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Abstract—The re-identification or de-anonymization of users
from anonymized data through matching with publicly available
correlated user data has raised privacy concerns, leading to the
complementary measure of obfuscation in addition to anonymiza-
tion. Recent research provides a fundamental understanding
of the conditions under which privacy attacks, in the form of
database matching, are successful in the presence of obfuscation.
Motivated by synchronization errors stemming from the sam-
pling of time-indexed databases, this paper presents a unified
framework considering both obfuscation and synchronization
errors and investigates the matching of databases under noisy
entry repetitions. By investigating different structures for the
repetition pattern, replica detection and seeded deletion detection
algorithms are devised and sufficient and necessary conditions
for successful matching are derived. Finally, the impacts of some
variations of the underlying assumptions, such as the adversarial
deletion model, seedless database matching, and zero-rate regime,
on the results are discussed. Overall, our results provide insights
into the privacy-preserving publication of anonymized and ob-
fuscated time-indexed data as well as the closely related problem
of the capacity of synchronization channels.

Index Terms—dataset, database, matching, de-anonymization,
alignment, recovery, data, privacy, synchronization

I. INTRODUCTION

ITH the exponential boom in smart devices and the

growing popularity of big data, companies and institu-
tions have been gathering more and more personal data from
users which is then either published or sold for research or
commercial purposes. Although the published data is typically
anonymized, i.e., explicit identifiers of the users, such as names
and dates of birth are removed, there has been a growing
concern over potential privacy leakage from anonymized data,
approached from legal [1] and corporate [2] points of view.
These concerns are also articulated in the respective literature
through successful practical de-anonymization attacks on real
data [3]-[17]. Obfuscation, which refers to the deliberate
addition of noise to the database entries, has been suggested as
an additional measure to protect privacy [6]. While extremely
valuable, this line of work does not provide a fundamental
and rigorous understanding of the conditions under which
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anonymized and obfuscated databases are prone to privacy
attacks.

In the light of the above practical privacy attacks on
databases, several groups initiated rigorous analyses of the
graph matching problem [18]-[27]. Correlated graph match-
ing has applications beyond privacy, such as image pro-
cessing [28], computer vision [29], single-cell biological
data alignment [30], [31] and DNA sequencing, which is
shown to be equivalent to matching bipartite graphs [32].
Matching of correlated databases, also equivalent to bipartite
graph matching, has also been investigated from information-
theoretic [33]-[38] and statistical [39] perspectives. In [33],
Cullina et al. introduced cycle mutual information as a corre-
lation metric and derived sufficient conditions for successful
matching and a converse result using perfect recovery as
the error criterion. In [34], Shirani et al. considered a pair
of anonymized and obfuscated databases and drew analogies
between database matching and channel decoding. By doing
so, they derived necessary and sufficient conditions on the
database growth rate for reliable matching, in the presence of
noise on the database entries. In [35], Dai et al. considered the
matching of a pair of databases with joint Gaussian attributes
with perfect recovery constraint. Similarly, in [39], Kunisky
and Niles-Weed considered the same problem from the sta-
tistical perspective in different regimes of database size and
under several recovery criteria. In [40], Kahraman and Nazer
investigated the necessary and the sufficient conditions for
detecting whether two Gaussian databases are correlated. More
recently, motivated by the need for aligning single-cell data
obtained from multiple biological sources/experiments [30],
[31], in [41] Chen et al. investigated the matching of two
noisy databases which are the noisy observations of a single
underlying database under the fractional-error criterion, where
the noise is assumed to be the Gaussian. They proposed a
data-driven approach and analytically derived minimax lower
bounds for successful matching.

Motivated by the synchronization errors in the sampling
of time-indexed datasets, in this paper, we present a unified
generalized framework of the database matching problem
under noisy synchronization errors with near-exact recovery
criterion. Specifically, we investigate the matching of Markov
databases under arbitrary noise and synchronization errors.
Our goal is to investigate necessary and sufficient conditions
on the database growth rate [34] for the successful matching
of database rows. The generalized Markov database model
captures correlations of the attributes (columns), where syn-
chronization errors, in the form of random entry deletions
and replications, are followed by noise. As such, this paper
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Fig. 1. An illustrative example of database matching under identical repetition,
where each row experiences the same synchronization error. The columns
circled in red are deleted whereas the fourth column, which is circled in blue,
is repeated twice, i.e., replicated. For each (1, j), Y ; is the noisy observation
of X; j. Furthermore, for each 4, Y5 4(1) and Y; 4(2) are noisy replicas of
X;,4. Our goal is to estimate the row permutation o, which is in this example
given as; o, (1) =5, 0n(2) = 1, 0n(3) =4, on(4) = 3 and 0, (5) = 2,
by matching the rows of X and Y. Here the i" row of X corresponds to the
o ()™ row of Y.

generalizes the aforementioned work on database matching
under only noise. Our setting is illustrated in Figure 1.

We consider two extreme regimes regarding the nature of
synchronization errors, as results derived for these corner cases
provide insights into the intermediate regime. To this end, first,
we focus on the identical repetition setting where the repetition
pattern is constant across rows. In other words, in this set-
ting, deletions and replications only take place columnwise.
We consider a two-phase matching scheme, where we first
infer the underlying repetition structure by using permutation-
invariant features of columns. This is followed by the matching
phase which relies on the known replica and deletion locations.
We show that as long as the databases are not independent,
in the first phase, replicas can be found with high probability
through a series of hypothesis tests on the Hamming distances
between columns. Furthermore, assuming seed rows whose
identities are known in both databases [42], [43] we show
that if the seed size A, grows double-logarithmically with
the number of rows m,,, where n denotes the column size,
deletion locations can also be extracted. In the absence of
noise, seeds are not needed and column histograms can be
used to detect both replicas and deletions. Once the repetition
(including deletions and replications) locations are identified,
in the second phase, we propose a joint typicality-based
row matching scheme to derive sufficient conditions on the
database growth rate for successful matching. Finally, we
prove a tight converse result through a modified version
of Fano’s inequality, completely characterizing the matching
capacity when the repetition pattern is constant across the
TOWS.

Next, we focus on the other extreme, namely the in-
dependent repetition setting where the repetition pattern is
independent in each row and there is no underlying repetition
structure across rows. Under probabilistic side information on
the deletion locations, we propose a row-matching scheme and
derive an achievable database growth rate. This, together with
an outer bound obtained through Fano’s inequality, provides
upper and lower bounds on the matching capacity in the
independent repetition setting. Comparing the bounds in the
two extremes, we show that the matching capacity is lower

and hence matching is more difficult under the independent
repetition model. Finally, based on these two extreme models,
we state bounds on the matching capacity for any intermediate
repetition structure.

We also discuss the adversarial repetition model, where we
assume that synchronization errors, in the form of column
deletions, are chosen by a constrained adversary whose goal
is to hinder the matching of databases, where the constraint
is in the form of a fractional column deletion budget which
naturally provides a trade-off between utility and privacy.
Since this adversarial model forces us to focus on the worst-
case scenario and in turn, prohibits the use of typicality and
Fano’s inequality, we propose an exact sequence matching
and perform a more careful analysis of the worst-case error,
focusing on the Hamming distances between the rows (users)
of the databases, as is the case in the adversarial channel litera-
ture [44]. Under the identical repetition model, we completely
characterize the adversarial matching capacity.

In addition to the characterization of the matching capac-
ity under various assumptions, our results provide sufficient
conditions on the number and the size for column histograms
to be asymptotically unique. Since histograms naturally show
up frequently in information theory, probability theory, and
statistics, this result could be of independent interest. In
addition, our novel matching scheme in the independent rep-
etition case can be directly converted to a decoding strategy
for input-constrained noisy synchronization channels, a well-
investigated model in the information theory literature [45]-
[48].

A. Paper Organization

The organization of this paper is as follows: Section II
contains the problem formulation and the preliminaries. In
Section III, our main results on the matching capacity un-
der the identical repetition model are presented. Section IV
contains our main results on the matching capacity under the
independent repetition assumption. In Section V, we discuss
the underlying model assumptions and investigate how varia-
tions on these assumptions impact some of the results. Finally,
in Section VI the results and ongoing work are discussed.

B. Notations

In this paper, we use the following notations:

e [n] denotes the set of integers {1,...,n}.

o Matrices are denoted with uppercase bold letters. For a
matrix X, X; ; denotes the (i, ;)™ entry.

e a” denotes a row vector consisting of scalars ay, ..., a,.

« Random variables are denoted by uppercase letters while
their realizations are denoted by lowercase ones.

o The indicator of event F is denoted by 1.

e [ and H, denote the Shannon entropy and the binary
entropy functions [49, Chapter 2], respectively.

e O, 0,0, w and () denote the standard asymptotic growth
notations [50, Chapter 3].

e Dir(pxl|lgx) denotes the Kullback-Leibler diver-
gence [49, Chapter 2.3] between the probability distri-
butions px and ¢x. For scalars p,q € (0,1), D(p||q)
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denotes the Kullback-Leibler divergence between two
Bernoulli distributions with respective parameters p and
q. More formally,

17
P oiplog? )
1—g¢q q

o The logarithms, unless stated explicitly, are in base 2.

D(pllg) = (1 —p)log

II. PROBLEM FORMULATION & PRELIMINARIES
A. Problem Formulation

We use the following definitions, some of which are similar
to [34], [36], [38], to formally describe our problem.

Definition 1. (Unlabeled Markov Database) An (m,,n,P)
unlabeled Markov database is a randomly generated m, x n
matrix X ={X;; € X:i € [m,],j € [n]} whose rows are
i.i.d. and follow a first-order stationary Markov process de-
fined over the alphabet X = {1,...,|X|} with probability
transition matrix P such that

P=7I+(1-9U 2)
Uij=u; >0, V(i,j) € X? A3)
duj=1 4)

JEX
v7€[0.1) ©)

where 1 is the identity matrix. It is assumed that
X1 "X =[uy,... suizl, @ = 1,...,my,, where m is the

stationary distribution associated with P.

Note that Definition 1 yields the following n-letter proba-
bility model for row generation V2™ € X":

Pr(X" = 2") = ug, H (1= YVttw; + VLo, =a; 1)) (6)
Jj=2

Observe that, the parameter  determines the correlation
among the columns of X. Specifically, v = 0 corresponds to
the case where X; ; are i.i.d.

In our work, we are mainly interested in two extreme cases
of the repetition pattern:

« Every row of X experiences the same repetition pattern
which we call identical repetition.

o Rows of X experience i.i.d. repetition patterns which we
call independent repetition.

The formal definitions of these two scenarios are provided
in Definitions 2-3 where the main difference comes from
the repetition pattern S™ (Definition 2) and repetition matrix
(Definition 3).

Definition 2. (Labeled Repeated Database under Identi-
cal Repetition) Let X be an (my,,n,P) unlabeled Markov
database, S™ be vector of length n with S; being i.i.d. entries
drawn from a discrete probability distribution pgs with a finite
integer support {0, ..., Smax}, On be a uniform permutation
of [my) with X, S™ and o, independently chosen. Also, let
py|x be a conditional probability distribution with both X
and Y taking values from X. Given X, S™ and py|x, the
random matrix Y is called the labeled repeated database under
1dentical repetition if the i row X of X and the o,,(i)™ row
Yo, ), i, | of Y have the relation given

K,

Yo =Yoo
in (7)-(8), where

J
K; 23S, 9)
t=1

Here S™ and o, are called the repetition pattern and labeling
function, respectively.

Note that S; indicates the times X ; is repeated (including
deletions and replications). When S; = 0, X, ; is said to be
deleted (repeated zero times) and when S; > 1, X, ; is said
to be replicated S; times (repeated S; times). & £ ps(0) is
called the deletion probability.

The respective rows X and Yif” of X and Y are said to
be matching rows, if o, (i1) = is.

Definition 3. (Labeled Repeated Database under Indepen-
dent Repetition) Let X be an (my,n,P) unlabeled Markov
database, S be an m, x n matrix with S;; iid. from a
discrete probability distribution pg with a finite integer support
{0, ..., Smax }» 0n be a uniform permutation of [m.,] with X, S
and oy, independently chosen. Also, let py|x be a conditional
probability distribution with both X and Y taking values from
X. Given X, S and Dy|x, the random matrix Y is called
the labeled repeated database under independent repetition
if the i™ row X of X and the o, (i)" row Y;i‘(’;)“)’" =
[Yan(i)717'"7YU7l(i)7Ka7l(i),n] of Y have the relation given
in (11)-(12), where

J
K;;= Zsi,t (10)
t=1
Here S and o, are called the repetition matrix and labeling
function, respectively.

Note that S, ;) ; indicates the times X;; is repeated
(including deletions and replications). When S, ) ; = 0,
X ; is said to be deleted (repeated zero times) and when
So.(i),; > L Xij is said to be replicated Sy ;) ; times
(repeated S times). 6 = pg(0) is called the deletion
probability.

The respective rows X[ and Yf” of X and Y are said

n(i).J

PI’(YO_IiT(”L) = yK"’ |XZn = J]n)
j:S;#0

S

§:8;7#0 s=1

H Pr((YGn(i),K_j_1+l7"'?

Yo, ).k,) = WK1, UK, X = 25) (7

T TIpvix e, issles) ®)
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to be matching rows, if 0,,(i1) = ia.

In our model, the labeled repeated database Y is obtained
by permuting the rows of the unlabeled Markov database X
with the uniform permutation o,, followed by repetition based
on the repetition pattern S™ (Definition 2) or repetition matrix
S (Definition 3) and introduction of noise through py|x. The
relationship between X and Y, as described in Definitions 2-
3, is illustrated in Figure 2. As we formalize later, the goal is
to recover the labeling function o,, based on the observations
of X and Y.

Equations (7)-(8) (resp. (11)-(12)) state that we can treat
Y5, (i),; as the output of the discrete memoryless channel
(DMC) py|x with input sequence consisting of S (resp.
S, (i),5) copies of X; ; concatenated together. We stress that
py|x is a general model, capturing any distortion and noise
on the database entries, though we refer to this as “noise” in
this paper.

We will observe that these two models pose different chal-
lenges to matching and in turn necessitate different solutions
with different implications.

In most of the paper, we assume a random repetition pattern
as in Definitions 2-3. In Section V-A, we will discuss the
effects of an adversarial worst-case repetition pattern. Note that
in this paper, we assume that px y and pg are available during
the matching. For a study of distribution-agnostic database
matching, see [51].

As discussed in Section III, inferring the repetition pattern,
particularly deletions, is a difficult task. Therefore, for the
identical repetition pattern, we assume the availability of seeds
to help with the inference of the underlying repetition pattern,
similar to database matching [36] and graph matching [42],
[43] settings.

Definition 4. (Seeds) A seed is a pair of matching rows whose
labels and entries are known universally. A batch of A,, seeds
(GM,G@) is a batch of A, correctly-matched row pairs.
Here G(Y) € XM X" has the same row generation process as
X, (G, G @) have the same relation as (X)Y), as described
in Definition 2 with the same noise distribution py x and
repetition pattern S™. A, is called the seed size.

Note that in Definition 4, for notational convenience, the
seeds are assumed to be additional to the databases.

Throughout Section III, we assume a double logarithmic
seed size A,, = Q(loglogm,,). We will discuss the effects of
not having seeds in Section V-B.

In the independent repetition setting, the seeds offer no
additional information, as the repetition pattern is independent

in each row. Instead, we assume that the locations of some
deleted entries are revealed. This is formalized in the following
definition:

Definition 5. (Partial Deletion Location Information) For
a labeled repeated database under independent repetition
(Definition 3), the partial deletion location information A is
an my, X n random matrix, with the following conditional
distribution on repetition matrix S:

Pr(Ai,j = ]_|S) = Ol]].[si,j:()] (13)

where A; j =1 corresponds to X, -1 (i), being revealed as
deleted and A; j = 0 corresponds to either X -1 ;) . not being
deleted or not being revealed after deletion. The parameter
a € [0, 1] is called the deletion detection probability.

Definition 5 states that the location of each deleted entry is
revealed with probability «. Since the entries of S are i.i.d.
and S and X are independent, each deleted column is revealed
independently of the other columns of S and X. Furthermore,
since S; ; are drawn ii.d., so are A; ;.

Definition 6. (Successful Matching Scheme) In the identical
(resp. independent) repetition setting, a matching scheme is
a sequence of mappings ¢, : (X,Y, GO, G(2)) — Gy, (resp.
¢n (X, Y, A) — 6,) where X is the unlabeled Markov
database, Y is the labeled repeated database, (G1), G(2))
are seeds (resp. A is the partial deletion location information)
and &, is the estimate of the correct labeling function o,,. The
scheme ¢, is successful if

Pr(6,(J) £ 0n(J)) = 0asn— oo (14)

where the index J is drawn uniformly from [my].

Observe that the performance criterion considered in Defini-
tion 6 allows a sublinear fraction of the rows to be mismatched.
This near-perfect performance criterion allows us to utilize
communication and information-theoretic tools and work with
arbitrary distributions whereas as far as we are aware the prior
work considering the perfect recovery criterion mainly focuses
on one specific distribution. This success criterion is also
known as near-perfect or almost-perfect recovery [39]. Other
success definitions include perfect recovery [33], [35], [39],
where all rows have to be perfectly aligned, and weak-recovery
or linear-error [39] where a constant fraction of the rows is
allowed to be mismatched. For an extensive comparison of
the Gaussian database alignment results under these different
performance criteria, please see [39].

We stress that in database matching, the relationship be-

Pr(YUI:C(f;)u),n — chrn(’i>,'rL in _ xn)
= JI  Prsonmenws it Youthkonws) = Wk yoatts U, 0,1 Xig = 25) (D
jzs"'n(l)»]‘;éo
Sop (i),
= H py|X(ngn(i),Jfl+s|xj) (12)
j:SO'7L(i)$j7$O s=1
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Fig. 2. Relation between the unlabeled database X and the correlated

repeated database Y. Repetition is represented by the repetition pattern S™
(Definition 2) or the repetition matrix S (Definition 3).

tween the row size m,,, the column size n, and the database
distribution parameters are of interest [39], [40], [52]. Note
that for fixed column size n, as the row size m,, increases,
matching becomes harder. This is because for a given column
size n, as the row size m,, increases, so does the probability
of mismatch as a result of having a larger candidate row set.
Furthermore, as stated in [39, Theorem 1.2], for distributions
with parameters constant in n and m,,, the regime of interest
is the logarithmic regime where n ~ logm,,. Thus, we utilize
the database growth rate introduced in [34] to characterize the
relationship between the row size m,, and the column size n.

Definition 7. (Database Growth Rate) The database growth
rate R of an (my,, n, P) unlabeled Markov database is defined
as

R = lim llogmn (15)

n—o0o N,

In Sections III and IV, we assume that the database growth
rate R is positive and m,, = 2" for notational simplicity. We
will discuss the zero-rate regime R = 0 in Section V-C.

Definition 8. (Achievable Database Growth Rate) Consider a
sequence of (my,,n, P) unlabeled Markov databases, a repeti-
tion probability distribution pg, a noise distribution py | x and
the resulting sequence of labeled repeated databases under
identical (resp. independent) repetition. For a seed size A,
(resp. a deletion detection probability o), a database growth
rate R is said to be achievable if there exists a successful
matching scheme when the unlabeled database has a growth
rate R.

Definition 9. (Matching Capacity) Under identical (resp.
independent) repetition, the matching capacity C is the supre-
mum of the set of all achievable rates corresponding to a
probability transition matrix P, repetition probability distri-
bution pg, noise distribution py | x, and seed size A, (resp. a
deletion detection probability o).

In this paper, our goal is to characterize the matching
capacity under the two extreme repetition structures, namely
identical repetition and independent repetition, respectively, by
providing database matching schemes as well as upper bounds
on all achievable database growth rates.

B. Preliminaries

For the sake of completeness, we present below some of
the classical information-theoretic definitions and results, most
of which are borrowed from [34], [49], that will be used
throughout this paper.

Definition 10. (Entropy Rate) For the discrete random pro-
cess X characterized by px~, with n € N, the entropy rate is

defined as:
H(X) 2 lim E[— logpx, , jx» (Xni1]X™)]. (16)

n—oo

when the limit exists.

Definition 11. (Typicality) The e-typical set associated with
the discrete random process X is defined as

AP0 & {an: | Togpre ) - 0| <))

where H(X) is the entropy rate of X.

Definition 12. (Joint Typicality) The e-typical set associated
with the discrete random processes (X,Y) is defined as

AP(X,Y)
1
< {(w”,y”) : ’—nlogpmyn(x’%y”) - H(X,y)' <e
(18)
where H(X,)) is the entropy rate of (X,)).

Lemma 1. (Generalized AEP [53, Theorem 1]) For the
discrete stationary random process X characterized by pxn,
with n € N, we have
1 a.s.
—glogpxn(m") = H(X). (19)

Along with standard information-theoretical arguments,
Lemma 1 leads to the following:

Prog)osition 1. (Typicality) For a e-typical sequence x™ €
A (X)

we have
27n(H(X)+E) S an (J:n) S 27n(H(X)7€) (20)
Furthermore,

for large n.

Proposition 2. (Joint Typicality) For a e-typical sequence pair
(" y") € A (X,Y) we have

2 MHXIH) < pin yn (z") < 9—n(H(X,Y)—e) (22)
Furthermore,
on(H(X,Y)—e€) < |A£") (X,Y)] < on(H(X,Y)+e€) (23)

for large n.

Proposition 3. (Joint AEP) Consider a correlated pair of
stochastic processes (X,Y) characterized by pxn yn, with
n € N Let X" and Y™ be generated according to the
marginal distributions pxn» and py., independently. Then, the

following holds:
Pr((X™,Y") € AW (X,Y)) <2 nUEXY)=30) (4

where 1(X;Y) & H(X) + H(Y) — H(X,)) is the mutual
information rate. Furthermore,

Pr((X™,v") e AM(X,Y)) > (1 — e)2 nIE:Y)H39 (75

for large n.
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ITI. MATCHING CAPACITY FOR IDENTICAL REPETITION

In this section, we present the matching capacity C
for an identical repetition pattern with seed size A, =
Q(loglog m.,). We will show that when A,, = Q(loglogm,,),
the repetition pattern, including the deletion locations, can be
inferred.

We state the main result of this section in Theorem 1 and
prove its achievability by proposing a three-step approach: i)
noisy replica detection and ii) deletion detection using seeds,
followed by iii) row matching. Then, we prove the converse
part. Finally, we focus on the noiseless setting as a special
case where we prove that we can devise a new detection
algorithm specific to the noiseless model which renders the
seeds obsolete.

Theorem 1. (Matching Capacity for Identical Repeti-
tion) Consider a probability transition matrix P, a column
repetition distribution ps with an identical repetition pat-
tern, and a noise distribution py|x. Then, for a seed size
A, = Q(loglog my,), the matching capacity is

n.vyvK, n
C— lim L&Y ST

n— 00 n

(26)

where X" is a Markov chain with probability transition matrix
. T jid
P and stationary distribution w, S; ~ ps and

Pr(YK" = yK"|X” =z")

= H Pr((Y, y41s---:Yk,)
J:8;#0
= (ij71+17’~‘7ij)|Xj :(E]) (27)
Sj
= H HpY‘X(ij—lJFSL/Ej) (28)
§:5;#£0 s=1

J
where K; £ )" S;.
t=1
Because of the independence of X™ and S™, (26) can also
be represented as

n.vK,l Qn
C = fim JEXHYTSY

n—oo n

(29)

Hence, Theorem 1 states that although the repetition pattern
S™ is not known apriori, for a seed size A,, = Q(loglogm,,),
we can achieve a database growth rate as if we knew S™. Since
the utility of seeds increases with the seed size A,,, we will
focus on A,, = O(loglog m,,), which we show is sufficient to
achieve the matching capacity.

Even though the specific Markov row generation process,
assumed in Definition 1, does not show up in (26), it plays a
significant role in the estimation of the repetition pattern S™,
as can be seen in Appendices A-C.

Corollary 1. (Matching Capacity for Identical Repetition
with I.1.D. Database Entries) When v = 0, resulting in an
i.i.d. database distribution px (x) = u,, Yo € X, the matching
capacity is

C =1I1(X;Y%9) (30)

where S ~ pg and Y° =Y1,...,Ys such that

S
H pY\X(yiL’C), if s>0

=1
Lys—m), if's 23(1)
(D

Pr(Y® =y1,...,ys|X = 2) =

and E denotes the empty string.

The rest of this section is on the proof of Theorem 1.
In Section III-A, we discuss our noisy replica detection
algorithm which does not utilize the seeds and prove its
asymptotic performance. In Section III-B, we introduce a
deletion detection algorithm that uses seeds and derive a seed
size sufficient for an asymptotic performance guarantee. Then,
in Section III-C, we combine these two algorithms and prove
the achievability of Theorem 1 by proposing a typicality-
based matching scheme for rows, which is performed once
replicas and deletions are detected. In Section III-D, we prove
the converse part of Theorem 1. Finally, in Section III-E, we
focus on the special case of no noise on the repeated entries
and provide a single repetition (replica and deletion) detection
algorithm that does not require any seeds.

Note that when the two databases are independent, Theo-
rem 1 states that the matching capacity becomes zero, hence
our results trivially hold. As a result, throughout this section,
we assume that the two databases are not independent.

A. Noisy Replica Detection

We propose to detect the replicas by extracting permutation-
invariant features of the columns of Y. Our algorithm only
considers the columns of Y and as such, can only detect repli-
cas, not deletions. Note that our replica detection algorithm
does not require any seeds unlike seeded deletion detection
discussed in Section III-B.

Our proposed replica detection algorithm (Algorithm 1)
adopts the Hamming distance between consecutive columns
of Y as a permutation-invariant feature of the columns. The
permutation-invariance allows us to perform replica detection
on Y with no prior information on o,,.

Let K,, denote the number of columns of Y, C]’-"" denote
the jM column of Y, j = 1,...,K,. The replica detection
algorithm works as follows: We first compute the Hamming

distances H; between consecutive columns C'Jm and ;"J;Ll,
for j € [K,, — 1]. More formally,
H; & Z Ly, 1 2vig)s Vie[K,—1 (32

t=1

For some average Hamming distance threshold 7 € (0,1)
chosen based on P and py | x (See Appendix A), the algorithm
decides that 7" and C7}y are replicas only if H; < m,T,
and correspond to distinct columns of X otherwise. In the
following lemma, we show that Algorithm 1 can infer the
replicas with high probability. Observe that the runtime of
Algorithm 1 is O(m,n), the computational bottleneck being
the computation of {H }fz”'l_l.

Lemma 2. (Noisy Replica Detection) Let F; denote the
event that the Hamming distance-based algorithm described
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Algorithm 1: Noisy Replica Detection Algorithm
Input : (Y,P,py|x)
Output: isReplica
H < RunningHammingDist(Y);
7 <ThresholdSelection(P, py|x );
/*Threshold selection. See Appendix A.*/
isReplica + &;
for j =1 to columnSize(Y)—1 do
if H[j] <7 * rowSize(Y) then
| isReplica[j] < TRUE;
else
| isReplica[j] < FALSE;
end
end

/% Eq. (32) */

above fails to infer the correct replica relationship between the
columns C"" and C7'"y of Y, j=1,..., K, — 1. The total
probability of replica detectzon error ofAlgorzthm 1 diminishes
as n — oo, that is

Kn—1
Pr( U E;) = 0asn— oo. (33)

j=1
Proof. See Appendix A. [

B. Deletion Detection Using Seeds

The replica detection algorithm discussed in Section III-A
only uses Y and infers only the replicas, not the deletions. We
next propose a deletion detection algorithm that uses seeds.

Let (G, G®) be a batch of A, = O(loglogm,,) seeds
with the identical repetition pattern S™ as (X, Y). Our deletion
detection algorithm (Algorithm 2) works as follows: After
finding the replicas as in Section III-A, we discard all extra
copies, keeping only the original entry in a replica run with
S; > 1 from G®), to obtain G2, whose column size is
denoted by K,,. At this step, we only have deletions.

Next, for each index pair (i,7) € [n] % [K,], we com ute
the Hamming distance L; ; between the i column G,

G® and the ]‘h column G of G® . More formally, we
compute

Aq
Lij ) Lomaae) (34)
t=1
Then, for each index ¢ € [n], the algorithm decides G
is retained (not deleted) only if there exists a column G
G®@ with L; 4 < A,7, for some average Hamming dlstance
threshold 7 € (0,1) chosen based on P and py|x (See
Appendix B). In thls case, we assign I; = 0, where I; is
the indicator of G bemg inferred as deleted. Otherwise, the
algorithm decides G is deleted, assigning I = 1. At the
end of this procedure the algorithm outputs an estimate In =
(Il, ce In) of the true deletion pattern Ij, = (I1,...,1,).

Here, for each i € [n] we have
I £ 15, -0 (35)
I 2 i (36)

3j€[Kn]: Li ;<AL 7

Note that such a Hamming distance-based strategy depends
on pairs of matching entries in a pair of seed rows in G
and G having a higher probability of being equal than non-
matching entries. More formally, WLOG, let S; # 0 and X; g
and Y; ; denote the respective (i, J)th entries of G(l) and G,
Given a matching palr (XZ j,Y ;) of entries and any non-
matching pair (X;,Yi;), | # j we need

Pr(Yi; # Xij) < Pr(Yi; # Xig) 37

which may not be true in general.

For example, suppose we have a binary uniform i.id.
distribution, i.e., X = {0,1} with v = 0 and u; = 1/2 (recall
Definition 1). Further assume that py|x follows BSC(qg),
ie. pyx(z|zr)=1-¢, x=0,1. Note that when ¢ >1/2,
equation (37) is not satisfied. However, in this example, we
can flip the labels in Y by applying the bijective remapping
® = (9]) toY in order to satisfy equation (37).

Thus, as long as such a permutation ® of X satisfying
equation (37) exists, we can use Algorithm 2. Now, suppose
that such a mappm% ® exists. We apply @ to the entries of
G® to construct G’. Then, our deletion detection algorithm
follows the above steps computing L; ;(®) for each index pair

(4,7) € [n] x (K, and outputs the deletion pattern estimate
I"(®) = (I1(®), ..., I,(P)) where
A'Vl
d) & 1 - . 38
52 Yot o)
L(®) = ]l[aje[f%n]: Lij(®)<An7| (39)

and G (2) (®) is the j column of Gg ). Note that the runtime of
Algonthm 2 is O(n2A,,), the computational bottleneck being
the computation of L(®).

The following lemma states that such a bijective
mapping @ always exists and for a seed size
A, = ©(logn) = O(loglogm,,), this algorithm can infer the

deletion locations with high probability.

Lemma 3. (Seeded Deletion Detection) For a repetition
pattern S™, let 1 = {j € [n]|S; = 0}. Then there exists a
bijective mapping ® such that equation (37) holds after the
remapping. In addition, for a seed size A,, = O(logn), using
Algorithm 2, we have

Pr (i(@) - Ide,) — 1 asn— . (40)

Proof. See Appendix B. O

We stress that the remapping ® is utilized only on G

to detect the deletions, and is not applied to Y during the
matching process.

C. Row Matching Scheme and Achievability

Let S™ be the underlying column repetition pattern and
K, % Z;’L:I S; be the number of columns in Y. The matching
scheme (Algorithm 3) we propose follows these steps:
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8
Algorithm 2: Seeded Deletion Detection Algorithm Algorithm 3: Typicality-Based Matching Scheme
Input : (G(l),G(Q),P,py|X,isReplica) (Identical Repetition)
Output: isDeleted Input : (X,Y,P,py|x,ps,6, GH,G?)
S(X) « SymmetryGroup(X); Output: 5,
for s < 1 to |X|! do /%Step 1.%/
D+ S(X)[s]; /* Pick a remapping. */ isReplica<— Alg. 1(Y, P, py|x);
/* isUseful checks if ® satisfies (37).*/ /*Step 2.%/
if isUseful(®, P, py|x) then isDeleted«— Alg. 2(G™), G2, P, py | x isReplica);
‘ break; /* Move on with ®. */ S™ + EstimateRepetitionPattern(isReplica,isDeleted);
end /*Step 3.*/ .
end Y < MarkerAddition(Y, S™);
/*Remove extra copies.*/ for i = 1 to rowSize(X) do
G®) ExtraReplicaRemoval(G () isReplica); count«— 0;
Gg) +Remap(G?), d); /* Apply remapping ®. */ for j = 1 to rowSize(Y) do
L(®) + ComputeHammingDist(G ("), Gg)); /* (38) */ lij ] ) _ )
/*Threshold selection. See Apprendix B.*/ isJointly Typical(X[i][:], Y[5][:], P, py|x, ps, €)
7 «ThresholdSelection2(P, py| x); theP _ )
for i = 1 to columnSize(GW)) do onli] < J; .
for j =1 to columnSize(Gg)) do endcount<— count + 1;
if L(®)[i][j] <7 * rowSize(G")) then end
isDeleted[i] < FALSE; o . .
break: /* count = 0: no row in Y jointly typical with
’ X[7][:]. ERROR! */
else /* count > 1: multiple rows in Y jointly typical
| isDeleted[f] + TRUE; with X[i][;]. ERROR! */
end .
end if count # 1 then
| 6nli] + 0 /* Matching error. */
end
end
end
Sm=12,0,3,1,0,.. ] ]
YE =Y}, Ys, Y3, Yy, Vs, Y, . J—> 4) Fix ¢ > 0. Match the ™ row Y;"" of Y with the i row
X7 of X if X is the only row of X jointly e-typical
ith Y/» according to pxn» yx,. gn, Where .S; S ps and
Y1, Yol Vs, Yy, Vol Vel ] SRt XY Kn S i~ Ps
[ 1y 2|| 3,14, 15 fJ|| } YK” :YISI7...,YnS” such that
% Erasure Symbol Pxn yK|gn (z", yk |s™)
Y =Yy, Yol * Y3, Yy, Y5[ Yo = [ .. J<— | ™" {qiicon si
=pxn(z") H HpY|X((ysi)j|1'i) H Lpyss =

Fig. 3. An example of the construction of Y, as described in Step 3 of the i8>0 j=1 irsi=0

proof of Theorem 1 in Section III-C, illustrated over a pair of rows X™ of ‘ ¢ ( 41)

X and YE of Y. After these steps, in Step 4 we check the joint typicality
f th s X" of Xand Y of Y. . . A g .

o fetows A7 0L 2 and 1o with y¥ =yt ... y®». Assign 6,,(i) = L. If there is no such

jointly typical row, or there is more than one, declare an

1) Perform replica detection as in Section III-A. The proba- error.
bility of error in this step is denoted by p,,. The runtime of Algorithm 3 is O(m2n) due to the typicality

2) Perform deletion detection using seeds as in Section III-B.  check (each O(n)) for all row pairs (X", YjK”) (i,7) € [mn]*
The probability of error is denoted by 1i,,. At this step, we The column discarding and the marker addition as described
have an estimate S™ of S™. in Steps 3-4, are illustrated in Figure 3.

3) Using 5™, place markers between the noisy replica runs of We are now ready to prove the achievability of Theorem 1.

different columns to obtain Y. If a run has length 0, i.e.

deleted, introduce a column consisting of erasure symbol

* ¢ X. Note that provided that the detection algorithms in  Proof of Achievability of Theorem 1. From the union bound
Steps 1 and 2 have performed correctly, there are exactly — and Proposition 3, the total probability of error of this scheme
n such runs, where tile j% run in Y corresponds to the (as in (14)) can be bounded for large n as follows

noisy copies of the 5™ column of o, o X if S; # 0, and - s
an ei,asuri column O{herwise. 1 7 P, < 2Ry nTEYEH739 e ppy o+ 42)
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where I(X;Y®,S) is the mutual information rate [54] defined
as

1
lim —I(X"; YK §m)

n—o00 N

I(X;Y%,9) % 43)
Note that since m,, is exponential in n, from Lemma 2 we have
pn — 0. Furthermore, since A,, = ©(logn), from Lemma 3
we have p, — 0 asn — oo. Thus P, < e asn — oo if
1
R < lim —I(X"; YK~ g™

n—o00 N

(44)

concluding the proof of the achievability part. O

D. Converse

In this subsection, we prove that the database growth rate
achieved in Theorem 1 is in fact tight using a genie-aided
proof where the column repetition pattern S™ is known. Since
the rows are i.i.d. conditioned on the repetition pattern S™,
the seeds (G(), G(?)) do not offer any additional information
when S™ is given. Thus, the genie-aided proof holds for any
seed size A,,.

Proof of Converse of Theorem 1. While Theorem 1 is stated
for A,, = Q(loglog m,,), in the converse we assume any seed
size A,,. We prove the converse using the modified Fano’s
inequality presented in [34]. Let R be the database growth
rate and P, be the probability that the scheme is unsuccessful
for a uniformly selected row pair. More formally,

P.2Pr(o,(J) #6,(J)), J~ Unif(m,]) (45)

Suppose P, — 0 as n — oo. Furthermore, let S™ be the
repetition pattern and K, = Z;’:l S;. Since o, is a uniform
permutation, from Fano’s inequality, we have

H(o,) <1+ m,P.logm,

+I(0n: X, Y, G G?) g7 (46)

From the independence of Y, S, (G, G®)) and o,,, we
get

I(0,;X,Y,GH G, gm)

=I(o:; X|Y,GM G 5™ (47)
<I(0,,Y,GM, G® 5" X) (48)
<I(on, Y,S5" X) (49)
= I(o,, Y; X|S™) (50)
= I(X YIS (51)
=1
= muI(X™; YEn|S5™) (52)
= m,I(X™; Y5 §m) (53)

where (49) follows from the fact that given the repetition
pattern S™, the seeds (G(Y), G(?)) do not offer any addi-
tional information on o,. Equation (51) follows from the
conditional independence of the non-matching rows given S™.
Equation (52) follows from the fact that the matching rows are
identically distributed conditioned on the repetition pattern S™.
Finally, (53) follows from the independence of X™ and S™.

Note that from Stirling’s approximation [50, Chapter 3.2]
and the uniformity of o,,, we get

H(o,) = logmy,! (54)
= my, logm, — my,loge + O(log m,) (55)
lim H(o,) = lim [m, logmy,
n—o0 Myn n—oo Mpyn
—mpyloge + O(logm,)]  (56)
1
= lim —logm, &)
n—oo N
=R (58)
Finally, from (46)-(58) we obtain
R = lim H(oy) (59)
n—00 My N
1
< lim + PR+ —I(X™; Y5 S™) (60)
n—oo | MuyN n
n.v Ky n
_ gy LXH YR, ST 61)
n—o00 n

where (61) follows from the fact that P, — 0 as n — oco. [

E. Noiseless Setting

Lemmas 2 and 3 state that given a seed size A,, double
logarithmic with the row size m,,, the repetition pattern can
be inferred through the aforementioned replica and deletion
detection algorithms for any noise distribution py| x . Thus, the
results of Section III-A through Section III-C trivially apply
to the noiseless setting where

pyix (Wlz) = Ly V(2. y) € X°. (62)

We note that when there is no noise, the capacity expression
of Theorem 1 (Equation 26) can be further simplified as

C=(1-0)> i STH(Xo| X 1)

r=0

(63)

In this subsection, we show that in the noiseless setting,
seeds can be made obsolete by the use of a novel detection
algorithm. In other words, in the noiseless setting, we show
that Theorem 1 can be extended to any seed size A,,.

Theorem 2. (Noiseless Matching Capacity for Identical
Repetition) Consider a probability transition matrix P and
a repetition probability distribution ps. Suppose there is no
noise, i.e.,

pyx (Yle) = Ly—q) V(z,y) € X2, (64)
Then, the matching capacity under identical repetition is
C=(1-0)?%> 6"H(Xo|X_,_1) (65)
r=0

for any seed size \,,. Here § = pg(0) is the deletion probabil-
ity and H(Xo|X_,_1) is the conditional entropy associated
with the probability transition matrix

Pr+1 — ,YrJrlI + (1 _ ,YTJrl)U (66)
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The capacity can further be simplified as

1-— 1-—
C = % )+ Zu log u;]
(1 - ieX
Z &> uingilogne;  (67)
r=0 eX
where
i & (1= u)y™ + s (68)

Corollary 2. (Noiseless Matching Capacity for Identical
Repetition with 11.D. Database Entries) When v = 0,
resulting in an ii.d. database distribution px(xr) = g,
Vx € X, the matching capacity in the noiseless setting is

C=(1-8§H(X) (69)

where H(X) = H(w) is the entropy of the stationary distri-
bution T = [uy, ..., ux|.

Observe that the RHS of (65) is the mutual information rate
for an erasure channel with erasure probability § with first-
order Markov (P) inputs, as stated in [55, Corollary II.2].
Thus, Theorem 2 states that we can achieve the erasure bound
which assumes prior knowledge of the column repetition
pattern.

The proof of Theorem 2 hinges on the observation that
in the noiseless setting deletion and replica detection can be
performed without seeds. Inspired by the idea of extracting
permutation-invariant features as done in Section III-A, our
noiseless repetition detection algorithm uses the histogram
(and equivalently the type) of each column of X and Y as
the permutation-invariant feature. Our repetition detection al-
gorithm works as follows: First, for tractability, we “collapse”
the Markov chain into a binary-valued one. We pick a symbol
x from the alphabet X, WLOG z = 1, and define the collapsed
databases X and Y as follows:

M, , = {; if M, =1

if M, #1°
Next, we construct the collapsed histogram vectors H®:n
and H®:Kn ag

V(i j), Me{X, Y} (70)

av= in | Vi € [nl (71)
a® = Zuy o> Vi € (K] (72)

Then, the algorlthm declares the j column deleted if H (1)
is absent in H()X» and declares the j™ column rephcated S

times if HJ( ) is present s > 1 times in H®):Kn,

Note that as long as column histograms H ](1) of the col-
lapsed database X are unique, this detection process is error-
free.

The following lemma provides conditions for the asymptotic
uni f column hi 70,

queness of column histograms H; ’, j € [n].

Lemma 4. (Asymptotic Uniqueness of the Column His-

tograms) Let H J(-l) denote the histogram of the ™ column

of X, as in (71). Then, for m, = w(n*), we have
Pr (Hi,j € [n], i #j,[jli(l) = Hj(l)) —0asn—oo. (73)
Proof. See Appendix C. O

When the databases are not collapsed, the order relation
given in Lemma 4 can be tightened. See Section V-C for more
details.

Note that by Definition 7, the row size m,, is exponential
in the column size n and the order relation of Lemma 4 is
automatically satisfied.

Next, we present the proof of the achievability part of
Theorem 2 via Algorithm 4.

Proof of Achievability of Theorem 2. Let S™ be the underly-
ing repetition pattern and K, = Y7 j—19; be the number of
columns in Y. Our matching scheme consists of the following
steps:

1) Construct the collapsed histogram vectors HM:" and
H®):En a5 in (71). i
2) Check the uniqueness of the entries H ](»1) j € [n] of

H®:n_If there are at least two that are identical, declare
a detection error whose probability is denoted by p,.
Otherwise, proceed with Step 3.

3) If ﬁ;l) is absent in H®)-Kn declare it deleted, assigning
S'j = 0. Note that, conditioned on the uniqueness of the
column histograms H ](1) Vj € [n], this step is error-free.

4) If f[;l) is present s > 1 times in H(®) %~  assign Sj =s.
Again, if there is no detection error in Step 2, this step is
error-free. Note that at the end of this step, provided there
are no detection errors, we recover S, i.e., §n — §n,

5) Based on S” X and Y, construct Y as the following:

o If S’ =0, the 7™ column of Y is a column consisting
of erasure symbol * ¢ X.

o If S > 1, the j" column of Y is the ;'

Note that after the removal of the additional replicas and

the introduction of the erasure symbols, Y has n columns.

6) Fix € > 0. Let gy|x be the probability transition matrix
of an erasure channel with erasure probability 4, that is

V(z,g) € X x (XU{x})

B 1-6
QY’|X(y|x) = 5 ifg=s

b column of X.

T

We consider the input to the memoryless erasure channel
as the 7" row X of X. The output Y™ is the matching
row of Y. For our row matching algorithm, we match the
™ row V" of Y with the i row X of X, if X" is the
only row of X jointly e-typical [49, Chapter 3] with Y;"
with respect to pxn y~, where

HQY\X Yilzs)

where X" denotes the Markov chain of length n with
probability transition matrix P. This results in &, (i) = [.
Otherwise, declare collision error.

pxn yn (2", 7") = pxn(z (75)
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Algorithm 4: Typicality-Based Matching Scheme
(Identical Repetition, Noiseless Setting)
Input : (X,Y,P,ps,e€)
Output: 6,
(X,Y) + CollapseDatabases(X, Y); /% (70) */
(HMW, H®) + ColumnHistograms(X,Y); /* (71) */

/* Histogram-based repetition detection */
for i = 1 to columnSize(H®)) do
count<— 0;
for j = 1 to columnSize(H®)) do

if H® [lJ] = ﬁ(l)[:][i] then

‘ count<— count + 1;

end

end

Si] < count;

end
/* Erasure symbol addition & Extra replica removal */
for j =1 to columnSize(X) do

if S[j] =0 then
| Y[[] %
else
| Y]] < X
end
end

/* Typicality matching w.r.t. erasure channel */
for i = 1 to rowSize(X) do
count+— 0;
for j =1 to rowSize(Y) do
if isJointly Typical2(X[i][:], Y[][:], P, ps, €)
then
Gnli] < J;
count<— count + 1;
end
end
/* count = 0: no row in Y jointly typical with
X[7][:]. ERROR! */
/* count > 1: multiple rows in Y jointly typical
with X[é][:]. ERROR! */
if count # 1 then
| 6nli] < 0;
end

/* Matching error. */

end

Similar to (42), from the union bound and Proposition 3,
the total probability of error of this scheme can be bounded
for large n as follows

P, < L + €+ Qn(Rff(X;?)JrSe) (76)

Since m,, is exponential in n, by Lemma 4, u,, — 0 as
n — oo. Thus
P, <3easn— o0 )

if R < I(X;Y) — 3e. Thus, we can argue that any database

growth rate R satisfying

R < I[(X;Y) (78)

is achievable, by taking € small enough. From [55, Corollary
I1.2] we have
I(X;Y) = (1-6)*) 6"H(Xo|X 1)
r=0

(79)

where H(Xo|X_,_1) is the conditional entropy associated
with the probability transition matrix P™+1.

Now, we argue that (66) can be proven via induction on 7 by
taking (2) as a base case and observing that U? = U. Finally,
plugging m and P"*! directly into [49, Theorem 4.2.4] yields
(67), concluding the achievability part of the proof. O

Next, we move on to prove the converse part of Theorem 2.

Proof of Converse of Theorem 2. Since the converse part of
Theorem 1 holds for any seed size A,,, in the noiseless setting,
we trivially have
(X" YK" S
C < lim M

n—00 n

(80)

Next, note that there is a bijective mapping between
(YEn Sm) and (Y™, S™). Therefore, we have

I(X™ yEe §m) = 1(X™ 7", S™) (81)
=I[(X™Y™) + [(X™S"Y™)  (82)
=I(X™Y") (83)

where (83) follows from the independence of S™ and X"
conditioned on Y. This is because since Y™ is stripped of all
extra replicas, from (X™,Y™) we can only infer the zeros of
S™, which is already known through Y™ via erasure symbols.
Thus, we have

C<I(X;Y) (84)
where I(X;Y) is defined in (79), concluding the proof of the
converse part. O

The runtimes of the histogram-based detection algorithm
and the typicality-based matching algorithm (Algorithm 4) are
O(m,n) and O(m?2n), respectively.

IV. MATCHING CAPACITY FOR INDEPENDENT REPETITION

In this section, we investigate the upper and the lower
bounds on the matching capacity C' for independent repetition,
where we assume a repetition pattern that is independent
across all rows. For tractability, we focus on the special
case where v = 0, resulting in an i.i.d. database distribution
px () = ug, Vo € X.

We state our main result on the matching capacity for
independent repetition in the following theorem:

Theorem 3. (Matching Capacity Bounds for Independent
Repetition) Consider a probability transition matrix P with
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v = 0, a noise distribution py|x and a repetition distribution
ps. Then the matching capacity satisfies

E
C > ﬁH(X) —E[S]H(X|Y)
E[S] +
—(1— e
(1 — ad)Hy <(1 - m;)SmaX) } (85)
C < inf lI(X“;YKn,A") (86)
n>1ln
where
Pr(YKn = yfn | X" = 27)
= H Pr((Yg, i+1,---. Yk;)
J:S;#0
= (YK, 141, ¥K,;)| X = x5) (87)
S
= H HpY\X(ij,1+s|$j)7 (88)
j:S;7#0s=1

K; = >7_ 1St , and § and « are the deletion and the
deletion detection probabilities, respectively and Spmax =
max supp(ps). Furthermore, for repetition distributions with
SmlaXE[S] > 1|_3€°|‘6, the lower bound in equation (85) can be
tightened as

c> [(1 — ad)H(X) — E[S|H(X|Y)
- (1 —ad - ;E[S)]() min{ H(X),log(|X| — 1)}

— (1-ad)H, ((1}2[?19%) r

We note that the upper bound given in Theorem 3 (equa-
tion (86)) is an infimum over the column size n. Therefore,
its evaluation for any n € N yields an upper bound on the
matching capacity.

With independent repetition, we cannot perform repetition
detection as in Section III, and hence we are restricted to using
a single-step rowwise matching scheme as done in [34]. This
builds an analogy between database matching and channel
decoding. In particular, our approach to database matching
for independent repetition is related to decoding in the noisy
synchronization channel [56].

We stress that there are several important differences be-
tween the database matching problem and the synchroniza-
tion channel literature: i) In database matching the database
distribution is fixed and cannot be designed or optimized,
whereas in channel coding the main goal is to optimize the
input distribution to find the channel capacity ii) The syn-
chronization channel literature mostly focuses on code design
with few works, such as [57], focusing on random codebook
arguments for only a few types of synchronization errors
such as deletion [57] and duplication [58] and finally iii) Our
database matching result provides an achievability argument
for all repetition distributions with finite support, whereas the
synchronization channel literature mainly focuses on some
families of repetition distributions. As a result, for input-
constrained noisy synchronization channels, our generalized
random codebook argument, presented in Section IV-A, is

(89)

Algorithm 5: Typicality-Based Matching Scheme (In-
dependent Repetition)
Input : (X,Y,A,px,py|x,DPs;€)
Output: 6,
for j =1 to rowSize(Y) do
count<+— 0;
/* Remove revealed deleted columns */
for i = 1 to columnSize(A) do
if A[j][¢{] = 0 then
| X[l — X[]fi:
else
| X[l [
end
end
/% Stretch X $ppax times */
for i = 1 to columnSize(X) do
| X[ = 1)Smax + 1 ismax] < X[][i];
end
/* Typical subsequence check (See Appendix D). */
fori=1to rowSize(X) do
if isTypicalSubsequence(X[i][], Y [j][:
], P,py|x,Ps,€) then
G, ] < i
count<— count + 1;
end
end
/% count = 0: Y[4][:] is not a typical subsequence
of any X[i][:]. ERROR! */
/% count > 1: Y[j][:] is a typical subsequence of
multiple X[i][:]. ERROR! #/
if count # 1 then
| ot )+ 0
end

/* Matching error. */

end

novel and might be of independent interest.

In Section IV-A, we prove the achievability part of The-
orem 3 (equation (85)) by proposing a rowwise matching
scheme. Then, in Section IV-B we prove the converse part
(equation (86)). Then, we present strictly tighter upper bounds
for a special case with only deletions, i.e., when spax = 1.

A. Row Matching Scheme and Achievability

To prove the achievability, we consider the following match-
ing scheme, also given in Algorithm 5:

1) Given the 7" row Y, of Y and the corresponding row A?
of the partial deletion location information A, we discard
the 5™ column of X if A;,; = 1, Vj € [n] to obtain X
since it does not offer any additional information due to
the independent nature of the database entries.

2) We convert the problem into a deletion-only one by elemen-
twise repeating all the columns of X s,,.x times, which we
call “stretching by spax”, to obtain X. At this step, YiK"
can be seen as the output of the noisy deletion channel
where the o1 (i)™ row of X is the input.
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X" =[X1X2X3. .. Xp_1X0)]
A =[010.. .. 01] ——— [Column Discarding]
XA = X XL X, ]
|
—|A")Smax —
e

Fig. 4. An illustrative example of the column discarding and the stretching
of X™ into X (n=1A"Dsmax for a given the deletion detection pattern A™.
First, we discard each know deleted element known from X" to obtain
Xn—lA™ Then, each element of X (n=1A™]) s repeated Smax times to
obtain X(” |A |>~5max

3) We perform a generalized version of the decoding algo-
rithm introduced in [36] for the noiseless deletions with
deletion detection probability. Note that the latter itself is
an extension of the one proposed in [57].

Observe that Algorithm 5 has a runtime of O(m?2n), similar
to Algorithms 3-4.

The full proof of the achievability part (equations (85) and
(89)) via the matching scheme described above can be found
in Appendix D.

An illustrative example of the “stretching” is given in
Figure 4. The idea behind this stretching is that since each
entry can be repeated at most sy, times when we stretch X ™
Smax times to obtain X "emax the output of the synchronization
channel (before the noise py|x) is guaranteed to be a subse-
quence of X7smax_This way, we can convert the general noisy
synchronization problem into a noisy deletion-only problem.
We note that when sp.x becomes large compared to the
alphabet size |X|, the lower bound given in (85) goes to zero,
even when pg(Smax) is very small.

Note that for any repetition structure, including the ones not
considered in this work, one can simply ignore the underlying
structure and apply the matching scheme described above.
Therefore the achievable rate of Theorem 3 (equation (85))
is achievable for any repetition structure.

B. Converse

In this subsection, we prove the converse part of Theo-
rem 3 and evaluate the given upper bound for some special
cases. First, we observe that by following the genie argument
provided in the converse of Theorem 1, we can argue that
Theorem 1 is an upper bound on C for any « and for any
repetition structure.

We next prove the converse of Theorem 3 (equation (86)).
We then analytically evaluate this for some n € N and we
argue that the evaluated upper bounds are strictly tighter than
that in Theorem 1.

Proof of Converse of Theorem 3. We start with the modified
Fano’s inequality used in Section III-D. Let

P2 Pr(oa(J) £ 6a(J)), J~Unif(fm,])  (90)
Then, we have

H(op,) <14+ myP.logm, + I(0,;X,Y,A) 91

where

IHon; X, Y, A) = 1(0,; XY, A) (92)

<I(on,Y,A;X) (93)

= i IXSY 00 AL o) 98

= ;niI(X”; yHEn Am) (95)

where (94) and (95) follow from the fact that non-matching
rows and their corresponding probabilistic side information on
deletion locations are respectively independent and identically
distributed. Following similar steps to Section III-D, we obtain

R < lim y

n—00 n

(96)

whenever P, — 0 as n — oo.
Note that from Fekete’s lemma [59], for any subadditive
sequence {a, }nen, We have

. an . . an
lim — = inf —
n—oo N n>1 n

o7

Therefore, it is sufficient to prove the subadditivity of
I(X™ Y En Am).

Choose an arbitrary r € [n — 1] and let M, = Y"_, S,
where S™ is the repetition pattern through which Y%~ is
obtained from X™. Note that M, denotes a marker, stating
which part of Y= depends on the first » elements of X™,
denoted by X7 . Therefore we have a bijective relation between
(YE~ M,) and (lej 15 Ygr Sj+1) where the subscripts
and the superscripts denote the starting and the ending points
of the vectors, respectively. Thus,

I(X"™ Yy En A™)

< I(XnyKn MT7A7L) (98)
S; n
= 1(X7Y ,YK515.+1,A') (99)
7 r
= I(X], XD 3 Y S; yg,n . ") (100)
:I(Xl, 25=15; A?”)—I—I( T+17 §f=1sj+1’ :l-t-l)
(101)

where (101) follows from the fact that X™ and A™ have i.i.d.
entries and the noise py|x acts independently on the entries.
Thus, I(X™; Y= A™) is a subadditive sequence. Hence,

I(X7 Y En A™)

R < inf (102)
n>1 n
whenever P, — 0 as n — 0o, concluding the proof. O

We note that since the upper bound given in Theorem 3 is
the infimum over all n > 1, its evaluation at any n € N yields
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Fig. 5. The evaluation of the lower and upper bounds on the matching

capacity for the binary noisy deletion case with px ~Bernoulli(1/2),
ps ~ Bemoulli(l — ¢), @ = 0.7 and py|x ~ BSC(0.05). The dash-
dotted (blue) curve is the achievable rate stated in Theorem 3. The dashed
(yellow) and the dotted (red) curves are the evaluations of the upper bound
stated in Theorem 3, at n = 10 and n = 2, respectively. The solid (purple)
curve shows the loose upper bound given in Theorem 1. We see that the gap
between the lower and the upper bounds shrinks as n increases.

an upper bound on the matching capacity. In Corollaries 3 and
4, we analytically evaluate this upper bound at n = 2 under
some assumptions on px,y when spy,x = 1, i.e., when we only
have deletions, and explicitly demonstrate the gap between the
upper bounds given in Theorem 1 and Theorem 3.

First, we consider a noiseless deletion setting with arbitrary
database distribution px in Corollary 3.

Corollary 3. (Upper Bound for Noiseless Deletion) Con-
sider a noiseless deletion setting where py|x (y|x) = Ljz—y),
V(x,y) € X2 and S ~ Bernoulli(1 — §). Then for any input
distribution px, we have

C< %I(XQ;YK,AQ) (103)
— (1= O)HX)—(1-a)(1-8)(1-q) (104

where § = erpr(x)Q-
Proof. See Appendix E. O

Note that for any X with |X| > 2 and o € [0,1) the
upper bound given in Corollary 3 is strictly lower than the
one provided in Theorem 1 which is

I(X;Y,9) =(1-90)H(X). (105)
Next, we consider a noisy deletion setting with binary X
and arbitrary noise py|x in Corollary 4.

Corollary 4. (Upper Bound for Binary Noisy Deletion) Con-
sider a binary noisy deletion setting where X ~ Bernoulli(p)
and S ~ Bernoulli(1 — §). Then, for any binary DMC py|x,

14
we have
C< %I(XQ;YK,AQ) (106)
=(1-0)I(X;Y)
—2(1-a)0(1 =38)p(1 —p)I(U;V)  (107)

where U and V are binary random variables with
U ~ Bernoulli(1/2) and py|y = py|x.

Proof. See Appendix F. O

Again, for any p € (0,1) and « € [0, 1), the upper bound
given in Corollary 4 is strictly lower than the one provided in
Theorem 1 which is

I(X;Y,S) = (1-68)I(X;Y) (108)

We note that the tighter upper bounds in Corollaries 3
and 4 become generalizations of the upper bound on the
noiseless deletion channel mutual information, given in [60,
Corollary 1]. Specifically, [60] considers noiseless deletion
channel with i.i.d. Bernoulli inputs. Corollary 3 extends the
results to noiseless deletion channels with arbitrary alphabet
sizes. Furthermore, Corollary 4 extends the results to binary
noisy deletion channels with arbitrary noise.

For the binary noisy case considered in Corollary 4, the
numerical comparison of the lower bound and the two upper
bounds on the matching capacity is provided in Figure 5. Note
that the upper bound provided by Corollary 4 is not tight
as it can be shown that a larger value of n gives a tighter
upper bound, implying that the gap between the lower and the
upper bounds in Theorem 3 is smaller than the one shown in
Figure 5.

V. EXTENSIONS

In this section, we discuss extensions to the system model
and results. Specifically, in Section V-A, we investigate the
adversarial repetition case instead of random repetitions, where
the repetitions are not due to random sampling of the time-
indexed data, but due to a constrained privacy mechanism. In
Section V-B, we consider the identical repetition model with
no seeds. In Section V-C, we discuss the zero-rate regime,
where the row size m, is not necessarily exponential in
the column size n, and derive conditions necessary for the
detection algorithms discussed in Section III to work.

A. What If Repetitions Are Intentional?

So far, as stated in Definition 2, we have assumed that the
identical repetitions occur randomly according to a discrete
probability distribution pg with finite integer support. In this
subsection, we study the case of an adversary who controls the
repetition pattern (under some constraints) to make matching
as difficult as possible. This could arise for example where
a privacy-preserving mechanism denies the sampling of the
geolocation data when that data contains the most information
about the users, such as their home addresses. We consider the
adversarial setting under identical repetition assumption.

We stress that in the identical repetition setting, the replicas
either have no effect on the matching capacity as in the
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noiseless case (Theorem 2) or offer additional information
acting as a repetition code of random length, in turn increasing
the matching capacity (Theorem 1). Hence, it is expected that
any adversary who tries to hinder the matching process to not
allow the replication of entries. Therefore in the adversarial
repetition setting, it is natural to focus on the deletion-only
case. We assume an adversary with a d-deletion budget, which
can delete up to ¢ fraction of the columns, to maximize
the mismatch probability. For tractability, we focus on the
noiseless case with i.i.d. database entries. More formally, we

iid
assume X; ~ px where

pyix(z) = 1y, V(z,y) € X (109)

Under these assumptions, we define the adversarial match-
ing capacity as follows:

Definition 13. (Adversarial Matching Capacity) The adver-
sarial matching capacity C%"(8) is the supremum of the set of
all achievable rates corresponding to a database distribution
px and an adversary with a d-deletion budget when there is
identical repetition. More formally,

C(5) £ sup{R Vg = (i1, ..., ins) C [n],
Pr(6,(J) # on(J)) =30,
J ~ Unif([mn]))}

where the dependence of the matching scheme G, on the
database growth rate R and the column deletion index set
Lyer is omitted for brevity.

(110)

Note that in this setting, although the deletions are not
random, the matching error is still a random variable due to
the random natures of X and o,,. In the proof of Theorem 4
below (Appendix G), we argue that in the adversarial setting,
we can still convert deletions into erasures via the histogram-
based repetition detection algorithm of Section III-E. After
the detection part, we use the following matching scheme: We
first remove deleted columns from X, and then perform exact
sequence matching, as described in Algorithm 6 which has
O(m2n) runtime, similar to Algorithms 3-5.

We state our main result on the adversarial matching capac-
ity in the following theorem:

Theorem 4. (Adversarial Matching Capacity) Consider a
database distribution px and an adversary with a §-deletion
budget when there is identical repetition. Then the adversarial
matching capacity is

D(6||1 —q ifo<1—4¢g
Cadv((s) _ ( ” Q)a lf = ‘z (111)
0, fd>1—-4
where § = Zmexpx(x)Q.
Proof. See Appendix G. O

The matching capacities for random and adversarial dele-
tions as a function of the deletion probability/budget are
illustrated in Figure 6. Note that for § > 1 — ¢, we have
C*(§) = 0 whereas C = (1 — §)H(X) > 0. Furthermore,
when § < 1— ¢ the matching capacity is significantly reduced
when the column deletions are intentional rather than random.

Algorithm 6: Exact Sequence Matching Scheme Un-
der Adversarial Deletions

Input : (X,Y)
Output: 6,
(X,Y) <+ CollapseDatabases(X,Y); /% (70) */
(HW H®) « ColumnHistograms(X,Y); /* (71) */
/* Histogram-based repetition detection */
for i = 1 to columnSize(H")) do
count<— 0;
for j = 1 to columnSize(H?®)) do

it H®[:][j] = HMV[:][i] then

count<— count + 1;

end

end

Si] « count;

end
/* Discard deleted columns */
for j =1 to columnSize(X) do

if 5[j] = 0 then
‘1 X[ [
| X[« X[
end
end

/* Exact sequence matching (See Appendix G.) */
for i = 1 to rowSize(X) do
count<— 0;
for j =1 to rowSize(Y) do
if Y[j][:] = X[i][:] then
Gnli] < s
count<— count + 1;
end
end
/* count > 1: Collision Error. */
if count # 1 then
| 6nli] + 0
end

/* Matching error. */

end

B. What If There Were No Seeds?

In Section III, we assumed the availability of seeds with a
seed size A,, = Q(loglog m,,). Now, we focus on the identical
repetition scenario with no seeds.

Note that the replica detection algorithm of Section III-A
does not require any seeds. Therefore in the seedless scenario,
we can still detect the replicas with a vanishing probability
of error. On the other hand, in the general noisy setting,
the deletion detection algorithm of Section III-B necessitates
seeds. Therefore, in the case of no seeds, we cannot perform
deletion detection and we need to modify the matching scheme
of Section III-C to obtain lower bounds on the matching
capacity C.

For tractability, we focus on the case with i.i.d. database
entries, i.e., v = 0. More formally, we assume X, S Px.
Under this assumption, we state a lower bound on the unseeded
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Fig. 6. Matching capacities C' vs. deletion probability/budget (6) when X ~
Unif(X), X = [5]. Notice that in this case ¢ = 0.2 and for § > 1 — ¢ = 0.8
the adversarial matching capacity C*d"(§) is zero, while the matching capacity
with random deletions C' is positive.

Algorithm 7: Seedless Matching Scheme (Identical
Repetition)

Input : (X,Y,px,py|x,Ps,€)
Output: 6,
isReplica<— Algorithm 1(Y, px, py|x);
Y MarkerAddition(Y ,isReplica);
for i = 1 to rowSize(X) do
count<— 0;
for j =1 to rowSize(Y) do
/* Typical subsequence check (See
Appendix H.) */
if TypicalSubsequenceCheck(X[i][:], Y[4][:
], px,Py|x,Ps,€) then
Gnlt] < J;
count<— count + 1;
end

end

/% count = 0: Y[j][:] is not jointly typical with any

subsequence of any row of X. */

/% count > 1: Y[j][:] is jointly typical with a

subsequence of multiple rows of X. */

if count # 1 then
| &n[i] < 0

end

/* Matching error. */

end

matching capacity with identical repetition in the following
theorem via Algorithm 7 which has O(m2n) runtime, similar
to Algorithms 3-6.

Theorem 5. (Seedless Matching Capacity with Identical
Repetition) Consider a database distribution px, a noise
distribution py|x, a repetition distribution ps and an identical
repetition pattern. Then, in the seedless case, the matching

16

capacity C satisfies
C > [I(X;Y5,5) — Hy(6)]" (112)
C<I(X;Y"8S) (113)

where § = pg(0) is the deletion probability, S ~ ps and Y
has the following distribution conditioned on X such that

S
Hlpwx(yjlar) ifS>0
j:

ifS=0

Pr(Y® =y X =2) = (114)

Lys=p)

where E denotes the empty string.
Furthermore, for repetition distributions with § <1—1/|%|,
the lower bound can be tightened as

C > [I(X;Y5,5) — Hy(6)
+6[H(X) — log(|X| — D)™ (115)
Proof. See Appendix H. O

We note that although the converse results of Theorems 1
and 5 match, the achievable rates differ by H(d). In other
words, Theorem 5 implies that the gap between the lower and
the upper bounds on the seedless matching capacity is at most
Hy(6). We note that this gap is due to our inability to detect
deletions in the achievability part. Hence, we conjecture that
the lower bound in Theorem 5 is loose while the converse
is tight. This is because in the noiseless setting, as discussed
in Section III-E, deletion detection can be performed without
seeds and the achievability bound is indeed improved and tight.

C. Zero-Rate Regime

In Section III, we considered at the matching capacity C
for A,, = Q(loglogm,) when the database growth rate R is
positive. In other words, so far, we have assumed

1
lim —logm, >0 (116)

n—,oo n

The detection algorithms we presented in Sections III-A
through III-E depended on the row size m, being large
compared to the column size n. In this section, we further
investigate these algorithms to derive the sufficient and/or
necessary conditions on the relation between m,, and n in
order for them to work in the zero-rate regime where

1
lim —logm, =0.
n—oo M

(117)

Since R = 0, we define the non-asymptotic database growth
rate R,, as

1
R, £ —logm,,. (118)
n

Here, R = 0 trivially implies R,, — 0 as n — oo. Below
we investigate the sufficient conditions on R?,, such that the
results of Sections III and IV hold.

1) Noisy Replica Detection: We consider the replica detec-
tion algorithm discussed in Section III-A. Note that the RHS of
equation (163) of Appendix A has 2K —2 < 2nspax = O(n)
additive terms, each decaying exponentially in m,,. Thus, for a
given average Hamming distance threshold 7 € (p1,pp) which
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is chosen based based on P and py|x and in turn constant
with respect to n

- log(nSmax)
=~ min{D(7||po), D(1 — 7||1 — p1)}
= O(logn)

(119)
(120)

is enough to ensure a vanishing replica detection error proba-
bility. In other words, as long as m,, = Q(logn) and in turn

R, -0 (loglogn> (121)

n
our replica detection algorithm works.

2) Seeded Deletion Detection: We study the seeded dele-
tion detection algorithm discussed in Section III-B. Note that
we only run the deletion detection algorithm on the seeds
(G, G®) and not on the database pair (X,Y) directly, the
relationship between m,, and n does not affect the success
of the deletion detection. Thus, as long as the seed size
A, = Q(logn) our deletion detection algorithm works for
any database growth rate, including the zero-rate regime. This
in turn implies that m,, > A,, = Q(logn) and
log logn>

(122)
n

Rn:Q<

3) Noiseless Joint Deletion-Replication Detection: We in-
vestigate the histogram-based joint deletion-replication detec-
tion algorithm introduced in Section III-E for the noiseless
scenario. By Lemma 4, m,, = w(n?) is sufficient. Thus, as
long as logm, > 4logn, the histogram-based detection can
be performed with a performance guarantee. In turn, for any

R, —Q (logn>
n

the histogram-based detection algorithm has a vanishing prob-
ability of error.

Therefore, in the noiseless setting, database growth rate
R,, = Q (logn/n) provides enough granularity on the column
histograms and we can perform detection with a decaying
probability of error which then leads to asymptotically-zero
mismatch probability.

Note that, for tractability, so far we have collapsed the
databases into binary-valued ones. Further, in Lemma 4, we
showed that for the collapsed databases m, = w(n?) is
enough for the asymptotic uniqueness of the column his-
tograms. We now tighten this order relation for the special
case where v = 0 results in an iid. database distribution

(123)

Xij "%y with support X.

Lemma 5. (Asymptotic Uniqueness of the Uncollapsed
Histograms) Consider an i.i.d. database distribution px. Let
H j(-l) denote the histogram of the j™ column of X. Then,

Pr (Hi,j €n), i#j,HY = Hj(-l)) S 0asn— oo (124)

if my, = w(nmﬁ)

Proof. See Appendix 1. O

Note that in the binary setting the results of Lemmas 4 and

5 agree.

Lemma 5 implies that we only need a row size m,, polyno-
mial in n to guarantee enough granularity for the uniqueness
of Hi(l) and that the degree of the polynomial scales inversely
with the alphabet size |X|. Furthermore, to demonstrate the
tightness of this requirement of having m,, = w(n\i‘l%l), we
consider the special case where px is uniform over X. This
leads to the following proposition:

Proposition 4. Let H](-l) denote the histogram of the j"
column of X. If px (z) = ﬁ, Vr € X, then
Pr(3ij el i 450" = HY)
9 1-]x|
=n“my 2

Clx|(1+0,(1)) (125)

1= [Ed]

ES]
where Cix| = (4m) 2 |X]=Z.
Proof. See Appendix J. O

Proposition 4 states that in the setting with i.i.d. uniform
database distribution, for the asyglptotic uniqueness of the
column histograms m,, = w(nT™*1-T) is not only sufficient
but also necessary.

4) Independent Repetition Row Matching Scheme: In the
independent repetition scenario, we have no detection algo-
rithms which depend on the large-m,, assumption. Therefore,
so long as the RHS of (85) is positive, any R, = 0,(1)
is achievable. We stress that this observation trivially applies
to the identical repetition case as well since one can simply
ignore any underlying structure and perform the matching
scheme given in Section IV-A.

VI. CONCLUSION

In this work, we have presented a unified information-
theoretic foundation for database matching under noise and
synchronization errors. We have showed that when the repe-
tition pattern is constant across rows, the running Hamming
distances between the consecutive columns of the correlated
repeated database can be used to detect replicas. In addition,
given seeds whose size grows double-logarithmic with the
number of rows, a Hamming distance-based threshold testing,
after an adequate remapping of database entries, can be used to
infer the locations of the deletions. Using the proposed detec-
tion algorithms, and a joint typicality-based rowwise matching
scheme, we have derived an achievable database growth rate,
which we prove is tight. Therefore, we have completely char-
acterized the database matching capacity under noisy column
repetitions. Furthermore, we have derived achievable database
growth rates proposing a typicality-based matching scheme
and a converse result for the setting where the repetition takes
place entrywise, where we build analogy between database
matching and synchronization channel decoding. We have also
discussed some extensions, such as the adversarial column
deletion setting rather then the random one.

Other natural extensions beyond those studied in this paper
include the finite column size regime, where tools from
finite-blocklength information theory could be useful, and
practical algorithms with theoretical guarantees. An extensive
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analysis of the parallels between database matching under
synchronization errors and two-dimensional synchronization
channels [61], [62] and the construction of codes tailored to
correct the error patterns investigated in this paper could be
an interesting line of future work. Finally, one can extend
our adversarial setting into a noisy one where the privacy-
preserving mechanism not only deletes columns but also in-
troduces intentional noise on the microdata, and investigate the
adversarial matching capacity through a worst-case analysis.

APPENDIX A
PROOF OF LEMMA 2

Observe that since the rows of Y are iid. conditioned
on the column repetition pattern S™, the Hamming distance
H; between consecutive columns C7"" and C7'y follows a
Bmom]al distribution whose success parameter depends on
whether C’Jm" and ij"l are noisy replicas or not. More
formally, if C’m” and C’m" being noisy replicas, then there

exist an ¢ € [m n} such that
Pr(Y:;,Y: j41 = 1, y2|XU;1(
= py\x(y1|$)py|x(y2|33)7

= 1)

Yt € [my]

).

(126)

More specifically, let C7"" and C}’}"; correspond to the ji*

and jo" columns of X and let r é J2 — 71 — 1 denote
the number of deleted columns between C7"" and CJ.
Note that r = —1 denotes the case when C}"" and Cﬁ"l

are noisy rephcas Then we have H; ~ Binom(m,,, pl) if
C7' and CJ}y are noisy rephcas and H ~ Binom(m,,, py’)
0therw1se Thus, proving that p;’ and p; are bounded away
from one another for any » > 0 will allow us to use the
running Hamming distance based threshold test discussed in
Section III-A.

Our goal is to prove that pér)
can formally rewrite pg as

(r) Z Z ZPI‘ lel—l'l)

r1EX x2€X yex
Pr(Xy j, = 22| X1 5, = 1)
r(Yy, (1), = ylXj, = x1)
Pr(Ys, (1),j41 7 ¥ X1,5, = x2) (127)

= Z Z ZPI‘ Xl,jl le)

T1EX 226X yeX
Pr(Xy j, = 22| X1,5, = 1)

> p; for any r > 0. First, we

g

Py x (ylz1)[1 — py|x (ylz2)]  (128)
EIREINES
=330 wi (P pyix (i) [1 = pyx (k)]
=1 j=1 k=1
(129)
[x| %] |%|
DN,
i=1 j=1 k=1
Py x (ki) [1 — pyx (k|7)] (130)
[X| |X]
ZZZul [(1—~")u; +47]
i=1 k=1

18
py|x (ki) [L — py | x (Kli)]
| x| | x|
Y 3> wi
i=1 j#i k=1
py|x (ki) [1 — pyx (k|j)] (131)
[x] x| %
2D D w
i=1 j=1 k=1
py|x (k) [1 = pyx (k|7)]
[EIES
+9Y 0> wipy x (i) [1— py)x (k]0)] (132)
i=1 k=1
=1 =9")po +7"11 (133)
where
|x] %] |%]|
Py = ZZZ% uj py|x (k[i) [1 — py x (k7)) (134)
1=1 j=1 k=1
ESRNES
23w pyx (ki) [1 = py|x (ki) (135)
i=1 k=1
Similarly, we rewrite p; as
p1 = Z Z Pr(X =
rzeX yeXx
Pr(Yi = y|X = o) Pr(Ya £yX =) (136)
ESES
=YD wipyix(kli) [1 = pyx (k]i)] (137)
i=1 k=1
=P (138)
Thus, for any v € [0,1) and r > 0, we have
po > p1 = py > p) (139)
Note that pj, and p} would correspond to
p6 = PI'(YUW(l # an(l ]+1|’f' > 0) (140)
P = Pr(Yan(l)J 7& Yan(l),j+1|r = *1) (141)

if the entries X; ; of X were drawn i.i.d. from the stationary
distribution 7 of P, instead of a Markov process. Thus, to
consider the i.i.d. database entries case, we introduce the
discrete random variable W with

pY\W(y|w) = pY\X(Ql“’)v

(142)

Y(w,y) € X2 (143)

We note that this equivalence induced by (139) is due to
the specific Markov structure we adopted in Definition 1.

Let py (y) =
pp and p} as

S pww)pw (w)

wieX waeX yeX
pyw (ylwi) [1 = pyyw (ylwa)]  (144)

Do > pwlw)pyw (ylw:)

w1 EX yeX

> pwy(w,y) Vy € X. Then, we can rewrite
weX

po =
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> pw(ws) [1 = pyw (ylwa)] (145)
wo€X
= Z ZPW w)pyw (ylw) [1 = py (y)] (146)
weX yeXx
Z ZPW w)pyw (ylw) [1 = pyw (ylw)]  (147)
weX yeX

Thus, we have

0> pwy (w,y) [pyw (ylw)

weX yeXx

po— Py = —py(y)] . (148)

For every y € X, let

v() 2 Y pw () [pviw (wlw) — py (1)) (149)
weX
= Z pW(w) pY|W(y|w) - ZPY|W(ZU|Z)IJW(Z)
weX zeX (150)
>0 (151)

where (151) follows from the non-negativity of the square

term in the summation. It must be noted that ¢)(y) = 0 only

if pY\W(y|w) = pY(y)a Vw € X with pW(w) = Uy > 0.
Expanding the square term, we obtain

Z pw (w)py|w (y|w)®
weX
—2py (y ZPW w)pyw (y|w)
weX
+ ) pw(w)py (y)? (152)
weX
=Y pw(w)pyiw (Ylw)* = 2py (1) + py (y)°
weX
(153)
= Z pw (w)pyw (ylw)® — py (y)* (154)
weX
Next, we rewrite p{, — p} as
P6 *pll = Z Z pw,y (w,y) [pY|W(Z/|w) *PY(Z/)}
yeX weXx
(155)
=y [(Z pw (w)py w (y|w) ) —py(y)gl
yeX weX
(156)
=> ¥y (157)
yeXx
>0 (158)
with pj — py = 0 only when pyw (y|w) = py (y), V(w,y) €

X2. In other words, p{, > p} and in turn p(()r) > pp as long as
the two databases are not independent.

We next choose any 7 € (p1, Dy (© )) bounded away from both
p(()) and p;. Let A; denote the event that C7"" and CJ
are noisy replicas and B; denote the event that the algorithm
declares C’Jm and C}"ﬁ as replicas. Via the union bound, we
can upper bound the total probability of replica detection error

19
as
Kn—1 K,—1
r( U Z Pr( AC Pr(B, |A°)
j=1 j=1
+Pr(Aj)Pr(BJ°f|Aj) (159)
Note that conditioned on A‘;, we have H; ~

Binom(mn,pér)) and conditioned on A;, we have
H; ~ Binom(my,,p:1). Then, from the Chernoff bound [63,
Lemma 4.7.2], we get

Pr(B;|AS) < 27 Plng”) (160)
< 2—mnD(THp(O)) 161)
Pr(BS|4;) < 27 PO-Tli=py) (162)

where (161) follows from the fact that D(7||p) is an increasing
function of p for p > 7.
Thus, we get
Kp—1
Pr( | ) E) <K, [Q‘mnD(THPEf’)) 4 27 DA=Tl1=p1)
j=1
(163)
Observe that since the RHS of (163) has 2K,, = O(n) terms
decaying exponentially in m,,, for any m, = w(logn) we
have
K,—1
( U Fj) — 0 as n — oo.
Jj=1

(164)

Finally observing that n ~ logm,, concludes the proof. [

APPENDIX B
PROOF OF LEMMA 3

Let (X”,Y i) be a pair of matching entries. Since the
database distribution is stationary, WLOG, we can assume
(4,7) = (1,1). Now, given (X1.1,Y1,1), and the non-matching
pair (X;;,Y11) with j —1 = r # 0, we first prove the
existence of such a bijective mapping ® such that for any
r € [n—1]

Pr(q)(?lal) o lel) < Pr(q)(?l,l) # X1,r+1). (165)

For given ® and r € [n — 1] let
a5s 2 Pr(®(Y11) # X141) (166)
Q1,0 = Pr(@(f/l,l) # X1,1) (167)

Here, our goal is to show that there exists at least one &
satisfying

(()<)I> > q1,9, Vr € [n—1]. (168)
We can rewrite q(() ")
qé% = Z Z Pr(Xi1 = 1)
T1E€EX 2a€X
Pr(X; 1 = 22| X1 = 1)
Pr(®(Yi1) # 22| X11 =21)  (169)
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ESES
=3 > wi (P)ij [1—pyix(@'G)ID] (170)
=1 j=1
ESEY
_ZZul i +v"045]
=1 j=1
[1— pyx (@7 (5)]0)] (171)
[x| [
-7") Zzuz u; [1 = pyx (@71 (5)])]
i=1 j=1
|X]
—I—WTZW [1—pyix (@' @)])] (172
=1
=1 =790, +7 0 (173)
where
[x| |x|
Ghe =D > uiug [1—pyx (@7 ()]0)] (174)
i=1 j=1
[X]
G2 ui [1—pyx (@1(0)]0)] (175)
=1

Similarly, we rewrite ¢ ¢ as

o= Pr(X11=x)Pr(®(Y1) # z|X11 =) (176)

zeX
|X|

= will = py x (@71 (0)])] (177)
=1

= CIQ,@ (178)

Thus, for any v € [0,1), we have

30, Vre[n—1], ¢y > a0 = 30, ¢ho > dhe (179)

Note that q; 4 and q; 4 correspond to
do.0 = Pr(®(Yi1) # X1,),
G0 =Pr(®(Yi1) # X1,1)

if the entries X;; of G() were drawn iid. from the dis-
tribution ™ = [uy,...,ux|], instead of a Markov process.
Thus, we recall the discrete random variable W, defined in
equations (142)-(143), with

j#A1 (180)

(181)

pw(l) =u;, VI € X
PY\W(ZJW) = PY\X(?/W%

(182)
Y(w,y) € X2 (183)

We note that similar to Appendix A, this equivalence induced
by (179) is due to the specific Markov structure we adopted
in Definition 1.

Then, we can rewrite ¢, 4 and g 4 as

G0 =Y > pw(w)pw(ws)[1 = pyx (@ (ws)|ws)]

w1 EX wa€X
(184)
Go=> pww)l—pyw (@ (w)w)] (185)
weX

20

We first prove the following:
ZQ(I),‘@ - qll,d) =0
P

where the summation is over all permutations of X. For
brevity, let

(186)

Qij =pyiw(jli) Vi,jex (187)

Note that from (187), we have
| X

ZQM =1 VieX
j=1
EIES

oD Qi =1%]

i=1 j=1

(188)

(189)

Taking the sum over all ¢, we obtain

Z%@

EIES
ZZZPW )pw (J)Qi,a-1(5)
P =1 j5=1
1%
Y pwi)Qie-1)
P i=1
Combining (188)-(190), we now show that both terms on the
RHS of (190) are equal to (|X| — 1)!. We first look at the
second term on the RHS of (190).

(190)

| % | %
D> pw(i)Qie-1) = ZPW ZQ@ 1(4) (191)
© =1
|35| 1%
= (1X[ - 1)!ZZPW(i)Qi,j (192)
j=1i=1
|| 1%]
= (X[ =D pwyli,g) (193)
=1 j=1
= (1% - 1)! (194)

where (192) follows from the fact that for any j € X, we have

exactly (]X|—1)! permutations assigning j to ¢ (or equivalently
(i) = J)-
Now we look at the first term.
x| |x]
Z Z ZPW@PWU)Q@@A(J‘)
@ =1 j=1
1x] |%]
=> > pw(pw() D Qia-1j (195)
i=1 j=1 @
1x] |X] Ed
=3 pw@Opw ()X =D Qi (196)
i=1 j=1 k=1
= ([X[ - 1)! (197)

Again, (196) follows from the fact that for each k € X, there
are exactly (|X| — 1)! permutations ® which map % to j (or
equivalently ®~1(j) = k).

Thus, we have shown that both terms on the RHS of (190)
are equal to (]X| — 1)!, proving (186). Now, we only need to
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show that

3P e —dre #0. (198)

This is because unless ¢4 — ¢y 6 = 0 VP, due to (186),
we automatically have a ® such that this difference is strictly
positive. This follows from the fact if 3¢ g 5 — ¢} 4 # 0, we
have either

— qi,é > 0, which is the desired result, or
1.6 < 0, which from (190) requires the existence

> 0.

° qé’q)
* do,» —

of another permutation ® with q(x e q1 %
We will prove (198) by arguing that

Q{),tp - qi,q) =0 Vo

= pyiw(ylw) =py(y) Y(w,y) €X* (199
which contradicts our py|x # py assumption.

We first prove the “only if” part. Suppose
pyiw(ylw) =py(y), Y(w,y) € X* In other words,
Qix = Qjk, V(i,j, k) € X3. Then for any ®, we have

1xX] x|
W =YY pwli)pw(i)Qia-1() (200)
i=1 j=1
1X] x|
=33 pwli)pw(i)Qua-1(), k#i  (201)
i=1 j=1
X
= pr(j)Qkﬁb*l(j) (202)
j=1
1X]
= pw(i)Qje-1() (203)
j=1
=0 (204)

finishing the proof of the “only if” part.
Now, we prove the “if” part. Suppose the LHS of (199)
holds. In other words, for any ¢

1% 1X] 1%

pr(i)Qi,rbfl(i) = ZZPW(i)pW(j)Qi@*l(j) (205)
i=1

i=1 j=1

First, we look at the binary case X = {1,2}. In this case,
we obtain

w(1)Q1,1 + pw(2)Q2,2 =pw (1)*Q1.1

+ pw (D)pw (2)Q1 2

+pw (2)pw (1)Q2,1

+pw (2)Q2.2 (206)
Qi1+ Q22==CQ12+ Q21 (207)
Qi1+ Q22=1-Q11+1—-Q22 (208)
Qa1+ Q22=1 (209)

for the identity permutation. This implies that Q11 = Q21
and Q1,2 = Q2,2 and this in turn implies py |y (y|w) = py (y)
V(w,y) € X2, concluding the proof for the binary case.
Now, we investigate the larger alphabet sizes (|X| > 3).
Since the equality holds for all @, we now carefully select

21

some one-cycle permutations ® to construct a system of linear
equations.

Let ®;4 be the identity permutation and ®;_;, ®;_p, ®;_ ;1
denote the one-cycle permutations with the respective cycles
(i7), (ik) and (i j k) for some distinct (4, j, k) triplet. For the
rest of this proof, we will jointly solve the system of equations
put forward by these permutations.

Recall that py (1) = w;, VI € X. Then, @iy leads to
wi Qi + Q5 + upQr ok + Z w Q@

14,5,k
|X| |X|

= u; Z U Qi + Uj Z U Q5
t=1 t=1

1% | %]

+UkZUtth+ Z UlZUtQtl

l#i,j,k t=1

(210)

Similarly, ®;_; leads to

Qi+ uiQji + urQrk + Z wQuy
l#i,5,k
1% | %]

= u; Z ur Q5 + Z U@y
t=1 t=1

|X] 1%

+UkZUtth+ Z Ulzthtl

l#ig,k  t=1
When we subtract (211) from (210), we obtain
ui(Qii — Qiy) — uj(Qji — Qjij)
| X

= (u; — uy) Zut(Qt,i —Qt5)

t=1

@211)

212)

Equivalently, we have
—pw,y (4,5) — pw,y (5,%) + pw,y (4, J)

(4,7) —
= pw (i)py (i) — pw (V)py ()
—pw(J)py (Z) +pw (J)py (4)

pw,y (i,1)

213)

Following the same steps, from ®;_; we get
—pwy (i, k) — pwy (k,7) + pw,y (k, k)
= pw (1)py (i) — pw (V)py (k)

— pw (k)py (4) + pw (k)py (k)

pW,Y(i7 Z)

(214)

We can rearrange the terms in (214) to obtain

=pwy (1,%) — pw,y (k. ) + pw,y (k, k)
—pw (D)py (i) + pw (V)py (k)
+ pw (k)py (i) — pw (k)py (k)

pw,y (i, k)

(215)
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Furthermore, ®;_;_;, gives us

wiQip +u;Qj i + urQpj + Z wQy
L.,k
|X| |X|

= U; Z U Qe ke + U Z w Qi
t=1 t=1

£ | %]

+UkZUtQt]+ Z ulZUtQtl

l#1,j,k t=1

Subtracting (216) from (211) yields
ui(Qij — Qik) + ur(Qr — Q)

| %] 1%

= (i —wg) | Y wQrj— Y Qe
t=1 t=1

Equivalently,

(216)

(217)

pWY(k J) +pwy(k, k)
w (1)py (k)
Y( i)+ pw (k)py (k)

Plugging pw,y (¢, k) from (215) into (218) yields

pwy (4, k) —
=pw ()py (j) —

—pw(k)p

pw,y (i,7) —

(218)

—pw,y (i,1) — pwy (K, 7) + pwy (K, 1)
= pw ()py (j) — pw (4)py ()
— pw (k)py (4) + pw (k)py (4)

Taking a summation over k in (219) gives us

|X|pw,y (4, 7) — | Xlpw,y (i, ) — py (§) + py (i)

= [X|pw ()py (4) — |X[pw ())py (i)
—py(4) +pv(i)

— pw,y (i,1)

= pw (9)py (j)

pw,y (i, ])

(219)

(220)
pw,y (4, )
— pw (i)py (i) (221)
Similarly, taking a summation over j in (221) yields
= pw (1) — [X[pw (1)py (i)
= pw ())py (1)

Plugging (223) into (221) yields

(222)
(223)

|X|pw.y (4, 1)
pw,y (i,1)

pw (i) —

(i) (224)
(225)

= pw (1)py (j) — pw (i)py
= pw (i)py (J)

- pW,Y(i> Z)
pW,Y(i7 .7)

pW,Y(imj)

Note that ¢ and j are chosen arbitrarily. Therefore the
condition given in (205) implies that py|w (y|w) = py (y),
V(w,y) € X2, concluding the proof of the “if” part.

Hence, we have proved (198). Thus, there exists a deter-
ministic bijective mapping & satisfying ¢j 4 > ¢ 4 and in
turn qé% > ¢} > V7 € [n—1].

Now choose such a mapping ¢ and note that for any v €
[0,1)

(r)

Go—q,e=(1=7)g(®) —q(P)] (226)
> (1=9)[g(®) — q1(®)], Vr € [n—1] (227)
>0, Vre[n—1] (228)

22

Next, define

%2 (1-7)de +7d.e (229)

and choose a 7 € (¢} 4, ¢("5) bounded away from both ends
of the interval.

Let K,, 2 n — Z?:l I; and L; denote the j™ 0 in I™,
j=1,...,K,. In other words, L; holds the index of the j®
retained column Cj(?)((b) of G in GO, Similarly, for i with
ILi=0,letR, £i— ijl I; store the index of Ci(l) in Gg).

Now note that when we have
du(C{V, 0 (@) ~ Binom(A,, g5 g ")
I; =0, dg(C{",C)(®)) ~ Binom(A,, ¢} o).

I; = 1,
and

Next, we write the misdetection probability P, ; of C’i(l) as
Poi=Pr(3j € [Ka]: 855(®) < A, [ = 1)
+Pr (w € [Kn] : Aij(®) > Ap7, I; = o) (230)
< Pr (3]‘ € [Kn]: Ay (®) < AT, I, = 1)
+Pr(A; g, (®) > A, 7,1, =0) (231)
where
du(CV.C7 (®)).

A (@) £ (232)

From the union bound and Chernoff bound [63, Lemma
4.7.2], we obtain

Rn
Poi <3 Pr(A;;(®) < A7, I =1)
j=1
+Pr(A; g, (®) > A,7,1; =0) (233)
K, (i=L;1)
<N 97 AnD( g ) 4 9= ADA-TI=014)  (234)

It is straightforward to show that D(7||p) is an increasing
function of p for p > 7. Thus Vi € [n], j € [K,], we have

q(‘i_le) > q/ (235)
L mlIl
D(7lay s ") > D(7llg5s) (236)
9=AnD(lags ) < 9=AnD(Fllaf’%) (237)
Thus, we have
P, y < 22_A’ILD(7—Hqé‘; Lj I)) i 2,A,,LD(1777'H1*Q/1,¢) (238)
j=1
< ZQ AnD(7lla)s) 4 9—AnD(1-7[1-4] ¢) (239)
j=1
- K,2- AnD(7]lg3"%) 4+ 9= A D(A=Tl1-q1,4) (240)

Thus, by simple union bound the total misdetection probability
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P totar can be bounded as

n
Pe,total < § Pe,i
i=1

< Z f(n27A"D(ﬂ|q3'jT1>) + 2 M DA-7l1-q1 5) (242)
i=1
= nK,27 M PEIw) 4 po—AnDA-7I1-4; 4)

(241)

(243)
(244)

min

<n22 AnD(7|lqg, <1>)_|_n2 AnD(1—7||1— q1 @)

Hence, P. tota; — 0 as n — oo if the seed size A,, satisfies

AnD( T||q""“) —2logn >0 (245)
AwD(1 - 7|1 —qy.4) —logn >0 (246)
Thus any seed size A,, satisfying
1
A > ogn (247)

min { 2 D(T ||qmm) D1 =71 -qi4)
{3 J

is sufficient to drive P so1q1 to 0. Thus a seed size
A, =Q(logn) is enough for successful deletion detec-
tion. O

APPENDIX C
PROOF OF LEMMA 4

First, observe that from [64, Theorem 3] and the specific
Markov structure given in Definition 1, the rows of the
collapsed database X become i.i.d. first-order stationary binary
Markov chains, with the following probability transition matrix
and stationary distribution:

5 (vt —yur (1—=7)(1—u)
P = 248
[ I e L (24%)
T=[ur 1—u] (249)
For brevity, we let y,, 2 Pr(3i,j € [n], i # j, H H(l)).
Next, from the union bound, we obtain
pa <Y PN =HY) (250)
(,5)€[n]?1i<y
<n? max Pr(AM =AY (251)

(i,9)€[n]?+i<y

Due to stationarity of f’, this maximum is equal to Pr(f[ fl)
H S(i)l) for some s. For brevity, let Q £ P* and g
Pr(fil(l) (1) +1)- Observe that H; () and A 5(21 are correlated
Binom(m,,, 1 - ul) random varlables and for any s, Q has
positive values, i.e., the collapsed Markov chain is irreducible
for any s. Now, we have

L

Mo,

=Y Pe(a) =) Pe(AY) =0 =r) 252
r=0
-3 ( ) (1 — ) (A, = | HD = 1)
(253)
Note that since the rows of X are i.i.d., we have
Pr(AY, =r|HY =) =Pr(M+N=1)  (254)

23

where M ~ Binom(r, Q2,2) and N ~ Binom(m,, — r,Q12)
are independent. Note that there are two ways leading to state
2 in the collapsed column after s steps. The first one is the
state 2 staying in the same state after s steps, and the second
one is state 1 being converted to state 2 after s steps. Here
the Binomial random variables M and N keep counts of the
former and the latter ways, respectively.

Then, from Stirling’s approximation [50, Chapter 3.2] on the
factorial terms in the Binomial coefficient and [49, Theorem
11.1.2], we get

= (m”> (1 —up)"u""Pr(M + N =7) (255)
r=0 "
V23 T2 DG H0 )
Pr(M 4+ N =) (256)
where I, = = (1 — ). Let
T=Y 1t PG pr (A + N =) (257)
r=0
— T+ Ty (258)
where
T, = Z I Lo=myn D(5l1(1-u1)) Pr(M + N =r)
rD (2 1) > iy
(259)
T,=>Y Ot PGRl0-w))pr(p 4+ N =),

2
>32Tog, 2

(260)

€, > 0, which is described below in more detail, is such that
€, — 0 as n — oo.

First, we look at 7y. Note that for any r € N, we have
I, < m,2, suggesting the multiplicative term in the summa-
tion in (259) is polynomial with m,,. Note that we can simply
separate the cases r = 0, » = m,, whose probabilities vanish
exponentially in m,,. Therefore, as long as m,e2 — oo, T}
has a polynomial number of elements that decay exponentially

with m,,. Thus
T, > 0asn— o (261)

as long as my,e2 — oo.

Now, we focus on T5.
Lemma 11.6.1], we have

2
D(i 1—u1> < _‘n :>V(T,1u1) < e, (262)
M, m

~ 2log, 2 n
where V denotes the (unnormalized) total variation distance
between the Bernoulli distributions with given parameters.

From Pinsker’s inequality [49,
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Therefore

e

mn

1—u1) - 2loge }‘
< ‘{r : V(m—,l — ul) <en}
= O(mnen) "

(263)
(264)

for small ¢,,. Furthermore, if V ( ;1= ul) < €,, we have

—1 1

T

< 7(1 - (265)

Now, we investigate Pr(M + N = r) for the values of r in
the interval m,, (1 — uy) £ mpé€,.

Pr(M + N =r) =) Pr(M =r—i)Pr(N =)
i=1
+Pr(M =r)Pr(N =0) (266)
— Q2 2an7’r‘
+ Z < ) ‘(1-Qa2)
(mnz— 7"> 71’2(1 . Qla)mnfrfi (267)

Again, from Stirling’s approximation [50, Chapter 3.2] on
the factorial terms in the Binomial coefficient in (267) and
from [49, Theorem 11.1.2], we have

Pr(M + N =) < Q5,Q75 ™" + o [r(mn - ] ~V2U
(268)
where
U= an/inl/in 77’2—7’D(1—%\|Q2,2)—(mn—r)D(ﬁHQl,z)
(269)

Then, from 7 € [mp(l—u1 —€n),mp(1 —us +¢€,)] we
obtain

Pr(M+ N =r1) <Q3,Q77"

e? mn_1

— U (270
+27T \/(1—u1—en)(u1—en) ( )

and
U S, v

9—mn(u1—€n) D(7 = [1Q1,2) 271)

Z 11, 2= M (1—u1—€,)D(1—£|Q2,2)
1/r z/m —r
¢ R(en)
2_7nn(u1—€n)D($HQl,2)

T
1€ER(en)

2—mn(u1—en)D(ﬁHQl,z) (272)

24
where we define the set R(e,) as
Rlen) {Z €lrl: D(l - ;HQ“) = 21;252
Do) < geg) 0

Note that similar to 77, the first summation in (272) van-
ishes exponentially in m,, whenever m,,e2 — oo, and using
Pinsker’s inequality once more, the second term can be upper
bounded by

O(IR(en)]) = O(mnen)

Now, we choose €, = mn_%Vn for some V,, satisfying
Vi=w(l) and V,, = o(m}/ ®). Thus, T} vanishes exponen-
tially fast since m,e2 = V,2 — oo and

(274)

Pr(M + N =7r)=0(e,) (275)
T = O(mpe2) = O(V?) (276)
fin = O(n*m,~Y/2V2) (277)

By the assumption m,, = w(n*), we have m, =n*Z, for
some Z, satisfying lim Z,, = oo. Now, taking V,, = 0(21/4)

n—oo

(eg. V,, = Zn/ ), we get

pin < O(Z,1PV2) = o(1) (278)

Thus m,, = w(n*) is sufficient to have u, — 0 as n — oo,

concluding the proof. O
APPENDIX D

PROOF OF ACHIEVABILITY OF THEOREM 3
The proof of the achievability part follows from successive
union bounds exploiting the following:

For any typical row Y X of Y, there are approximately
2K H(XIY) jointly typical sequences with respect to

Px)y-
If the output of the synchronization channel has length
K‘Il

K, then there are at least k;, = [
deleted) elements.

For the number of columns 7, the number of deletion
patterns with ki, retained elements is

n nHp (kmin /1)
< 2mHe
(kmin>

Any stretched row has the same probability as the original
TOow.

If the original length-n sequence and the retained length-
kmin sequence after the deletion channel are e-typical
with respect to px, then the complementary length-
(n — kmin) subsequence is é-typical with respect to px,
where € = Z*k"‘“‘.

The cardlnahty of the set of & -typical sequences of

length n — Ky, with respect to px is approximately
2(n—kmin)H(X)‘

—‘ retained (not

(279)

We need to show that for a given pair of matching rows,
WLOG, X7 of X and Y, of Y with ,,(1) = t, the proba-
bility of error P, £ Pr(6,(1) # t) of the following matching
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scheme can be made arbitrarily small asymptotically where
K, = Z;’:l Si,; is the random variable corresponding to
the length of YtK". The matching scheme we propose follows
these steps:

1) For all j € [n], discard the jM column of X if 4; =1 to
obtain X whose column size is n—A where A =377 A;.
2) Stretch each row X" # = X;,...,X;,,_a of X into
)N(i(an)Sr“""‘, by repeating each element of X"~ % 5.,
times as follows

XA _ qomex @ X0 19 @ X a4 (280)

where 1°==x is an all-one row vector of length sp,,x and
® denotes the Kronecker product.

3) Fix € > 0. If K,, < k £ n(E[S] — ¢€) declare error, whose
probability is denoted by x, where k is assumed to be
an integer for computational simplicity. Otherwise, proceed
with the next step.

4) If A < a = n(ad — €) declare error, whose probability is
denoted by p,,. Otherwise, proceed with the next step.

5) Match the ¢ row Y, of Y X7 of X, assigning 6,,(1) =
t, if i = 1 is the only index in [m,] such that i) X"~*
is e-typical and i) X" *™* contains a subsequence

jointly e-typical with Y™™ with respect to px y. Otherwise,

declare a collision error.

Since additional columns in Y and additional detected
deleted columns in X would decrease the collision probability,
we have

Pr(collision between 1 and i|K,, > k, A > a)
< Pr(collision between 1 and || K,, = k, A =a) (281)

for any i € [m,,]\{1}. Thus, we can focus on the case K,, = k,
A = a, as it yields an upper bound on the error probability of
our matching scheme.

Let Ag”fa)(X ) denote the set of e-typical (with respect to
px) sequences of length n — a and A.(X*|Y}¥) denote the
set of sequences of length & jointly e-typical (with respect to
px.y) with Y;*. For the matching rows X7, Y;* of X and Y,
define the pairwise collision probability between X{* and X
for any i € [m,] \ {1} as

Pooii £ Pr(32F . 28 € A(X*|Y/F) and 2F is a

subsequence of )N(i("_a)s”‘“.). (282)

Therefore given the correct labeling for Y € Y is X7 €
X, the probability of error P, can be bounded as

P. <Pr($z*: 28 € A (XF|Y}F) and 2% is a

subsequence of X"~ )

+Pr(X7 ¢ AM(X))
2nR
+ZPcol,i+Hn+,un

=2
gnR

< 2€+chol,i+"fn+/~tn
=2
S 2e + 2n]’:‘{]Dcol,Z + Kn + Hn

(283)

(284)

(285)

25

where (285) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Icol2, Vi € [mn] \ {1}

We now upper bound P, . First, we investigate repetition
distributions with ——E[S] > 1|’x"|‘5. Let F(n,k,|X|) denote
the number of |¥|-ary sequences of length n, which contain
a fixed |X|-ary sequence of length k. We note that this
F(n,k,|X|) is constant for any |¥|-ary sequence of length
k [65, Lemma 1]. Now we define G, (nSmax, k, |X|) as the
number of sy .y times stretched sequences of length NSy ax,
containing a |X|-ary sequence z* of length k. We stress that
this counting function G« will not be independent of z* as
is the case for the counting function F. For example, let
Smax = 2, X = {0,1}, n = 2, k = 2, zf = 01 and
25 = 00. Then we have Gk (nSmax, k, |X[) = 1 since only
0011 contains 27 = 01, whereas G ,x (n$max, k, |X[) = 3 since
0000, 0011 and 1100 all contain z§ = 00.

Observe that the maximum value of G, & (nSmax, k, | X]) is
attained when z* consists only of one symbol repeated k
times, as this grouping of elements in z* yields the maximum
number of possible elementwise replicated sequences. WLOG,
let ¥ = 00...0. Then, to count Gk (nSmax, k, | X|), we group
the consecutive sp,.x 0’s in z* together, allowing the last group

to have possibly fewer than s,,,x elements. It is clear that there
k

are of such groups of 0’s. Since we put a stretching

constraint on the sequences of length nsy.x When we count
G 1 (NSmax, k,|X|), we are looking for sequences of length

n, containing a subsequence of length [L

. Thus, counting

Smax

this number will be the same as counting F' ( n, Ln’fax—‘ , |1 X |>

Thus we have
Gk (NSmax, ky | X)) < F (n, [F/smax |, |X]), V¥ e xF
(286)

We note that the inequality given in (286) is the tightest upper
bound independent of z*, equality being achieved when z* is
a constant (e.g., all-zeros) sequence.

Now, let
T(F,A") & {a" € X" : 2" € AlI(X)

and 7("~®%max contains z"”‘.} (287)

Then, we obtain
IT(z", A" < Gor((n = a)smax, b, | X)) (288)
S F(n—a, [Fsmax] | X]) (289)

For the sake of computational simplicity, suppose SL is an

integer. Since sn}axlE[S] > ll’xol“s, from [65] and [49, Chapter

11] we have the following upper bound:

F (1= @, Hfsuuss [X]) < (0 — )2~ (=)
(X -)e==) @0

Furthermore, for any z" € T(z*, A"), since T(z*, A") C
Al (X), we have

pxn (In) S 27(n7a)(H(X)7e) (291)
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and since the rows X' of X are i.i.d., we have

Pr(Xy € T (2", A™)| X} € T(zF, A™))
=Pr(Xy e T(z%, A™))  (292)
Finally, we have
|A€(Xk|Ytk)‘ < Qk(H(X\Y)Jre) (293)

Combining (289)-(293), we can upper bound P, as

Pc01,2 S Z PI"(X; € T(Zk7An)) (294)
ZFEA(XF|YF)
= > > pxe(a™) (295)
2REA(XF|YF) zneT (zF,A™)
< Z Z 9—(n—a)(H(X)—¢) (296)
ZREA (XF|YF) zn €T (25, An)
_ Z ‘T(Zlc,An)|27(n7a)(H(X)fe) (297)
ZREA(XFIYE)
< Z 9—(n—a)(H(X)—e)
ZFEA(XF|YF)
F(n— a,"/smax, | X]) (298)
= [Ac(XF |yl
F(n—a,®/ s, |X|) (299)
< |A(XPYP)|(n - a) (1] - )" e
9~ (n— a)[H(X) e— Hb(m)] (300)
< MO (0 — a) (2] - 1))
9= (n—a)[H(X)—e=Hy(rtimay)] (301)

Thus, we have the following upper bound on the error prob-
ability

P, <2+ kp + fin
+ 2nR2k(H(X|Y)+e)(n

a)(|x] - 1))
2*("*“)[H(X)*E*Hb(m)] (302)

By LLN, we have x, — 0 and p,, — 0 as n — oo. Hence,
we can argue that any database growth rate R satisfying
E[S]
1—ad) | HX)—-Hy | m——=—
R<[( Oé)( ) b((l_a5)5maX>>
E +

- (1 —ad - [S]) log (|X] — 1) — IE[S]H(X|Y)}

(303)

is achievable, by taking e small enough.

Now, we focus on general repetition distributions. For any
subsequence 2k of Spax-times stretched sequence of length
(n—a)Smax. let 7(2*) be the number of runs in z* with at most
Smax €lements and note that r(zk) <n-—a. Then, let 57"
be the sequence storing the values of each run in 2" Observe
that for any z* € A (X*|Y}F), we have 27(*") € A (") (X)

For any such grouping of r(z*) runs, the e-typicality of
" = (z1,...,2,) € T(2F, A") and 77(") with respect to px
implies the é-typicality of the remaining sequence of length
n —a — r(z*) obtained after discarding 7" from zme,

26

n—a+r(z")
n—a—r(zk)
made above, we stress that T'(z*, A™) attains its maximum
value when r(z*) is the minimum, which is kpi, = [< nij,
attained when z* is a sp.y times stretched sequence itself.
Therefore for any z* € A (X*|Y/F), taking the union bound
over all possible groupings with 7(2*) runs, the cardinality of

T(z*, A™) can be upper bounded as
et < (7 YAl )

2(n a)Hb( """)|An a— k)( )| (305)
o(n=a)Hy (5232 ) o (n—a—kynsn) (H (X)+2) (306)

where € = €. Furthermore, by a similar argument

(304)

_ on[ (= Hy (Fmin )+ (1 g - i) (1 (X) +2)]

(307)

Plugging (307) into (297) and following the same steps, one
can show that any rate R satisfying
E[S]

Smax

R <

H(X) — E[S]H(X|Y)

~(1—ad)H, ((lli[f)}s%() r (308)

is achievable. Simply taking the maximum of the two proven
achievable rates ((303) and (308)) when ——E[S] > 1|;5
yields (89). This concludes the proof. b

APPENDIX E
PROOF OF COROLLARY 3

Let E denote the empty string and X denote the sequence
obtained after discarding the detected deleted entries from X 2.
The dependence of X on X2 and A2 and that of Y on X2
and S? are omitted for brevity.

We start with the fact that since the entries of X? are
independent, the deleted entries do not offer any information.
Thus, we can discard them without any information loss. Thus,
we have

I(X2% YAQ) (~,Y|A2) (309)
H(X|A%) - H(X|Y, A?) (310)
We have
H(X|A%) = > Pr(A’=a*)H(X|A*=d%) (@l1)
a?e€{0,1}2
= Pr(A4% = 00)H(X|A? = 00)
+ Pr(A? = 01)H(X|A? = 01)
+ Pr(A% = 10)H(X|A?% = 10)
+Pr(A? =11)H(X|A? = 11) (312)
= (1—ad)?2H(X)
+adé(l —ad)H(X)
+ (1 — ad)adH(X)
+0 (313)
=2(1 — ad)H(X) (314)
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Furthermore, we have
H(X|Y,A%) =Y Pr(Y

y,a?

H(X|Y =y, A? = a?)
=Pr(Y = E,A> =00)H(X|Y = E, A*> = 00)
+Pr(Y = E,A> =01)H(X|Y = E, A> = 01)
+Pr(Y = E,A* = 10)H(X|Y = E, A> = 10)
+ > Pr(Y =z,4% = 00)H(X|Y =z, A% = 00)
reX

- yaA2 = a2)

(315)

+ 3 Pr(Y =, A = 01)H(X|Y =z, A> = 01)
reX
+ > Pr(Y =z,A? =10)H(X|Y =z, A = 10)
reX
(316)
Note that in (316), we discarded the terms with
A% = 11 for |Y| > 1, since in that case we have

Pr(|Y]| >1,A% = 11) = 0. We can further discard the terms
with |Y| = n = 2, since in that case we have no deletion
and Y = Y? = X?2. Finally, we can also discard the last two
terms in (316) since for any x € X we have

H(X|Y =x,A>=01) = HX|Y = 2,42 =10) =0

(317)
Thus, we have
H(X|Y, A%) = §%(1 — a)?2H(X)
+6%(1 — a)aH(X)
+6%a(l — a)H(X)
+ > Pr(Y =, A% = 00)
rzeX
H(X|Y =z, A2 = 00) (318)
=25%(1 — a)H(X)
+ ) Pr(Y =, A% = 00)
rzeX
H(X|Y =z, A2 = 00) (319)

We first compute Pr(Y = x, A% = 00). For any = € X, we

have
Pr(Y =z, A% = 00)
= ) Pr(Y =2,47=00,X* =27 (320)
r2eX?
=Pr(Y =z,A? =00, X? = zx)
+2) Pr(Y =z,A> =00, X* = ay) (321)
y#T
=px(x )226(1 - 5)(1 —a)
+2) px(x) 5(1—06)(1—a) (322)
y#T
=26(1-0)(1 — a)px(2) Y px(y) (323)
yeXx
=20(1 - 0)(1 - a)px («) (324)

27

Now, we compute H(X|Y = x, A> = 00). For any = € X
we have 2|X| — 1 possible patterns for X, given that ¥ =
x. 2|X| — 2 of these patterns have probabilities proportional
to px(z)px(y) y € X\ {z} and the remaining pattern has
probability proportional to 2px (). Thus we have

H(X|Y =z, A2 = 00)
:H<pX(1)pX(1‘) px (z)px (1)

) )

px (|X])px(x) px(l‘)px(‘xD) (325)

where the normalization constant ¢ is ¢ = 2px (). Thus,

H(X|Y:x,A2:OO):H(pX7<1) pL(U

2 7 27
copx(@),.
px(%]) px(X)
2 ’ 2 ) (326)
—H(X)+1-px(z)  (327)

Combining (319)-(327), we can compute H (X Y, A?) as
H(X|Y,A?) =26%(1 — a)H(X)

+ > 20(1 = 0)(1 - a)px ()
reX
[H(X)+1-px(z)]  (328)
=25%(1 - a)H(X)
+25(1-96)(1—«a)
(HX)+1-4) (329)
=21 - a)H(X)
+206(1=90)(1 —a)(1—4q) (330)
Finally, combining (314) and (330), we obtain
I(X;Y|A%) = H(X|A%) - HX|Y(X?),4%)  (331)
=2(1—-ad)H(X)—26(1 —a)H(X)
-26(1-0)1—-a)(1—4) (332)
=2(1-0)H(X)
—25(1 - 8)(1 — ) (1 - §) (333)
Thus, we have
%I(XQ;YK,AQ) — (1-§)H(X)
—(1-0)1—-a)(1—-4) (334)
concluding the proof. O
APPENDIX F
PROOF OF COROLLARY 4
We start by observing that
I(X%Y,A?) = (XY, |Y], A%) (335)
= H(X?) - H(X?|Y,|Y|,A%)  (336)
=2H(X) - H(X?|Y,[Y[,A?)  (337)
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Furthermore, we have

H(X?|Y,[Y], A?)

2

= Pr(|Y| =) H(X?|Y,|Y] = i, A%) (338)

i=0
= ?H(X?Y,|Y| =0, A?)

+20(1 — §)H(X?Y,|Y| =1, A%)

+ (1= 8)*H(X?Y,|Y| =2, A?%) (339)
= §%2H(X)

+20(1 = §)H(X?Y,|Y| =1, A%

+ (1 = 8)*2H(X|Y) (340)

= §?2H(X)
+28(1 — 8)a[H(X) + H(X|Y)]
+20(1 = 6)(1 —a)H(X?|Y,|Y|=1,A% = 00)
+(1=0)%2H(X]Y) (341)
Note that we can rewrite H(X?|Y,|Y| =1, A? =00) as
H(X?Y, Y| = 1, 4% = 00)

= H(X?|Y,[Y|=1) (342)
=2H(X) - I(X%Y||Y|=1) (343)
=2H(X)—[HY)-HYI|X?%|Y|=1)] (344)
where we have
H(Y|X? Y| =1)
= ) Pr(X*=2%
z?ex? HY|X?=2%|Y|=1) (345)
Writing the sum in (345) explicitly, we obtain
H(Y|X?|Y|=1)
= (1-p’H(Y|X?=00,]Y|=1)
+p?H(Y|X? =11,]Y|=1)
+p(1=p)H(Y|X? =01, |Y|=1)
+p(1—-p)H(Y|X?=10,]Y|=1) (346)
Observing the following,
H(Y|X?=00,]Y|=1)=H(Y|X =0) (347)
HY|X?=11,|Y|=1)=H(Y|X =1) (348)
H(Y|X?=01,]Y|=1)=H(V) (349)
H(Y|X?=10,|Y|=1)=H(V) (350)
HY|X=0)+HY|X =1)
=2 %H(Y\X =0)+ %H(Y|X =1) (351)
= 2H(V|U) (352)

28
we obtain
H(Y|X2,|Y| = 1) = (1 - p)H(Y|X =0)
—p(1=p)H(Y|X =0)
+pHY|X =1)
—p(l—-p)HY|X =1)
+2p(1 —p)H(V) (353)

=H(Y|X)+2p(1 —p)I(U;V) (354)
Hence, we have
H(X?|Y,|Y|=1,A% =00) = 2H(X) — I(X;Y)
+2p(1 =p)I(U; V) (355)
Combining (337)-(355), we have
%I(XQ;YK,AQ) =(1-8§I(X;Y)
—26(1 = 6)(1 —a)p(1 = p)I(U;V) (356)

concluding the proof. O

APPENDIX G
PROOF OF THEOREM 4

First, we focus on 6 < 1 — ¢ and prove the achievability
part. For a given pair of matching rows, WLOG, X7* of X
and VX" of Y with 0,,(1) = ¢, let P, £ Pr(6,(1) # t) be
the probability of error of the following matching scheme:

ir(1).m

1) Construct the collapsed histogram vectors H; and
AP as in (71)-(72).
2) Check the uniqueness of the entries H ](-1) Jj € [n] of

HM:m If there are at least two that are identical, declare
a detection error whose probability is denoted by .
Otherwise, proceed with Step 3.

3) Vi € [n] if Bj € [K.], ffi(l) = fI]@), declare the i column
of X deleted, assigning ¢ € fdel. Note that conditioned on
Step 2, this step is error-free.

4) Match the ¢t row YtK“ of Y with the 1% row X f of X,
assigning &, (1) = t if the 1% row X" (Iyy) of X is the
only row of X equal to ;X" where X" (I4) is obtained
by discarding the elements of X* whose indices lie in T4,
Otherwise, declare a collision error.

Let I(4) be the set of all deletion patterns with up to nd

deletions. For the matching rows X', Ytlc of X and Y, define

the pairwise adversarial collision probability between X{* and
X for any i € [my] \ {1} as

Peoij 2 Pr(3lga € 1(6) : X[ (Iga) = Y57) (357)

=Pr(3lyy € 1(6) : XEm(Iga) = X5 (Laar)).  (358)

Note that the statement 3/ 4 € I(5): Xf(” (fdel) = Xf("(fdel)

is equivalent to the case when the Hamming distance between
X7 and X7 being upper bounded by nd. In other words,

Feoli = Pr(du (X7, Xi') < nd) (359)
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where
n

dH(X{lein) = Z IL[XL;'#Xi,j]

Jj=1

(360)

Note that due to the i.i.d. nature of the database elements,
dp (X7, X?) ~ Binom(n,1 — §). Thus, for any 6 < 1 — ¢,
using Chernoff bound [63, Lemma 4.7.2], we have
Pcol,i = Pr(dH<X{La in) < né)
< 2~ nD(6l1-9)

(361)
(362)

Therefore given the correct labeling for Y* € Y is X7 €
X, the probability of error P, can be bounded as

P. < Pr(3i € [m,]\ {1} : X[ = XF) (363)
2nR

<Y Peoti + Fin (364)
1=2

<2"BPgios + Ky (365)

where (365) follows from the fact the the rows are i.i.d. and
thus Peori = Peol2, Vi € [my] \ {1}. Combining (362)-(365),
we get

P < 2" Pr(dy (X7, X{") <né)+ K, (366)
< gnRo—nD(5[1-9) + K, (367)
— 9~ nIDE@I1-9)—F] 4 o, (368)

By Lemma 4, k, — 0 as n — oo. Thus, we argue that any
rate R satisfying

R < D(5||1—q) (369)

is achievable.

Now we prove the converse part. Suppose P, — 0. Then,
we have

P, =Pr(3i € [my] \ {1} : du (X, XP) < né) (370)
=1-Pr(Vi € [mu]\ {1} : dg (X}, X]") > nd) (371)
=1- ﬁPr(dH(X{’, X7") > nd) (372)
=2

— 1= [0 - Prldu (X7, X7) < n)] (373)
1=2

=1—[1 = Pr(du(X7, X3) < né)™ (374)

where (371)-(374) follow from the i.i.d.ness of the rows of
X. Since D, 2 ~ Binom(n,1 — §), for § <1 — g, from [63,
Lemma 4.7.2], we obtain

9—nD(8][1-q)
Pr(Dy 2 < nd) > T (375)
Plugging (375) into (374), we get
9—nD(6[|1—g) 7™ 1
P.>1- {1 — \/%} (376)
Now let y = —% € (—1,0). Then, we get
P.>1—(1+ym ! (377)

29

Since y > —1, and m,, € N, we have

14+ y(m, —1) < (14y)mt < evlma—b (378)

where the LHS of (378) follows from Bernoulli’s inequal-
ity [66, Theorem 1] and the RHS of (378) follows from the
fact that

VeeR, VreRsog (14+z)" <e* (379)
Thus, we get
Po>1—(1+y)m ! (380)
>1—e¥(mn—1) (381)
>0 (382)

since y < 0, m,, —1 > 0. Note that since P. — 0, by the
Squeeze Theorem [66, Theorem 2], we have

lim 1 — e¥(mn—1) _y (.
n— o0

(383)

This, in turn, implies ym,, — 0 since the exponential function
is continuous everywhere. In other words,

fi — 2 0 384
im - —m,, — 0.
n—00 vV 2n ( )

Equivalently, from the continuity of the logarithm function,
we get

1
lim —nD(d||1 — §) + logm,, — B log(2n) — —oo (385)

n—roo
1 log(2

lim —n [D(5||1 —q) — loganrOg(n)] — —00
n

n—00 2n
(386)
1 log(2
lim [D(5||1 _g) = Llogm, + 108 ”)} >0 (387)
n—00 n 2n
This implies
1
D@1 —¢) > lim —logm, (388)
n—oo N
=R (389)

finishing the proof for § < 1 — §. Thus, we have shown that
C*(8) = D(4[|1 - g) (390)

ford <1—4q.

We argue that for § > 1 — ¢, the adversarial matching
capacity is zero, by using two facts: i) Since the adversarial
deletion budget is an upper bound on deletions, the adversarial
matching capacity satisfies

C*(§) < C* (), V' <6 (391)

and ii) C*¥(1 — §) = 0. Thus, V4 > 1 — ¢, C*¥(§) = 0. This
concludes the proof. O

APPENDIX H
PROOF OF THEOREM 5

First, note that the converse part of Theorem 5 (Equa-
tion (113)) is trivially true since C is a non-decreasing function
of the seed size A,. Hence it is sufficient to prove the
achievability part of Theorem 5 (Equation (112)).
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For the achievability, we use a matching scheme which
i) utilizes replica detection and marker addition as done in
Section III-C and ii) checks the existence of jointly typical
subsequences as done in Section IV-A. The matching scheme
we propose is as follows:

1) Perform replica detection as in Section III-A. The proba-
bility of error of this step is denoted by p,,.

2) Based on the replica detection step, place markers between
the noisy replica runs of different columns to obtain Y.
Note that at this step we cannot detect runs of length O as
done in Section III-C. Therefore conditioned on the success
of the replica detection we have K, = Z?Zl 1is;0) Tuns
separated with markers.

3) Fix e > 0. If K, <k 2 n(E[S] —¢) or K, <k 2 n(l—
d — €) declare error, whose probability is denoted by x,,
where k and k are assumed to be integers for computational
simplicity. Otherwise, proceed with the next step.

4) Match the t row Y, of Y X7 of X, assigning &,,(i) =
t, if 7 is the only index in [m,,] such that i) X" is e-typical
with respect to px and ii) X' contains a subsequence of
length K,,, jointly e-typical w1th YK with respect to py y- &

where S ~ pg with

ps(s8)  jf g {1 Smax |
S — 1 5 1 PRI max 392
Ps () {O otherwise (392)
and
Pr(VS =y%IX = 2,9 =) = [[ pvix (ysl2).  (393)
j=1

Otherwise, declare a collision error.
Since additional runs in Y and additional columns in each run
would decrease the collision probability, we have

Pr(collision between 1 and i|K,, > k, K,, > k)

< Pr(collision between 1 and i||K,, = k, K,, = k)
(394)

for any i € [my,] \ {1}. Thus, for the sake of simplicity, we
can focus on the case K = k as it yields an upper bound on
the error probability of our matching scheme.

Let A (X) denote the set of e-typical (with respect to px)
sequences of length n and A (X*|Y}*, §¥) denote the set of
sequences of length k jointly e-typical (with respect to p X.v.5)
with Y;* conditioned on S™. For the matching rows X7, Y}
of X and Y, define the pairwise collision probability between
X7 and X where ¢ # 1 as

Pegi 2 Pr(X! € A (X) and 3% € A (XF|VF, 5F)
which is a subsequence of X*.). (395)

Therefore given the correct labeling for ;¥ € Y is X € X,
the probability of error P, can be bounded as

P, < Pr(BeF : 2% € A (X*|VF, $%) and 2F
is a subsequence of X71'.)
271R
+Pr(X7 ¢ A(X)) + > Peoti+ kn+pn (396)
=2

30
onR
<2+ Z Pcol,i + Kn + Pn (397)
1=2
<2+ 2nR]DcolQ + Kp + pn (398)

where (398) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Feol2s Vi € [mn] \ {1} .
We now upper bound P..,. For any z* define

T(zf“) L z" e X" 2" e AM(X), 2" contains zk} (399)

Observe that for any 2 e A(XF|YF,5F), we have 2F €
{12’”(}( ). Furthermore, for a given deletion pattern with n —
k = ©(n) deletions, WLOG (k + 1,...,n), the e-typicality
of " = (@1,...,2,) and zF = (z1,...,2;) with respect
to px implies the é- typlcallty of (mkﬂ, . xn), where € =

259—<¢. Therefore for any z* € A (Xk\Ytk,Sk) taking the

union bound over all possible deletion patterns with n — k
deletions, the cardinality of 7'(z*) can be upper bounded as

~ n an
(M) < (k> A8 (X)) (400)
< 2mh (D ACR () (4o1)
< onHy(£)o(n—k)(H(X)+8) (402)
_ on[m(B) -5y H0)+9)] 403)

Furthermore, for any =" € T(z’}), since T(zk) c A (X),
we have

pxn(z) < 9—n(H(X)—e) (404)
and since the rows X" of X are i.i.d., we have
Pr(X} € T(z")| X" € T(2F)) = Pr(X2 € T(F)). (405)
Finally, we note that
and
Smax
H(X|Y?,8) = Zps H(X|YS,§ =s) (407)
= Zpg H(X|[YS,S=5)  (408)
:—6[2135 H(X|Y?, 8 =s)
_SH(X|YS,S = 0)} (409)
1
=15 [H(X|Y®,S) - 6H(X)] (410)
1
=13 [(1-8)H(X)-I(X;Y®,8)] @11
.yS
= H(X) _ M (412)
1-9
Thus, we get
. " BlEHOO)-IGYSs) |
‘Ae(XkD/tkaSk” S 92 [ (X) 1—5 +] (413)
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Combining (403)-(413), we can upper bound Py, as

) ) (414)

ke A (ZF|YE,SF)

Pcol,Z S PI‘(X;L c T(Z

— > > pxe(a”) (415)
ke A (ZF|YF,SF) ameT (2F)
D D S
z’%eAe(zkmk,él%)zneT(z")
= Y IrEHRTT
zl%eAe(Zl%lytk’gfc)
< S o—n(H(X)—e)
ZFEA(ZF|Y],SF)
on [y (5)+(1=E)(H(x)+9)] 418)
14 (Zk|Y}k Sk)|2 [kH X)—ne—Hy (£ )7(n71%)e]
(419)
- _I1(x;Y5,s) .
§2k[H(X) LY 2.5) +]
2—[kH(X)—ne—ng(g)—(n—k)g] 420)
— 9 [} TF (XY S,S) —Hy (5+€) = (5+¢) (e +6)] (421)
— o [P I(X5Y S ,8) — Hy (6+€)—2¢] (422)

Thus, we have the following upper bound on the error prob-
ability

P, < 2¢ + 2nRo=n[ IR 1(XGY %,8) —Hy (3+)—2¢]

+ Fn t P (423)

By LLN, we have k, — 0 and from Lemma 2, we have
pn — 0 as n — oco. Hence, we can argue that any database
growth rate R satisfying

R<I(X;Y®,8S)— Hy(9) (424)

is achievable by taking € small enough.

Now, we investigate repetition distributions with 6 < 1— 5] 35|
Recall from Appendix D the counting function F(n,k,|X|)
denoting the number of |X|-ary sequences of length n, which
contain a fixed |X|-ary sequence of length k as a subsequence.
From [57], [65], we have

. n B (1— &Y Tog (%] —
Fn, by 1)) < n2n [0 (2) 0000320 - g5

Furthermore, disregarding the typicality constraint, we can
trivially bound the cardinality of T'(z*) as

IT(5)] < [{a" € X"+ 2" contains 2F}|  (426)
< F(n.k, %)) @2
< [ (B)+0-Frosx-0)] g

Plugging (428) into (417) and following the same steps, one
can show that any rate R satisfying
R< |[I(X;Y%,8)—

Hy(8) + 5(H(X) ~ log(1x] ~ 1)|

(429)

31

is achievable. Simply taking the maximum of the two proven
achievable rates when 6 < 1 — 1/jx| yields the desired
achievability result. This concludes the proof. [

APPENDIX I
PROOF OF LEMMA 5

For brevity, We let Ln, denote
Pr(3i,j € [n], i # 4, H H( )). Notice that since the

entries of X are ii.d., HZ( are i.i.d. Multinomial(m,,, px)
random variables. Then,

(430)
(431)

pin < 02 Pr(H{" =
=n?>" Pr(H{"
hlX|

where the sum is over all vectors of length |X|, summing up
to m,,. Let m; = h(i), Vi € X. Then,

|X]
(1) _ p|x] ( > s
Pr(H,” =h X
( ) mi,ma, ... TI’L|X| H
(432)
Hence, we have
m 2 |X|
n < n2 n i 2m;
= g ++; = (m17m2’-~-7m3€) pr( )
my |x|=mn i=1
(433)
where <m1 " ) is the multinomial coefficient corre-

sponding to thé“(xptluple (m1,...,m %) and the summation

is over all possible non-negative indices my, ..., m x| which
add up to my,.
From [49, Theorem 11.1.2], we have
| X
HpX(i)2mi — 9—2mn(H(P)+D(Plpx)) (434)
where p is the type corresponding to |X|-tuple (my, ..., m|x):
m
p~é<m,...,xl). (435)
My, My,

From Stirling’s approximation [50, Chapter 3.2], we get

2
( my, ) < C  plIXIslg2ma H )
mi, Mz, ..., Mx| (2m)IXl
(436)
where II; = H‘,l p(i).
Combining (433)-(436), we get
2
e 2, 1-|%| —1l9—2m, Drr(pllpx)
Let
T =Y myto 2P le) — 7y 4T, (438)
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where
Ty = Z Hglz—an,DKL(ﬁHpX) (439)
D1 (Pllpx)> i
Ty = Z 1—1512—2man(13pr)7 (440)

2
- . e
P:DKL(PHPX)S%

€n, Which is described below in more detail, is a small positive
number decaying with n.

First, we look at Tg. From Pinsker’s inequality [49, Lemma
11.6.1], we have

2

€
D 1 < —n
rkrL(Pllpx) < 3Tog, 2

where V denotes the (unnormalized) total variation distance.
Therefore

= V(p,px) < €n (441)

2

21§$} <Hp: V(P px) < en}l
(442)

(443)

{p: Drr(pllpx) <

— Ol

where the last equality follows from the fact in a type we have
|X| — 1 degrees of freedom, since the sum of the |X|-tuple

(mi,...,mx|) is fixed. Furthermore, when V(p,px) < €,
we have
|X| 1%
0 > [[(ox (i) —en) > Ty —en > [[px(G)  (444)
i=1 i=1 j£i
Hence
1
—1
;' < T (445)
My —en 3 [T px ()
i=1j#i
and
~ 1
Ty < T O(m)I=eFI=1)  (446)
O, —e, . [12x(5)
i=1 j#i
= O(myH 1) (447)

for small €.

Now, we look at Tl. Note that since m; € Z;, we
have II; < mlfl, suggesting the multiplicative term in the
summation in (439) is polynomial with m,,. If m; = 0 we
can simply discard it and return to Stirling’s approximation
with the reduced number of categories. Furthermore, from [49,
Theorem 11.1.1], we have

2

2log 2}

€

< {p}|

< (my + 1)1

{p: Drr(plpx) > (448)

(449)

suggesting the number of terms which we take the summation
over in (439) is polynomial with m,, as well. Therefore, as
long as mye2 — oo, T has a polynomial number of elements
that decay exponentially with m,,. Thus

Ty — 0 as n — c0. (450)

32

Define

U; = e2(2n) X=X, =12 (451)
1

and choose €, = my, 2V, for some V,, satisfying V,, = w(1)

and V,, = o(m}/ 2). Thus, U; vanishes exponentially fast since

mue2 = V2 — oo and

Uy = O(eXI=1) = o(m{1~1XD/ 2y (1X1=1)y, (452)
Combining (450)-(452), we have
U=U, 4 Uy = O(m{~XD/2y1xI=0y  (453)
and we get
pn < 02O (mTIXD2Y 1) (454)

By the assumption m = w(n HE ), we have m,, =n w17,
for some Z, satisfying lim Z, =oco. Now, taking
n— oo
V, = o(Z,l/Q) (e.g. V,, = Z,ll/g), we get
pin < O(n?n=2Z(~1XD/2Y (XI=1)) — (1), (455)

Thus m,, = w(n‘xﬁl) is enough to have p, — 0 as n —

0. O
APPENDIX J
PROOF OF PROPOSITION 4
For brevity, we let Lhn, denote
Pr(3i,j € [n], i # j,H" = H"). Then,
fin =n(n — 1) Pr(HY = HY) (456)
= n(n—1) Yy Pr(H;") = hl¥l)? 457)
K]
m 2
=n(n—1 " x|~2mn
( ) Z (ml,...7m|3€> | |

mi+-+myx|=mn

(458)
2
=n(n — 1)|x]|72m" < Mn )
D T .
mi+t-Fmx|=my
(459)
=n(n — 1)‘x|\35\/2(47Tmn)(1—|3€|)/2
(L +0m, (1)1 —on(1)) (460)
= n2my (4 1XD /2 x| XI/2
(1 +0m,(1))(1 —on(1)) (461)
where (460) follows from [67, Theorem 4]. O
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