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ABSTRACT

DRAM constitutes over 50% of server cost and 75% of the embodied
carbon footprint of a server. To mitigate DRAM cost, far memory ar-
chitectures have emerged. They can be separated into two broad cat-
egories: software-defined far memory (SFM) and disaggregated far
memory (DFM). In this work, we compare the cost of SFM and DFM
in terms of their required capital investment, operational expense,
and carbon footprint. We show that, for applications whose data
sets are compressible and have predictable memory access patterns,
it takes several years for a DFM to break even with an equivalent
capacity SFM in terms of cost and sustainability. We then introduce
XFM, a near-memory accelerated SFM architecture, which exploits
the coldness of data during SFM-initiated swap ins and outs. XFM
leverages refresh cycles to seamlessly switch the access control
of DRAM between the CPU and near-memory accelerator. XFM
parallelizes near-memory accelerator accesses with row refreshes
and removes the memory interference caused by SFM swap ins and
outs. We modify an open source far memory implementation to
implement a full-stack, user-level XFM. Our experimental results
use a combination of an FPGA implementation, simulation, and
analytical modeling to show that XFM eliminates memory band-
width utilization when performing compression and decompression
operations with SFMs of capacities up to 1TB. The memory and
cache utilization reductions translate to 5~27% improvement in the
combined performance of co-running applications.
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1 INTRODUCTION

DRAM memory capacity has stagnated due to the challenges in
CMOS technology scaling [54, 58]. At the same time, DRAM manu-
facturing cost and carbon footprint exceed any other components in
datacenter servers [15]. This is happening at a time when the mem-
ory capacity requirements for emerging workloads are exploding.
One rescue path is the integration of a far memory tier with higher
access latency than local memory into the memory hierarchy. At
runtime, application data is dynamically swapped between regions
based on their access frequency. Hyperscalars have already inte-
grated far memory tiers into their servers [51, 77], adding elasticity
to an expensive, often stranded, and highly contended resource [8].

Far memory can be implemented by pooling memory modules
over an interconnect which is slower than traditional DDR chan-
nels. Such disaggregated far memory (DFM) implementations use
PCle [57], the datacenter network [6, 8, 18, 26, 36, 55, 70, 81], or
CXL-based pooling [35, 56] to connect the far memory capacity to
CPUs. On the other hand, a software-defined far memory (SFM)
implementation dynamically allocates a portion of the local DRAM
to the storage of compressed, cold data [51]. The cold data is only
decompressed and moved to the local address space once it is ac-
cessed.

In comparison to DFM, SFM provides additional elasticity. Local
and far memory capacities can be dynamically resized without ad-
ditional hardware expenditures by re-partitioning the local and far
memory address spaces. We develop a first-order analytical model
which considers a DFM deployment using new DDR4 modules and
running applications with compressible data sets and predictable
memory access patterns. Our results show that it can take more
than 8 years for a DFM to break even in terms of cost with an
SFM counterpart when both provide an additional 512 GB memory
capacity. Besides the higher initial cost of DFM, DRAM manufactur-
ing has an order of magnitude higher carbon emission than logic
manufacturing [15]. For this reason, SFM-related carbon emissions
do not reach that of a DFM during the lifetime of the server (§3). Al-
though DFM deployments come with numerous benefits, this cost
and emission analysis motivates scavenging used DRAM for DFM
implementations [56] and shows the importance of investment
in SFM. SFM can be used to maximize the efficiency of precious
DRAM resources, whether they are locally connected to the CPU
or disaggregated over a system interconnect.

Current SFM implementations use the CPU to compress (swap
out of local memory) and decompress (swap into local memory)
candidate pages. Selected candidate pages should be cold and com-
pressible, otherwise, the swap out to far memory will hurt applica-
tion performance and may not provide tangible benefits to capacity.
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Because both the candidate pages as well as the compressed pages
in far memory are cold, SFM requires costly DRAM accesses on
every swap in and out. For a 512GB SFM implementation, the mem-
ory bandwidth utilization for reading and writing data to memory
can reach up to 34GBps. Although current multi-channel CPUs
equipped with high bandwidth DDR5 DIMMs can accommodate
this access bandwidth, the interference in the memory and cache
hierarchy hurts the performance of co-running applications and
also increases computational energy due to excessive data move-
ment [39, 63].

Figure 1a illustrates the memory bandwidth utilization of cur-
rent CPU-centric SFM implementations. A near-memory process-
ing architecture is a natural fit to eliminate the data movement
between CPU and memory while swapping data between local
and far memory. SFM is especially interesting for near-memory
acceleration because (1) far memory data is in the memory by defi-
nition, resolving the cache coherency issues common amongst near-
memory processing architectures [16][17], (2) swap ins and outs
from far memory take place at OS page granularity, simplifying the
virtual memory implementation of near-memory processing [40],
and (3) compression and decompression tasks are incrementally
computable, simplifying memory channel interleaving complexi-
ties [25].

In this work, we implement Accelerated SEFM (XFM), which cap-
tures the timely need for SFM acceleration. In contrast to prior
works that are centered around maximizing the memory bandwidth
between near-memory accelerators (NMAs) and DRAM, XFM is
designed to implement an interface between NMAs and DRAM
with just-enough bandwidth to accommodate SFM-related data
movement. This enables XFM to leverage inevitable DRAM refresh
cycles to implement a side-channel on each rank, granting the NMA
access to DRAM. These accesses are transparent to the CPU mem-
ory controller. Fig.1b illustrates how the utilization of NMAs can
reduce the memory bandwidth utilization of SFM in current servers
with tens of DRAM ranks.

We prototype XFM on an FPGA-based near-memory processing
platform. Additionally, we implement a full-stack implementation
of XFM by modifying an application-integrated far memory frame-
work (AIFM) [70] to include a compression/decompression engine.
Our experimental results show that XFM can potentially eliminate
the memory bandwidth utilization of software-defined far mem-
ories with up to 1TB capacity. The memory bandwidth savings
translate to 5~27% higher performance for co-running applications.
The benefits of XFM can be increased by improving the far memory
controller’s proficiency at predicting application memory access
patterns.

2 BACKGROUND

2.1 Far Memory

The stagnation of DRAM capacity scaling has led hyperscalers to
deploy a new tier in the established memory hierarchy. There now
exists an intermediate level between DRAM and storage known
as far memory. Far memory tends to have a larger capacity than
local memory with higher access latency and lower bandwidth. In
this paper, we consider DRAM as the memory technology that is
used for both local and far memory. The current implementations
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(b) XFM

Fig. 1. Memory bandwidth utilization is the bottleneck in future SFM imple-
mentations with many DRAM ranks. XFM enables rank-level parallelism for
performing SFM operations.

of far memory can be divided into two categories: Disaggregated
Far Memory (DFM), where extra DRAM modules are connected
to the CPU over a high-speed serial interconnect such as PCle,
CXL, InfiniBand, or Ethernet, and Software-defined Far Memory
(SFM) where a reconfigurable portion of local DRAM is used to store
compressed pages. The access rate to far memory is quantified using
ametric called promotion rate [51]. Promotion rate is the percentage
of far memory that is accessed per minute. A 20% promotion rate
for a 512GB far memory implies that 102GB of the far memory is
accessed during a 60-second interval.

DFM aims at better utilizing existing memory capacity by dis-
aggregating stranded local memory and exposing it as a shared
pool to the applications. Network-accessible DRAM managed by
the application [70, 81] or the OS [8] provides a means to reduce
cluster-wide memory stranding and supplement the memory avail-
able to applications [57]. Additionally, the CXL protocol enables
access to additional DRAM over the system bus, expanding the
memory capacity of multi-socket servers. Although recent work
shows the promise of CXL-based memory pooling when combined
with intelligent provisioning and data placement [56], DFM suffers
from static provisioning of DRAM resources and extra hardware
requirements and support.

SFM is readily deployable in datacenter computing systems. Sev-
eral hyperscalers realize cluster-wide DRAM savings by establish-
ing page-swapping algorithms that utilize compressed page caching
mechanisms within the OS [51, 77]. These smart paging mecha-
nisms seek to move as much application memory to SFM while still
meeting application level Service-Level Objectives (SLOs). Shifting
cold pages to SFM makes room in local memory for other appli-
cations or frequently accessed pages, improving job throughput
without compromising the access latency of local memory. Google’s
approach involves pre-emptively scanning for cold pages [51], while
Meta utilizes pressure metrics exposed by the OS to respond to poor
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resource utilization [77]. SEM is not new to other domains such as
mobile and desktop systems [46].

SFM Control Plane. SFM implementations from Google and
Meta and are built atop Linux zswap [43, 51, 77]. Zswap provides a
mechanism to intercept pages being swapped out of main memory,
compress them, and store them in a separate compressed memory
pool (zpool) within DRAM. Although other memory allocators are
available in zswap, the zsmalloc allocator is generally used [51, 77]
as it makes the best use of a single physical page by inserting as
many compressed pages as possible. This comes at the cost of inter-
mittent compaction operations to address internal fragmentation
resulting from swapping pages between near and far memory.

Although zswap is an OS-provided feature, hyperscalers have
already moved the far memory control plane out of the OS. For
example, Google implements a custom version of Linux’s kswapd
paired with an additional daemon for page compression, kreclaimd
[51] and Meta uses a userspace program, senpai, to initiate reclaim
based on OS-provided performance metrics [77].

Far Memory Compression Algorithms. Deploying a compres-
sion algorithm at scale requires meeting application SLOs and man-
aging resource consumption. Finding the appropriate balance be-
tween compression ratio, speed, and CPU utilization has led to the
development of new compression algorithms [23, 76] and reliance
on algorithms that achieve high speeds at the cost of a lower com-
pression ratio. The 1zo [69] and zstd [22] compression algorithms
are used at scale [51, 77] as they are capable of maintaining low
enough CPU overhead while still achieving a good compression ra-
tio. There are, however, hardware implementations of well-known
algorithms, like deflate [30], which can achieve high-compression
ratios. Support for deflate (de)compression using zswap is currently
implemented in the form of on-chip accelerators within IBM’s
POWERY/z15 [5] and Intel’s Sapphire Rapids CPUs [9].

2.2 DRAM Memory System

General DRAM Architecture. The DRAM main memory system
can be viewed as a 5-dimensional hierarchy. Memory is first divided
into multiple channels, with all memory in a single channel sharing
the same address, command, and data busses to service host CPU
accesses. A channel may contain multiple ranks. A rank is composed
of multiple commodity DRAM devices which act in unison to serve
memory reads/writes. A rank can also be viewed as a collection
of banks, where each bank can service commands independently,
but shares the same data and control paths. A bank is composed of
many 2D arrays of DRAM cells, called mats. Each mat has its own
row of sense amplifiers and row/column decoders. A collection of
mats sharing the same wordlines compose a subarray. Cells in a
subarray share the same row buffer and an entire row of data is
always within the same subarray [48].

When data is to be read from DRAM, an entire row is brought
into an array of sense-amplifiers, called the row-buffer. This row-
buffer is local to a subarray. The global column decoder asserts the
appropriate column select lines to drive a portion of the row buffer
to the IO/bank periphery. In a DRAM device with a data width of 8
bits, 64 bits of data from the local row buffer will be driven onto the
global bitlines and amplified by the global sense amplifiers, before
it is read out of the bank periphery/IO.
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DRAM Refresh Due to charge leakage, DRAM cells need to peri-
odically be refreshed to prevent data loss. The memory controller
sends periodic refresh commands to each DRAM rank. A refresh
counter on each DRAM chip indicates which rows in DRAM banks
to sense, amplify, and write back to restore the charges of the DRAM
cells. Typically, every row of each DRAM bank needs to be refreshed
every ~32ms [60]. In an all-bank refresh, no banks can be accessed.
This causes read and write requests to be delayed by refresh opera-
tions. To reduce this latency, the memory controller spreads out the
refreshes across the 32ms retention time. The memory controller
typically sends 8192 individual REF commands every 32ms to each
DRAM rank, initiating an auto-refresh operation.

The all-bank auto-refresh is optimized such that multiple rows in
the same bank can be refreshed in parallel. This is accomplished by
leveraging multiple local row buffers across different subarrays to
refresh multiple rows at the same time [13]. Although recent DRAM
chips support a selective bank refresh mode [60] to prevent the
rank from being locked during each refresh cycle, the all bank mode
is still the most efficient way of refreshing rows in a semi-parallel
fashion [19].

The semantics of an auto-refresh command are equivalent to
a series of Activate (ACT) and Precharge (PRE) commands [59],
except that additional strain is placed on the power-delivery net-
work from refreshing multiple rows in parallel. This necessitates
waiting for a fixed interval ts74G (~10ns in DDR4 devices) between
initiating refresh operations in consecutive banks. Refreshing mul-
tiple rows in the same bank at the same time increases the duration
of trrc beyond tgc, the time to activate a row and precharge its
corresponding bank [61].

Purposeful redirection of refresh operations is not unprecedented
given its current applications in maintaining DRAM data integrity.
To protect against the Rowhammer vulnerability in DRAM devices,
DRAM manufacturers have added the capability to refresh a limited
number of additional victim rows for each received REF command
received. This mechanism is intended to refresh neighbors of rows
that have been activated with high frequency, ensuring data relia-
bility and mitigating attacks. Target Row Refresh (TRR) has already
been implemented in commercial DDR4 devices [38], and the DDR5
specification further extends TRR through the refresh management
command (RFM) [42].

3 DFM VS. SFM
3.1 First-Order Cost Model

In this section, we consider a CXL-based DFM implementation as
nascent DFM technology [56] and compare it with SFM using a
first-order analytical model. We show that an ideal, accelerated
SFM can achieve lower TCO and environmental impact compared
with DFM implementations. It is important to note, however, that
the benefits provided by SFM are mainly orthogonal to DFM. A
server equipped with DFM can additionally deploy SFM to increase
the overall memory capacity by storing cold data more efficiently.
In essence, DFM substitutes the compute cost of SFM with more
DRAM capacity statically placed over CXL. Fig.2 illustrates these
two configurations.

Our analytical model compares the capital and environmental
cost of an SFM and DFM deployment over several years. We consider
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two DFM implementations, one with DRAM and one with persistent
memory (PMem). While it is possible to scavenge used DRAM
modules to implement DFM, we cannot quantify the capital cost
and emissions of such a deployment, and thus, we only consider
newly manufactured DRAM in our modeling. We assume that the
EXTRA Memory capacity is statically provisioned, and the system
runtime/OS consistently populates it with cold application data. In
practice, SFM implementations leverage more complex cold page
identification mechanisms and heuristics. Our model establishes an
upper bound on the TCO of SFM by eschewing these optimizations,
compressing pages whenever space is available in the SFM memory
region and decompressing at the predefined promotion rate.

In our model, we consider 64GB DRAM DIMMs, and 512GB
PMem DIMMs (DIMMSize parameter in the following equations).
For the remainder of this subsection, we estimate the total number
of bytes compressed and decompressed every minute for a 512GB far
memory implementation (i.e., ExtraGB parameter is set to 512GB
in the following equations) as follows:

EQ1: GBSwappedPerMin (GB/min) = ExtraGB X PromotionRate
Where PromotionRate is the percentage of far memory accessed
every minute (as explained in Sec.2.1).

Capital Cost. We conservatively estimate the financial expendi-
tures incurred by a new DFM investment to be equal to the upfront
purchase of the additional memory modules at the current per-
byte cost of DRAM and PMem. We also add 88pJ/byte (2.44x10~8
kWh/GB) energy cost for PCle accesses [12], and 4 Watts of static
power consumption for additional DIMMs (IdleDIMMEnergy pa-
rameter in EQ2.2). We consider an average cost of $0.12/kWh for
electricity (ElectricityCost) [28].

EQ2: DFMCost = ExtraGB x MemoryCostPerGB +
TPCIeEnergy + IdleDIMMEnergy) X ElectricityCost

EQ2.1: PCleEnergy = 2.44 X 10" 8kWh/GB x GBSwappedPer Min
X TIME

EQ2.2: IdleDIMMEnergy = 0.24 (kWh) X ElectricityCost X TIME
x(GBSwappedPerMin/DIMMSize)

For modeling the financial expenditure incurred by SFM, we con-
sider both the operational and upfront purchase costs of the extra
CPU cores that need to be provisioned for running (de)compression
operations. Using the TDP of an Intel Xeon E5 2670 (115 Watts), the
clock rate (2.6GHz), and the average cycles required to (de)compress
a byte using zstd [23] and 1zo [69] algorithms (CCPerGB parame-
ter in EQ3.4, which is 7.65 X 10° cycles on average), we calculate
the energy consumed by the CPU for (de)compressing one GB of
data (EnergyPerGB variable in EQ3). CPUCost includes the cost of
provisioning extra CPU cores to run (de)compression operations.

EQ3: SFMCost = EnergyPerGB X GBSwappedPerMin X
ElectricituCost X TIME + CPUCost

CPU DRAM CPU DRAM
DDR5 Physical cXL  DDR5 Physical
EXTRA Y
< DRAM | R~ < DRAM
SFM I EXTRA

Fig. 2. lllustration of systems equipped with SFM and DFM of the same capac-
ity.
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Fig. 3. Emission and capital cost comparison of SFM and DFM implementing
the same far memory capacity. Values are normalized to that of DFM.

CPUCost is estimated by calculating the fraction of CPU cycles
that are needed to perform (de)compression operations (%CPU Needed
variable in EQ3.2) and multiplying it by the purchase price of a
CPU:

EQ3.1: CPUCost = %CPUNeeded x CPUPurchasePrice
EQ3.2: %CPUNeeded =
CCNeededPerMin/CCAvailablePer Min

EQ3.3: CCAvailablePerMin = CPUFreq X NumO fCores X
60

EQ3.4: CCNeededPerMin = GBSwappedPerMin x CCPerGB

We assume that dynamic DRAM access energy consumption is
the same for both SFM and DFM and factor it out of capital cost
modeling.

As shown in Fig.3, even at a promotion rate of 100%, an SFM
is more cost-effective than a DRAM-based DFM counterpart for
implementing a far memory tier. It takes 8.5 years for SFM to break
even with the cost of a DRAM-based DFM. A promotion rate of
100% means that every minute, all of the cold pages are accessed.
This is an extreme case, but it establishes an upper bound on the
cost of SFM. In Google’s fleets, it was observed that classifying
pages as cold after going 120 seconds without an access results in
over 30% of memory being detected as cold and a 15% promotion
rate [51]. As shown in Fig.3, at a 20% promotion rate, SFM may
prove more cost-effective, even when compared to a PMem-based
DFM.

Environmental Cost. Environmental cost comes from manufac-
turing (i.e., embodied energy used for production) and operational
greenhouse emissions. We use processor and memory manufactur-
ing emission data from Boavizta’s model [15] for these analyses. We
also consider the same emissions per silicon area for both DRAM
and PMem [15, 37], with PMem having 2X higher bit density than
DRAM [75]. Our analyses yield carbon dioxide equivalent (CO2eq)
emissions of 1.01 kilograms per GB of DRAM, 0.62 kilograms per
GB of PMem, and 0.625 kilograms per CPU core manufactured,
respectively. We exclude the manufacturing emissions for local
DRAM modules because the emissions are similar for both DFM
and SFM configurations.
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We consider the idle energy consumption of extra DIMMs (i.e.,
IdleDIMMEnergy) to include operational carbon emissions for
DFM. We use pessimistic data from the Southwest Power Pool
in the central US collected in 2022 for electricity emissions that
report emissions of 4799COzeq/kwh [27]:

EQ4: DFMEmission = ExtraGB X EmissionPerGB +
O_perationalEmission

EQ4.1: Operational Emission =

IdleDIMMEnergy X ElectricityEmission

EQ5: SFMEmission = %CPUNeeded X EmissionPerCPU +
EnergyPerGB x GBSwappedPerMin X ElectricityEmission X
TIME

As illustrated in Fig.3, DRAM-based DFM and SEM never break
even in terms of carbon emissions during the typical 5-year lifetime
of a server. Even with PMem, it can take several years for SFM with
a20% promotion rate to break even in emissions. Using cleaner grids
could further decrease CPU energy consumption when increasing
the effective memory capacity of SFM. It should be noted that our
model does not take the performance implications of using SFM
and DFM into account and only discusses a first-order model of the
cost and emissions of these far-memory implementations.

3.2 Opportunities for SFM Acceleration

In Sec. 3.1 we showed that an ideal SFM deployment can be more
cost-effective when compared to a DFM solution. SFM is partic-
ularly attractive for applications that exhibit predictable access
patterns and operate on a compressible data set. In this section, we
discuss the opportunities for accelerating SFM to further reduce its
cost and improve its performance. As shown in Fig.3, increasing the
promotion rate results in higher costs for operating an SFM. The
cost increases due to higher usage of CPU cycles for performing
compression and decompression as the number of bytes needed
to be (de)compressed increases proportionally to the promotion
rate. Even though it is not shown in Fig.3, increasing the far mem-
ory capacity also proportionally increases the cost of operating
SFM. The Overheads associated with a SFM can be classified into
four categories: (O1) synchronous decompression operations stall
application threads and increase effective memory access latency,
(02) CPU cycles spent on compression and decompression con-
sume additional energy and take precious CPU cycles away from
other applications, (03) memory bandwidth is consumed by page-
compression and decompression routines as both compression and
decompression tasks read cold data from DRAM before performing
the operation, and (04) page-granular compression and decompres-
sion tasks pollute the cache hierarchy.

One solution to mitigate the cost of performing compression
and decompression is to offload the operations to an on-chip ac-
celerator. There are myriad works on hardware acceleration of
compression and decompression [5, 24, 64, 68, 79] and the latest
Intel Xeon CPUs integrate a compression accelerator [9] that can
benefit the implementation of SFM. Using an on-chip hardware
accelerator alleviates O1 and O2. For SFM, compression is not on
the critical path of execution and only de-compression latency can
impact the application performance. Our experimental results show
that a PCIe Intel QAT sustains 9.8GBps and 13.3GBps compression
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and decompression throughput, respectively. Assuming the same
compression throughput for an integrated QAT accelerator, the
host can offload all the compression required to operate a 512GB
SFM with a 100% promotion rate. However, this comes at the cost
of consuming a physical core to manage the offload operations.
Using our cost model, we determine that an integrated hardware
accelerator becomes beneficial when the average promotion rate
is higher than 6% in a 512GB SFM. It also fails to address overheads
03 and 04, due to its impact on the memory subsystem.

Although the average DRAM bandwidth requirements of SFM
are unlikely to be a performance bottleneck!, the page-granular
memory accesses and bursty swap ins and outs result in extensive
cache pollution and memory channel contention for co-running ap-
plications. To illustrate this, we co-run 8 LLC and memory sensitive
SPEC workloads with two processes that continuously compress
and decompress 4KB pages on an Intel Xeon E5-2658 CPU. We
pin each SPEC workload as well as the antagonist processes to
disjoint physical cores with SMT and Turbo boost disabled and the
frequency set to 2.2GHz. The runtime increases by up to 7.5% with
the antagonists’ compression throughput degrading by more than
5.0%.

To alleviate O3 and O4, a natural design decision is to use near-
memory processing. Although performing the compression on the
DRAM side addresses both O3 and 04, offloading decompression
to memory is not beneficial if: (1) near-memory decompression
latency is higher than on-CPU decompression. This can happen if,
due to the limited power budget, the near-memory accelerator has
lower performance than CPU. The benefits are also lost when (2)
the extra bytes read due to I/O amplification is less than the number
of bytes used by the application after decompression of a page.

We define the I/O amplification ratio for accessing SFM as the
ratio of compressed bytes accessed over the memory channel to the
total number of decompressed bytes used by the application. The
I/O amplification ratio for SFM is a function of application access
patterns and the contention on the LLC. For example, if there is con-
tention on the LLC or the use-distance of the decompressed bytes is
long, then the I/O amplification ratio increases as the decompressed
page is likely to be written back to DRAM before being used the
application. One key benefit of offloading both compression and
decompression to the memory is that the software control plane
can now aggressively compress and decompress without hogging
DDR bandwidth. This enables the control plane to implement bet-
ter heuristics to further reduce the impact of higher far memory
access latency on application performance. It also allows better
management of the far memory space since application data can be
quickly shifted between local and far memory. Note that a software
controller cannot aggressively compress data into SFM without also
aggressively decompressing data out of the SFM as the capacity of
SFM is limited and, in a stable state, the rate of compression and
decompression are the same.

3.3 Summary and Proposal
Here we summarize the main takeaways from the discussion in
Sec.3.1 and Sec.3.2:

1100% promotion rate in a 512GB SFM requires compressing and decompressing at a
rate of 8.5GBps. Therefore the total DRAM read and write bandwidth utilization is
4x8.5GBps which is 1.3X of a single DDR5 channel.
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e An SFM deployment can be a more cost-effective solution
for applications that exhibit predictable access patterns and
have a high compression ratio.

e On-chip acceleration of SFM compression operations is sub-
optimal due to cold data accesses from DRAM without tem-
poral locality.

e On-chip acceleration of SFM decompression operations is
sub-optimal if the decompressed data is not used immedi-
ately.

In this paper we architect AXelerated software-defined Far Memory

(XFM) which implements offload capabilities for both compression
and decompression in memory, and allows the software control
plane to dynamically fall back to the CPU for decompression if
deemed beneficial. The overriding design goals relevant to XFM’s
design are (G1) minimizing changes to the DRAM architecture,
(G2) avoiding compromising host CPU DRAM access latency or
bandwidth, (G3) and maintaining the flexible capacity provision-
ing provided by software-defined far memory. Since accesses to
an SFM are made at the granularity of an OS page and the con-
tent of far memory is cold and resides exclusively in the DRAM,
the virtual memory [40] and cache coherency [17] challenges of
near-memory processing are not an issue for XFM. Designing a
near-DRAM accelerator that satisfies G1~G3 is an open research
question, however, and requires innovation to correctly manage
concurrent accesses from the accelerator and host CPU to the local
DRAM. Next we explain XFM’s hardware and software architec-
ture which leverages the inevitable refresh cycles in DRAM to
implement a host-transparent communication channel between the
(de)compression accelerator and DRAM banks, satisfying the above
constraints.

4 REALIZATION OF XFM
4.1 Placement of the NMA

The very first design decision in architecting XFM is determining
where to place the near-memory accelerator (NMA). We have two
Options: (O1) integrate the NMA within the DRAM chip or (02)
place the NMA in the buffer device of a DIMM. Although O1 of-
fers higher bandwidth between NMA and DRAM banks, it suffers
from high manufacturing cost, technology mismatch between logic
and memory [11], and restrictions on the data mapping to local-
ize computation [25]. Therefore, O1 only makes sense when DDR
bandwidth is the performance bottleneck in accelerating an applica-
tion. As shown in Sec.3.2, in the worst case scenario (i.e., with 100%
promotion rate), a 512GB SFM consumes ~17GBps read bandwidth
which is often accessed over multiple DDR channels. Although the
DRAM accesses are costly for energy consumption, the DDR chan-
nel is not the performance bottleneck in SFM since the bandwidth
of a DDR5 channel is 25GBps. With these insights, we opt to reduce
the design cost and simplify the datapath by considering O2 for
XFM.

Fig.4 (left) shows an organization in which an NMA is integrated
into the DIMM’s Registering Clock Driver (RCD) chip. A RCD
distributes the clock and Command/Address (C/A) signals to the
DRAM chips on the DIMM [2]. The blue tracks shown in Fig. 4
(right) are the connections between the data buffers (DBs) and RCD
which can be implemented using on-PCB links. Wilson et. al [78]
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implemented a 25Gbps serial link with 1.17p]/bit with 80mm reach
that is sufficient to connect DBs to RCD on a commodity DIMM form
factor. Considering that the maximum PCB track length needs to
travel half of the DIMM diagonal, the DB to RDC tracks are shorter
than 68.5mm for a commodity DDR4 DIMM with 133.35X31.25mm
diameters.

Regardless of the NMA’s placement, a challenge for near-memory
processing architectures is the support of error correction. The main
ECC scheme that is implemented on commodity DDR DIMMs is
side-band ECC SECDED (Single-bit Error Correction and Double-bit
Error Detection) [71], in which the memory controller calculates the
parity bits and stores them on separate DRAM chips on the DIMM.
On reads, the memory controller re-calculates the error correction
codes and compares them against those read from the DIMM to
perform the error detection and correction. Side-band ECC provides
protection against bit flips both inside the DRAM and the DDR
channel. To improve the yield of DRAM chips in new technology
nodes, DRAM manufacturers recently added on-die ECC support
to their DRAM products [65]. Similar to prior work [53], XFM can
leverage the on-die ECC which operates entirely within a DRAM
chip to access error-free data from DRAM.

A DRAM with on-die ECC support has a parity engine that
intercepts writes to DRAM, calculates a code-word and stores it
in the banks. On reads, the code-word passes through the parity
engine. If there are any single-bit flips, the error is corrected and
sent out of the DRAM chip. If there is more than a single bit flip,
the DRAM chip will notify the memory controller [49]. Since the
near-memory accelerator (NMA) sits between the DRAM chips and
the memory controller, it does not suffer from bit flips in the DDR
channel. Therefore, the NMA does not need to implement error
detection/correction for error-free data read from DRAM.

Even with on-die ECC support, DIMMs need to implement side-
band ECC to protect against DDR channel errors. In this case, the
NMA can ignore the ECC bits read from ECC DRAM chips. Al-
though the NMA does not need to detect or correct errors using
the parity bits, it should update the parity bits on the ECC DRAM
chips so the memory controller can perform side-band ECC error
detection and correction. To accomplish this, the NMA calculates
the parity bits and stores them in the ECC DRAM chips, when
writing back to DRAM chips.

4.2 Address Space Partitioning

A naive XFM implementation statically partitions the entire mem-
ory capacity between far memory and local memory and swaps
pages between the two regions without fetching data to the CPU.
The benefits of static partitioning are the simplicity of the design
and the lack of changes to the CPU and DRAM architectures. This
architecture lacks flexibility, however, as dynamically resizing far
memory capacity is not possible. As static partitioning of the local
and far memory capacities neglects one of SFM’s key benefits, we
only consider architectures that enable fine-grain sharing of DRAM
space between local and far memory.

4.3 DRAM Interface to CPU and NMA

One of the advantages of near-memory acceleration is that the
energy-hungry DDR channel can be bypassed, with low-energy, on-
DIMM PCB tracks moving data between DRAM and the accelerator
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Fig. 4. XFM integrates a near-memory accelerator (NMA) into the buffer device
of a commodity DIMM to offload (de)compression operations to the memory
module. The NMA implements a ScratchPad Memory (SPM) as a staging buffer
for the accelerator’s output before it is written back to DRAM.

instead. This alteration cuts the overall data movement energy by
69%. Data travels across the DIMM PCB, between DRAM banks
and the buffer device, instead of traversing the much longer DDR
channel to the CPU. An important remaining research question is
how to enable concurrent CPU and NMA accesses to the DRAM. We
aim to design the interface between DRAM and NMA to enable fully
transparent DRAM and near-memory accelerator communication.
We leverage all-bank refresh cycles in which the entire DRAM rank
is locked to implement an interface that matches the needs of SFM.

As explained in Sec.2, each DRAM row is refreshed every trgr
(32ms). Within this interval, 8192 REF commands are received and
DRAM banks are locked for a duration of 8192Xtgrrc. Assuming
a tppc of 300ns and multi-bank refresh mode, the DRAM banks
are locked ~2.46ms during a 32ms retention interval, which is ~8%
of total DRAM access cycles. XFM leverages this locked period to
move data between DRAM and the NMA completely transparent
to the CPU.

This opportunity is enabled by two unique characteristics of
SFM systems. First, in the common case, SFM has a low memory
bandwidth requirement. Deploying a 512 GB SFM for a CPU —
with four memory channels and two DIMMs per channel — re-
quires 426 MBps access bandwidth between DRAM and the NMA.
Second, compression and prefetch (i.e., early decompression due
to predictable access pattern) operations are not latency critical
and can be delayed. Thus we can postpone a compression offload
command until the next refresh cvcle. delaving the comoression
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Fig. 5. Timing of NMA accesses in current approaches to concurrent CPU and
NMA accesses compared with XFM.
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and decompression operations by at least tgrgpy (3.9us for 32ms
retention time).

XFM leverages the all-bank refresh intervals in which the entire
rank inaccessible from the CPU to perform the NMA accesses. Fig. 5
compares the timing of NMA accesses amongst current proposals
for arbitration of NMA and CPU accesses [20, 62] and XFM. XFM
batches NMA accesses during a tggpy interval and performs them
at the end of the interval, in parallel with the all-bank refresh oper-
ations occurring within a rank. If all of the NMA accesses cannot be
performed during tgppc intervals, then the resulting structural haz-
ard is resolved by the SFM controller which falls back to the CPU
to perform any additional compression/decompression operations.
In Sec.8 we show that such fall backs are rare when considering
realistic promotion rates and a tuned SFM controller. In Sec.6 we
explain how XFM can be integrated into an SFM system.

5 XFM HARDWARE ARCHITECTURE

One of the key benefits of confining NMA accesses to tgpc is that
the NMA side memory controller can access DRAM without per-
turbing the access state machine of the CPU side memory controller.
At the end of each refresh cycle, all the DRAM banks are precharged
and the CPU side memory controller starts fresh, so no modifica-
tions to the CPU’s memory controller’s state machine are necessary.
Another benefit is that refresh cycles are no longer wasted since
useful computation occurs within the DRAM rank during an all-
bank refresh. Furthermore, less access energy is used since NMA
accesses do not need to activate a page.

To confine NMA accesses within the refresh cycles, XFM batches
all NMA accesses received during tgepy interval and executes them
during tgrc. XFM supports two variants of accesses to DRAM:
conditional accesses and random accesses. A conditional access
requires that the DRAM row containing the accessed page is within
the set of rows that are scheduled to be refreshed during a tgrpc
interval. Row accesses performed outside of trrc are considered
random.

To better understand required hardware changes to support
conditional and random accesses, we must know the layout of a
contiguous 4KB page when it is stored in a DRAM rank. Assuming
the Intel Xeon Skylake architecture’s physical address mapping [66],
a 4KB page is interleaved between four DDR4 channels and two
banks. The channel interleaving granularity for Skylake is 256B
and bank interleaving granularity is 128B. Fig. 6a shows how a 4KB
page is stored in a single DRAM rank assuming a single channel
configuration. In the figure, We assume that the physical address
of the page maps to a row in subarray 0 of bank 0 and bank 1. We
also assume a burst length of 16B for each chip. The eight chips in
a rank work in lockstep to prepare 8 bytes for read or write at each
rising or falling edge of the clock (i.e., double-data rate).

Table 1 shows the number of rows that are refreshed in each
bank during the tgrc interval for three DDR5 chips with different
capacities. As the capacity increases, tgrc also increases because
more cells need to be refreshed. For a 32Gb chip, sixteen rows per
bank are refreshed with each REF command. Assuming that each
subarray contains 512 rows of DRAM cells [63], each bank of the
32Gb chip consists of 256 subarrays. Because the number of rows
refreshed per tgrrc in each bank is much lower than the number
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(a) Single channel 4KiB data mapping.

(b) Conditional read during a refresh cycle.

Fig. 6. Utilizing a conditional read to transfer a 4KiB page from a DDR5 3200MHz rank to the NMA. Each 128Byte consecutive physical address is interleaved

between two banks. The DRAM timings are not drawn to scale.

of subarrays per bank, it is safe to assume that the rows refreshed
within a bank each belong to a different subarray.

To refresh a row, the row needs to be activated and precharged.
During a conditional access, XFM keeps a given row activated while
reading or writing its data instead of immediately precharging it.
Fig.6b illustrates a conditional read cycle of 4KB data from chip 0 of
the rank in Fig.6a. Because the row is interleaved between subarray
0 of bank 0 and bank 1, the conditional read keeps the rows in
both banks activated and alternates between the two, bursting data
from both out through the bank and chip IO to the NMA. If we
consider a 3200 MT/s DDRS5 [60] transfer rate and a burst length
of 16 bytes, it would take 110ns to send all the data out of the chip
to the NMA (trep + ter + 32XtguRrsT)- Once the last burst is read,
the rows in subarray 0 of bank 0 and 1 can be precharged. While
bursting out the data, other rows in subarray 0 of bank 0 and 1 can
be refreshed. Considering that trcp + tcr for subsequent accesses
can be overlapped with the tail of the previous burst, the maximum
number of 4KB conditional accesses are 4, 3, and 2 for 32Gb, 16Gb,
and 8Gb chips.

If a given row must be accessed by the NMA, but is not being
refreshed during the tgpc interval, it is still possible perform the
access, while other rows in the bank are being refreshed. As stated
earlier, we call this a random access. During a random access, XFM
ensures that there are no subarray conflicts by reordering the pend-
ing row accesses if the target row maps to the same subarray as
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Fig. 7. The required changes to a DRAM bank to enable simultaneous refresh
and page access from the same bank. Modifications and added components
are highlighted (blue).

Device 8Gb | 16Gb | 32Gb
#Rows per bank 64K | 64K | 128K
# Banks per chip 16 32 32
tRFC (all bank refresh) 195 | 295 410
#Rows of a bank ref during tRFC | 8 8 16
#Subarrays per bank 128 | 128 256

Table 1. DDR5 device configuration [60]

another refresh candidate. As explained in Sec. 2.2, extra TRR oper-
ations may be performed to maintain data integrity in commodity
DRAM devices. Prior work shows that TRR cycles are only utilized
if the number of accesses to neighbouring rows surpass a threshold
which is not frequently seen in real scenarios [32]. These unused
refreshes can be utilized by XFM to perform random accesses.

Figure 7 illustrates the changes required in the DRAM bank to
enable parallel refresh and access to different subarrays within
the same bank. Similar to prior work [19], we overlap accesses to
rows within one subarray with refreshes taking place in another by
propagating the global row address to a row decoder latch which
is added to each subarray. It is important to note that the global
bit line (GBL) is shared between all the subarrays. There is only
one global column select connecting the local bit lines (LBLs) of a
given column amongst all subarrays to the GBL. This means it is
not possible to have two rows in two separate subarrays activated
while only accessing one of them. To overcome this limitation, we
also need a mechanism to isolate each subarray’s LBLs from the
GBL. This is done by having a sub-array select signal and a single
bit latch (L) that keeps the LBL of the target subarray connected to
the GBL.

6 XFM SYSTEM INTEGRATION

High-Level Overview and System Components. A system
utilizing XFM is composed of (1) a SFM_Controller, (2) a SFM
_Backend, and (3) an XFM_Driver. The SFM_Controller encap-
sulates the SFM control plane and is responsible for cold page
selection. An SFM_Controller may be implemented as a userspace
program [77] or a kernel daemon [51]. The SFM_Backend handles
SFM region management and initiation of (de)compression oper-
ations. The XFM_Driver handles communication with XFM mem-
ory modules and initiating SFM operation offloads. Integration
of XFM into the control path of an SFM stack requires providing
the SFM_Backend with access to the: (1) SP_Capacity_Register,
(2) Compress_Request_Queue, and (3) xfm_compress() and xfm
_decompress() functions.
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Flow of Control. We first step through the required control se-
quence to store a cold page in SFM for the baseline CPU implemen-
tation. Next, we explain how XFM integrates into this control flow
using a modified SFM_Backend.

First, the SFM_Controller selects a cold page based on an algo-
rithm or set of heuristics and passes control to the SFM_Backend
using its exposed swapOut () API swapOut() determines whether
the SFM region has space to accommodate any incoming data and
initiates an internal compaction operation if the SEM capacity limit
is hit. The zswap SFM_Backend [43], implemented in the Linux ker-
nel, uses the zsmalloc memory allocator. This allocator performs
compaction by shifting compressed pages via memcpys to one end
of the encapsulating OS page. Next, swapOut () locates a free en-
try with a corresponding virtual address in the SFM region. Upon
finding a free entry, the cold page is compressed and copied to a
destination address inside an OS page within the SFM region. If the
entry is successfully acquired, the cold page data is first compressed
using compress () which internally runs a compression algorithm
on a source buffer before copying its output to the destination
address.

A symmetric process occurs when a cold page is promoted out
of SFM. This could be a preemptive promotion incited by the SFM
_Controller, or a required swap-in incurred by an application ac-
cess to non-local memory. In either case, SFM_Backend’s swapIn()
function determines the SFM_Entry corresponding to the faulting
page and uses its virtual address as the destination address in a call
to decompress(). After decompress() has completed its internal
decompression operations and memory copy, control is returned
to the faulting application.

XFM mirrors this flow of control by implementing an SFM_Backend
with modified swap-in/out functions: xfm_swap_in() and xfm_swap
_out (). For clarity, we distinguish between the baseline SFM_Backend
and the modified SFM_Backend with XFM support by referring to
the latter as an XFM_Backend.

For the swap-out path, the same flow of control in which the SFM
_Controller selects a page and passes control to the XFM_Backend
is followed, but the xfm_swap_in() and xfm_swap_out () APIs are
called instead of the baseline swapping functions. Similar to the
baseline, xfm_swap_in() first checks for available space in SFM
with an additional check for capacity in XFM’s ScratchPad Mem-
ory (SPM). SPM is a staging buffer inside the NMA to store the
accelerator’s output before it gets written back to DRAM (Fig.4).
These checks are performed lazily and do not require synchroniza-
tion with hardware in the common case. This is because the SFM
_Backend can track the number of compression requests made to
XFM and maintain knowledge on the upper bound of the SPM’s
consumed memory.

When a 100% occupancy of the SPM is inferred, an MMIO read
is issued to the SP_Capacity_Register to check for the actual
available resources. If there is truly no available room for submis-
sions to the Compress_Request_Queue, a CPU_Fallback function
is called allowing the host to assume responsibility for compression
operations. In the common case, spare capacity will be found since
SPM data is written back to DRAM at regular intervals. The SFM
_Backend will then simply synchronize with the returned value.
Next, xfm_compress() is called, which pushes SFM_Controller’s
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Fig. 8. Average compression ratios of page-divided corpuses compressed at
memory-channel interleave granularity using XFM’s out of order compressed
data layout. Compressing interleaved data shows negligible decreases in space
savings. Losses due to the decreased compression window are also minimal,
even down the the 1KB window used in the 4-DIMM configuration.

selected page into the Compress_Request_Queue using an MMIO
write.

A similar procedure occurs on xfm_swap_out () calls. xfm_swap
_out() simply performs a lookup in an internal red-black tree
to find the associated physical address of the compressed page
entry. Using a reference to the destination page frame, it then
calls xfm_decompress() to offload decompression operations to the
NMA after performing the same synchronization steps mentioned
previously. The key difference with xfm_swap_out() is that CPU
_Fallback is called by default unless the do_offload parameter is
asserted as applications may be sensitive to the decompression la-
tencies incurred by XFM’s datapath. It is up to the SFM_Controller
to determine whether to issue an xfm_swap_out () with offloading
enabled (e.g., during a page prefetching operation).

Other XFM Backend Operations.

Initialization: To begin operation, XFM needs knowledge of the
desired SFM region size and starting offset in physical memory.
This is done using the xfm_paramset () function which internally
passes this information using ioctl() interfaces that perform MMIO
writes to internal configuration registers.

SEM Compaction: One challenge with SFM region management is
the need to resolve internal fragmentation resulting from holes left
behind by pages promoted out of SFM. The baseline SFM_Backend,
intermittently shifts compressed pages to one end of the encap-
sulating OS pages to make room for additional entries. An SFM
_Controller may opt to manually initiate compaction to avoid
unpredictable overheads. This is supported by XFM using the xfm
_compact () interface, which will shift pages in SFM using mem-
cpys.

Multi-Channel Mode.

We ensure XFM-augmented memory modules are compatible
with commodity servers which utilize memory channel interleaving.
This is accomplished through codesign of the xfm_compress ()/xfm
_decompress() functions and the data layout of compressed pages
on XFM-enabled DIMMs. Similar to previous works which main-
tain host control over NMA-accessible regions [20], we assume the
OS/runtime is aware of the virtual-to-physical address mapping and
avoid DIMM-side address translation by constraining SFM-related,
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NMA accesses to memory regions that are contiguous within the
virtual address space. We first describe and evaluate the compressed
page layout within each DIMM’s SFM region. Averaging across all
compression tests, we find that 86.2% of the compression ratio of an
in-order mapping is maintained for a quad memory channel con-
figuration. We also describe the CPU_Fallback functions utilized
by the XFM_Driver to allow the host to perform (de)compressions
when a prefetch-enabled xfm_swap_in() is not possible or acceler-
ator resources are constrained.

For the remainder of this section, we consider the 256B channel
interleaving granularity used by Intel’s Skylake architecture [66], al-
though XFM could be configured for compatibility with any address
mapping.

The main mechanism used in multi-channel mode is to place
cold data from an xfm_swap_out () in the same position of each
SFM region on each DIMM. Considering that compression ratios
are different across XFM memory modules, this comes at the cost
of some internal fragmentation. We find that this design decision is
justified as design complexity is greatly reduced, and transparent
host interaction with the SFM address space is made possible by
this approach.

One potential concern in utilizing multi-channel mode is that
partitioning uncompressed data across multiple DIMMs can cause
compression ratios to drop. We compare the space savings of XFM’s
multi-channel modes in 1, 2, and 4-DIMM configurations where the
1-DIMM configuration is equivalent to compressing data in host-
logical order at 4KiB granularity. The compression ratios of 4KiB
pages created using various corpora are shown in Fig.8. 2-DIMM
and 4-DIMM configurations divide buffers across compressed mem-
ory regions and perform compression on the reordered data (see
Fig.9b). We hypothesize that compression ratios are mostly con-
served as per-DIMM dictionaries are still able to find ample matches
in spite of the interleaved data. Additionally, compression windows
are still sized greater than 1KB. We postulate that any lost com-
pression savings are due to the lack of a shared dictionary between
DIMMs and the separation of spatially correlated application data,
reducing the total number of potential matches in LZ77 encoding.

In the case of insufficient NMA resources, CPU_Fallback func-
tions will handle the required (de)compression. As depicted in
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Fig. 9. XFM operating in multi-channel mode.
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Fig. 10. Asynchronous XFM operations take place on the DIMM, transparent
to the CPU. The minimum latency for an XFM operation is 2XtRgFy.

Fig.9b, the specialized decompression function handles both de-
compression and gathering operations without additional mem-
ory copies, allowing transparent translation between XFM’s com-
pressed data layout (shown in Fig.6a) and the host’s view of logically
contiguous pages in virtual memory.

XFM_Driver. The XFM_Driver consists of primitives for interact-
ing with XFM hardware via MMIO operations to internal regis-
ters. These low-level functions serve as the interface between xfm
_swap_out() and xfm_swap_in() and relevant NMA resource in-
formation exposed via the SP_Capacity_Register and Compress
_Request_Queue. In Linux, the driver functions are exposed using
the ioctl() function to interact with an exposed character device
exposing the XFM_Driver’s functions.

Putting it All Together. Figure 10 illustrates how XFM lever-
ages the tgpc interval to asynchronously access DRAM and per-
form compression. As new offload requests are submitted to the
Compress_Request_Queue, XFM schedules batches of read accesses
during tgrc. In Fig. 10 we assume that a total of 3 conditional or
random accesses can be accommodated during each tgpc inter-
val. The pages read from the Compress_Request_Queue will be
stored in the SPM with a PENDING tag when the compression
operation is underway, and with a COMPLETED tag when com-
pression is finished. The COMPLETED pages will be written back
to DRAM in a subsequent tgpc interval. If XFM runs out of SPM
space, the contention back propagates to the Compress_Request
_Queue prompting the XFM_Driver to stop submitting new offload
requests and instead fall back to the CPU for compression.

7 METHODOLOGY

We implement XFM hardware on Samsung’s AxDIMM [47], which
integrates a Xilinx UltraScale+ series FPGA into the buffer device
of a DDR4 DIMM. Our design includes an open source compres-
sion an decompression accelerator customized for memory [64], a
2MB ScratchPad Memory, and controller logic. The compression
and decompression accelerators achieve 14.8GBps and 17.2GBps
throughput respectively. Since AxDIMM does not provide control
over the refresh controller within DRAM ranks, we instead imple-
mented an XFM prototype that monitors read and write accesses
from the CPU inside the buffer device. The NMA accesses local
DRAM by intercepting data from RD commands or replacing data
within WR commands which are transmitted over the DDR data
bus to the DRAM chips. This implementation introduces cache
pollution and does not save memory channel bandwidth when com-
pressing and decompressing pages. We use the prototype as a proof
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Fig. 11. Interference between SPEC and SFM operations. XFM eliminates the
interference in the memory hierarchy.

of concept to test the software stack functionality and estimate
XFM power and area overheads.

A real implementation of XFM operates transparently to CPU
and eliminates CPU and NMA access interference. This motivates
our performance comparison for which we implement an XFM em-
ulator that skips compression and decompression tasks while im-
plementing the complete software stack, including the XFM kernel
driver to support userspace offloads, page registration, and MMIO
communication with DIMMs. The emulator feeds swap-in/out data
into a cycle approximate DRAM timing model that implements
XFM timing based on gem5’s [14] DDR4-2400 DRAM interface.
Swap-in/out traces are generated using the AIFM userspace far
memory framework [70] when running a synthetic web front-end
application [1]. Objects are allocated at the traditional page-size
granularity to represent swap-in/outs in production operating sys-
tems that use paging. We integrate the emulation framework as
well as a fully-functional SFM backend into AIFM. More specifi-
cally, we develop two compressed far memory back-ends for the
AIFM framework: one for baseline CPU (de)compression and one
for emulating XFM.

Both the CPU (de)compression and XFM emulator backends use
the zstd [22] algorithm. The experiments are performed on servers
equipped with Intel Xeon Scalable Gold 6242 CPUs and 6x DIMMs
of 16 GB memory at 3200 MHz (96GiB). We set the retention time
of DRAM to 32ms, tgpc to 410ns, tgyrsT to 2.5ns, and assume
that only one random access can be performed during a tprc. We
utilize hardware counters exposed by turbostat [4] as well as Intel
RAPL [3] for profiling package and memory power consumption.
The Xilinx Vivado Suite was used to synthesize and implement
XFM.

8 EVALUATION

Memory & Cache Contention Mitigation. To evaluate the im-
pact of SFM operations on job throughput, we co-run a set of
memory-intensive SPEC benchmarks with several antagonist pro-
cesses running SFM swap ins and outs (compression and decompres-
sion). The antagonist implements an SFM with an extra capacity
of 512GB and a moderate promotion rate of 14%. We isolate an-
tagonist processes and run them on separate cores to isolate the
impact of memory and shared cache interference on the co-running
applications. We compare XFM against Baseline (CPU) and Host-
Lockout-NMA configurations. Host-Lockout-NMA implements an
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Fig. 12. CPU fallbacks for different SPM sizes implementing a 512GB SFM.
The top figures are for a 50% promotion rate, and the bottom ones are for a
100% promotion rate.

NMA-DRAM interface that locks host accesses when the NMA
accesses are in progress, mimicking Boroumand et al’s design [16].
As shown in Fig. 11, although Host-Lockout-NMA does not
see any performance degradation for SFM, it suffers a higher run-
time penalty for SPEC when co-running. This is because the low
per-rank memory bandwidth requirement of SFM does not justify
the lockout interface implemented by Host-Lockout-NMA. Host-
Lockout-NMA would be beneficial for coarse-grain near-memory
offloads or instances when near-memory offloading could eliminate
all the CPU accesses to DRAM. In the Baseline-CPU configuration,
the SFM throughput degrades by 5~20%, while the SPEC workloads
see up to 8% and 15% performance degradation for Baseline-CPU
and Host-Lockout-NMA, respectively. The job mix configurations
include multiple SPEC applications co-running on separate CPUs.
We note that the SFM throughput degradation could have a multi-
plicative impact on job throughput in production as the reduction
in extra memory capacity would limit additional jobs that could be
scheduled on a server.
CPU Fall Backs. When the hardware resources on XFM DIMMs
are exhausted (i.e., the SPM gets full), the XFM driver falls back to
the CPU to perform compression and decompression operations.
Fig.12 displays the sensitivity of CPU fall back rate to SPM size and
the number of accesses that can be accommodated in each tgpc
assuming a 32ms retention time. Because tgpc is correlated with
the number of rows that are refreshed every tggrs, the number
of NMA accesses per REF command is a function of tgrc and, by
extension, device capacity and DRAM manufacturing technology
node. As shown in Fig.12, regardless of the promotion rate, an 8MB
SPM can eliminate all CPU fall backs for an XFM implementation
that accommodates 3 NMA accesses per REF command. Fig.12 also
shows the breakdown of conditional and random accesses. The
rate of random accesses is shown to scale with the promotion
rate, however, the majority of accesses can be accommodated with
conditional accesses. On average, the conditional accesses enable
XFM to reduce the NMA access energy by 10.1% across various
promotion rates and DRAM configurations.
Compression Ratio in Multi-Channel Mode. We choose 16 cor-
pus files and measure the compression ratio of XFM when running
in single-channel, 2-channel, and 4 channels modes. On average,
2- and 4-channel modes reduce the memory savings from com-
pression by 5% and 14%, respectively. This reduction in memory
saving comes from the lower compression ratio of Deflate operating
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in multi-channel mode and the internal fragmentation introduced
by aligning compressed data to the same offset across separate
DIMMs (§6). More sophisticated memory management and support
for larger offload sizes (instead of fixed 4KB offloads) could improve
the savings in multi-channel mode. We leave this investigation to
future work.

Area and Power Overhead. The resource utilization of the FPGA
implementing XFM is shown in Table 2. The reason for the high
LUT utilization of our XFM implementation is the complexity of the
compression and decompression logic functions. The FPGA imple-
mentation of the open-source Deflate accelerator sustains around
1.4 GBps compression and 1.7 GBps decompression throughput,
which is highly overprovisioned for XFM. The theoretical mem-
ory bandwidth available to the NMA is less than 1 GBps (when
leveraging parallel refresh accesses), therefore the compression and
decompression units are mostly underutilized in our prototype. As
shown in Table 3, an XFM FPGA implementation consumes 5.7 W
and 1.3 W of dynamic and static power respectively.

Our CACTI simulation, modeling a 8Gb DDR-4 DRAM chip in
22nm technology, shows that the required changes to DRAM banks
to enable parallel refresh and subarray accesses incur ~0.15% area
and ~0.002% power overhead, corroborating prior work [48].

9 RELATED WORKS

There are a myriad of prior works which enable far memory using
various systems and interconnects [6, 8, 18, 26, 35, 36, 55-57, 70, 81].
To our knowledge, XFM is the is the first work to use near-memory
processing to accelerate SFM. There are also many prior works
which accelerating compression and decompression of lossless com-
pression algorithms [5, 21, 31, 33, 52, 64, 67]. The goal of our work
on XFM is not to design a compression accelerator, but to instead
leverage existing accelerators within a near-memory processing
architecture which is constructed specifically for memory compres-
sion.

Many works have proposed novel near-memory processing ar-
chitectures [7, 10, 29, 34, 41, 44, 45, 50, 72-74, 80, 82]. Boroumand
et al. [16] identified compression as a lucrative workload for near-
memory processing on consumer devices as the uncompressed
data is cold and sits inside the memory. Motivated by the same
observation, XFM offloads SFM operations in commodity DRAM
devices. Integration of NMA into the RCD of commodity DIMMs
enables XFM to achieve higher compression ratios and construct
a novel data layout and access scheme for performing SFM opera-
tions across multiple DDR channels. Most importantly, XFM enables
NMAs to transparently access DRAM without compromising CPU
accesses. In contrast to prior works on near-memory acceleration
that are centered around maximizing the memory bandwidth be-
tween the near-memory accelerators (NMAs) and DRAM, XFM is
designed to implement an interface between NMAs and DRAM

Table 2. FPGA resource utilization of XFM

Resource | Used Total Percent
LUTs 435467 | 522720 83.30%
FFs 94135 1045440 9.00%
BRAM 51 984 5.18%

Neel Patel, Amin Mamandipoor, Derrick Quinn, and Mohammad Alian

Table 3. Power consumption breakdown of XFM

Power consumption | Dynamic | % | Static | %
Total = 7.024 Watts 5.718 81 | 1.306 | 19

with just-enough bandwidth for its target workload, SFM. This
enables XFM to leverage the inevitable refresh cycles to implement
a side-channel on each rank enabling the NMA to access DRAM
completely transparent to the CPU memory controller.

Chang et al. evaluate an out-of-order per-bank refresh mecha-
nism and modifications to DRAM banks which allow parallelization
of refreshes and accesses to different subarrays in the same bank
[19]. XFM uses a similar technique to overlap refresh and NMA
accesses.

10 CONCLUSION

In this work, we first compare the capital and environmental cost
of operating the same capacity disaggregated far memory (DFM)
and software-managed far memory (SFM) and showed that it can
take several years for DFM to break even in terms of both capital
and environmental costs with SFM. We then discuss opportunities
for accelerating SFM using near-memory processing. Leveraging
the unique characteristics of SFM, we designed XFM which imple-
ments a transparent side channel between near-memory acceler-
ators (NMA) and DRAM to perform NMA accesses concurrently
with the CPU. We also explain how XFM integrates into the system
and operates in multi-channel mode. Finally, we integrate XFM into
an application-level far memory implementation and prototype it
on an FPGA platform.

Our results show the promise of XFM as well as the concur-
rent NMA-CPU access mechanism it utilizes. They also show a
significant reduction in memory bandwidth utilization while per-
forming SFM-related operations. XFM is capable of eliminating
memory bandwidth utilization of compression and decompression
operations for SFMs with capacities of up to 1TB. Additionally,
its memory and cache utilization reductions translate to 5~27%
improvement in the performance of co-running SPEC applications.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact appendix describes how to use the provided scripts
to reproduce the sensitivity analysis in Section 6 and evaluations
in Section 8 of this paper. We will utilize publicly available com-
pression corpora and software compression algorithms as well as
the Izbench and SPEC 2017 benchmarks. Results reproduced will
include compression ratios achievable by XFM for different mem-
ory configurations, and an evaluation of contention between SPEC
workloads and corunning (de)compression tasks.

A.2 Artifact check-list (meta-information)

e Algorithm: Model of the XFM Memory Module and Sensitivity

Analyses

Program: SPEC 2017, Licensed Benchmark Suite

Compilation: gec 7.5.0 (Ubuntu 7.5.0-3ubuntul 18.04)

Run-time environment: Tested on Ubuntu 18.04

Hardware: Intel c6250 Server

Output: Numerical results and plots corresponding to Figures

8, 11, and 12.

o Experiments: As described in Section 6 (Multi-Channel Mode) and
Section 8 (Evaluation).

e How much time is needed to prepare workflow (approxi-
mately)?: Less than 10 minutes. Building SPEC 2017 is the most
time consuming part.

e How much time is needed to complete experiments (approx-

imately)?: Less than 1 hour for XFM performance profiling tests (fig-

ures 8 and 12). Between 2-3 hours to regenerate SPEC (de)compression

contention results from figure 11.

Publicly available?: https://github.com/architecture-research-group/

XFM- Artifacts.git

Code licenses (if publicly available)?: MIT

Archived (provide DOI)?: https://doi.org/10.5281/zenodo.8353767

A.3 Description

A.3.1  How to access. See github link above.

A.3.2  Hardware dependencies. Some experiments depend on ac-
cess to a server which can be a multi-core server which can be
allocated as a single Intel server (c6220 node) available through
cloudlab. This hardware is sufficient to reproduce all results.

A.3.3  Software dependencies. See github link above.

A.4 Installation

Obtain the code and sub-modules from github and run correspond-
ing fetch and run scripts. Instructions for each experiment are
provided in each subdirectory of the repository. Scripts for running
each experiment are provided as bash shell scripts.

A.5 Experiment workflow and expected results

Use shell scripts (e.g., fetch.sh and run.sh) to acquire any required
dependencies and corpus files and reproduce results. Plot them
using python scripts (Experiment-specific instructions provided in
the Github repository provided above).
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A.6 Experiment customization

Different SPEC workloads can be tested by modifying the shared.sh
file provided in the spec_workload_experiment subdirectory. Dif-
ferent memory channel interleave granularities can be testedu is
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