
Accessible to Whom? Bringing Accessibility to Blocks 
Andreas Stefik 

andreas.stefik@unlv.edu 
University of Nevada, Las Vegas 

Las Vegas, NV, U.S.A. 

Willliam Allee 
william.allee@unlv.edu 

University of Nevada, Las Vegas 
Las Vegas, NV, U.S.A. 

Gabriel Contreras 
gabriel.contreras@unlv.edu 

University of Nevada, Las Vegas 
Las Vegas, NV, U.S.A. 

Timothy Kluthe 
kluthe@unlv.nevada.edu 

University of Nevada, Las Vegas 
Las Vegas, NV, U.S.A. 

Alex Hoffman 
alex.hoffman@unlv.edu 

University of Nevada, Las Vegas 
Las Vegas, NV, U.S.A. 

Brianna Blaser 
blaser@uw.edu 

University of Washington 
Seattle, WA, U.S.A. 

Richard Ladner 
ladner@cs.washington.edu 
University of Washington 

Seattle, WA, U.S.A. 

ABSTRACT 
The introduction of block-based programming has gradually changed 
the landscape of programming education, particularly for school 
children. Block languages today, however, have serious technical 
barriers to students with disabilities. For example, block languages 
are generally not screen reader accessible, incompatible with braille, 
and contain serious problems for users with motor impairments. 
No student with a disability should ever be denied access to learn-
ing computer science and they do not have to be. To help rectify 
this, we present a new approach to the design of block languages 
called Quorum Blocks. Quorum Blocks uses a custom hardware 
accelerated graphical rendering pipeline that takes into account 
how screen readers and other devices work under the hood. We 
discuss these technical details and demonstrate that accessibility 
support can be fully achieved without meaningfully losing either 
the look of modern blocks or their visual output. We present the 
results from focus groups that highlight the barriers students faced 
with a variety of disabilities when using the first version of Quorum 
Blocks. We focus especially on challenges with low vision users, 
screen reader users, or those using no mouse and only one hand to 
type. Block languages built using either our techniques, or on top 
of our libraries, would become accessible out of the box. 

CCS CONCEPTS 
• Social and professional topics → People with disabilities; • 
Software and its engineering → General programming lan-
guages; • Human-centered computing → Accessibility. 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for components of this work owned by others than the 
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific permission 
and/or a fee. Request permissions from permissions@acm.org. 
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA 
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 979-8-4007-0423-9/24/03. . . $15.00 
https://doi.org/10.1145/3626252.3630770 

KEYWORDS 
Accessibility, Block Languages, Computer Graphics, Human Factors 

ACM Reference Format: 
Andreas Stefik, Willliam Allee, Gabriel Contreras, Timothy Kluthe, Alex 
Hoffman, Brianna Blaser, and Richard Ladner. 2024. Accessible to Whom? 
Bringing Accessibility to Blocks. In Proceedings of the 55th ACM Technical 
Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20– 
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https: 
//doi.org/10.1145/3626252.3630770 

1 INTRODUCTION 
Traditional development environments using text-based languages 
often start users with a blank page where they need to type. When 
learning, students memorize passages of text and may make a men-
tal model of the code over time. In professional environments there 
exists many visualizations and helpers (e.g., code completion, edi-
tor hints), but they arguably require learning to use effectively. In 
contrast, block languages, while there is still memorization, mental 
models, and learning, often have visualizations and palettes that 
provide help (e.g., scope, available commands). Evidence in the lit-
erature has largely supported the hypothesis that such affordances 
help students in practice and impact transfer of learning [37]. 

While block languages have documented benefits, it is important 
to acknowledge that there have been negative consequences of 
such technologies. Today’s block environments are not really “for 
all” and often exclude people with disabilities [12]. There has been 
significant recent interest in improving accessibility support due 
to overlapping interest of ethics (like CSAccess [6]) and changes 
to laws (like Maryland’s SB0617 [13]). Generally, block languages 
require one to be able to see, have enough motor control to use 
drag and drop without a keyboard, and are mostly used for small 
programs in a first programming course. In fact, since the inception 
of Scratch, SNAP!, Alice, and others, small benefits to transfer of 
learning have been documented [37], but the needs of students with 
disabilities have been minimally studied and most block languages 
remain either inaccessible or only partially accessible. That said, 
exactly what it means for block languages to be accessible and 
universal is deceptively difficult [5, 19, 21, 29, 30]. We need to ask: 

1286

https://doi.org/10.1145/3626252.3630770
https://doi.org/10.1145/3626252.3630770
mailto:ladner@cs.washington.edu
mailto:blaser@uw.edu
mailto:alex.hoffman@unlv.edu
mailto:kluthe@unlv.nevada.edu
mailto:gabriel.contreras@unlv.edu
mailto:william.allee@unlv.edu
mailto:andreas.stefik@unlv.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626252.3630770&domain=pdf&date_stamp=2024-03-07


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Andreas Stefik et al. 

accessible to whom? For example, students with different kinds of 
disabilities may have different needs for both the input (e.g., the 
blocks or text) and the output (e.g., cats, 3D items, charts). 

We make three primary contributions. First, we contribute an 
accessible rendering pipeline for graphics, which fixes an issue that 
can delay the user experience we call Accessible Starvation. We 
discuss technical details here because it is a key issue for the acces-
sibility of tools for computer science education. Any programming 
language can use similar techniques for accessibility of graphics. 
Second, we have re-imagined what block languages could be from 
the ground up through the lens of both being born accessible and 
general purpose. Our design includes a large spectrum of features 
like Find/Replace, Copy/Paste, version control through Git, struc-
tural navigation, code completion, editor hints, 2D and 3D visual 
editors similar to Unity3D, in addition to accessibility affordances. 
All graphical features are accessible through screen readers and 
braille, use of the mouse is optional, and other accessibility consid-
erations have been reconsidered from first principles. Finally, we 
conducted an evaluation of our tool in one focus group with teach-
ers of the blind and visually impaired and two more with students 
in high school with various disabilities. We examine the successes 
and failures of our first attempt, highlighting student experiences. 

The rest of the paper is as follows. First, we discuss related work. 
Then, we report how our accessible block language technology 
works on a technical and user level. We then follow-up with our 
formative focus groups and conclude. 

2 REVIEW OF RELEVANT SCHOLARSHIP 
There is an abundance of literature available on block programming. 
Some claims [24] centered around the idea that mastering program-
ming is difficult because it often lacks an interesting context, does 
not provide enough guidance, and does not provide encouragement 
to dive deeper when things go awry. The literature often uses words 
like tinkerable, meaningful, or social. 

In practice today, block-based programming may make it easier 
for learners. Possible causal mechanisms include features like visual 
cues, some mitigation of syntax errors, presentation of available 
commands, removing typing challenges, visual representations of 
lexical scope, and the use of natural language. The exact causal 
mechanisms and their effect sizes are less clear. Importantly, how-
ever, evidence suggests there is no significant difference in learners’ 
capabilities with a text-based programming language after 10 weeks 
of learning, regardless of whether they transitioned from blocks or 
started with text [37]. 

In terms of how people use block languages, we often consider 
the “breadth,” or range of distinct features used, and “depth,” the 
amount of features used [28]. Unfortunately, in addition to high 
dropout rates, in practice learners do not pursue increases to breadth 
or depth without curriculum guiding them to do so [16]. 

While most studies in the literature are on students at a young 
age, several have addressed adult novices learning how to pro-
gram [25, 26] with block-based programming environments. Gen-
erally, the focus in this kind of work has been more on making 
programming tasks easier for adult novices than on educating them 
in traditional computer science principles. Just as an exemplar, one 

case study used block languages to improve usability for program-
ming industrial robots [31]. 

The research literature contains many block programming stud-
ies toward education and beyond. An abridged list includes cur-
riculum considerations like grading and rubrics [18], parallel pro-
gramming [32], notebooks [36], and data science [3, 4]. In a sense, 
instead of making general purpose block languages, the community 
has made lots of little ones. Most common block languages are not 
accessible to people with disabilities in practice. 

Finally, while the use of hardware accelerated graphics and 
screen readers is poorly understood, it is necessary for block and 
text-based languages because the input and output needs to be ac-
cessible. Making blocks accessible without the output is like solving 
half the problem. Unfortunately, there is little work in the literature 
and the closest that inspired us was work on gaming and acces-
sibility. For example, Roden and Parberry created a game engine 
which was capable of making audio only games set in 3D environ-
ments [27]. Blind Adventure is a game engine designed for blind 
game designers that is capable of making audio-based games [33] 
and Torrente et al.’s E-Adventure, a game engine for accessible web-
based games, was built for both fun and more serious settings like 
education [35]. While accessible gaming is commonly evaluated in 
the literature, our general purpose accessible graphics architecture 
is novel to this work. 

3 A BRIEF INTRODUCTION TO 
ACCESSIBILITY PROGRAMMING 

While information on Web Content Accessibility Guidelines (WCAG) 
2.1 AA is likely the most well known resource about accessibility, it 
is not prescriptive. It does not tell you how to achieve accessibility. 
Implementation details are thus hard to find in the literature and 
generally left to operating system manufacturers like Microsoft, 
Apple, or Google. Unfortunately, these manufacturers provide some-
what minimal documentation and, in our experience, what is online 
is imperfect. Further, block languages, especially, make serious er-
rors in how they connect to the accessibility systems, which causes 
them to be inaccessible. 

Thus, we discuss here implementation details on how and why 
accessibility works. The purpose is two-fold. First accessible graph-
ics cannot be understood without understanding how accessibility 
is programmed under the hood. Second, implementation details 
in block languages are a key reason why block languages are not 
accessible—dancing cats, dragons, 3D editors, and such are all fine 
even for students that cannot see the screen, but only if the oper-
ating system receives the right messages, at the right time, in the 
right way. Otherwise, accessibility devices cannot translate this 
information into sound, touch, or other alternatives. Thus, by acces-
sible graphics, we mean the graphics system, the operating system, 
and the accessibility system have to coordinate. 

In colloquial terms, an application is accessible if people with 
disabilities can meaningfully interact with and use it. What this 
means is application dependent and reasonable people will disagree 
on the details. For example, for an application to be accessible to 
people who are blind or visually impaired, it must include keyboard 
support and auditory (such as speech) or tactile (such as braille) 
feedback. When that feedback appears is typically controlled by 

1287



Accessible to Whom? Bringing Accessibility to Blocks SIGCSE 2024, March 20–23, 2024, Portland, OR, USA 

accessibility technologies, not host applications, and this is crucial 
to understand. Technologies for the blind should not, with rare 
exceptions, trigger their own speech. This can cause double speak-
ing and will not work with braille 1 . Accessibility systems must 
communicate back and forth with the operating system. 

1A good example of this mistake is that Zoom on Mac has a second voice speak on top 
of the screen reader when meeting participants enter or exit. 

Consider a button, which are not just pixels on the screen. But-
tons are a declaration to the operating system that those pixels 
mean a “button.” Each operating system implements the semantics 
of buttons through APIs (e.g., dimensions, screen location, enabled, 
color). To name some, these include NSAccessibility on Mac OS 
X [9] and UIAccessibility for iOS [10]. On Android, the model is 
integrated into the view API [7]. On Windows, the API is User In-
terface Automation (UIA) [17]. The web is different, but in practice 
maps down to the operating system analogously to what desktop 
applications do under the hood. Each of these models differs in 
important ways that are outside the scope of this paper. Incorrect 
or missing implementations of these APIs automatically means 
an application does not communicate with accessibility technolo-
gies. Thus, using the APIs correctly is the minimum bar, but hardly 
means an environment is inviting or easy to use. 

While there are many semantic models, we discuss only the one 
for Windows for simplicity—Microsoft User Interface Automation 
(UIA). UIA is a semantic model used by assistive technologies to 
know what is on the screen and what those things can do. While this 
is conceptually true, on a technical level UIA is an interface for inter-
process communication. Specifically, “server” processes expose the 
available interface elements and “providers” allow “client” processes 
to query information. For example, a host application tells the 
operating system it exists and there is a button in it. A screen 
reader reads the operating system, finds the button, and messages 
can be sent back and forth between the intermediary and host 
application (e.g., Where are you? Can I click you?). 

Elements in accessibility libraries like UIA are typically organized 
in a tree structure, with the window as the root and interface com-
ponents as the structure. Each element has an associated “provider,” 
which exposes information to external processes. Information a 
provider offers includes a control type, a set of UIA patterns, and a 
set of properties. UIA supports 38 different control types represent-
ing common UI elements. We draw attention to the control types 
because they dictate which patterns and properties must be sup-
ported by a provider. These control types provide common controls 
like buttons or textboxes. There is no “accessible blocks,” “dragon,” 
or “3D camera” pattern. Other platforms have similarities, but many 
quirky differences outside of this paper’s scope. 

To manage graphics, the UIA documentation includes these de-
tails (emphasis added): “The UI Automation extensibility features 
enable third parties to introduce custom, mutually agreed-upon 
properties, events, and control patterns to support new UI elements 
and application scenarios.” We added emphasis here to the phrase 
“mutually agreed upon.” This essentially means manufacturers and 
creators of accessibility products must coordinate and agree, which 
is a social problem that is hard to achieve in practice. One of the 
larger issues that needs resolution for block languages and their 

corresponding output to be accessible is what we term accessible 
graphics and its associated accessible starvation. 

4 CONTRIBUTION 1: ACCESSIBLE GRAPHICS 
AND ACCESSIBLE STARVATION 

We created a multi-platform graphics pipeline that manages acces-
sibility support and accessible starvation. Our engine is free and 
open-source and can be used by any team using graphics for any 
purpose, including block rendering or learning. It uses OpenGL 
for hardware accelerated 2D and 3D graphics, with WebGL for the 
web. The same ideas could be applied to other graphics APIs. In 
a sense, our system abstracts the graphics and combines it with 
an operating system neutral accessibility model (e.g., the web with 
SHADOW-DOM and ARIA, Windows desktop with UIA). The rea-
son we did this is because accessibility programming is extremely 
complex and it should not be presumed or expected that a typical 
programmer will have the required expertise. 

Recall that at a low level, graphics, user interaction, and accessi-
bility messages enter a shared message queue (sometimes called a 
pump). Messages from any aspect of the application are shared in 
this queue and thus interleaving issues like frames of animation can 
interfere in non-intuitive ways. While an imperfect analogy, one 
might think of this as a fan effect. For example, a particular call in 
OpenGL might be sandwiched between a mouse event and a request 
for information from any accessibility or automation technology. 

Accessibility technologies were not always designed for graphics 
and can react in problematic ways, especially the JAWS screen 
reader because of how we suspect (it is closed source) it manages 
threading. Users may experience serious delays between interacting 
with an application and receiving a response from a screen reader. 
In our testing, we found that each keystroke could take up to 10 
seconds before the screen reader speaks in response if OpenGL is 
used out of the box. This delay, which is complicated in practice, is 
the heart of what we call accessible starvation. 

Consider this example to help explain the complexity of the chal-
lenge. Screen readers frequently follow-up with requests to gather 
more information. If a user changes the focus, a screen reader might 
send a request asking what was changed, which gets interleaved 
in the queue. If, for example, it identifies the focused element is a 
tree, it could send further requests regarding the structure of the 
tree, the number of items, or other properties. This can lead to 
hundreds or thousands of requests that are interleaved with frames 
of animation. Interleaving is a big issue, but not the only. Some 
calls are blocking or conflict with others. The only reliable way 
we have found to locate them, since we have observed no online 
documentation on this issue, is using professional grade profilers 
and correlating graphics/accessibility callbacks by hand. 

Fortunately, accessible starvation can be mitigated. The strategy 
is to “pump” the queue within frames of animation and to optimize 
as described above on every platform. We use a configurable target 
frame rate to set the upper bound and set a minimum delay time 
per frame as a lower bound. This dedicated polling period allows 
many requests, responses, and follow-ups to be processed within a 
single frame and can be turned on or off. Thus, one downside of 
our approach is that there must be a capped frame rate. Fortunately, 
after extensive testing with multiple platforms, we found that a 

1288



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Andreas Stefik et al. 

time dedicated to message pumping of 0.001 seconds per frame was 
sufficient to make applications responsive and highly usable. 

Figure 1: Blocks for a mobile phone application in dark mode. 
The application generated is also accessible. 

So far as we can tell, our system works for arbitrary 2D or 3D 
graphics and allows one to custom inject arbitrary accessibility 
properties in a universal way. This is very convenient if you need 
graphics to be accessible. With this technology as a basis, we then 
set out to make all aspects of blocks, from the blocks themselves 
to their graphical output pipeline, accessible. This is in contrast to 
previous work, which predominately, but not exclusively, focuses 
on issues with input (block interactions) [5, 19, 20, 29, 30]. 

5 CONTRIBUTION 2: ACCESSIBLE BLOCKS 
AND ACCESSIBLE OUTPUT 

After completing our accessible graphics pipeline, we engaged in a 
two-year project to think through the design of block languages 
from the lens of being general purpose and accessible. We looked 
carefully at issues we suspected excluded students with disabilities 
at any time from from high school to professional practice. While 
important, we did not consider below high school in this design. 
Thus, in addition to building the rendering of the blocks on top of 
our engine so they are accessible, we identified three problems that 
were exclusionary of students with disabilities in mainstream block 
languages today: 1) spatial layout, 2) the editing experience, and 3) 
the visual output. 

5.1 Spatial Layout 
First, block languages typically have a spatial and non-linear layout 
system. A student might drag and drop a block from a left palette 
to the right hand side of a page. Drag and drop itself is fine for 
accessibility, so long as alternatives like keyboard support are avail-
able. However, when blocks can be at arbitrary spatial positions 
on the page, focus traversal ordering can be unclear. There may 
also be organization issues for neuro-divergent people. While one 
can easily dream up a system for focus traversal spatially (e.g., y 
coordinate mappings, tabbing between regions) we made all blocks 
in our system display, top to bottom, like in a normal text editor 
with line numbers. Figure 1 shows an example of a block program 
that generates an accessible (with Talkback support) mobile phone 
application on an Android device in one of the color modes (dark). 
Code.org similarly uses line numbers in its App Lab editor. 

5.2 Editing Experience 
Second, block designs vary in how a student edits or creates code. 
For example, almost all block languages, with notable exceptions for 
those that have attempted accessibility [5, 19, 20, 29, 30], generally 
use the mouse. We adapted ideas from all of these approaches for 
the editor, but especially two. First, Mountapmbeme and Ludi found 
evidence that the horizontal blocks in blockly were difficult to use 
for blind students [20], so we allowed expressions to be typed. 
More evidence on the impact of this decision is needed. Second, we 
adopted an approach similar to Stride [11], which uses horizontal 
and vertical cursors for block and character level edits, respectively. 

Unique to our version, when landing on a block, we send a UIA 
Custom call, which triggers braille and speech for the line of code. 
To trigger this, users press common keys from a text editor (e.g., 
arrows). Alternatively, they can also explore expansion concepts 
with hotkeys (e.g., navigation, go to line, Git, hints). This design 
lets us take into account the fact that students with disabilities vary 
significantly in how well they know their own accessibility tech-
nologies, especially for young children. It also makes the blocks feel 
like existing technologies they may already know (e.g., text editors). 
While that is the default experience, many advanced options can 
be explored and learned. For example, if you are on a block and 
press tab, we trigger UIA for a text field or box, which prevents 
students from making syntax errors very analogously to current 
block languages. 

For students that can see, our system would look and feel like a 
block. For students that are blind, when either of the cursors moves, 
they hear or feel it. For those with difficulty using the mouse, the 
mouse is never required. For the keyboard, there are key differences 
we made with previous work. First, instead of using keys like Stride, 
we adapted empirical work by Baker et al. [2] and Ameer et al. [1] 
that studied navigation and comprehension. In broad strokes, from 
a keyboard our system feels more like a text editor with optional 
features like StructJumper (e.g., jump up and down a scope, go to the 
previous function). We also included navigation features common 
to many text editors (e.g., go to line, find). Again, our broad design 
goal was to make the common keys feel like a text editor, but allow 
more advanced features to be explored and tinkered with. 

Finally, when a user deletes a block, we created an algorithm 
we call Minimum Semantic Difference. This approach calculates the 
region of code to delete that would keep the code syntactically, and 
with some limitations semantically, correct. While the algorithm 
is complex and out of scope of this paper, consider an example 
if statement. If a user deletes an if, what is inside that region is 
retained and the surrounding scope is adjusted based on the syntax 
of the language. 

In terms of being general purpose, Figure 2 shows blocks for a 
principal component analysis. We mention this because we have at 
least tried to think through complex programs as well. A statistician 
can use our block system to conduct factor analysis in about 7 
blocks, using the mouse or keyboard. We now use the block system 
for professional grade statistical analysis in other academic work. 

For those beyond high school age, we created a variety of visual 
affordances to allow for modification of code. In tools like Scratch, 
one often has to drag a block to the trash, grab the new one, and 
drag it back. We offer keyboard affordances for similar operations 

1289

https://Code.org


Accessible to Whom? Bringing Accessibility to Blocks SIGCSE 2024, March 20–23, 2024, Portland, OR, USA 

philosophically in range of Typing Blocks [14] and later adapted 
by Switch blocks [15], except that in our case the use of the verti-
cal cursor provides temporary and small switches to raw text for 
expressions that we call freeform blocks. Our blocks use graphics 
shaders for visual rendering of hints and error and these are injected 
into the accessibility system as well. Note that a student in high 
school may not benefit from hints or code completion, but Peterson 
et al. conducted a randomized controlled trial testing whether such 
features were helpful for college students, with positive results [23]. 
The point is we hide more advanced features by default, but they 
can be learned and tinkered with as a student learns. 

Figure 2: Blocks for a Principal Component Analysis. Charts 
and graphs are available as well and generate accessibly 

5.3 Visual Output 
Finally, one major challenge is not just the blocks, but all the visuals 
that exist around them, like dancing cats in Scratch or 3D graphics 
in Alice [22]. Figure 3 shows our 2D/3D drag and drop and canvas 
palette that can be used visually or with a screen reader/braille. We 
used what we coin as the two-dummy solution for drag and drop 
editing of visuals in the canvas. In 2-dummy style, we switch the 
focus between two fake objects that are not on the screen and do 
not exist, but that are injected into the accessibility tree on a per 
platform basis. In effect, we lie to the accessibility system in a con-
trolled manner. Figure 3 shows an image of this editor. A student 
using braille would feel the x, y, and z coordinate if the box cursor 
was over negative space. If, instead, the cursor was an item, the 
name would be mentioned first. Like the block editor, we empha-
sized using common keys to manipulate the 3D transparent box 
(which is the “cursor”), like the arrows, while providing advanced 
navigation features that students can again tinker with. 

The purpose is that if we inject fake properties at each point, we 
can trigger screen reader responses without a mutual agreement— 
accessible graphics becomes a technical problem and not a social 
one. For example, if one dummy is actually a 3D camera, we can 
strategically inject properties that tell a blind user what the camera 
is showing. If the dummy is an ogre, we can express what it is. Focus 
changes happen through switching the dummy on focus change 
events but keeping the entire visual scene to only 2 items. This is 
important to consider in graphics because the number of items on 
screen can get very large (e.g., every polygon in a 3D terrain). We 
suspect 2-dummy is sufficient for accessibility needs for many, but 
not all, kinds of visual editors and works identically in 2D and 3D. 

Since our solution provides control of the graphics and accessi-
bility pipeline, we can inject some fun into a blind user’s experience. 
We do not have to be dry and say “ogre.” We can instead say, “blood 
thirsty ogre at x, y, and z. Watch out or it will get ya!” while also 

Figure 3: This image shows a mouse/keyboard accessible 
palette along with the canvas showing a small medieval 
scene. Screen reader and braille users hear or feel informa-
tion through a 3D selection cursor, shown visually as a trans-
parent box. On empty space, only x, y, and z coordinates are 
stated by default. 

rendering it visually in any creative way we wish. Or, if we simply 
want to, we could provide context clues, location information, cam-
era information, Easter eggs, or really anything we want. When 
our application boots, for example, users on our loading screen 
hear, see, or feel, phrases like, “Hiding in the corner. Eating all your 
breakfast,” or “Suddenly ... kitties.” There is no need to make loading 
screen messages serious and we want especially screen reader users 
listening to know they were our privilege, not our burden. As a 
community, we can and should do better than legal compliance: we 
should try to bring some real magic to students. 

6 CONTRIBUTION 3: FOCUS GROUPS ON 
ACCESSIBLE BLOCKS 

We conducted three formative focus groups in July of 2023 to help 
identify our successes and failures. The first was online with 5 adults 
(4 high school teachers and one adult braille user). The goal here 
was to help find bugs and fix problems before talking to students. 
With the second, we engaged with 21 students with a variety of 
disabilities in two separate focus groups in person. Disabilities 
varied and included ADHD (11), autism (18), brain (1), health (8), 
hearing (5), learning (12), mental health (8), mobility (17), and vision 
(6). Many students in our sample had more than one disability. The 
goal there was direct observation and to learn from students’ lived 
experience. One interesting finding from the first focus group with 
teachers was in regard to braille. There was only one braille user in 
the group, but he noticed JAWS would speak the horizontal cursor 
on a block, but not issue braille. The NVDA screen reader would do 
both. After an investigation, we found this was a bug in the JAWS 
screen reader. We contacted the company that makes JAWS and 
informed them of the bug. We focus the remainder of this section 
on student feedback. 

Next, we ran two focus group sessions with high school aged 
participants in person. For each, there was about an hour of obser-
vation while students used blocks in a data science lesson and then 
a half hour for discussion. Several students noted low contrast in 
dark mode, but none objected to light mode. We had copied our 

1290



SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Andreas Stefik et al. 

dark mode colors from Scratch’s new system as a first attempt. 
After the focus groups, while we thought we had, we re-tested the 
colors finding all of the contrasts out of accessibility compliance. 
While an easy fix, the realization was humbling and reminded us 
just how easy it is to make accessibility mistakes. 

Figure 4: Blocks in dark and thin mode to ease magnification. 

Students also made suggestions around errors. Since our envi-
ronment involves typing, it means mistakes are constrained but 
possible. By default, our environment pulsed a block red (or through 
sound/touch). However, students observed that it was sometimes 
difficult to determine exactly where in a line an error was with-
out additional locality. We suspect in-block highlighting, or some-
thing similar, may have helped. One participant used an example of 
spellchecking in a document (e.g., red underlines in a code editor). 
Another option could be an informational popup. 

Another issue was case sensitivity in code completion. One stu-
dent with a mobility-related disability heavily favored one hand, 
making simultaneous key striking difficult. Removing case sensitiv-
ity for all typing features would have made it easier for one hand 
typing and we have since made adjustments. 

For low vision students, the most crucial problem we observed 
was the height of the blocks. Traditional blocks are quite wide 
and tall and we made ours look similar to Scratch. However, low 
vision students scaled the size of the blocks so large that, because of 
padding, they could only see 2-3 lines without scrolling. We suspect 
block languages may benefit from a “thin” mode for students with 
low vision and have since added the feature. 

While the student focus groups overwhelmingly expressed praise 
for Quorum Blocks, we have highlighted our failures here to provide 
the community feedback on the kinds of issues that come up for 
various disabilities. All told, we made 45 unique changes to the 
system, which came from teachers or students. As a final example, 
Figure 4 shows a version with thin mode turned on. This figure 
highlights a more complex example with scoping and functions. 
The bottom-line is that users with, or without, disabilities can use 
our tool in practice. 

7 DISCUSSION 
We created a new design for accessible blocks, built on an accessible 
graphics platform. While blocks are the input, they often render 
graphics or visualization, have user interactions, and let students 
drag and drop images or 3D models in a canvas. Such a technology 
could make it possible, unlike previous work that adapted high 

school curriculum like Computer Science Principles to text-based 
languages [34], to retain all graphics and the blocks. Students also 
create applications and what they invent is accessible by default. 

We imagine that one reasonable criticism will be that it is difficult 
to boil down accessibility work to an obvious end-point, like “how 
accessible and general is this approach?” We used focus groups 
with teachers and students as a formative gut check, but this is 
hardly a direct answer. That said, users with a variety of disabili-
ties, including screen reader users, were able to use the blocks to 
make charts in data science and could interact with them without 
difficulty. We also found the focus groups to be useful and were 
surprised to find a bug in a professional grade screen reader, to 
learn our blocks would need a “thin” mode, or how specifically to 
improve the system for one handed typing. 

We also need to be clear that making block languages general 
purpose is not easy. Any kind of general purpose design is hard and 
the impact of programming language design on people with differ-
ent demographics is still poorly understood in the literature (e.g., 
gender, age, natural language [8], disability). However, environ-
ments made only for people with disabilities, we observe through 
experience, sometimes are not maintained. Similarly, we were hesi-
tant to focus only on k-12 students. After all, if we did so, knowing 
full well that many languages in college and beyond are also not 
accessible, students would still be excluded. Our approach for gen-
eral purpose thus has obvious challenges, but we argue it needs to 
be the goal. A student with a disability cannot “transfer learning” 
if the next step is also not accessible. 

8 CONCLUSIONS 
We have created a novel block language designed for accessibility. 
We found that graphics pipelines can meaningfully coordinate with 
accessibility technologies through the operating system, so long 
as issues like accessible starvation are strategically mitigated. This 
allows the input (the blocks) and the output (the editor) to be acces-
sible and we designed our system on top of this technology for 2D 
and 3D, data science, and other general purpose areas. Focus groups 
on our design were positive and provided insight into block-related 
issues especially for those using one hand to type, screen reader 
and braille users, and those using large magnification. 

9 ACKNOWLEDGMENT 
This work is supported by the National Science Foundation under 
Grant Numbers NSF# 2121993, 2122189, 2106392 and 2048356. 

REFERENCES 
[1] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. A Comparison 

of Program Comprehension Strategies by Blind and Sighted Programmers. In 
Proceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, 
USA, 788. https://doi.org/10.1145/3180155.3182544 

[2] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper: A 
Tool to Help Blind Programmers Navigate and Understand the Structure of Code. 
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing 
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589 

[3] Luiz Barboza, Rafael Mello, Micah Modell, and Erico Souza Teixeira. 2023. Blockly-
DS: Blocks Programming for Data Science with Visual, Statistical, Descriptive 
and Predictive Analysis. In LAK23: 13th International Learning Analytics and 
Knowledge Conference (LAK2023). Association for Computing Machinery, New 
York, NY, USA, 644–649. https://doi.org/10.1145/3576050.3576097 

1291

https://doi.org/10.1145/3180155.3182544
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/3576050.3576097


Accessible to Whom? Bringing Accessibility to Blocks SIGCSE 2024, March 20–23, 2024, Portland, OR, USA 

[4] Austin Cory Bart, Javier Tibau, Dennis Kafura, Clifford A. Shaffer, and Eli Tilevich. 
2020. Design and Evaluation of a Block-based Environment with a Data Science 
Context. IEEE Transactions on Emerging Topics in Computing 8, 1 (Jan. 2020), 
182–192. https://doi.org/10.1109/TETC.2017.2729585 Conference Name: IEEE 
Transactions on Emerging Topics in Computing. 

[5] Logan B. Caraco, Sebastian Deibel, Yufan Ma, and Lauren R. Milne. 2019. Making 
the Blockly Library Accessible via Touchscreen. In Proceedings of the 21st Inter-
national ACM SIGACCESS Conference on Computers and Accessibility (Pittsburgh, 
PA, USA) (ASSETS ’19). Association for Computing Machinery, New York, NY, 
USA, 648–650. https://doi.org/10.1145/3308561.3354589 

[6] CSTA. 2023. CSTA CSAccess Working Group. Accessed on August 7th, 2023 
from https://csteachers.org/the-csaccess-working-group/. 

[7] Google. 2021. Android Accessibility Package. Accessed on January 22nd, 
2022 from https://developer.android.com/reference/android/view/accessibility/ 
package-summary. 

[8] Felienne Hermans. 2020. Hedy: A Gradual Language for Programming Education. 
In Proceedings of the 2020 ACM Conference on International Computing Education 
Research (Virtual Event, New Zealand) (ICER ’20). Association for Computing Ma-
chinery, New York, NY, USA, 259–270. https://doi.org/10.1145/3372782.3406262 

[9] Apple Inc. 2018. Accessibility Programming Guide for OS X: The 
OS X Accessibility Model. Accessed on January 22nd, 2022 from 
https://developer.apple.com/library/archive/documentation/Accessibility/ 
Conceptual/AccessibilityMacOSX/OSXAXmodel.html. 

[10] Apple Inc. 2022. Apple UI Accessibility Developer Documentation. Accessed on 
January 22nd, 2022 from https://developer.apple.com/documentation/objectivec/ 
nsobject/uiaccessibility. 

[11] Michael Kölling, Neil C. C. Brown, Hamza Hamza, and Davin McCall. 2019. Stride 
in BlueJ – Computing for All in an Educational IDE. In Proceedings of the 50th 
ACM Technical Symposium on Computer Science Education (Minneapolis, MN, 
USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, USA, 
63–69. https://doi.org/10.1145/3287324.3287462 

[12] Richard E. Ladner and Maya Israel. 2016. "For All" in "Computer Science for All". 
Commun. ACM 59, 9 (aug 2016), 26–28. https://doi.org/10.1145/2971329 

[13] Maryland Legislature. 2022. Local School Systems - Equivalent Access Standards 
- Digital Tools (Equivalent and Nonvisual Access Accountability Act for K-12 
Education). Accessed on August 7th, 2023 from https://mgaleg.maryland.gov/ 
mgawebsite/Legislation/Details/SB0617?ys=2022RS. 

[14] Terrance Liang. 2019. Typeblocking : keyboard integration with block programming 
in StarLogo Nova. Master’s thesis. MIT. 

[15] Yuhan Lin, David Weintrop, and Jason McKenna. 2023. Switch Mode: A Visual Pro-
gramming Approach for Transitioning from Block-Based to Text-Based Program-
ming. In Proceedings of the 54th ACM Technical Symposium on Computer Science 
Education V. 2 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing 
Machinery, New York, NY, USA, 1262. https://doi.org/10.1145/3545947.3573235 

[16] J. Nathan Matias, Sayamindu Dasgupta, and Benjamin Mako Hill. 2016. Skill 
Progression in Scratch Revisited. In Proceedings of the 2016 CHI Conference on 
Human Factors in Computing Systems (CHI ’16). Association for Computing 
Machinery, New York, NY, USA, 1486–1490. https://doi.org/10.1145/2858036. 
2858349 

[17] Microsoft. 2020. UI Automation - Win32 apps | Microsoft Docs. Ac-
cessed on January 22nd, 2022 from https://docs.microsoft.com/en-
us/windows/win32/winauto/entry-uiauto-win32. 

[18] Alexandra Milliken, Veronica Cateté, Ally Limke, Isabella Gransbury, Hannah 
Chipman, Yihuan Dong, and Tiffany Barnes. 2021. Exploring and Influencing 
Teacher Grading for Block-based Programs through Rubrics and the GradeSnap 
Tool. In Proceedings of the 17th ACM Conference on International Computing 
Education Research (ICER 2021). Association for Computing Machinery, New 
York, NY, USA, 101–114. https://doi.org/10.1145/3446871.3469762 

[19] Lauren R. Milne and Richard E. Ladner. 2019. Blocks4All: Making Blocks-Based 
Programming Languages Accessible for Children with Visual Impairments. In 
Proceedings of the 50th ACM Technical Symposium on Computer Science Education 
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, 
New York, NY, USA, 1290. https://doi.org/10.1145/3287324.3293755 

[20] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Acces-
sible Blockly: An Accessible Block-Based Programming Library for People with 
Visual Impairments. In Proceedings of the 24th International ACM SIGACCESS Con-
ference on Computers and Accessibility (ASSETS ’22). Association for Computing 
Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3517428.3544806 

[21] Obianuju Okafor and Stephanie Ludi. 2022. Voice-Enabled Blockly: Usability Im-
pressions of a Speech-Driven Block-Based Programming System. In Proceedings 
of the 24th International ACM SIGACCESS Conference on Computers and Accessi-
bility (Athens, Greece) (ASSETS ’22). Association for Computing Machinery, New 

York, NY, USA, Article 64, 5 pages. https://doi.org/10.1145/3517428.3550382 
[22] Randy Pausch. 2008. Alice: A Dying Man’s Passion. In Proceedings of the 39th 

SIGCSE Technical Symposium on Computer Science Education (Portland, OR, USA) 
(SIGCSE ’08). Association for Computing Machinery, New York, NY, USA, 1. 
https://doi.org/10.1145/1352135.1352137 

[23] Pujan Petersen, Stefan Hanenberg, and Romain Robbes. 2014. An Empirical 
Comparison of Static and Dynamic Type Systems on API Usage in the Pres-
ence of an IDE: Java vs. Groovy with Eclipse. In Proceedings of the 22nd In-
ternational Conference on Program Comprehension (Hyderabad, India) (ICPC 
2014). Association for Computing Machinery, New York, NY, USA, 212–222. 
https://doi.org/10.1145/2597008.2597152 

[24] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn 
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian 
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun. 
ACM 52, 11 (nov 2009), 60–67. https://doi.org/10.1145/1592761.1592779 

[25] Nico Ritschel, Felipe Fronchetti, Reid Holmes, Ronald Garcia, and David C. Shep-
herd. 2022. Enabling end-users to implement larger block-based programs. In 
Proceedings of the ACM/IEEE 44th International Conference on Software Engineer-
ing: Companion Proceedings (ICSE ’22). Association for Computing Machinery, 
New York, NY, USA, 347–349. https://doi.org/10.1145/3510454.3528644 

[26] Nico Ritschel, Vladimir Kovalenko, Reid Holmes, Ronald Garcia, and David C. 
Shepherd. 2022. Comparing Block-Based Programming Models for Two-Armed 
Robots. IEEE Transactions on Software Engineering 48, 5 (May 2022), 1630–1643. 
https://doi.org/10.1109/TSE.2020.3027255 Conference Name: IEEE Transactions 
on Software Engineering. 

[27] Timothy Roden and Ian Parberry. 2005. Designing a Narrative-Based Audio 
Only 3D Game Engine. In Proceedings of the 2005 ACM SIGCHI International 
Conference on Advances in Computer Entertainment Technology (Valencia, Spain) 
(ACE ’05). Association for Computing Machinery, New York, NY, USA, 274–277. 
https://doi.org/10.1145/1178477.1178525 

[28] Christopher Scaffidi and Christopher Chambers. 2012. Skill Progression Demon-
strated by Users in the Scratch Animation Environment. International Journal 
of Human–Computer Interaction 28, 6 (2012), 383–398. https://doi.org/10.1080/ 
10447318.2011.595621 arXiv:https://doi.org/10.1080/10447318.2011.595621 

[29] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible 
AST-Based Programming for Visually-Impaired Programmers. In Proceedings of 
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis, 
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY, 
USA, 773–779. https://doi.org/10.1145/3287324.3287499 

[30] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2020. Adapting 
Student IDEs for Blind Programmers. In Proceedings of the 20th Koli Calling 
International Conference on Computing Education Research (Koli, Finland) (Koli 
Calling ’20). Association for Computing Machinery, New York, NY, USA, Article 
23, 5 pages. https://doi.org/10.1145/3428029.3428051 

[31] David Shepherd, Patrick Francis, David Weintrop, Diana Franklin, Boyang Li, 
and Afsoon Afzal. 2018. [Engineering Paper] An IDE for Easy Programming 
of Simple Robotics Tasks. In 2018 IEEE 18th International Working Conference 
on Source Code Analysis and Manipulation (SCAM). 209–214. https://doi.org/10. 
1109/SCAM.2018.00032 

[32] Ana Luisa Veroneze Solórzano and Andrea Schwertner Charão. 2021. BlocklyPar: 
from sequential to parallel with block-based visual programming. In 2021 IEEE 
Frontiers in Education Conference (FIE). 1–8. https://doi.org/10.1109/FIE49875. 
2021.9637261 ISSN: 2377-634X. 

[33] Viktor Stadler and Helmut Hlavacs. 2018. Blind Adventure - A Game Engine 
for Blind Game Designers. In Proceedings of the 2018 Annual Symposium on 
Computer-Human Interaction in Play (Melbourne, VIC, Australia) (CHI PLAY ’18). 
Association for Computing Machinery, New York, NY, USA, 503–509. https: 
//doi.org/10.1145/3242671.3242703 

[34] Andreas Stefik, Richard E. Ladner, William Allee, and Sean Mealin. 2019. Com-
puter Science Principles for Teachers of Blind and Visually Impaired Students. In 
Proceedings of the 50th ACM Technical Symposium on Computer Science Education 
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Computing Machinery, 
New York, NY, USA, 766–772. https://doi.org/10.1145/3287324.3287453 

[35] Javier Torrente, Ángel Serrano-Laguna, Ángel Aguado, Pablo Moreno Ger, and 
Baltasar Fernández-Manjón. 2014. Development of a Game Engine for Accessible 
Web-Based Games. 107–115. https://doi.org/10.1007/978-3-319-12157-4_9 

[36] Mauricio Verano Merino, Juan Pablo Sáenz, and Ana María Díaz Castillo. 2022. 
Suppose You Had Blocks within a Notebook. In Proceedings of the 1st ACM 
SIGPLAN International Workshop on Programming Abstractions and Interactive 
Notations, Tools, and Environments (PAINT 2022). Association for Computing 
Machinery, New York, NY, USA, 57–62. https://doi.org/10.1145/3563836.3568728 

[37] David Weintrop. 2019. Block-Based Programming in Computer Science Education. 
Commun. ACM 62, 8 (jul 2019), 22–25. https://doi.org/10.1145/3341221 

1292

https://doi.org/10.1109/TETC.2017.2729585
https://doi.org/10.1145/3308561.3354589
https://developer.android.com/reference/android/view/accessibility/package-summary
https://developer.android.com/reference/android/view/accessibility/package-summary
https://doi.org/10.1145/3372782.3406262
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXmodel.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXmodel.html
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility
https://developer.apple.com/documentation/objectivec/nsobject/uiaccessibility
https://doi.org/10.1145/3287324.3287462
https://doi.org/10.1145/2971329
https://mgaleg.maryland.gov/mgawebsite/Legislation/Details/SB0617?ys=2022RS
https://mgaleg.maryland.gov/mgawebsite/Legislation/Details/SB0617?ys=2022RS
https://doi.org/10.1145/3545947.3573235
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/2858036.2858349
https://doi.org/10.1145/3446871.3469762
https://doi.org/10.1145/3287324.3293755
https://doi.org/10.1145/3517428.3544806
https://doi.org/10.1145/3517428.3550382
https://doi.org/10.1145/1352135.1352137
https://doi.org/10.1145/2597008.2597152
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3510454.3528644
https://doi.org/10.1109/TSE.2020.3027255
https://doi.org/10.1145/1178477.1178525
https://doi.org/10.1080/10447318.2011.595621
https://doi.org/10.1080/10447318.2011.595621
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2011.595621
https://doi.org/10.1145/3287324.3287499
https://doi.org/10.1145/3428029.3428051
https://doi.org/10.1109/SCAM.2018.00032
https://doi.org/10.1109/SCAM.2018.00032
https://doi.org/10.1109/FIE49875.2021.9637261
https://doi.org/10.1109/FIE49875.2021.9637261
https://doi.org/10.1145/3242671.3242703
https://doi.org/10.1145/3242671.3242703
https://doi.org/10.1145/3287324.3287453
https://doi.org/10.1007/978-3-319-12157-4_9
https://doi.org/10.1145/3563836.3568728
https://doi.org/10.1145/3341221
https://docs.microsoft.com/en
https://csteachers.org/the-csaccess-working-group

	Abstract
	1 Introduction
	2 Review of Relevant Scholarship
	3 A Brief Introduction to Accessibility Programming
	4 Contribution 1: Accessible Graphics and Accessible Starvation
	5 Contribution 2: Accessible Blocks and Accessible Output
	5.1 Spatial Layout
	5.2 Editing Experience
	5.3 Visual Output

	6 Contribution 3: Focus Groups on Accessible Blocks
	7 Discussion
	8 Conclusions
	9 Acknowledgment
	References



