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ABSTRACT

Methods that integrate pre-, active-, and post-fire measurements to quantify fire effects across multiple spatial
scales are needed to improve our understanding of ecological effects following fire and for informing natural
resource management decisions that rely on post-fire growth and yield estimates. Given growth and yield
modeling systems require tree level measurements to parameterize diameter and height distributions, effective
datasets require both tree and stand level characterization. However, most stand-to-landscape scale fire effects
studies use optical multispectral data (e.g., 30 m spatial resolution Landsat data) which are too coarse to quantify
tree-level effects and is limited in its ability to quantify changes in forest structure. Most studies also fail to
integrate active fire behavior observations, such as heat flux, limiting their ability to identify mechanisms of tree
injury and mortality and/or predict fire effects. Combining active fire observations and structural measurements
derived from multitemporal airborne laser scanning (ALS) data has been proposed to quantify fire effects on tree
structure and growth but has yet to be tested. In this pilot study, we used a combination of fire behavior and heat
flux metrics, including Fire Radiative Power per unit area (FRP: W m™~2) and Fire Radiative Energy per unit area
(FRE: J m™2), along with multitemporal field and ALS measurements to quantify fire intensity impacts on mature
tree height growth. Prescribed fires were conducted in 2014 in thinned and unthinned mature Pinus ponderosa
stands and plot-scale fire behavior and heat flux metrics were quantified using standard videography methods
and tower-mounted infrared radiometers. Tree height growth was quantified using multitemporal field and ALS
data and included pre-fire measurements and post-fire measurements up to eight years post-fire. Results show
that trees exposed to the surface fire treatments had height growth that was less than unburned trees. The results
also show that height growth 5-8 years post-fire is reduced in trees exposed to greater fire intensities, in terms of
maximum FRP per unit area and rate of spread. There was no significant relationship between height growth and
other fire behavior metrics (FRE per unit area, average flame length, flame residence time), although height
growth decreased with greater FRE per unit area and increased with greater flame residence time. These findings,
taken together with similar sapling-, mature tree- and landscape-scale studies, suggest that an integrated active-
fire behavior and ALS-data approach may provide a quantitative, scalable method for assessing fire effects on tree
structure and growth.

1. Introduction

pre-, active-, and post-fire measurements to assess ecological effects
across a range of scales (Kremens et al., 2010; Smith et al., 2016).

A long-standing challenge in wildfire science is the integration of Although many remote sensing studies focus on the characterization of
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fuels or the assessment of post-fire ecological effects (e.g., “severity”,
Lentile et al., 2006), studies are limited that measure the active-fire
behavior (Wooster et al., 2021) and few studies characterize the pre-
fire fuels where modeling of the heat released during the fire could
potentially be inferred (e.g., Lutz et al., 2018, 2020). Individual tree- to
stand-scale assessments are important for natural resource managers as
they can help with planning of prescribed fires, quantification of impacts
to growth and yield, and identification of post-fire rehabilitation actions
(Hessburg et al., 2015; Keefe et al., 2022). However, the quantification
of fire impacts to individual trees and forest stands is particularly
challenging as trees of differing species, sizes, and ages can have vastly
different physiological, growth, and mortality responses to heat-induced
damage from fire (Hood et al., 2018; McDowell et al., 2018; Smith et al.,
2017; Sparks et al., 2017). Furthermore, heat flux incident on trees can
be highly variable in space and time due to the heterogeneous nature of
fire behavior (O’Brien et al., 2018; Sparks et al., 2017) and occlusion due
to other tree branches and canopies (Mathews et al., 2016). Remote
sensing can provide pre-, active-, and post-fire data at a range of scales,
however, linking active fire measurements to changes associated with
pre- and post-fire conditions at individual tree to landscape scales is not
well studied (Sparks et al., 2018a), with most landscape-scale studies
utilizing only pre- and post-fire data (e.g., Lentile et al., 2006; Morgan
et al., 2014; Picotte et al., 2021). Given wildfire activity is projected to
increase in many forested areas of the United States (Abatzoglou et al.,
2021; Anderegg et al., 2022) and there is a recognized need for more
prescribed fires to be used for reducing hazardous fuel loads (Hiers et al.,
2020; Kolden, 2019; Prichard et al., 2021), quantitative methods that
can assess fire effects from the tree to landscape scale are needed.

Most remote sensing assessments of fire effects have predominately
used pre- and post-fire optical multispectral data from airborne and
satellite sensors as certain visible and near-infrared wavelengths are
sensitive to the loss of photosynthetically active vegetation and the
presence of char and ash (Lentile et al., 2006; Morgan et al., 2014; Roy
and Landmann 2005; Smith et al., 2005; Sparks et al., 2016). While fire
effects assessments can provide objective information on canopy cover
loss (Alonzo et al., 2017; McCarley et al., 2017a, b; Meng et al., 2018)
and tree mortality (Furniss et al., 2020) they provide limited informa-
tion on structural change and growth dynamics of surviving trees. Many
studies rely on data from satellite sensors including those on the Landsat
satellite series (30 m spatial resolution), which is too coarse to assess
individual tree and/or small stand fire effects (e.g., Cocke et al., 2005;
Furniss et al., 2020; Smith et al., 2016), limiting its utility for forest
managers. Furthermore, similar spectral reflectance can be observed
from pixels with widely different fire effects (Smith et al., 2005), such as
tree mortality (Furniss et al., 2020), which can introduce significant
error to these assessments. This issue largely arises from the fact that
spectral reflectance from individual pixels is a mixture of dominant
canopy and understory components and is challenging to separate
without data that can characterize the vertical dimension of the forest
(McCarley et al., 2017a). The issue is also in part because at the scale of a
30 m pixel, different mixtures of fire behavior impacts, from unburned
to complete consumption can be present; especially in regions of the fire
where fire intensity is generally lower as more consistent degrees of
consumption occur in areas of higher fire intensity (Smith et al., 2005).
High-spatial  resolution imagery (e.g, < 10 m) and
structure-from-motion image processing can minimize this issue by
isolating spectral reflectance from individual tree crowns (Bergmdiller
and Vanderwel, 2022; Hamilton et al., 2021), but these assessments still
lack the ability to identify mechanisms of fire effects as the heat flux, or
other metrics of fire intensity, are not typically measured.

Integrating active fire observations into fire effects assessments
provides a way to identify mechanisms of tree injury and mortality and
predict fire effects (Kremens et al., 2010; Smith et al., 2016; Wooster
et al., 2021). Recent dose-response studies that subject trees to known
levels (i.e., doses) of heat flux via surface fires have shown that post-fire
physiology (including photosynthesis, chlorophyll fluorescence, and
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phloem and xylem function), post-fire morphology (including stem
diameter and height growth), and mortality of several sapling species
vary as a function of fire intensity measures like fire radiative energy per
unit area, or the total radiative heat flux, hereafter referred to as FRE
density (FRED: J m~2) (Partelli-Feltrin et al., 2021, 2023; Smith et al.,
2017; Sparks et al., 2016, 2023; Steady et al., 2019). Furthermore,
Sparks et al. (2017) observed stem radial growth reductions in mature
Pinus ponderosa as a function of increasing maximum fire radiative
power per unit area, or the instantaneous radiative heat flux, hereafter
referred to as FRP density (FRPD: W m~2). Although there is often some
confusion with the use of the density term, Wooster et al. (2021)
remarked that usage of the terms FRED and FRPD are appropriate over
FRE and FRP, respectively, when considering energy release at a local-
ized scale whereas FRE and FRP should be used at regional to synoptic
scales. Others have shown using Moderate Resolution Imaging Spec-
troradiometer (MODIS) sensor data on the Terra and Aqua satellites that
net primary productivity within burned forests is reduced to a greater
degree where the observed FRE and maximum FRP was greater (Sparks
et al., 2018a). Taken together, these studies suggest that maximum FRP
and FRE may provide scalable active fire metrics to assess and predict
fire effects, however, several uncertainties remain. Limited FRP obser-
vations over the duration of a fire represents a major limitation, given a
lower observation frequency, such as that from spaceborne sensors,
typically results in a poorer characterization of the fire behavior (Free-
born et al., 2014; Giglio, 2007). Additionally, the limited studies eval-
uating mature trees represents a key knowledge gap considering older
and larger trees have more fire-resistant features (e.g., thicker bark,
deeper rooting depth, higher crown) than saplings (He et al., 2012;
Keeley, 2012; Starker, 1934; VanderWeide and Hartnett, 2011). Most of
these studies have evaluated short-term post-fire responses (e.g., <2
years), leaving longer-term responses relatively unknown.

Structure and growth measurements assessed using airborne scan-
ning light detection and ranging (LiDAR), commonly referred to as
airborne laser scanning (ALS), can help fill these knowledge gaps by
providing three-dimensional data at multiple spatiotemporal scales. ALS
has been widely demonstrated to provide accurate measurements of
many forest structure attributes, including tree height and canopy cover,
across large spatial extents (Nasset, 1997; Hyyppa and Inkinen, 1999;
Lefsky et al., 1999; Smith et al., 2009; Sibona et al., 2016; Sparks and
Smith, 2022). Studies that use direct tree height measurements have
shown that high pulse density ALS (>8 ppm) can estimate tree height
with lower error and bias than indirect field measurements (Corrao
et al., 2022; Ganz et al., 2019; Wang et al., 2019). These measurements
have enabled mapping of vegetation vertical structure, i.e., the three-
dimensional distribution of vegetation branches and foliage. Multi-
temporal ALS datasets have been used to assess forest structural
changes over time, such as canopy cover and volume (Wulder et al.,
2009; Alonzo et al., 2017; McCarley et al., 2017a, 2017b; Meng et al.,
2018) and biomass consumption due to wildfires (Bright et al., 2022;
Chasmer et al., 2017; McCarley et al., 2020, 2022). However, prior
studies, with a few exceptions (e.g., McCarley et al., 2020), have failed
to link active fire observations with observed structure changes, limiting
their insight into connecting fire behavior with fire impacts on structure
and growth of individual surviving trees. This is an important missing
link as this information could help calibrate modeled post-fire tree
growth in fire effects and earth system models (Smith et al., 2016) and
provide improvements to how fire effects are integrated within forestry
growth and yield models (Steady et al., 2019). There is a well-
documented history of accurately measuring individual tree height
growth over time using multitemporal ALS datasets (Hyyppa and Ink-
inen, 1999; Yu et al., 2004; Ma et al., 2018; Zhao et al., 2018). Using
active fire observations and individual tree measurements from multi-
temporal ALS data has been proposed to objectively quantify fire im-
pacts on individual trees (Sparks and Smith, 2022), but to date has not
been assessed.

The overall objective of this pilot study was to understand how
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variable surface fire intensity impacts longer-term (~2-8 years post-
fire) mature tree height growth as a means to improve assessments of
post-fire tree growth and yield. To achieve this, we assess growth effects
in mature Pinus ponderosa Dougl. ex Laws. (ponderosa pine) stands that
were burned under controlled conditions in October 2014. A suite of
common fire behavior metrics (flame length, rate-of-spread, flame
residence time) and FRPD were acquired at plots systematically located
throughout the stands. Pre- and post-fire height measurements at the
same plots were acquired using a combination of field surveys and ALS
acquisitions. Finally, relationships between fire behavior metrics and
ponderosa pine height growth were assessed at the plot scale using
regression modeling.

2. Study area and data
2.1. Study area and experimental design

This study was conducted in the University of Idaho Experimental
Forest (UIEF), ~20 km north-east of Moscow, Idaho, USA (Fig. 1a). The
UIEF is a mixed-conifer, multi-use forest with a diverse range of stand
structure and composition. Dominant species include Pseudotsuga men-
ziesii (Mirb.) Franco var. glauca (Beissn.) Franco (Douglas fir), Abies
grandis (Douglas ex D. Don) Lindl. (grand fir), Thuja plicata Donn ex D.
Don (western redcedar), Larix occidentalis Nutt. (western larch) and
Pinus ponderosa Dougl. ex Laws. (ponderosa pine). The present study
builds off an experiment conducted in 2014 in three even-aged Pinus
ponderosa-dominated stands (Sparks et al., 2017; Lyon et al., 2018). The
three stands were planted in 1982 following clearcut harvest and have
understories dominated by Physocarpus malvaceus (ninebark) and Sym-
phoricarpos albus (snowberry). Elevation across the three stands ranges
from 880 to 950 m. The local climate is characterized by cool and wet
winters and warm and dry summers. Mean summer temperature over
the 1991-2020 period was 17.2 °C and mean summer precipitation was
81 mm (annual precipitation was 622 mm) (NOAA, 2022).

In June 2014, three ~40 x 150 m treatment strips were surveyed and
marked in each stand (Fig. 1, Lyon et al., 2018; Sparks et al., 2017). Two
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of the strips (~2 ha of each stand) were mechanically thinned to a target
spacing of 6 m and chipped using a CAT 320B excavator (Caterpillar
Inc., Peoria, IL, USA) equipped with a boom-mounted, drum-style
mastication head. After thinning, density of trees greater than 5 cm
diameter at breast height (DBH) ranged from 366 to 491 trees ha ' in
the thinned strips and from 533 to 1066 trees ha™! in the unthinned
strips (Fig. 2). Basal area ranged from 10.5-19.9 m?/ha in the thinned
strips and ranged from 14.1-33.6 m?/ha in the unthinned strips (Fig. 2).
In the thinned treatment strips, surface fuel had high spatial variability
with litter fuel load ranging from 0.2 to 2.3 kg m~2, duff fuel load
ranging from 1.0 to 8.3 kg m~2, and downed woody debris load ranging
from 1.5 to 14.5 kg m™2 (Sparks et al., 2017). Litter and duff depth
ranged from 4.7 to 8.4 cm. In the unthinned strips, downed woody
debris load ranged from 0.02 to 0.17 kg m~2 and litter and duff depth
ranged from 2.3 to 7.2 cm. No harvest or thinning occurred in these
stands after 2014. In October 2014, prescribed burns were conducted in
half of each stand (Fig. 1a). During the burning operations, temperature
ranged from 16 to 20 °C and relative humidity ranged from 26 to 52%.
Surface winds ranged from 1.6 to 4.8 km h™!. The stands were ignited
using drip torches, with ignition lines separated by ~8 m.

2.2. Field inventory data

Prior to thinning treatments, eighteen 10 x 10 m inventory plots
were established in each stand (N = 54) in January 2014 following a
systematic sampling design (Fig. 1b). The corners of each plot were
marked with permanent metal posts and all trees >5 cm in DBH within
the plot were marked with uniquely numbered tags. All plots within a
stand were oriented on a common azimuth and the upper-left corner of
each plot was geolocated with a Trimble GeoXT global positioning
system (Trimble Inc., Westminster, CO, USA), so that plots could be
precisely located in a geographic information system. All marked trees
were measured for DBH and stump diameter using a foresters’ tape and
crown base height and total height were measured using a TruPulse 360
laser rangefinder/hypsometer (Laser Technology Inc., Centennial, CO,
USA). Following thinning treatments in June 2014, each plot was
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revisited and remaining trees in each plot were confirmed using the
numbered tags. Tree measurement summary statistics for pre- and post-
thinning in 2014 are presented in Fig. 2. In March 2016, DBH, total
height and live/dead status were assessed on all remaining trees in the
thinned treatments as part of a different study (Sparks et al., 2017).

2.3. Fire behavior measurements

Fire behavior measurements acquired during the October 2014
prescribed fire treatments are described in detail in Sparks et al. (2017)
and Lyon et al. (2018) and a brief description is given here. Fire behavior
was assessed in 5 x 7 m plots nested within nine of the forest inventory
plots. Prior to burning, plot corners were marked with pin flags and a
pole with graduated markings was placed at the center of each plot to
serve as reference points. Plots were ignited on the downslope edge
using a drip torch to establish a uniform flaming front. Video cameras
(Samsung HMX-F90 HD Camcorder, Samsung Electronics America Inc.,
Ridgefield Park, NJ, USA) were positioned outside each plot so that
corner pin flags and center pole were visible. Video was used to estimate
the rate-of-spread of the fire front between the different reference
points. Average flame length was estimated using still-frame video data,
analyzed at 10-s intervals. Flame length is defined following Johnson

(1992), where flame length is the distance from the center of the burning
surface to the tip of continuous flame. Video was also used to estimate
flame residence time, or the total time that plots maintained continuous
flaming combustion (Cheney, 1990).

FRPD was measured using tower-mounted, dual-band infrared ra-
diometers as described in Sparks et al. (2017). Radiometers were only
deployed on plots in the thinned treatments due to concerns of potential
damage resulting from intense fire behavior in the unthinned treat-
ments. Details on sensor calibration and FRPD derivation using dual-
band thermometry can be found in Kremens et al. (2010, 2012). The
radiometers were mounted 5.2 m above the center of each plot (Fig. 3a,
b) and recorded data at 0.1 Hz from pre-ignition to fire extinction. FRED
was calculated as the temporal integral of FRPD observations. Maximum
FRPD (kW m~?) was identified as the maximum value of FRPD obser-
vations greater than zero over the burn duration. Average FRPD per unit
time (FRPDp: J m™2 h™1) was calculated by dividing FRED by the total
burn duration for a unit area. Total burn duration was calculated as the
duration where FRPD was greater than zero.

2.4. Airborne laser scanning data and preprocessing

Three ALS datasets were used in this study, with all three completely
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Fig. 3. Three example plots that illustrate the heat-shielded video camera and tower-mounted, dual-band infrared radiometer setup (a, b) and range of observed fire
behavior across the three study stands (a, b, c). Average flame length was 0.3 m in (a), 1.5 m in (b), and 3 m in (c).

encompassing the three study stands. Acquisition parameters for the
three ALS datasets are presented in Table 1. The first ALS dataset was
acquired across the study area in July 2019 using a Teledyne Geospatial
Optec Galaxy PRIME sensor (Teledyne Geospatial, Toronto, ON, Can-
ada) mounted on a fixed wing aircraft. The sensor has a 60-degree field-
of-view and elevation of the aircraft varied between 3550 and 4200 m
above ground level to achieve a 50% flight-line overlap. Average pulse
density was 8 pulses per square meter and the average per-pulse return
rate over forested areas was two. The data were preprocessed by the
supplier, which included classification of returns as bare earth and
vegetation following the 2019 United States Geological Survey 3D
elevation program (3DEP) specification (USGS, 2019).

The second and third ALS datasets were acquired across the study
area in September 2020 and July 2022 using a RIEGL VQ-15601I sensor
(RIEGL Laser Measurement Systems, Horn, Austria) mounted on a fixed-
wing aircraft with a gyro-stabilized mount. The sensor has a 58-degree
field-of-view and elevation of the aircraft varied between 1600 and
1900 m above ground level to achieve a 55% flight-line overlap. Average
pulse density for both acquisitions was 20 pulses per square meter and
the average per-pulse return rate over forested areas was four. Pre-
processing conducted by the supplier consisted of laser intensity
normalization using the RIEGL RiPROCESS software and return classi-
fication into bare earth, vegetation, water, buildings, and noise
following the American Society for Photogrammetry and Remote
Sensing classification standard (ASPRS, 2011).

Table 1
Acquisition specifications of the three ALS datasets.
Acquisition year 2019 2020 2022
ALS system Teledyne Geospatial Riegl VQ- Riegl VQ-
Optec Galaxy PRIME 156011 156011
Acquisition month July September July
Flight altitude 3550-4200 m 1600-1900 1600-1900
m m
Swath overlap 50% 55% 55%
Average pulse density 8 pulses m 2 20 pulses 20 pulses
m2 m2
Average number of 2 4 4
returns per pulse
Sensor field-of-view 60° 58° 58°

3. Methods
3.1. Individual tree detection and matching

Individual tree detection was conducted on each of the three ALS
datasets using ForestView® ITD processing software described previ-
ously in Corrao et al. (2022), Sparks et al. (2022), and Sparks and Smith
(2022). ForestView® is an ALS-based ITD software developed by
Northwest Management Incorporated (NMI, Moscow, Idaho, USA) that
provides individual tree location, height, DBH, stem volume, live/dead
status and estimates of species. This approach uses the classified ALS
point clouds to generate a high-resolution (0.3 m spatial resolution)
digital elevation model and a digital surface model from which a canopy
height model (CHM) can be derived. Peaks in the CHM are assumed to be
treetops and are detected using several CHM- and point cloud-based ITD
methods, similar to algorithms using valley following, watershed seg-
mentation, and local max filtering. Structure related metrics (e.g., height
percentiles, stratified return densities, crown shape) are used to refine
the original tree detections and derive other tree attribute information
(Corrao et al., 2022). Assessments of ForestView® ITD and height ac-
curacy using data from the UIEF demonstrated that the method was able
to identify most dominant trees (70% detected on average) and
codominant trees (54% detected on average) across a wide range of
stand densities (19-1847 trees ha™1) (Sparks and Smith, 2022; Sparks
et al., 2022). Regression-based equivalence tests indicated that paired
field-measured height and ALS-derived height were statistically equiv-
alent and that height RMSE was low (Sparks et al., 2022).

Following individual tree detection, a semi-automatic method was
used to match the individual trees between the different ALS datasets.
For each detected tree in the 2019 ALS dataset, candidate matching trees
in the 2020 ALS dataset were selected if they were within 2.5 m of the
detected tree, a distance that represents the average crown diameter of
dominant and codominant trees on the UIEF (Falkowski et al., 2008).
Next, the Euclidean distance and difference in height between each
candidate tree and the 2019 detected tree were calculated. Candidate
2020 trees were not considered for a match if their height difference
with the 2019 detected tree was greater than 2 m. This height difference
threshold accounts for the average annual height growth observed on
the UIEF of 0.4 m yr‘1 (Hudak et al., 2012) and observed RMSE (0.69 m)
in ALS-derived height (Sparks and Smith, 2022). Finally, the candidate
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2020 tree with the smallest combined error (E) was matched with the
2019 detected tree using Eq. (1):

E:¢m7nf+mfwf+m—mf (¢))

where (x1, y1) are the spatial coordinates and h; is the height of a treetop
in one ALS dataset and (x3, y2) are the spatial coordinates and h is the
height of a treetop in a second ALS dataset. This matching process was
repeated using the 2019 and 2022 ALS data. Gross matching errors were
corrected by manually assessing the matched trees in a GIS along with
each year’s CHM and high-resolution imagery as reference data. Only
trees that were matched between the three ALS datasets and within the
forest inventory plot boundaries were used in the following analyses.

3.2. Tree height growth analysis

To quantify relationships between fire behavior and height growth, a
preliminary screening was first employed to reduce errors and in-
consistencies in the datasets. Ten plots that were dominated by species
other than Pinus ponderosa were excluded from the following analysis, as
most of these plots were unburned. Additionally, two plots that were
crossed by fire containment lines and one plot that had changes inde-
pendent of the prescribed fires (e.g., tree in plot falling between 2019
and 2022 ALS acquisitions), as assessed using the ALS-derived CHMs,
were also excluded. High-resolution Google Earth imagery acquired in
2015 and 2022 was inspected to confirm that none of the trees in the
plots died between 2014 and 2022, as evidenced by brown or defoliated
crowns. After screening the final dataset used for analysis included 197
individual trees in 41 plots.

Height change for the remaining 197 trees was assessed using both
the field- and ALS-derived height data. Individual tree heights for any
given year were averaged to the inventory plot scale, as field data were
not stem-mapped and trees could not be linked individually to the ALS-
detected trees. Normalized height change, or relative height, was used to
quantify differences in height growth among the treatments and fire
behavior plots. Post-fire average height was normalized to pre-fire
height to account for pre-fire differences in height among the in-
ventory plots. Specifically, normalized height change for each post-fire
height assessment year (t) was calculated following Eq. (2):

(Height, — Height,;,)
Height,

prefire

relative Height (%) = (2)

Differences in relative height between treatments (unthinned and
unburned, unthinned and burned, thinned and unburned, thinned and
burned) were compared with ANOVA, and if significant (a = 0.05), a
Tukey’s honest significant difference test.

We used pairwise ordinary least squares (OLS) regression to quantify
the relationship between each fire behavior metric and relative height
growth, where relative height growth was the dependent variable and
fire behavior metrics were the independent variables. The coefficient of
determination (rz) and residual standard error were computed and used
to evaluate the relationship ‘goodness of fit’. We used the regression
analysis slope to examine the magnitude and direction (positive or
negative relationship) of impact that fire behavior had on relative height
growth.

4. Results

Fire behavior in the October 2014 prescribed fires had high spatial
variability and ranged from low rate-of-spread, smoldering dominated
combustion to high rate-of-spread, high flame length fire fronts (Fig. 3).
Flame lengths varied from 0.3 to 3 m, rate of spread ranged from 0.27 to
6m min_l, and flame residence time ranged from 0.08 to 0.37 h (Sparks
et al., 2017). Maximum FRPD observations ranged from 1.7 to 16.3 kW
m~2, FRPDy ranged from 0.04 to 0.9 MJ m2h~!, and FRED ranged from
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0.17 to 9.8 MJ m~2. Some plots experienced very active fire behavior (e.
g., high flame length and single tree torching), however, on average,
smoldering-dominated combustion accounted for ~ 97% of the total
burn duration (Sparks et al., 2017).

The mean height across all study trees increased from 12.5 (+0.2) m
in 2014 to 16.4 (+£0.1) m in 2022 (Fig. 4). This average height increase
of ~3.9 m in 8 years equates to a growth rate of 0.48 m per year. Height
increased an average of 0.74 (+0.02) m from 2019 to 2020 and 0.52
(4£0.01) m from 2020 to 2022.

Relative height growth varied by thinning treatment and burn
treatment. Although not significantly different (P > 0.05), trees in un-
burned plots experienced greater relative height growth than burned
plots (Fig. 5). On average, relative height growth was 2.7% greater in
unthinned, unburned plots than unthinned, burned plots. Likewise,
relative height growth was 3.3% greater in thinned, unburned plots than
thinned, burned plots. Relative height growth was greater in unthinned
plots versus thinned plots (Fig. 5). On average, relative height growth in
unthinned, unburned plots was 10.5% greater than thinned unburned
plots. Likewise, relative height growth was 13.1% greater in unthinned,
burned plots than thinned, burned plots.

Relative height in 2022 decreased linearly with increasing FRPD,x
(P < 0.01) (Fig. 6a) and rate of spread (P < 0.05) (Fig. 6e). These re-
lationships were also observed for 2019 and 2020 relative height (P <
0.01), but not for 2016 (P > 0.05). There were no significant relation-
ships between relative height and FRPDy, FRED, average flame length,
or flame residence time using any of the four post-fire datasets. Although
not statistically significant (P > 0.05), relative height in 2019, 2020, and
2022 decreased with increasing FRED (Fig. 6¢) and increased with
greater flame residence time (Fig. 6f).

5. Discussion

This pilot study linked pre- and post-fire tree height measurements
assessed via field and ALS data with fire behavior and heat flux to
quantify fire behavior impacts on mature tree height growth at the plot
scale. We show that height growth is reduced in mature Pinus ponderosa
exposed to surface fires with greater maximum FRPD and rate of spread.
Importantly, the persistence of this effect (up to 8 years post-fire) in-
dicates longer-term fire impacts on tree growth and yield, even for
relatively low-intensity surface fires like those employed in this study.
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These findings also suggest that remotely sensed measures of fire
behavior, such as maximum FRPD, can potentially provide a scalable
active fire metric to assess and predict fire effects. This is important as
FRP observations are currently acquired via sensors on multiple plat-
forms including airborne (e.g., Hudak et al., 2015; Schroeder et al.,
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2014a) and satellite platforms (Giglio et al., 2016; Schroeder et al.,
2014b) and could support the quantification of fire effects at scales
ranging from individual trees to regions (Bowman et al., 2017). When
considered with prior results showing stepwise decreases in stem
diameter growth with increasing FRPD (Sparks et al., 2017), the
methods outlined in this study highlight a way to quantify and predict
fire impacts on tree growth and yield and serve as a useful planning tool
for managers to gauge productivity reduction due to wildfires and pre-
scribed fires (Keefe et al., 2022; Smith et al., 2017).

Numerous studies have assessed the ability of single-date and mul-
titemporal ALS data to quantify fire effects on forest structure. McCarley
et al. (2017a,b) used pre- and post-fire ALS datasets and Landsat optical
data to quantify canopy cover change across the 2012 Pole Creek Fire in
mixed coniferous forest in Oregon, USA. Likewise, Alonzo et al. (2017)
used pre- and post-fire ALS and Landsat data to quantify fire-induced
changes in canopy volume in mixed conifer-broadleaf forest in Alaska,
USA. Meng et al. (2018) used single-date ALS data and multitemporal
high-resolution multispectral imagery to quantify canopy cover loss and
recovery in burned mixed pine-oak forest in New York, USA. An
advantage of many of these prior studies is that they relate ALS-derived
structural change with freely accessible optical data such as Landsat.
This provides a route for researchers and managers with limited access
to ALS data to quantify structural effects, such as canopy cover loss, in an
objective manner. However, methods that use ALS data scaled to com-
mon moderate resolution optical data (e.g., 30 m Landsat data) may
have limited utility for forest managers as this resolution is too coarse to
assess individual tree and/or small stand fire effects (e.g., Cocke et al.,
2005; Furniss et al., 2020; Smith et al., 2016). A major limitation of prior
studies is that most do not incorporate active fire behavior data such as
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FRP and FRE, limiting their ability to build predictive models between
fire intensity and structural change, such as post-fire canopy cover and
height growth. An exception is McCarley et al. (2020), who quantified
the relationship between MODIS-derived FRE with ALS- and field
data-derived surface and canopy fuel consumption in two mixed conif-
erous forests. Quantifying this relationship is important as it means that
MODIS-derived FRE could potentially be used to estimate surface and
canopy fuel consumption in similar forests where ALS/field data are not
available.

A primary advantage of the methods used in the present study is the
incorporation of remotely sensed fire intensity data, which could be used
to derive predictive models of post-fire tree growth and structure change
for application across large spatial extents. The results suggest that
active fire observations such as FRP could potentially be used to predict
productivity reductions within forests and stands and help inform
management decisions including harvesting scheduling and/or thinning
severely injured and slow-growing trees after fire. Equally, these re-
lationships could be used to parameterize existing growth and yield
models that are typically used at the stand scale, such as the Forest
Vegetation Simulator (Rebain, 2015). A disadvantage of using meth-
odology that incorporates active fire observations is that moderately
high temporal frequency active fire observations are required to
adequately characterize fire behavior dynamics. Due to the high spatial
and temporal heterogeneity of fire behavior, a lower observation fre-
quency can result in a poorer characterization of the fire behavior
(Freeborn et al., 2014; Giglio, 2007; Hudak et al., 2015). Modeling fire
intensity could potentially be used in situations where active fire ob-
servations are not available (Lutz et al., 2018; 2020).

The finding that mature trees exposed to higher intensity surface fire
exhibit lower growth rates is consistent with prior observations. For
example, Landsberg et al. (1984) observed height growth in Pinus pon-
derosa exposed to more intense fire behavior (flame lengths: 0.6-1 m)
that was 18% lower than unburned trees and smaller growth reductions
(8% lower than unburned trees) in trees exposed to fire with less intense
fire behavior (flame lengths: 0.3-0.5 m). We also observed that growth
varied with FRPD,x and rate of spread (Fig. 6a, €) but not with FRPDp
or FRED (Fig. 6b, c). Although not statistically significant, relative
height declined with increasing FRED and average flame length (Fig. 6c,
d). These observations are similar to the findings in Sparks et al. (2017)
who found that Pinus ponderosa stem diameter growth decreased with
increasing FRPDpax but not FRPDp or FRED. Taken together, we hy-
pothesize that this discrepancy is resulting from greater damage to the
tree crown due to convective heat fluxes. Prior studies that have shown
FRP is positively related with convective heat flux (Freeborn et al., 2008;
Finney et al., 2015). Greater damage in the tree crown would likely
reduce photosynthesis in damaged foliage (Smith et al., 2017; Sparks
et al., 2018b) and potentially cause trees to shift resources toward tissue
repair rather than growth. Plots with the highest FRED also tended to be
dominated by smoldering combustion and likely a heat dose distributed
over a longer period of time. It is also notable that the relationship be-
tween FRPDp,5x and height growth was only significant for years after
2016. The lack of relationship in 2016 may be partially owing to the
extremely hot and dry growing conditions between pre-fire (2014) and
field measurements in 2016. In 2015, the summer temperature was
3.5 °C greater than the average observed from 1991 to 2020 and summer
precipitation was 16% of normal (NOAA, 2022). Given these abnormally
hot and dry conditions, it is likely that all trees, even unburned trees,
exhibited very limited growth. For the remaining years in the study time
period (2016-2022), the summer temperature was 1.8 °C greater, on
average, than the average observed from 1991 to 2020 and the summer
precipitation was 70%, on average, of normal (NOAA, 2022).

While a field-to-ALS height measurement comparison could not be
undertaken as measurements were acquired on different years, there are
several lines of evidence that suggest that the growth observed in this
study is accurate. Firstly, several accuracy assessments have been con-
ducted using the same ALS datasets in this study. Sparks and Smith
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(2022) and Sparks et al. (2022) validated ALS-derived height (derived
from 8 ppm and 20 ppm data) using 67 fixed radius field-measured in-
ventory plots using regression-based equivalence tests and found that
paired field-measured and ALS-derived height were statistically equiv-
alent. The relationship between field-measured and ALS-derived height
also had high 2 (0.99) and low RMSE (0.69 m). Furthermore, others
have validated both field and ALS height measurements using felled tree
or high precision terrestrial laser scanning measurements and found that
high return density (e.g., >12 points m~2) ALS-derived height typically
has lower RMSE and bias compared to field-measured height (Corrao
etal., 2022; Ganz et al., 2019; Wang et al., 2019). Secondly, the average
growth rate observed in this study (0.48 m per year) is similar to growth
rates others have observed in the local region. Hudak et al. (2012) re-
ported an annual growth rate of 0.4 (+0.8 s.d.) m per year across a range
of species, stand ages and structures within a local area on the UIEF.
Likewise, annual growth rates of 0.2-0.6 m per year for Pseudotsuga
mengziesii var. glauca have been observed in the UIEF and surrounding
region (Hemingway and Kimsey, 2020).

We observed greater relative height growth in unthinned versus
thinned trees, which while rare, has been observed in prior studies. Qiu
et al. (2021) used height-diameter allometry data from plots across the
western United States to show that Pinus ponderosa invest more re-
sources in height versus diameter in stands with higher tree density.
Greater height growth of trees in denser stands has also been observed in
other species including Pinus sylvestris L. (Makinen and Isomaki, 2004;
Tyminska-Czabanska et al., 2022) and Populus tremula L. x P. tremuloides
Michx. (Lee et al., 2021). Reduced growth in thinned stands has been
hypothesized to result from thinning shock, where thinned trees display
chlorotic foliage and sunscald when shaded leaves are exposed to full
sunlight (Harrington and Reukema, 1983; Simonin et al., 2006). Thin-
ned trees can also display differing resource allocation patterns than
unthinned trees, for example allocating more resources to crown
diameter and root system growth than to height growth (Poorter et al.,
2012). Ma et al. (2018) used multitemporal ALS data to characterize tree
height and crown diameter growth and observed that trees in less dense
stands exhibited greater crown diameter growth than trees in denser
stands. Likewise, the trees in the thinned treatments of this study also
displayed greater crown diameter expansion than unthinned trees from
2019 to 2022. Fig. 7 shows that crown edges in thinned treatments
exhibited increases in height from 2019 to 2022, implying crown
diameter expansion. These differences in growth are captured by in-
creases in canopy cover, or the proportion of CHM cells within each
treatment greater than 2 m in height (Alonzo et al., 2017). Canopy cover
in unthinned treatments increased 2% on average, from 93% in 2019 to
95% in 2022, whereas canopy cover in thinned stands increased 7% on
average, from 75% in 2019 to 82% in 2022.

While the results observed in this pilot study highlight a promising
approach for assessing fire effects, this study was limited to a relatively
small number of individuals of one conifer species. Given Pinus pon-
derosa is considered a fire-resistant tree at maturity (Keeley, 2012;
Starker, 1934), approaches like this study could be used to evaluate the
effects of fire behavior on growth for other species, size classes and life
stages. Other opportunities for using a paired FRP-multitemporal ALS
approach include the identification of mortality dose-response curves
for different species and size classes of trees as well as mapping of trees
killed by fire. ALS return intensity has been used previously to estimate
dead tree density (Martinuzzi et al., 2009), however, its application to
fire induced mortality has not been explored. Studies have shown that
spectral reflectance at near-infrared wavelengths commonly used in ALS
systems can characterize physiological function and mortality at the tree
crown scale (Sparks et al., 2016). Considering ALS-guided high-resolu-
tion imagery has been used successfully to quantify physiology, water
content, and chemical content of individual tree crowns (Asner et al.,
2015), future work could evaluate the ability of multi-sensor data for
crown-level stress and mortality assessments after fire. Paired FRP-
multitemporal ALS approaches could further be useful for assessing
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whether stand treatment objectives such as raising crown base height
are met during prescribed burn activities.

6. Conclusions

Understanding how fire impacts mature tree growth is of critical
importance for fire effects modeling and natural resource management,
including planning and evaluation of prescribed fires and modeling
growth and yield. This pilot study advances our understanding of fire
effects by evaluating a multi-sensor methodology for assessing fire im-
pacts on mature tree growth through the combined use of pre-, active-,
and post-fire measurements. Our results highlight the utility of
maximum FRPD for characterizing post-fire height growth in Pinus
ponderosa and the potential for landscape-scale application (e.g.,
airborne and satellite derived FRP). The results of this study coupled
with Sparks et al. (2018a) clearly demonstrate the utility of FRPpax as a
scalable metric that can be used to broadly infer fire-induced impacts on
post-fire growth in forested ecosystems. Further research could evaluate
the potential integration of FRPp,,¢ based predictions of impacts to forest
growth into Earth-system modeling frameworks assessing fire impacts
on the global carbon cycle given synoptic scale assessments of fire
emissions already use this metric (e.g., Kaiser et al., 2012). However,
more research is warranted to assess this metric on non-coniferous
forested systems. In terms of wider relevance to forestry, fire, and
broader land management personnel, the measures of FRED and FRPD
have been widely demonstrated to be related to fuel consumed and the
emission of smoke and particulates in wildland fires (Wooster et al.,
2021). Furthermore, FRPD is also related to the measure of Heat Release
Rate (HRR) used within the Consume 4.2 submodule of Fuel and Fire
Tools (FFT) software application that exports data to the Fire Emissions
Prediction Simulator (FEPS), an application that is widely applied by
forestry and land management personnel to predict pollutant emissions
from wildland fires. As such, further research should evaluate the
incorporation of FRPD datasets from field, aerial, and satellite sensor
data within these existing wildland fire consumption and emission
models, in addition to ecological effect models such as the First Order
Fire Effects Model (FOFEM) (Lutes, 2020).

Although there was not significant support for using more integrative
measures of heat flux, such as FRPDp and FRED, to characterize post-fire
tree growth, future research could evaluate these metrics on larger
sample sizes and other tree size classes and species. Reduced height
growth eight years post-fire highlights the persistence of fire effects and
could be wused to inform planning of prescribed fires and

parameterization of fire effects models. This study used three ALS
datasets to assess height change over time and supports the value of
acquiring and using multitemporal ALS data to assess tree growth in
areas affected by disturbances such as fire. Ultimately, the integrated
pre-, active-, and post-fire data approach used here shows promise for
furthering our understanding of how fire impacts tree structure and
growth at multiple spatiotemporal scales.
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