
spike trains and remove non-spiking outputs from pre-synaptic
neurons. As such, our approach does not change network
accuracy. In addition, unlike prior work, our approach also
applies to hidden layers.

C. Overview of Transaction-Level Modeling

Transaction-level models (TLMs) [16] model the hardware
system components at a high level of abstraction in which
the details of communication among computation units are
separated from the details of the computation units. Chan-
nels model communication. Transaction requests call interface
functions of these channel models. The fundamental purpose
of TLM is to abstract away the unnecessary details of com-
munication and computation to speed up the simulation and
enable the exploration and validation of design alternatives at
a higher level of abstraction. The TLM formalism is especially
suitable for simulating SNNs because of the complexity of the
event-driven communications between their components. The
separation and abstraction enhance modularity, composability,
reusability, and interoperability of design. That is, atomic
computation and communication components of an SNN (e.g.,
neuron, synaptic connections) can be individually simulated
and validated. The component designs can be coupled to
form complex systems. These designs can also be reused or
coupled with designs from different vendors or designers to
create new application- or domain-specific system designs.
TLM also supports simulation at different levels of abstraction
to allow hardware designers to explore hardware at a range
of granularities. Supported abstraction levels range from the
specification model, which focuses on event ordering similar
to dataflow computation without delving into computation
or communication component specifics, to the component-
assembly and bus-functional models, which introduce details
of processing elements and connecting buses, respectively.
Lastly, the implementation model, which we use in our work,
is the least abstract and delivers cycle-accurate modeling for
both computations and communications, detailing computation
tasks at the RTL granularity.

D. TLM Architecture Modeling

Embedded systems are one of the major application ar-
eas of TLMs because they contain multiple processor cores,
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Fig. 1: Ratio of firing neurons to layer size for a four-layer
network model (784-600-600-600). The model uses population
coding (detailed in Section VI) The model’s accuracy is 96.2%
and 90.7% for MNIST and FMNIST respectively

memory/cache subsystems, and various I/O peripheral units.
By enabling the rapid simulation of different models, TLM
provides a quick and iterative design scheme during the
early design stage of the embedded system development.
The simulation time required for TLM models varies from
around 1/1000th to 1/100th of the execution time of RTL
design [26]. TLM has the significant advantage of having
multiple abstraction levels. Once the architectural specifica-
tion is defined, software developers can start building their
TLM models without waiting for RTL development kick-off.
Consequently, TLM models can save orders of magnitude in
man-hours and development costs compared to the traditional
development cycle. For example, STMicroelectronics’ System
Architecture group (CR&D) used TLM models for developing
MPEGH4 IVT six months before the top-level netlist was made
available [27]. Besides providing fast simulation, the fidelity
of the TLM models has also been investigated. The study in
[27] compares TLM and RTL implementations of a dual-core
processor and found that the TLM model had less than a 15%
error margin for interrupt latency and bus utilization. Although
we are the first to employ TLM in modeling and simulating
SNN accelerators, we envision that this approach will become
a mainstay in designing and developing application-specific
SNN accelerators in both industry and academia because of
its numerous benefits to the design process.

III. MOTIVATION FOR SNN DSE

To motivate our approach, we start by studying the synaptic
traffic or activity in the individual layers of the SNN. Section
VI-A details our experimental setup for this analysis. This
analysis aims to find variabilities in the number of spiking
neurons across layers. This fine-grained variability can be
exploited to significantly improve the design of efficient hard-
ware accelerators that satisfy application-specific latency, en-
ergy consumption, and area constraints. Figure 1 shows layer-
wise variability using a fully-connected model with two hidden
layers for the MNIST [28] and FashionMNIST (FMNIST) [29]
datasets. The model achieved 96.2% accuracy for MNIST and
90.7% accuracy for FMNIST. We used consistent layer sizes
across the three hidden layers to monitor variabilities in the
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Fig. 2: Overview of our framework outlining the key steps for
rapid design space exploration

spiking activity independent of the number of neurons within
each layer.

Figure 1 shows that the number of firing neurons (averaged
for five randomly selected time steps) declines exponentially
as the layers get deeper. For example, in layer O, the ratio
of static neurons to firing neurons is 2.4. It increases to
34 and 10 for layer 1 and layer 2 respectively. We did
not perform the analysis on deeper layers because they did
not improve the accuracy of results for the datasets. The
key takeaway: sparse firing traffic in deeper layers reduces
the workload (i.e., accumulation of spikes) for post-synaptic
layers. Consequently, this provides the opportunity to allocate
fewer hardware neurons for those post-synaptic layers.

Deep networks might require prohibitive hardware resources
for resource-constrained systems. However, based on a layer-
wise variation analysis, resource allocation can be efficiently
managed. As a result, DSE is imperative for evaluating the
parameters of high-performing deep learning models. Hard-
ware designers may also want to evaluate these models in
comparison to each other (e.g., both ResNet and Lenet-
5 perform with similar accuracy but ResNet occupies less
hardware area) to enhance the design outcomes. Note that this
experiment only shows spiking activity, but we also observed
similar layer-wise variability for other model parameters,
like weight quantization size, which significantly affects the
system’s memory requirements. Overall, an effective DSE
approach will enable designers to explore the trade-off points
of their SNN accelerator designs and provide feedback to their
network models. This will result in a highly efficient hardware-
software co-design process in terms of both model accuracy
and hardware efficiency.

IV. DESIGN SPACE EXPLORATION METHODOLOGY

Figure 2 depicts an overview of our framework and outlines
the key functional components of the rapid DSE process. Since
our work’s main goal is to design efficient application-specific
SNN accelerators, the starting point for an SNN DSE is a
system specification that describes the network model for the



target application. The following are the essential phases of
the DSE methodology in our framework.

Training Phase: First, one or more candidate network topolo-
gies are selected and initially trained using a model simulation
tool, like snntorch'. For clarity, we use snntorch as a proxy for
software machine learning libraries due to its native support
for SNN simulations. Our framework includes a training script
that orchestrates the training process given multiple models
and selects the model that gives the best accuracy that is also
within the desired accuracy range. It then extracts the input and
output spikes and associated model parameters of the topology.
Note that although the selection of the candidate topologies
is mainly driven by the state-of-the-art network models (e.g.,
commonly used topologies for a certain dataset), we also
experimented with models with random parameters to explore
a larger design space toward a more accurate model. However,
the initial network architecture search process is beyond the
scope of this paper.

Configuration Phase: After training the target model and
dumping its associated data, the data obtained from snntorch
is inserted into the configuration file (shown in the upper
left corner in Figure 2). The model-related data include the
number of hidden layers, the number of logical neurons in each
corresponding layer, spike train length, and beta and threshold
constants. In addition, the framework also sets the number
of neurons per layer to define the logical-to-physical neuron
ratio. This is an important hardware knob since realistic neural
network models typically have too many neurons to be imple-
mented or scaled in hardware. Moreover, unlike ANNs, SNN
models naturally exhibit sparse spiking behavior, which leaves
most of the neurons in an idle state. Our framework allows
architectures (see Section V) to exploit the sparsity of SNNs
and explore this parameter in determining the mapping ratio.
To enable an estimate of resource costs (e.g., lookup tables
(LUT), registers, Block RAM (BRAM) primitives, etc.), our
framework also features a library of hardware component costs
that were obtained by synthesizing the individual hardware
components. Additionally, the verbosity level of the simulation
can be set for debugging and tracing purposes.

Architecture Generation Phase: Next, the hardware genera-
tor takes the configuration file and generates the corresponding
detailed RTL architecture (bottom left corner in Figure 2).
Adhering to the TLM guidelines, this script builds the target
hardware architecture using the memory unit, neural unit, and
event control from the hardware component libraries. In this
process, the individual components are first modified to better
suit each layer’s model and hardware-specific constraints. For
instance, the event control unit for hidden layer O will have a
different state machine behavior than the other layers, depend-
ing on the total number of neurons. Similarly, the memory size
will vary depending on the neural activity within each layer.
We will describe the details of this architecture enhancement
in Section V. Given the component-level modifications, the
framework also generates the top-level wrapper that couples
the components together. In this process, it creates individual

lavailable online at https:/github.com/jeshraghian/snntorch

instances of the hardware components and connects their ports
and exports.

Simulation & Validation Phase: After generating the RTL
architecture, the framework estimates the hardware resources
for the target topology using the included component library
(details in Section VI-A). Then, it dumps the resource in-
formation into a text file that is used as input to a cycle-
accurate SystemC simulation. At this stage, the simulator reads
the model’s input spikes along with the weight and bias data
(from snntorch) and simulates the inferred architecture. During
simulation, it records the number of clock cycles as latency
data for the SNN topology. Our framework also allows for
the collection and recording of other peripheral execution data
that might be useful for more detailed analysis. The data
include the number and labels of spiking neurons in each layer
and memory access counts. To verify the functionality of the
generated architecture, the framework also performs a spike-
to-spike validation wherein the simulated output spikes are
validated against the reference spikes from the trained input
model.

Evaluation Phase: In this phase, both the model’s perfor-
mance (accuracy) and the hardware performance (latency and
area cost) are evaluated. Depending on the evaluation result,
modifications can be made to the hardware configuration (e.g.,
increase the neuron ratio, or reduce the memory blocks),
after which further evaluation iterations would take place. Our
framework can also automate the compilation and running
of various configurations, which is a substantial advantage
when the design space is large (this feature is omitted from
Figure 2 for brevity). Overall, utilizing a single Makefile, our
framework is capable of conducting SNN DSE experiments
with minimal user intervention, which would otherwise not
be possible through RTL implementation.

V. IMPLEMENTATION OF THE FRAMEWORK

We implemented our hardware using SystemC [30], a C++
library for system-level modeling and hardware/software co-
design. SystemC inherits all C++ features such as object-
oriented programming (OOP) patterns and template-based
meta-programming paradigms. These features are highly use-
ful for defining an abstraction of a parametric processing
element (PE) or any other hardware component in the TLM
design (see Figure 3). In addition to C++ features, the Sys-
temC library defines a set of enhanced features that makes it
especially suitable for our work. For example, PE constructs
can be modeled by Module entities of the SystemC library
which is also inherited from class in the OOP. For PEs
to communicate with each other, SystemC defines primitive
channels and ports/exports (see Figure 3). Moreover, it also
provides custom data types such as bit vectors (sc_bv),
arbitrary precision fixed point integers (sc_uint), etc.

A. Parametric Hardware Platform

Figure 3 depicts our generic TLM platform that represents
a single layer of a network. Since our modeling utilizes the
RTL/implementation-level abstraction of TLM, wrappers are
the parent class of the units that interact with the interface
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Fig. 3: TLM-based Hardware Platform

classes. These interface instances are the main ‘“commu-
nication channels” through which computation components
interact with each other. For all computation components, we
use the clocked thread feature of SystemC to simulate cycle-
accurate behavior. In this platform, a control wrapper and a
neural wrapper form a single neural layer. Before moving on
to the description of these basic components, we discuss our
parallelization strategy for the SNN inference flow.
Mapping Strategy: The main challenge with a parallelization
strategy is ability to keep hardware units always busy. For a
fully Connected (FC) layer with n neurons, our approach is
straightforward: we partition the layer into m groups (a design
parameter): each group contains n/m neurons, and each group
is assigned to a Neural Unit (NU) during hardware synthesis.
For example, in Figure 3, a layer is mapped to four neural
units. For a Convolutional (CONV) layer, we parallelize output
channel-wise, meaning that, for instance, each NU in Figure 3
is responsible for m output channels. Given this structure, we
now define the processing flow of the spike trains. For this,
we begin with a discussion of the Event Control Unit (ECU),
which manages the spike-based processing flow. Note that the
behavior of both FC and CONV ECUs are similar with minor
distinctions.

B. Event Control Unit

To provide a time-step-based processing flow, an ECU
communicates with the pre- and post-synaptic layer ECUs to
keep track of time steps and stay synchronized. Basically, it
receives a spike train when the pre-synaptic layer has one
ready. Likewise, it notifies the post-synaptic layer once its own
spike train is ready. Intuitively, our simulator employs layer-
wise pipelining: instead of having to wait for the post-synaptic
layer, the ECU loads the spike train into a buffer and moves
on to the next spike train from the pre-synaptic layer.

Within the ECU, a state machine orchestrates the spiking
activity for the assigned neurons as depicted in Figure 4.
When it receives a spike train, it applies a compression
mechanism to eliminate the non-spiking (e.g., reset) bits. With
this mechanism, an n-bit spike train is translated into a shift
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Fig. 4: Event Control Unit (ECU) design

register array (see Figure 4). The process is as follows: in
each cycle, the Priority Encoder (PENC) takes in n bits of
data and outputs the address of the first set bit, which gets
written into the shift register array. The bit reset component
of the ECU then resets the bit value of 1 for this address in
the one cycle earlier version of the n-bit spike data. Despite
inherent 2D (row, col) nature of spikes in CONV layer, we
store addresses in 1D fashion for the following reasons: (1)
both PENC and Accumulation phases operate on 1D structure
more efficiently, and (2) conversion between 1D and 2D is
relatively lower cost in hardware, e.g., subtracting and adding
(V-C for details). From an FPGA hardware perspective, the
PENC would ideally handle up to 100-bit inputs, beyond
which the resource overhead would likely be prohibitive due
to the FPGA routing overhead. Hence, PENC handles large
inputs in chunks, meaning it compresses a subset of spikes to
construct the general address set of the input spike train.

C. Neural Unit

To provide fully-automated model mapping, we initialize
each NU with a “base address” and “neural size” module
parameters. In the context of an FC layer, this indicates that
NU is responsible for logical neurons from (base address)
to (base address + neural size). The provided shift address
also serves as the weight address for the synapse memory.
The NU iterates through its neurons and serially calculates
their accumulator values. Once the ECU transitions from
the accumulation to the activation phase, using the Leaky
Integrate and Fire (LIF) neuron model, the NU calculates
the membrane potential for the neurons. For this, it adds
three components together: (i) leaky potential value (multiplied
potential from the previous time step with the beta constant),
(ii) the accumulated value from the shifting phase, and (iii) the
neuron bias. Then, the NU checks whether the new membrane
value exceeds the threshold and assigns a spike based on the
result.

In the case of the CONV layer, the NU is responsible for the
output channels ranging from (base address) to (base address
+ neural size). For each output channel assigned, an NU
serially processes spikes from each input feature map (fmap).
[31] proposed the spike-based convolution first. As figure 5
illustrates, for a given input spike address, the NU calculates
the addresses for all affected neurons, which also depends
on the filter size (a design parameter). For the filter size of
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three, there are nine neurons impacted by this spike (unless the
addresses do not exceed the frame). The NU serially reads the
membrane potential values for the affected neuron addresses
and adds the corresponding filter coefficients to the potential
values. Note that [31] employs input channel-wise paralleliza-
tion: a spike from each input fmap is processed in parallel,
whereas output channel-wise in our design. Therefore, the NU
serially iterates through all input channels, and then it performs
the activation/spiking operation. Finally, to implement max-
pooling in hardware, we OR-gate the generated spike train
with 222 window size in non-overlapping fashion [32].

D. Memory Unit

This unit has memory blocks that store synapse weight
information and mapping logic that manages the access of
multiple hardware neurons to a single memory block. Our plat-
form lets users set the depth and count of the memory blocks.
The depth of the blocks can be configured to M x.SIZFE where
M 1is the number of neurons assigned per memory block and
SIZE is the size of the pre-synaptic layer. As discussed in
Section V-C, the memory unit uses the memory interface to
respond to the weight read requests.

Memory Interface: The communication between the neural
unit and memory unit is established via the memory inter-
face class which is a virtual class whose behavior is purely
implemented in the calling class. In TLM terminology, the
calling class is named the export class since information is
being exported into it. Therefore, the implementation of the
interface class consists of a set of methods to be invoked by the
export class. In this platform, the memory interface has a Read
method for reading a specific synapse weight. The method
utilizes two signals (e.g., signal labels 16 and 17 in Figure 3):
a 32-bit read_data bus that carries weight information and
a 1-bit read_en line to enable data reads.

Neural Interface: The neural interface for the event control
unit is more sophisticated than the memory interface. It
contains both Read and Write methods to communicate the
following signals (e.g., signal labels 1 to 8 in Figure 3):
accumulation_en (1-bit) and activation_en (1-bit)
are the enable signals used to allow all neurons within the
neural unit to perform accumulation and activation operations.

shifted_spike_addr (N-bit) represents the address to
the individual neurons from the pre-synaptic layer whose
weight is to be integrated, where N is the size of pre-synaptic
layer. The spike_out shows whether the neuron spiked or
not and done signals that its associated neuron completed
accumulation or activation. Note that the number of buses for
the last three signals depends on the number of neurons in
the neural unit, which can be specified by the user in the
configuration file.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

We use C++ and SystemC 2.0 to implement the frame-
work’s software (which simulates the SNN hardware). The
hardware components are developed in SystemVerilog RTL
and the generated hardware instances were synthesized using
Xilinx Vivado onto a Xilinx Virtex® UltraScale+™ FPGA
with a 100MHz clock frequency to obtain precise FPGA
area reports. We provide resource utilization results in Table
I. As we mentioned in Section V, we utilize the snntorch
library for training. Within snntorch, two primary methods
are typically employed: Surrogate Gradient Descent (SGD)
and Backpropagation Through Time (BPTT) [36]. SGD is a
technique that addresses the non-differentiable nature of the
spiking mechanism in SNNs. It substitutes the original non-
differentiable function with a smooth surrogate derivative that
allows the usage of conventional gradient descent methods for
optimization. On the other hand, BPTT is a temporal variant
of the traditional backpropagation algorithm, which considers
the recurrent nature of SNNs. We employ SGD for our models
as it captures precise spike timings.

We use the static (MNIST and FMNIST) and dynamic
(DVSGesture) datasets as driving applications. The static
datasets contain 28 x 28 grayscale image samples. DVSGesture
contains 128x 128 frames for hand gesture recognition. Each
frame captures changes in pixel intensity using Dynamic Vi-
sion Sensor cameras. To evaluate our framework, we compare
it with existing state-of-the-art SNN inference accelerators,
as there are no dedicated simulators for SNN hardware. We
rigorously evaluate our framework’s latency in clock cycles
and compare it to the results of five prior SNN accelerators
[11], [12], [33]-[35]. The second column in Table I sum-
marizes the SNN model topologies for which these previous
accelerators were designed. Net-1 to net-4 are fully connected
(FC) networks with different numbers of hidden layers. Net-
5 is 32C3-P2-32C3-P2-512-256-11 where 32C3 stands for 32
filters with size of 3 x 3 and P2 for maxpooling with size of
2 x 2 followed by three fully connected layers.

B. Impact of Logical-to-Hardware Neuron Ratio

Table I shows how different layer-wise logical-to-hardware
ratios (L H R) affect the latency per inference and the resource
utilization of our flexible hardware design. LH R is a param-
eter that controls the mapping ratio of model hyperparameters
into hardware. For fully connected layers, L H R indicates the
number of logical neurons per physical hardware neuron (i.e.,
Neural Unit) in each layer of the network. For convolutional



TABLE I: Summary of results for sparsity-aware neuron resource allocation under different layer-wise LHR parameter
sets. TW denotes This Work. LUT - Lat. Impr. stands for improvement/reduction in LUT and latency compared to
the baseline (prior work). Pop. Cod. refers to the size of population neurons in the output layer. Average Spike Events
per layer per network for net-1 784(95) — 500(81) — 500(86) — 300, net-2 784(118) — 300(98) — 300(56) — 200, net-3
784(186) — 1024(321) — 1024(304) — 300, net-4 784(316) — 512(169) — 256(87) — 128(37) — 64(20) — 150, and net-5

(128 % 128(135)-32C3(240)-P2-32C3(1250)-P2-512(21)-256

Net. Target Est. Area Cycles/ LUT - Lat. Energy/ Pop. Acc.
Dataset Top. Work Device LUT/REG Cod. Impr. Image Image [%]
[12] Zynq US+ 124.6K/185.2K | 65,000 — 2.34 mJ — 98.96
TW—(1,1,1) 157.6K/103.1K | 10,583 x1.26, x0.16 0.09 mJ
(net-1) T™W—(2,1,1) 127.2K/83.2K 16,807 x1.02, x0.26 0.12 mJ
784-500- TW—(1,2,1) Virtex US+ 127.2K/83.2K 15,561 x1.02, x0.24 0.11 mJ 300 97.52
500-10 TW—(4,4,4) 60.8K/39.7K 31,583 %x0.49, x0.48 0.17 mJ :
TW—(4, 8, 8) 30.7K/63.4K 53,308 x0.24, x0.82 0.27 mJ
MNIST [11] Cyclone V 22.8K/9.3K 1,660 — — — 98.96
(net-2) TW—(1,1,1,1) 136.5K/36.1K | 18,710 X6, x0.05 0.14 mJ
784-300- TW—(4,4,4,1) 54.9K/33.2K 67,586 x2.33, x0.19 0.39 mJ
300-300- TW—(4,4,8,1) Virtex US+ 50.5K/30.2K 68,542 x2.11, x0.19 0.39 mJ 200 98.02
0 TW—(2,2,16,8) 457K/272K | 69,998 x0.88, x0.2 0.37 mJ :
TW—(4,4,16,8) 27.5K/15.4K 72,330 x1.05, x0.21 0.36 mJ
[33] Kintex-7 124.6K/185.2K | 65,000 — 2.23 mJ — 86.97
TW—(1,1,1) 287.6K/185.5K | 34,563 %x23.54, x0.02 .12 mJ
(net-3) TW—(2,1,1) 225.7K/145.2K 35,011 x18.47, x0.02 0.97 mJ]
784-1024- TW—(8,2,4) Virtex US+ 90.8K/56.2K 96,827 x7.37, x0.06 1.37 mJ 300 84.41
1024-10 TW—(16,8,4) 35.8K/21.4K 187,099 %x2.93, x0.11 1.45 mJ ’
TW—(32,32,8) 13.9K/8.7K 388,897 x1.13, x0.24 221 mJ
FMNIST [34] Kintex-7 13.7K/124K | 1,562K — — — gggé
(net-4) TW—(L,LL,T,1) T378KP003K | 40,142 | x10.01, X0.00 | 056 mJ
784-512- TW—(1,4,4,1,1) 103.1K/69.8K 61,724 x7.48, x0.00 0.73 mJ
256128, TW—(2,8,4,16,8) Virtex US+ | 45.1K/67.2K | 114,266 | x3.27, x0.00 0.9 mJ 150 764
64-10 TW—(4,2,8,8,64) 37.7K/24.6K 69,534 x2.74, x0.00 0.48 mJ ’
TW—(32,16,8, 16, 64) 6.6K/63.4K 843,518 x0.73, x0.03 4.3 mJ
(net-5) [35] 22nm ASIC — 6,044K — 0.17 mJ — 92.42
128%128- TW—(1,1,38,32) 137.5K/361.5K | 2,481K - x0.41 14.93 mJ —
DVS 32C3-P2- TW—(1,1,16,16) 128.1K/352.1K 2,493K -, x0.41 13.41 mJ
128 32C3-P2- T™W—(1,1,32,32) Virtex US+ | 119.2K/343.7K | 4,475K -, x0.74 20.5 mJ _ 7123
Gesture 512-256- TW—(1,1,16,256) 123.4K/347.5K | 2,521K -, %x0.40 7.21 mJ] :
11 TW—(16, 1,16, 256) 93.5K/267.5K 2,486K -, x0.41 6.24 mJ

layers, L H R indicates the number of logical output channels
per Neural Unit. For example, (LHR — 1,2,4,1) for net-5
means that the network has four hidden layers. Each neural
unit in the first and second layers handles one and two
output channels, respectively, and each neural unit handles four
logical neurons in the third layer and one neuron in the fourth
layer. See Section V for more details.

We use LUT-Latency improvement (depicted as LUT-
Latency Impr. in Table I) as a metric to measure the im-
provement in FPGA area (LUT) and inference latency (i.e.,
total clock cycles for inferring a single test sample) over the
prior works.

We vary LH R for each layer (by powers of two) for each
network topology to explore the trade-offs between LUT and
latency across datasets and topologies. In some cases, our
baseline design may have worse latency or LUT than the prior
works, mainly because the prior works are optimized for their
specific fixed hardware configurations. However, by tuning
LHR, we can achieve similar or better efficiency in terms of
either latency or LUT. For example, for the MNIST dataset,
our design with (LHR — 4, 8, 8) for topology (1) reduces LUT
by 76% and maintains the same latency as [12], and our design
with (LHR —4,4,16,8) for topology (2) achieves 0.21x
latency with similar LUT as [11]. Note that Fang et al. [12]
do not report the PE size (which determines the parallelism
of neuronal operations) for their synthesis results, although

they claim that their PE size is parametric. On the other hand,
Abderrahman et al. [11] state that their design executes the
first hidden layer in fully-parallel mode and the rest of the
layers in serial mode with only one hardware neuron per layer.
Similarly, for the Fashion MNIST dataset, our design with
(LHR — 32,32,8) for topology (3) outperforms the baseline
by 4.1x at the expense of 13% more hardware resources
compared to [33] and (LHR — 32,16, 8,16,64) scheme for
topology (4) outperforms the prior work by 31.25x with 27%
less hardware than [34]. Unlike latency, which scales more
steeply, energy serves as a more balanced metric that takes
both latency and area into consideration. Additionally, it’s
worth mentioning that in a fully realized hardware implemen-
tation, after area optimization, energy efficiency can be further
enhanced through clock gating.

Our baseline (highest resource allocated) mapping scheme
for DVSGesture performs 2.5x better in terms of cycles but
87.6x higher energy compared to a prior ASIC implemen-
tation [35] (which is also sparsity-aware). Despite the high
sparsity characteristic of the data (see Table I caption), the long
latency can be attributed to the lengthy time steps required to
achieve close to state-of-the-art (SoA) accuracy in snntorch.
Yet, the highest attainable accuracy was 71.23% with 124
time steps (and beta set to 0.23). In comparison, the prior
work manages to achieve higher accuracy while applying
maxpooling to the input layer, directly reducing the input
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Fig. 6: Overview of Latency-LUT trend for the topologies
tabulated in Table I. Although clock cycles increase as the
area decreases, in some cases the same (or even less) resource
with different LH R combinations leads to lower clock cycles.

frame size from 128 down to 32. We were unable to apply
maxpooling due to low accuracy. Furthermore, while an ASIC
implementation might offer significant energy advantages due
to its tailored design, our approach provides a valuable balance
of performance improvement, combined with the benefits of
flexibility inherent to FPGA-based implementations.

Our layer-wise analysis of the network showed that the
majority of processing time is consumed by the second con-
volutional layer followed by the first fully connected layer,
which also has a high input spike activity as shown in Table I
caption. Therefore, in the configurations (LHR — 1,1, 8, 32),
(LHR-1,1,16,16), (LHR—16,1,16,256), latency remains
consistent largely because the second convolutional layer
alone overshadows other layers’ latencies in the pipeline. For
(LHR — 1,1, 32,32), latency increases due to the increased
workload in the first fully connected layer’s neural unit. Based
on this analysis, we conclude that the (LHR — 16, 1, 16, 256)
configuration is the best mapping for this use case due to the
reduction in the hardware area, which translates into lower
inference energy. Importantly, our approach enables rapid
exploration of the design space to achieve a 64% reduction
in the inference energy compared to the sparsity-oblivious
baseline scheme, while maintaining the same latency.

Figure 6 captures the high-level view of the Latency-LUT
trend for the same topologies as in Table I. Some trends have
irregular patterns (i.e., lower latency despite reducing LUT)
because of the layer-wise allocation of hardware neurons. For
instance, in net-3, hidden layer 1 and hidden layer 2 have
the highest spike events (see Table I footnotes) and hence
dominate the network latency. Therefore, a slight reduction
in resources leads to a significant performance degradation
for the network. In general, we observed that the spike event
counts in Table I follow a ratio of 1/3 of the layer size for
the first layer and about 2/7 for the second hidden layer. This
is consistent with existing works [10] that suggest that the

sparsity increases as the network gets deeper.

C. Spike Train Length vs. Population Coding Ratio

A major, yet under-explored, hyperparameter in the SNN
design space is spike train length. The spike train length spec-
ifies the length of the encoding window required to transform
real-valued images (pixel resolution) into spikes. In general,
a short spike train length leads to poor accuracy but fast
computation time due to low precision during conversion and
inadequate time for the neuron to complete the accumulation,
e.g., there are not enough time steps to produce spikes. This
drawback can be mitigated by employing a coding scheme
known as “population coding” over the output layer of the
network [37]. Indeed, a study published in Current Opinion
in Neurobiology [38] has shown that the brain extensively
employs population coding in certain regions for efficient
information representation. With this coding scheme applied
to the SNN’s classification layer, each class or category is
represented by a pool of neurons, e.g., 10 neurons per class
of the 10 categories in the MNIST dataset. Hence, we define
population coding ratio (PCR) as a parameter that controls
how many logical neurons are assigned per class.

We investigate the combined impact of spike encoding
window length and PCR on model accuracy and hardware
latency. We vary the spike train length from four to 25 time
steps in Figure 7 with three different PCRs (TW_pop_1 for
one neuron per class, TW_pop_10 for 10 neurons per class,
TW_pop_30 for 30 neurons per class) and show the scaling
of the model’s (a) accuracy vs. (b) latency (in clock cycles)
for an MNIST image. We also compare our results with a
previous work that performed a similar experiment on the
same network topology (784-500-500-10). As the spike train
length is increased, we observe a significant improvement in
performance for TW_pop_I as the spike train length increase
from four to 20, as shown in Figure 7a; we observe no
improvement beyond 25 (i.e., the best attainable accuracy at
25 is 94.07%). In contrast, we notice the immediate effect of
population coding in TW_pop_10 and TW_pop_30 where the
accuracy starts at 96%, even for short spike train length, and
continues to slightly increase. For TW_pop_30, we achieve
97.68% accuracy at time steps 15 after which we observe
a slight drop due to potential model over-fitting. Therefore,
we can conclude that 15 time steps are sufficient to represent
MNIST images with high resolution although most of the
existing works use 50 or more time steps [39].

In comparison, Fang et al. [12] outperforms our accuracy
by 1.85% and achieves the highest accuracy of 98.96% at
time steps 25. The superiority of this prior work can be
attributed to the optimized spike encoding schemes as opposed
to the standard rate coding utilized in this work. In terms of
latency, however, our clock cycle results for the best accuracy
(29008) outperform the prior work by more than 2x as shown
in Figure 7b. While both the prior work and ours employ
similar hardware design strategies and execute in a layer-wise
pipelined manner, the latency savings can be attributed to their
PE size (e.g., hardware neurons) which, as noted before, is not
disclosed in their discussion.
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Higher PCR ratios lead to longer latency since more shifting
iterations are required to propagate spikes from the pre-
synaptic neurons to the output layer. For instance, latency leaps
by 2x for TW_pop_30 when we change time steps from six
to eight, whereas we observe a substantially lower pace of
scaling in TW_pop_10 by 1.43x. Another major drawback
of the neural population coding is the increase in total neuron
count. However, we argue that our design and the design space
exploration enabled by our work can help to mitigate both
drawbacks. In terms of latency, the design executes in a layer-
wise pipelined manner. Moreover, the output layer is typically
the smallest across the network and is inherently highly sparse
(i.e., a lower number of spike events). Hence the increased
execution cycles in the output layer do not directly translate
into overall latency since that time would otherwise be spent
by stalling the layer while waiting for the next spike train from
the pre-synaptic layer. Overall, the key goal of this experiment
is to demonstrate the ability of population coding to project
temporal information into the spatial domain, thus favoring the
inference latency of the network.

VII. CONCLUSION AND FUTURE WORK

This article presented and demonstrated the effectiveness
of sparsity-aware design space exploration for SNN hard-
ware accelerators. Specifically, we have shown the benefits
of utilizing layer-wise sparsity in SNNs, which we argue
is a grand challenge for SNNs and a crucial consideration
toward achieving brain-like hardware efficiency. We present a
sparsity-driven hardware neuron allocation approach that can
achieve up to 76% savings in hardware resources while main-
taining a similar latency to prior SNN accelerators that do not
consider sparsity. We also investigated the effects of two im-
portant model hyperparameters—spike train length and neuron
population size—on SNN acceleration. Both hyperparameters
have a significant impact on the trade-off between hardware

performance and model accuracy. We further showed that the
population coding technique is particularly advantageous for
our design compared to previous work, since sparsity occurs
least at the output layer thereby leading to minimal hardware
overhead for our design.

For future research, we aim to implement a dynamic (run-
time) scheme of sparsity-aware neuron allocation directly in
hardware and explore the deployment of FPGA-based SNN
accelerators for a wider variety of SNN models and datasets.
Moreover, we plan to conduct detailed comparative analyses
of SNNs against ANNs with a heavy focus on sparsity. We
aim to delve deeply into the question of how to exploit the
inherent potential efficiency benefits of SNNs, characterized
by their simpler computations, to maintain a competitive edge
over traditional ANNs in terms of computational efficiency.
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