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Abstract—The re-identification or de-anonymization of users
from anonymized data through matching with publicly available
correlated user data has raised privacy concerns, leading to the
complementary measure of obfuscation in addition to anonymiza-
tion. Recent research provides a fundamental understanding
of the conditions under which privacy attacks, in the form of
database matching, are successful in the presence of obfuscation.
Motivated by synchronization errors stemming from the sam-
pling of time-indexed databases, this paper presents a unified
framework considering both obfuscation and synchronization
errors and investigates the matching of databases under noisy
entry repetitions. By investigating different structures for the
repetition pattern, replica detection and seeded deletion detection
algorithms are devised and sufficient and necessary conditions
for successful matching are derived. Finally, the impacts of some
variations of the underlying assumptions, such as the adversarial
deletion model, seedless database matching, and zero-rate regime,
on the results are discussed. Overall, our results provide insights
into the privacy-preserving publication of anonymized and ob-
fuscated time-indexed data as well as the closely related problem
of the capacity of synchronization channels.

Index Terms—dataset, database, matching, de-anonymization,
alignment, recovery, data, privacy, synchronization

I. INTRODUCTION

W ITH the exponential boom in smart devices and the
growing popularity of big data, companies and institu-

tions have been gathering more and more personal data from
users which is then either published or sold for research or
commercial purposes. Although the published data is typically
anonymized, i.e., explicit identifiers of the users, such as names
and dates of birth are removed, there has been a growing
concern over potential privacy leakage from anonymized data,
approached from legal [1] and corporate [2] points of view.
These concerns are also articulated in the respective literature
through successful practical de-anonymization attacks on real
data [3]–[17]. Obfuscation, which refers to the deliberate
addition of noise to the database entries, has been suggested as
an additional measure to protect privacy [6]. While extremely
valuable, this line of work does not provide a fundamental
and rigorous understanding of the conditions under which
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anonymized and obfuscated databases are prone to privacy
attacks.

In the light of the above practical privacy attacks on
databases, several groups initiated rigorous analyses of the
graph matching problem [18]–[27]. Correlated graph match-
ing has applications beyond privacy, such as image pro-
cessing [28], computer vision [29], single-cell biological
data alignment [30], [31] and DNA sequencing, which is
shown to be equivalent to matching bipartite graphs [32].
Matching of correlated databases, also equivalent to bipartite
graph matching, has also been investigated from information-
theoretic [33]–[38] and statistical [39] perspectives. In [33],
Cullina et al. introduced cycle mutual information as a corre-
lation metric and derived sufficient conditions for successful
matching and a converse result using perfect recovery as
the error criterion. In [34], Shirani et al. considered a pair
of anonymized and obfuscated databases and drew analogies
between database matching and channel decoding. By doing
so, they derived necessary and sufficient conditions on the
database growth rate for reliable matching, in the presence of
noise on the database entries. In [35], Dai et al. considered the
matching of a pair of databases with joint Gaussian attributes
with perfect recovery constraint. Similarly, in [39], Kunisky
and Niles-Weed considered the same problem from the sta-
tistical perspective in different regimes of database size and
under several recovery criteria. In [40], Kahraman and Nazer
investigated the necessary and the sufficient conditions for
detecting whether two Gaussian databases are correlated. More
recently, motivated by the need for aligning single-cell data
obtained from multiple biological sources/experiments [30],
[31], in [41] Chen et al. investigated the matching of two
noisy databases which are the noisy observations of a single
underlying database under the fractional-error criterion, where
the noise is assumed to be the Gaussian. They proposed a
data-driven approach and analytically derived minimax lower
bounds for successful matching.

Motivated by the synchronization errors in the sampling
of time-indexed datasets, in this paper, we present a unified
generalized framework of the database matching problem
under noisy synchronization errors with near-exact recovery
criterion. Specifically, we investigate the matching of Markov
databases under arbitrary noise and synchronization errors.
Our goal is to investigate necessary and sufficient conditions
on the database growth rate [34] for the successful matching
of database rows. The generalized Markov database model
captures correlations of the attributes (columns), where syn-
chronization errors, in the form of random entry deletions
and replications, are followed by noise. As such, this paper
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Fig. 1. An illustrative example of database matching under identical repetition,
where each row experiences the same synchronization error. The columns
circled in red are deleted whereas the fourth column, which is circled in blue,
is repeated twice, i.e., replicated. For each (i, j), Yi,j is the noisy observation
of Xi,j . Furthermore, for each i, Yi,4(1) and Yi,4(2) are noisy replicas of
Xi,4. Our goal is to estimate the row permutation σn which is in this example
given as; σn(1) = 5, σn(2) = 1, σn(3) = 4, σn(4) = 3 and σn(5) = 2,
by matching the rows of X and Y. Here the ith row of X corresponds to the
σn(i)th row of Y.

generalizes the aforementioned work on database matching

under only noise. Our setting is illustrated in Figure 1.

We consider two extreme regimes regarding the nature of

synchronization errors, as results derived for these corner cases

provide insights into the intermediate regime. To this end, first,

we focus on the identical repetition setting where the repetition

pattern is constant across rows. In other words, in this set-

ting, deletions and replications only take place columnwise.

We consider a two-phase matching scheme, where we first

infer the underlying repetition structure by using permutation-

invariant features of columns. This is followed by the matching

phase which relies on the known replica and deletion locations.

We show that as long as the databases are not independent,

in the first phase, replicas can be found with high probability

through a series of hypothesis tests on the Hamming distances

between columns. Furthermore, assuming seed rows whose

identities are known in both databases [42], [43] we show

that if the seed size Λn grows double-logarithmically with

the number of rows mn, where n denotes the column size,

deletion locations can also be extracted. In the absence of

noise, seeds are not needed and column histograms can be

used to detect both replicas and deletions. Once the repetition

(including deletions and replications) locations are identified,

in the second phase, we propose a joint typicality-based

row matching scheme to derive sufficient conditions on the

database growth rate for successful matching. Finally, we

prove a tight converse result through a modified version

of Fano’s inequality, completely characterizing the matching

capacity when the repetition pattern is constant across the

rows.

Next, we focus on the other extreme, namely the in-
dependent repetition setting where the repetition pattern is

independent in each row and there is no underlying repetition

structure across rows. Under probabilistic side information on

the deletion locations, we propose a row-matching scheme and

derive an achievable database growth rate. This, together with

an outer bound obtained through Fano’s inequality, provides

upper and lower bounds on the matching capacity in the

independent repetition setting. Comparing the bounds in the

two extremes, we show that the matching capacity is lower

and hence matching is more difficult under the independent

repetition model. Finally, based on these two extreme models,

we state bounds on the matching capacity for any intermediate

repetition structure.

We also discuss the adversarial repetition model, where we

assume that synchronization errors, in the form of column

deletions, are chosen by a constrained adversary whose goal

is to hinder the matching of databases, where the constraint

is in the form of a fractional column deletion budget which

naturally provides a trade-off between utility and privacy.

Since this adversarial model forces us to focus on the worst-

case scenario and in turn, prohibits the use of typicality and

Fano’s inequality, we propose an exact sequence matching

and perform a more careful analysis of the worst-case error,

focusing on the Hamming distances between the rows (users)

of the databases, as is the case in the adversarial channel litera-

ture [44]. Under the identical repetition model, we completely

characterize the adversarial matching capacity.

In addition to the characterization of the matching capac-

ity under various assumptions, our results provide sufficient

conditions on the number and the size for column histograms

to be asymptotically unique. Since histograms naturally show

up frequently in information theory, probability theory, and

statistics, this result could be of independent interest. In

addition, our novel matching scheme in the independent rep-

etition case can be directly converted to a decoding strategy

for input-constrained noisy synchronization channels, a well-

investigated model in the information theory literature [45]–

[48].

A. Paper Organization

The organization of this paper is as follows: Section II

contains the problem formulation and the preliminaries. In

Section III, our main results on the matching capacity un-

der the identical repetition model are presented. Section IV

contains our main results on the matching capacity under the

independent repetition assumption. In Section V, we discuss

the underlying model assumptions and investigate how varia-

tions on these assumptions impact some of the results. Finally,

in Section VI the results and ongoing work are discussed.

B. Notations

In this paper, we use the following notations:

• [n] denotes the set of integers {1, ..., n}.

• Matrices are denoted with uppercase bold letters. For a

matrix X, Xi,j denotes the (i, j)th entry.

• an denotes a row vector consisting of scalars a1, . . . , an.

• Random variables are denoted by uppercase letters while

their realizations are denoted by lowercase ones.

• The indicator of event E is denoted by E .

• H and Hb denote the Shannon entropy and the binary

entropy functions [49, Chapter 2], respectively.

• O, o, Θ, ω and Ω denote the standard asymptotic growth

notations [50, Chapter 3].

• DKL(pX‖qX) denotes the Kullback-Leibler diver-

gence [49, Chapter 2.3] between the probability distri-

butions pX and qX . For scalars p, q ∈ (0, 1), D(p‖q)
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denotes the Kullback-Leibler divergence between two
Bernoulli distributions with respective parameters p and
q. More formally,

D(p∥q) = (1− p) log 1− p
1− q

+ p log
p

q
(1)

• The logarithms, unless stated explicitly, are in base 2.

II. PROBLEM FORMULATION & PRELIMINARIES

A. Problem Formulation

We use the following definitions, some of which are similar
to [34], [36], [38], to formally describe our problem.

Definition 1. (Unlabeled Markov Database) An (mn, n,P)
unlabeled Markov database is a randomly generated mn × n
matrix X = {Xi,j ∈ X : i ∈ [mn], j ∈ [n]} whose rows are
i.i.d. and follow a first-order stationary Markov process de-
fined over the alphabet X = {1, . . . , |X|} with probability
transition matrix P such that

P = γI+ (1− γ)U (2)

Ui,j = uj > 0, ∀(i, j) ∈ X2 (3)∑
j∈X

uj = 1 (4)

γ ∈ [0, 1) (5)

where I is the identity matrix. It is assumed that
Xi,1

i.i.d.∼ π = [u1, . . . , u|X|], i = 1, . . . ,mn, where π is the
stationary distribution associated with P.

Note that Definition 1 yields the following n-letter proba-
bility model for row generation ∀xn ∈ Xn:

Pr(Xn = xn) = ux1

n∏
j=2

[
(1− γ)uxj + γ1[xj=xj−1]

]
(6)

Observe that, the parameter γ determines the correlation
among the columns of X. Specifically, γ = 0 corresponds to
the case where Xi,j are i.i.d.

In our work, we are mainly interested in two extreme cases
of the repetition pattern:

• Every row of X experiences the same repetition pattern
which we call identical repetition.

• Rows of X experience i.i.d. repetition patterns which we
call independent repetition.

The formal definitions of these two scenarios are provided
in Definitions 2-3 where the main difference comes from
the repetition pattern Sn (Definition 2) and repetition matrix
(Definition 3).

Definition 2. (Labeled Repeated Database under Identi-
cal Repetition) Let X be an (mn, n,P) unlabeled Markov
database, Sn be vector of length n with Sj being i.i.d. entries
drawn from a discrete probability distribution pS with a finite
integer support {0, . . . , smax}, σn be a uniform permutation
of [mn] with X, Sn and σn independently chosen. Also, let
pY |X be a conditional probability distribution with both X
and Y taking values from X. Given X, Sn and pY |X , the
random matrix Y is called the labeled repeated database under
ıdentical repetition if the ith row Xn

i of X and the σn(i)th row
Y Kn

σn(i)
= [Yσn(i),1, . . . , Yσn(i),Kn

] of Y have the relation given
in (7)-(8), where

Kj ≜
j∑

t=1

St (9)

Here Sn and σn are called the repetition pattern and labeling
function, respectively.

Note that Sj indicates the times Xi,j is repeated (including
deletions and replications). When Sj = 0, Xi,j is said to be
deleted (repeated zero times) and when Sj > 1, Xi,j is said
to be replicated Sj times (repeated Sj times). δ ≜ pS(0) is
called the deletion probability.

The respective rows Xn
i1

and Y Kn
i2

of X and Y are said to
be matching rows, if σn(i1) = i2.

Definition 3. (Labeled Repeated Database under Indepen-
dent Repetition) Let X be an (mn, n,P) unlabeled Markov
database, S be an mn × n matrix with Si,j i.i.d. from a
discrete probability distribution pS with a finite integer support
{0, . . . , smax}, σn be a uniform permutation of [mn] with X, S
and σn independently chosen. Also, let pY |X be a conditional
probability distribution with both X and Y taking values from
X. Given X, S and pY |X , the random matrix Y is called
the labeled repeated database under independent repetition
if the ith row Xn

i of X and the σn(i)
th row Y

Kσn(i),n

σn(i)
=

[Yσn(i),1, . . . , Yσn(i),Kσn(i),n
] of Y have the relation given

in (11)-(12), where

Ki,j ≜
j∑

t=1

Si,t (10)

Here S and σn are called the repetition matrix and labeling
function, respectively.

Note that Sσn(i),j indicates the times Xi,j is repeated
(including deletions and replications). When Sσn(i),j = 0,
Xi,j is said to be deleted (repeated zero times) and when
Sσn(i),j > 1, Xi,j is said to be replicated Sσn(i),j times
(repeated Sσn(i),j times). δ ≜ pS(0) is called the deletion
probability.

The respective rows Xn
i1

and Y Ki2,n

i2
of X and Y are said

Pr(Y Kn

σn(i)
= yKn |Xn

i = xn) =
∏

j:Sj ̸=0

Pr((Yσn(i),Kj−1+1, . . . , Yσn(i),Kj
) = (yKj−1+1, . . . , yKj

)|Xi,j = xj) (7)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj) (8)
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to be matching rows, if σn(i1) = i2.

In our model, the labeled repeated database Y is obtained
by permuting the rows of the unlabeled Markov database X
with the uniform permutation σn followed by repetition based
on the repetition pattern Sn (Definition 2) or repetition matrix
S (Definition 3) and introduction of noise through pY |X . The
relationship between X and Y, as described in Definitions 2-
3, is illustrated in Figure 2. As we formalize later, the goal is
to recover the labeling function σn based on the observations
of X and Y.

Equations (7)-(8) (resp. (11)-(12)) state that we can treat
Yσn(i),j as the output of the discrete memoryless channel
(DMC) pY |X with input sequence consisting of Sj (resp.
Sσn(i),j) copies of Xi,j concatenated together. We stress that
pY |X is a general model, capturing any distortion and noise
on the database entries, though we refer to this as “noise” in
this paper.

We will observe that these two models pose different chal-
lenges to matching and in turn necessitate different solutions
with different implications.

In most of the paper, we assume a random repetition pattern
as in Definitions 2-3. In Section V-A, we will discuss the
effects of an adversarial worst-case repetition pattern. Note that
in this paper, we assume that pX,Y and pS are available during
the matching. For a study of distribution-agnostic database
matching, see [51].

As discussed in Section III, inferring the repetition pattern,
particularly deletions, is a difficult task. Therefore, for the
identical repetition pattern, we assume the availability of seeds
to help with the inference of the underlying repetition pattern,
similar to database matching [36] and graph matching [42],
[43] settings.

Definition 4. (Seeds) A seed is a pair of matching rows whose
labels and entries are known universally. A batch of Λn seeds
(G(1),G(2)) is a batch of Λn correctly-matched row pairs.
Here G(1) ∈ XΛn×n has the same row generation process as
X, (G(1),G(2)) have the same relation as (X,Y), as described
in Definition 2 with the same noise distribution pY |X and
repetition pattern Sn. Λn is called the seed size.

Note that in Definition 4, for notational convenience, the
seeds are assumed to be additional to the databases.

Throughout Section III, we assume a double logarithmic
seed size Λn = Ω(log logmn). We will discuss the effects of
not having seeds in Section V-B.

In the independent repetition setting, the seeds offer no
additional information, as the repetition pattern is independent

in each row. Instead, we assume that the locations of some
deleted entries are revealed. This is formalized in the following
definition:

Definition 5. (Partial Deletion Location Information) For
a labeled repeated database under independent repetition
(Definition 3), the partial deletion location information A is
an mn × n random matrix, with the following conditional
distribution on repetition matrix S:

Pr(Ai,j = 1|S) = α1[Si,j=0] (13)

where Ai,j = 1 corresponds to Xσ−1
n (i),j being revealed as

deleted and Ai,j = 0 corresponds to either Xσ−1
n (i),j not being

deleted or not being revealed after deletion. The parameter
α ∈ [0, 1] is called the deletion detection probability.

Definition 5 states that the location of each deleted entry is
revealed with probability α. Since the entries of S are i.i.d.
and S and X are independent, each deleted column is revealed
independently of the other columns of S and X. Furthermore,
since Si,j are drawn i.i.d., so are Ai,j .

Definition 6. (Successful Matching Scheme) In the identical
(resp. independent) repetition setting, a matching scheme is
a sequence of mappings ϕn : (X,Y,G(1),G(2)) 7→ σ̂n (resp.
ϕn : (X,Y,A) 7→ σ̂n) where X is the unlabeled Markov
database, Y is the labeled repeated database, (G(1),G(2))
are seeds (resp. A is the partial deletion location information)
and σ̂n is the estimate of the correct labeling function σn. The
scheme ϕn is successful if

Pr (σ̂n(J) ̸= σn(J))→ 0 as n→∞ (14)

where the index J is drawn uniformly from [mn].

Observe that the performance criterion considered in Defini-
tion 6 allows a sublinear fraction of the rows to be mismatched.
This near-perfect performance criterion allows us to utilize
communication and information-theoretic tools and work with
arbitrary distributions whereas as far as we are aware the prior
work considering the perfect recovery criterion mainly focuses
on one specific distribution. This success criterion is also
known as near-perfect or almost-perfect recovery [39]. Other
success definitions include perfect recovery [33], [35], [39],
where all rows have to be perfectly aligned, and weak-recovery
or linear-error [39] where a constant fraction of the rows is
allowed to be mismatched. For an extensive comparison of
the Gaussian database alignment results under these different
performance criteria, please see [39].

We stress that in database matching, the relationship be-

Pr(Y
Kσn(i),n

σn(i)
= yKσn(i),n |Xn

i = xn)

=
∏

j:Sσn(i),j ̸=0

Pr((Yσn(i),Kσn(i),j−1+1, . . . , Yσn(i),Kσn(i),j
) = (yKσn(i),j−1+1, . . . , yKσn(i),j

)|Xi,j = xj) (11)

=
∏

j:Sσn(i),j ̸=0

Sσn(i),j∏
s=1

pY |X(yKσn(i),j−1+s|xj) (12)
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X Y
Noise
pY |X

Row Shuffling
σn

Repetition

Fig. 2. Relation between the unlabeled database X and the correlated
repeated database Y. Repetition is represented by the repetition pattern Sn

(Definition 2) or the repetition matrix S (Definition 3).

tween the row size mn, the column size n, and the database
distribution parameters are of interest [39], [40], [52]. Note
that for fixed column size n, as the row size mn increases,
matching becomes harder. This is because for a given column
size n, as the row size mn increases, so does the probability
of mismatch as a result of having a larger candidate row set.
Furthermore, as stated in [39, Theorem 1.2], for distributions
with parameters constant in n and mn, the regime of interest
is the logarithmic regime where n ∼ logmn. Thus, we utilize
the database growth rate introduced in [34] to characterize the
relationship between the row size mn and the column size n.

Definition 7. (Database Growth Rate) The database growth
rate R of an (mn, n,P) unlabeled Markov database is defined
as

R = lim
n→∞

1

n
logmn (15)

In Sections III and IV, we assume that the database growth
rate R is positive and mn = 2nR for notational simplicity. We
will discuss the zero-rate regime R = 0 in Section V-C.

Definition 8. (Achievable Database Growth Rate) Consider a
sequence of (mn, n,P) unlabeled Markov databases, a repeti-
tion probability distribution pS , a noise distribution pY |X and
the resulting sequence of labeled repeated databases under
identical (resp. independent) repetition. For a seed size Λn

(resp. a deletion detection probability α), a database growth
rate R is said to be achievable if there exists a successful
matching scheme when the unlabeled database has a growth
rate R.

Definition 9. (Matching Capacity) Under identical (resp.
independent) repetition, the matching capacity C is the supre-
mum of the set of all achievable rates corresponding to a
probability transition matrix P, repetition probability distri-
bution pS , noise distribution pY |X , and seed size Λn (resp. a
deletion detection probability α).

In this paper, our goal is to characterize the matching
capacity under the two extreme repetition structures, namely
identical repetition and independent repetition, respectively, by
providing database matching schemes as well as upper bounds
on all achievable database growth rates.

B. Preliminaries

For the sake of completeness, we present below some of
the classical information-theoretic definitions and results, most
of which are borrowed from [34], [49], that will be used
throughout this paper.

Definition 10. (Entropy Rate) For the discrete random pro-
cess X characterized by pXn , with n ∈ N, the entropy rate is

defined as:

H(X ) ≜ lim
n→∞

E[− log pXn+1|Xn(Xn+1|Xn)]. (16)

when the limit exists.

Definition 11. (Typicality) The ϵ-typical set associated with
the discrete random process X is defined as

A(n)
ϵ (X) ≜

{
xn :

∣∣∣∣− 1

n
log pXn(xn)−H(X )

∣∣∣∣ ≤ ϵ} (17)

where H(X ) is the entropy rate of X .

Definition 12. (Joint Typicality) The ϵ-typical set associated
with the discrete random processes (X ,Y) is defined as

A(n)
ϵ (X,Y )

≜

{
(xn, yn) :

∣∣∣∣− 1

n
log pXn,Y n(xn, yn)−H(X ,Y)

∣∣∣∣ ≤ ϵ}
(18)

where H(X ,Y) is the entropy rate of (X ,Y).

Lemma 1. (Generalized AEP [53, Theorem 1]) For the
discrete stationary random process X characterized by pXn ,
with n ∈ N, we have

− 1

n
log pXn(xn)

a.s.→ H(X ). (19)

Along with standard information-theoretical arguments,
Lemma 1 leads to the following:

Proposition 1. (Typicality) For a ϵ-typical sequence xn ∈
A

(n)
ϵ (X) we have

2−n(H(X )+ϵ) ≤ pXn(xn) ≤ 2−n(H(X )−ϵ) (20)

Furthermore,

2n(H(X )−ϵ) ≤ |A(n)
ϵ (X)| ≤ 2n(H(X )+ϵ) (21)

for large n.

Proposition 2. (Joint Typicality) For a ϵ-typical sequence pair
(xn, yn) ∈ A(n)

ϵ (X,Y ) we have

2−n(H(X ,Y)+ϵ) ≤ pXn,Y n(xn) ≤ 2−n(H(X ,Y)−ϵ) (22)

Furthermore,

2n(H(X ,Y)−ϵ) ≤ |A(n)
ϵ (X,Y )| ≤ 2n(H(X ,Y)+ϵ) (23)

for large n.

Proposition 3. (Joint AEP) Consider a correlated pair of
stochastic processes (X ,Y) characterized by pXn,Y n , with
n ∈ N. Let X̃n and Ỹ n be generated according to the
marginal distributions pXn and pnY , independently. Then, the
following holds:

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ (X,Y )) ≤ 2−n(I(X;Y )−3ϵ) (24)

where I(X;Y ) ≜ H(X ) + H(Y) − H(X ,Y) is the mutual
information rate. Furthermore,

Pr((X̃n, Ỹ n) ∈ A(n)
ϵ (X,Y )) ≥ (1− ϵ)2−n(I(X;Y )+3ϵ) (25)

for large n.
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III. MATCHING CAPACITY FOR IDENTICAL REPETITION

In this section, we present the matching capacity C
for an identical repetition pattern with seed size Λn =
Ω(log logmn). We will show that when Λn = Ω(log logmn),
the repetition pattern, including the deletion locations, can be
inferred.

We state the main result of this section in Theorem 1 and
prove its achievability by proposing a three-step approach: i)
noisy replica detection and ii) deletion detection using seeds,
followed by iii) row matching. Then, we prove the converse
part. Finally, we focus on the noiseless setting as a special
case where we prove that we can devise a new detection
algorithm specific to the noiseless model which renders the
seeds obsolete.

Theorem 1. (Matching Capacity for Identical Repeti-
tion) Consider a probability transition matrix P, a column
repetition distribution pS with an identical repetition pat-
tern, and a noise distribution pY |X . Then, for a seed size
Λn = Ω(log logmn), the matching capacity is

C = lim
n→∞

I(Xn;Y Kn , Sn)

n
(26)

where Xn is a Markov chain with probability transition matrix
P and stationary distribution π, Si

iid∼ pS and

Pr(Y Kn = yKn |Xn = xn)

=
∏

j:Sj ̸=0

Pr((YKj−1+1, . . . , YKj
)

= (yKj−1+1, . . . , yKj )|Xj = xj) (27)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj) (28)

where Kj ≜
j∑

t=1
St.

Because of the independence of Xn and Sn, (26) can also
be represented as

C = lim
n→∞

I(Xn;Y Kn |Sn)

n
. (29)

Hence, Theorem 1 states that although the repetition pattern
Sn is not known apriori, for a seed size Λn = Ω(log logmn),
we can achieve a database growth rate as if we knew Sn. Since
the utility of seeds increases with the seed size Λn, we will
focus on Λn = Θ(log logmn), which we show is sufficient to
achieve the matching capacity.

Even though the specific Markov row generation process,
assumed in Definition 1, does not show up in (26), it plays a
significant role in the estimation of the repetition pattern Sn,
as can be seen in Appendices A-C.

Corollary 1. (Matching Capacity for Identical Repetition
with I.I.D. Database Entries) When γ = 0, resulting in an
i.i.d. database distribution pX(x) = ux, ∀x ∈ X, the matching
capacity is

C = I(X;Y S |S) (30)

where S ∼ pS and Y S = Y1, . . . , YS such that

Pr(Y S = y1, . . . , yS |X = x) =


S∏

i=1

pY |X(yi|x), if s > 0

1[yS=E], if s = 0

(31)

and E denotes the empty string.

The rest of this section is on the proof of Theorem 1.
In Section III-A, we discuss our noisy replica detection
algorithm which does not utilize the seeds and prove its
asymptotic performance. In Section III-B, we introduce a
deletion detection algorithm that uses seeds and derive a seed
size sufficient for an asymptotic performance guarantee. Then,
in Section III-C, we combine these two algorithms and prove
the achievability of Theorem 1 by proposing a typicality-
based matching scheme for rows, which is performed once
replicas and deletions are detected. In Section III-D, we prove
the converse part of Theorem 1. Finally, in Section III-E, we
focus on the special case of no noise on the repeated entries
and provide a single repetition (replica and deletion) detection
algorithm that does not require any seeds.

Note that when the two databases are independent, Theo-
rem 1 states that the matching capacity becomes zero, hence
our results trivially hold. As a result, throughout this section,
we assume that the two databases are not independent.

A. Noisy Replica Detection

We propose to detect the replicas by extracting permutation-
invariant features of the columns of Y. Our algorithm only
considers the columns of Y and as such, can only detect repli-
cas, not deletions. Note that our replica detection algorithm
does not require any seeds unlike seeded deletion detection
discussed in Section III-B.

Our proposed replica detection algorithm (Algorithm 1)
adopts the Hamming distance between consecutive columns
of Y as a permutation-invariant feature of the columns. The
permutation-invariance allows us to perform replica detection
on Y with no prior information on σn.

Let Kn denote the number of columns of Y, Cmn
j denote

the jth column of Y, j = 1, . . . ,Kn. The replica detection
algorithm works as follows: We first compute the Hamming
distances Hj between consecutive columns Cmn

j and Cmn
j+1,

for j ∈ [Kn − 1]. More formally,

Hj ≜
mn∑
t=1

1[Yt,j+1 ̸=Yt,j ], ∀j ∈ [Kn − 1] (32)

For some average Hamming distance threshold τ ∈ (0, 1)
chosen based on P and pY |X (See Appendix A), the algorithm
decides that Cmn

j and Cmn
j+1 are replicas only if Hj < mnτ ,

and correspond to distinct columns of X otherwise. In the
following lemma, we show that Algorithm 1 can infer the
replicas with high probability. Observe that the runtime of
Algorithm 1 is O(mnn), the computational bottleneck being
the computation of {Hj}Kn−1

j=1 .

Lemma 2. (Noisy Replica Detection) Let Fj denote the
event that the Hamming distance-based algorithm described
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Algorithm 1: Noisy Replica Detection Algorithm
Input : (Y,P, pY |X)
Output: isReplica
H ← RunningHammingDist(Y); /* Eq. (32) */
τ ←ThresholdSelection(P, pY |X);
/*Threshold selection. See Appendix A.*/
isReplica ← ∅;
for j = 1 to columnSize(Y)−1 do

if H[j] ≤ τ ∗ rowSize(Y) then
isReplica[j]← TRUE;

else
isReplica[j]← FALSE;

end
end

above fails to infer the correct replica relationship between the
columns Cmn

j and Cmn
j+1 of Y, j = 1, . . . ,Kn − 1. The total

probability of replica detection error of Algorithm 1 diminishes
as n→∞, that is

Pr(

Kn−1⋃
j=1

Ej)→ 0 as n→∞. (33)

Proof. See Appendix A.

B. Deletion Detection Using Seeds

The replica detection algorithm discussed in Section III-A
only uses Y and infers only the replicas, not the deletions. We
next propose a deletion detection algorithm that uses seeds.

Let (G(1),G(2)) be a batch of Λn = Θ(log logmn) seeds
with the identical repetition pattern Sn as (X,Y). Our deletion
detection algorithm (Algorithm 2) works as follows: After
finding the replicas as in Section III-A, we discard all extra
copies, keeping only the original entry in a replica run with
Sj > 1 from G(2), to obtain G̃(2), whose column size is
denoted by K̂n. At this step, we only have deletions.

Next, for each index pair (i, j) ∈ [n] × [K̂n], we compute
the Hamming distance Li,j between the ith column G

(1)
i of

G(1) and the jth column G
(2)
j of G̃(2). More formally, we

compute

Li,j ≜
Λn∑
t=1

1[
G

(1)
t,i ̸=G̃

(2)
t,j

]. (34)

Then, for each index i ∈ [n], the algorithm decides G(1)
i

is retained (not deleted) only if there exists a column G(2)
j in

G̃(2) with Li,j ≤ Λnτ̄ , for some average Hamming distance
threshold τ̄ ∈ (0, 1) chosen based on P and pY |X (See
Appendix B). In this case, we assign Îi = 0, where Îi is
the indicator of G(1)

i being inferred as deleted. Otherwise, the
algorithm decides G(1)

i is deleted, assigning Îi = 1. At the
end of this procedure, the algorithm outputs an estimate În =
(Î1, . . . , În) of the true deletion pattern Indel = (I1, . . . , In).

Here, for each i ∈ [n] we have

Ii ≜ 1[Si=0] (35)

Îi ≜ 1[∃j∈[K̂n]: Li,j≤Λnτ̄] (36)

Note that such a Hamming distance-based strategy depends
on pairs of matching entries in a pair of seed rows in G(1)

and G̃(2) having a higher probability of being equal than non-
matching entries. More formally, WLOG, let Sj ̸= 0 and X̃i,j

and Ỹi,j denote the respective (i, j)th entries of G(1) and G̃(2).
Given a matching pair (X̃i,j , Ỹi,j) of entries and any non-
matching pair (X̃i,l, Ỹi,j), l ̸= j we need

Pr(Ỹi,j ̸= X̃i,j) < Pr(Ỹi,j ̸= X̃i,l) (37)

which may not be true in general.
For example, suppose we have a binary uniform i.i.d.

distribution, i.e., X = {0, 1} with γ = 0 and u1 = 1/2 (recall
Definition 1). Further assume that pY |X follows BSC(q),
i.e. pY |X(x|x) = 1− q, x = 0, 1. Note that when q > 1/2,
equation (37) is not satisfied. However, in this example, we
can flip the labels in Y by applying the bijective remapping
Φ = ( 0 1

1 0 ) to Y in order to satisfy equation (37).
Thus, as long as such a permutation Φ of X satisfying

equation (37) exists, we can use Algorithm 2. Now, suppose
that such a mapping Φ exists. We apply Φ to the entries of
G̃(2) to construct G̃(2)

Φ . Then, our deletion detection algorithm
follows the above steps computing Li,j(Φ) for each index pair
(i, j) ∈ [n] × [K̂n] and outputs the deletion pattern estimate
În(Φ) = (Î1(Φ), . . . , În(Φ)) where

Li,j(Φ) ≜
Λn∑
t=1

1[
G

(1)
t,i ̸=G̃

(2)
Φt,j

]. (38)

Îi(Φ) ≜ 1[∃j∈[K̂n]: Li,j(Φ)≤Λnτ̄] (39)

and G(2)
j (Φ) is the jth column of G̃(2)

Φ . Note that the runtime of
Algorithm 2 is O(n2Λn), the computational bottleneck being
the computation of L(Φ).

The following lemma states that such a bijective
mapping Φ always exists and for a seed size
Λn = Θ(log n) = Θ(log logmn), this algorithm can infer the
deletion locations with high probability.

Lemma 3. (Seeded Deletion Detection) For a repetition
pattern Sn, let Idel = {j ∈ [n]|Sj = 0}. Then there exists a
bijective mapping Φ such that equation (37) holds after the
remapping. In addition, for a seed size Λn = Θ(log n), using
Algorithm 2, we have

Pr
(
Î(Φ) = Idel

)
→ 1 as n→∞. (40)

Proof. See Appendix B.

We stress that the remapping Φ is utilized only on G(2)

to detect the deletions, and is not applied to Y during the
matching process.

C. Row Matching Scheme and Achievability
Let Sn be the underlying column repetition pattern and

Kn ≜
∑n

j=1 Sj be the number of columns in Y. The matching
scheme (Algorithm 3) we propose follows these steps:
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Algorithm 2: Seeded Deletion Detection Algorithm

Input : (G(1),G(2),P, pY |X , isReplica)
Output: isDeleted
S(X)← SymmetryGroup(X);
for s← 1 to |X|! do

Φ← S(X)[s]; /* Pick a remapping. */
/* isUseful checks if Φ satisfies (37).*/
if isUseful(Φ,P, pY |X ) then

break; /* Move on with Φ. */
end

end
/*Remove extra copies.*/
G̃(2) ←ExtraReplicaRemoval(G(2),isReplica);
G̃

(2)
Φ ←Remap(G̃(2),Φ); /* Apply remapping Φ. */

L(Φ)← ComputeHammingDist(G(1), G̃
(2)
Φ ); /* (38) */

/*Threshold selection. See Apprendix B.*/
τ̄ ←ThresholdSelection2(P, pY |X);
for i = 1 to columnSize(G(1)) do

for j = 1 to columnSize(G̃(2)
Φ ) do

if L(Φ)[i][j] ≤ τ̄ ∗ rowSize(G(1)) then
isDeleted[i]← FALSE;
break;

else
isDeleted[j]← TRUE;

end
end

end

Y K = [Y1, Y2, Y3, Y4, Y5, Y6, . . .]

[Y1, Y2||Y3, Y4, Y5|Y6|| . . .]

Ŝn = [2, 0, 3, 1, 0, . . .]

Marker Addition

Erasure Symbol
AdditionỸ = [Y1, Y2| ∗ |Y3, Y4, Y5|Y6| ∗ | . . .]

Fig. 3. An example of the construction of Ỹ, as described in Step 3 of the
proof of Theorem 1 in Section III-C, illustrated over a pair of rows Xn of
X and Y K of Y. After these steps, in Step 4 we check the joint typicality
of the rows Xn of X and Ỹ of Ỹ.

1) Perform replica detection as in Section III-A. The proba-
bility of error in this step is denoted by ρn.

2) Perform deletion detection using seeds as in Section III-B.
The probability of error is denoted by µn. At this step, we
have an estimate Ŝn of Sn.

3) Using Ŝn, place markers between the noisy replica runs of
different columns to obtain Ỹ. If a run has length 0, i.e.
deleted, introduce a column consisting of erasure symbol
∗ /∈ X. Note that provided that the detection algorithms in
Steps 1 and 2 have performed correctly, there are exactly
n such runs, where the jth run in Ỹ corresponds to the
noisy copies of the jth column of σn ◦X if Sj ̸= 0, and
an erasure column otherwise.

Algorithm 3: Typicality-Based Matching Scheme
(Identical Repetition)

Input : (X,Y,P, pY |X , pS , ϵ,G
(1),G(2))

Output: σ̂n
/*Step 1.*/
isReplica← Alg. 1(Y,P, pY |X );
/*Step 2.*/
isDeleted← Alg. 2(G(1),G(2),P, pY |X ,isReplica);
Ŝn ← EstimateRepetitionPattern(isReplica,isDeleted);
/*Step 3.*/
Ỹ ← MarkerAddition(Y, Ŝn);
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Ỹ) do

if
isJointlyTypical(X[i][:],Y[j][:],P, pY |X , pS , ϵ)
then
σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: no row in Ỹ jointly typical with
X[i][:]. ERROR! */
/* count > 1: multiple rows in Ỹ jointly typical
with X[i][:]. ERROR! */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

4) Fix ϵ > 0. Match the lth row Y Kn

l of Ỹ with the ith row
Xn

i of X if Xn
i is the only row of X jointly ϵ-typical

with Y Kn

l according to pXn,Y Kn ,Sn , where Si
iid∼ pS and

Y Kn = Y S1
1 , . . . , Y Sn

n such that

pXn,Y K |Sn(xn, yk|sn)

= pXn(xn)
∏

i:si>0

si∏
j=1

pY |X((ysi)j |xi)
∏

i:si=0

1[ysi=∗]

(41)

with yk = ys1 . . . ysn . Assign σ̂n(i) = l. If there is no such
jointly typical row, or there is more than one, declare an
error.

The runtime of Algorithm 3 is O(m2
nn) due to the typicality

check (each O(n)) for all row pairs (Xn
i , Y

Kn
j ) (i, j) ∈ [mn]

2.
The column discarding and the marker addition as described

in Steps 3-4, are illustrated in Figure 3.
We are now ready to prove the achievability of Theorem 1.

Proof of Achievability of Theorem 1. From the union bound
and Proposition 3, the total probability of error of this scheme
(as in (14)) can be bounded for large n as follows

Pe ≤ 2nR2−n(Ī(X;Y S ,S)−3ϵ) + ϵ+ ρn + µn (42)
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where Ī(X;Y S , S) is the mutual information rate [54] defined
as

Ī(X;Y S , S) ≜ lim
n→∞

1

n
I(Xn;Y Kn , Sn) (43)

Note that since mn is exponential in n, from Lemma 2 we have
ρn → 0. Furthermore, since Λn = Θ(log n), from Lemma 3
we have µn → 0 as n→∞. Thus Pe ≤ ϵ as n→∞ if

R < lim
n→∞

1

n
I(Xn;Y Kn , Sn) (44)

concluding the proof of the achievability part.

D. Converse

In this subsection, we prove that the database growth rate
achieved in Theorem 1 is in fact tight using a genie-aided
proof where the column repetition pattern Sn is known. Since
the rows are i.i.d. conditioned on the repetition pattern Sn,
the seeds (G(1),G(2)) do not offer any additional information
when Sn is given. Thus, the genie-aided proof holds for any
seed size Λn.

Proof of Converse of Theorem 1. While Theorem 1 is stated
for Λn = Ω(log logmn), in the converse we assume any seed
size Λn. We prove the converse using the modified Fano’s
inequality presented in [34]. Let R be the database growth
rate and Pe be the probability that the scheme is unsuccessful
for a uniformly selected row pair. More formally,

Pe ≜ Pr (σn(J) ̸= σ̂n(J)) , J ∼ Unif([mn]) (45)

Suppose Pe → 0 as n → ∞. Furthermore, let Sn be the
repetition pattern and Kn =

∑n
j=1 Sj . Since σn is a uniform

permutation, from Fano’s inequality, we have

H(σn) ≤1 +mnPe logmn

+ I(σn;X,Y,G
(1),G(2), Sn) (46)

From the independence of Y, Sn, (G(1),G(2)) and σn, we
get

I(σn;X,Y,G
(1),G(2), Sn)

= I(σn;X|Y,G(1),G(2), Sn) (47)

≤ I(σn,Y,G(1),G(2), Sn;X) (48)
≤ I(σn,Y, Sn;X) (49)
= I(σn,Y;X|Sn) (50)

=

mn∑
i=1

I(Xn
i ;Y

Kn

σn(i)
|Sn) (51)

= mnI(X
n;Y Kn |Sn) (52)

= mnI(X
n;Y Kn , Sn) (53)

where (49) follows from the fact that given the repetition
pattern Sn, the seeds (G(1),G(2)) do not offer any addi-
tional information on σn. Equation (51) follows from the
conditional independence of the non-matching rows given Sn.
Equation (52) follows from the fact that the matching rows are
identically distributed conditioned on the repetition pattern Sn.
Finally, (53) follows from the independence of Xn and Sn.

Note that from Stirling’s approximation [50, Chapter 3.2]
and the uniformity of σn, we get

H(σn) = logmn! (54)
= mn logmn −mn log e+O(logmn) (55)

lim
n→∞

1

mnn
H(σn) = lim

n→∞

1

mnn
[mn logmn

−mn log e+O(logmn)] (56)

= lim
n→∞

1

n
logmn (57)

= R (58)

Finally, from (46)-(58) we obtain

R = lim
n→∞

1

mnn
H(σn) (59)

≤ lim
n→∞

[
1

mnn
+ PeR+

1

n
I(Xn;Y Kn , Sn)

]
(60)

= lim
n→∞

I(Xn;Y Kn , Sn)

n
(61)

where (61) follows from the fact that Pe → 0 as n→∞.

E. Noiseless Setting

Lemmas 2 and 3 state that given a seed size Λn double
logarithmic with the row size mn, the repetition pattern can
be inferred through the aforementioned replica and deletion
detection algorithms for any noise distribution pY |X . Thus, the
results of Section III-A through Section III-C trivially apply
to the noiseless setting where

pY |X(y|x) = 1[y=x] ∀(x, y) ∈ X2. (62)

We note that when there is no noise, the capacity expression
of Theorem 1 (Equation 26) can be further simplified as

C = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1). (63)

In this subsection, we show that in the noiseless setting,
seeds can be made obsolete by the use of a novel detection
algorithm. In other words, in the noiseless setting, we show
that Theorem 1 can be extended to any seed size Λn.

Theorem 2. (Noiseless Matching Capacity for Identical
Repetition) Consider a probability transition matrix P and
a repetition probability distribution pS . Suppose there is no
noise, i.e.,

pY |X(y|x) = 1[y=x] ∀(x, y) ∈ X2. (64)

Then, the matching capacity under identical repetition is

C = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1) (65)

for any seed size Λn. Here δ ≜ pS(0) is the deletion probabil-
ity and H(X0|X−r−1) is the conditional entropy associated
with the probability transition matrix

Pr+1 = γr+1I+ (1− γr+1)U (66)
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The capacity can further be simplified as

C =
(1− δ)(1− γ)

(1− γδ)
[H(π) +

∑
i∈X

u2i log ui]

− (1− δ)2
∞∑
r=0

δr
∑
i∈X

uiηr,i log ηr,i (67)

where

ηr,i ≜ (1− ui)γr+1 + ui. (68)

Corollary 2. (Noiseless Matching Capacity for Identical
Repetition with I.I.D. Database Entries) When γ = 0,
resulting in an i.i.d. database distribution pX(x) = ux,
∀x ∈ X, the matching capacity in the noiseless setting is

C = (1− δ)H(X) (69)

where H(X) = H(π) is the entropy of the stationary distri-
bution π = [u1, . . . , u|X|].

Observe that the RHS of (65) is the mutual information rate
for an erasure channel with erasure probability δ with first-
order Markov (P) inputs, as stated in [55, Corollary II.2].
Thus, Theorem 2 states that we can achieve the erasure bound
which assumes prior knowledge of the column repetition
pattern.

The proof of Theorem 2 hinges on the observation that
in the noiseless setting deletion and replica detection can be
performed without seeds. Inspired by the idea of extracting
permutation-invariant features as done in Section III-A, our
noiseless repetition detection algorithm uses the histogram
(and equivalently the type) of each column of X and Y as
the permutation-invariant feature. Our repetition detection al-
gorithm works as follows: First, for tractability, we “collapse”
the Markov chain into a binary-valued one. We pick a symbol
x from the alphabet X, WLOG x = 1, and define the collapsed
databases X̃ and Ỹ as follows:

M̃i,j =

{
1 if Mi,j = 1

2 if Mi,j ̸= 1
, ∀(i, j), M ∈ {X,Y} (70)

Next, we construct the collapsed histogram vectors H̃(1),n

and H̃(2),Kn as

H̃
(1)
j =

mn∑
i=1

1[X̃i,j=2], ∀j ∈ [n] (71)

H̃
(2)
j =

mn∑
i=1

1[Ỹi,j=2], ∀j ∈ [Kn] (72)

Then, the algorithm declares the jth column deleted if H̃(1)
j

is absent in H̃(2),Kn and declares the jth column replicated s
times if H̃(1)

j is present s ≥ 1 times in H̃(2),Kn .

Note that as long as column histograms H̃(1)
j of the col-

lapsed database X̃ are unique, this detection process is error-
free.

The following lemma provides conditions for the asymptotic
uniqueness of column histograms H̃(1)

j , j ∈ [n].

Lemma 4. (Asymptotic Uniqueness of the Column His-

tograms) Let H̃(1)
j denote the histogram of the jth column

of X̃, as in (71). Then, for mn = ω(n4), we have

Pr
(
∃i, j ∈ [n], i ̸= j, H̃

(1)
i = H̃

(1)
j

)
→ 0 as n→∞. (73)

Proof. See Appendix C.

When the databases are not collapsed, the order relation
given in Lemma 4 can be tightened. See Section V-C for more
details.

Note that by Definition 7, the row size mn is exponential
in the column size n and the order relation of Lemma 4 is
automatically satisfied.

Next, we present the proof of the achievability part of
Theorem 2 via Algorithm 4.

Proof of Achievability of Theorem 2. Let Sn be the underly-
ing repetition pattern and Kn ≜

∑n
j=1 Sj be the number of

columns in Y. Our matching scheme consists of the following
steps:
1) Construct the collapsed histogram vectors H̃(1),n and

H̃(2),Kn as in (71).
2) Check the uniqueness of the entries H̃

(1)
j j ∈ [n] of

H̃(1),n. If there are at least two that are identical, declare
a detection error whose probability is denoted by µn.
Otherwise, proceed with Step 3.

3) If H̃(1)
j is absent in H̃(2),Kn , declare it deleted, assigning

Ŝj = 0. Note that, conditioned on the uniqueness of the
column histograms H̃(1)

j ∀j ∈ [n], this step is error-free.
4) If H̃(1)

j is present s ≥ 1 times in H̃(2),Kn , assign Ŝj = s.
Again, if there is no detection error in Step 2, this step is
error-free. Note that at the end of this step, provided there
are no detection errors, we recover Sn, i.e., Ŝn = Sn.

5) Based on Ŝn, X and Y, construct Ȳ as the following:
• If Ŝj = 0, the jth column of Ȳ is a column consisting

of erasure symbol ∗ /∈ X.
• If Ŝj ≥ 1, the jth column of Ȳ is the jth column of X.
Note that after the removal of the additional replicas and
the introduction of the erasure symbols, Ȳ has n columns.

6) Fix ϵ > 0. Let qȲ |X be the probability transition matrix
of an erasure channel with erasure probability δ, that is
∀(x, ȳ) ∈ X× (X ∪ {∗})

qȲ |X(ȳ|x) =

{
1− δ if ȳ = x

δ if ȳ = ∗
. (74)

We consider the input to the memoryless erasure channel
as the ith row Xn

i of X. The output Ȳ n is the matching
row of Ȳ. For our row matching algorithm, we match the
lth row Ȳ n

l of Ȳ with the ith row Xn
i of X, if Xn

i is the
only row of X jointly ϵ-typical [49, Chapter 3] with Ȳ n

l

with respect to pXn,Y n , where

pXn,Ȳ n(xn, ȳn) = pXn(xn)
n∏

j=1

qY |X(ȳj |xj) (75)

where Xn denotes the Markov chain of length n with
probability transition matrix P. This results in σ̂n(i) = l.
Otherwise, declare collision error.
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Algorithm 4: Typicality-Based Matching Scheme
(Identical Repetition, Noiseless Setting)
Input : (X,Y,P, pS , ϵ)
Output: σ̂n
(X̃, Ỹ)← CollapseDatabases(X,Y); /* (70) */
(H̃(1), H̃(2))← ColumnHistograms(X̃, Ỹ); /* (71) */
/* Histogram-based repetition detection */
for i = 1 to columnSize(H̃(1)) do

count← 0;
for j = 1 to columnSize(H̃(2)) do

if H̃(2)[:][j] = H̃(1)[:][i] then
count← count + 1;

end
end
Ŝ[i]← count;

end
/* Erasure symbol addition & Extra replica removal */
for j = 1 to columnSize(X) do

if Ŝ[j] = 0 then
Ȳ[:][j]← ∗;

else
Ȳ[:][j]← X[:][j];

end
end
/* Typicality matching w.r.t. erasure channel */
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

if isJointlyTypical2(X[i][:], Ȳ[j][:],P, pS , ϵ)
then
σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: no row in Ȳ jointly typical with
X[i][:]. ERROR! */
/* count > 1: multiple rows in Ȳ jointly typical
with X[i][:]. ERROR! */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

Similar to (42), from the union bound and Proposition 3,
the total probability of error of this scheme can be bounded
for large n as follows

Pe ≤ µn + ϵ+ 2n(R−Ī(X;Ȳ )+3ϵ) (76)

Since mn is exponential in n, by Lemma 4, µn → 0 as
n→∞. Thus

Pe < 3ϵ as n→∞ (77)

if R < Ī(X; Ȳ ) − 3ϵ. Thus, we can argue that any database

growth rate R satisfying

R < Ī(X; Ȳ ) (78)

is achievable, by taking ϵ small enough. From [55, Corollary
II.2] we have

Ī(X; Ȳ ) = (1− δ)2
∞∑
r=0

δrH(X0|X−r−1) (79)

where H(X0|X−r−1) is the conditional entropy associated
with the probability transition matrix Pr+1.

Now, we argue that (66) can be proven via induction on r by
taking (2) as a base case and observing that U2 = U. Finally,
plugging π and Pr+1 directly into [49, Theorem 4.2.4] yields
(67), concluding the achievability part of the proof.

Next, we move on to prove the converse part of Theorem 2.

Proof of Converse of Theorem 2. Since the converse part of
Theorem 1 holds for any seed size Λn, in the noiseless setting,
we trivially have

C ≤ lim
n→∞

I(Xn;Y Kn , Sn)

n
. (80)

Next, note that there is a bijective mapping between
(Y Kn , Sn) and (Ȳ n, Sn). Therefore, we have

I(Xn;Y Kn , Sn) = I(Xn; Ȳ n, Sn) (81)
= I(Xn; Ȳ n) + I(Xn;Sn|Ȳ n) (82)
= I(Xn; Ȳ n) (83)

where (83) follows from the independence of Sn and Xn

conditioned on Ȳ n. This is because since Ȳ n is stripped of all
extra replicas, from (Xn, Ȳ n) we can only infer the zeros of
Sn, which is already known through Ȳ n via erasure symbols.
Thus, we have

C ≤ Ī(X; Ȳ ) (84)

where Ī(X; Ȳ ) is defined in (79), concluding the proof of the
converse part.

The runtimes of the histogram-based detection algorithm
and the typicality-based matching algorithm (Algorithm 4) are
O(mnn) and O(m2

nn), respectively.

IV. MATCHING CAPACITY FOR INDEPENDENT REPETITION

In this section, we investigate the upper and the lower
bounds on the matching capacity C for independent repetition,
where we assume a repetition pattern that is independent
across all rows. For tractability, we focus on the special
case where γ = 0, resulting in an i.i.d. database distribution
pX(x) = ux, ∀x ∈ X.

We state our main result on the matching capacity for
independent repetition in the following theorem:

Theorem 3. (Matching Capacity Bounds for Independent
Repetition) Consider a probability transition matrix P with
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γ = 0, a noise distribution pY |X and a repetition distribution
pS . Then the matching capacity satisfies

C ≥
[E[S]
smax

H(X)− E[S]H(X|Y )

− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)]+
(85)

C ≤ inf
n≥1

1

n
I(Xn;Y Kn , An) (86)

where

Pr(Y Kn = yKn |Xn = xn)

=
∏

j:Sj ̸=0

Pr((YKj−1+1, . . . , YKj )

= (yKj−1+1, . . . , yKj
)|Xj = xj) (87)

=
∏

j:Sj ̸=0

Sj∏
s=1

pY |X(yKj−1+s|xj), (88)

Kj ≜
∑j

t=1 St , and δ and α are the deletion and the
deletion detection probabilities, respectively and smax ≜
max supp(pS). Furthermore, for repetition distributions with

1
smax

E[S] ≥ 1−αδ
|X| , the lower bound in equation (85) can be

tightened as

C ≥
[
(1− αδ)H(X)− E[S]H(X|Y )

−
(
1− αδ − E[S]

smax

)
min{H(X), log(|X| − 1)}

− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)]+
(89)

We note that the upper bound given in Theorem 3 (equa-
tion (86)) is an infimum over the column size n. Therefore,
its evaluation for any n ∈ N yields an upper bound on the
matching capacity.

With independent repetition, we cannot perform repetition
detection as in Section III, and hence we are restricted to using
a single-step rowwise matching scheme as done in [34]. This
builds an analogy between database matching and channel
decoding. In particular, our approach to database matching
for independent repetition is related to decoding in the noisy
synchronization channel [56].

We stress that there are several important differences be-
tween the database matching problem and the synchroniza-
tion channel literature: i) In database matching the database
distribution is fixed and cannot be designed or optimized,
whereas in channel coding the main goal is to optimize the
input distribution to find the channel capacity ii) The syn-
chronization channel literature mostly focuses on code design
with few works, such as [57], focusing on random codebook
arguments for only a few types of synchronization errors
such as deletion [57] and duplication [58] and finally iii) Our
database matching result provides an achievability argument
for all repetition distributions with finite support, whereas the
synchronization channel literature mainly focuses on some
families of repetition distributions. As a result, for input-
constrained noisy synchronization channels, our generalized
random codebook argument, presented in Section IV-A, is

Algorithm 5: Typicality-Based Matching Scheme (In-
dependent Repetition)
Input : (X,Y,A, pX , pY |X , pS , ϵ)
Output: σ̂n
for j = 1 to rowSize(Y) do

count← 0;
/* Remove revealed deleted columns */
for i = 1 to columnSize(A) do

if A[j][i] = 0 then
X̄[:][i]← X[:][i];

else
X̄[:][i]← [];

end
end
/* Stretch X̄ smax times */
for i = 1 to columnSize(X̄) do

X̃[:][(i− 1)smax + 1 : ismax]← X̄[:][i];
end
/* Typical subsequence check (See Appendix D). */
for i = 1 to rowSize(X̃) do

if isTypicalSubsequence(X̃[i][:],Y[j][:
],P, pY |X , pS , ϵ) then
σ̂−1
n [j]← i;

count← count + 1;
end

end
/* count = 0: Y[j][:] is not a typical subsequence
of any X̃[i][:]. ERROR! */
/* count > 1: Y[j][:] is a typical subsequence of
multiple X̃[i][:]. ERROR! */
if count ̸= 1 then

σ̂−1
n [j]← 0; /* Matching error. */

end
end

novel and might be of independent interest.
In Section IV-A, we prove the achievability part of The-

orem 3 (equation (85)) by proposing a rowwise matching
scheme. Then, in Section IV-B we prove the converse part
(equation (86)). Then, we present strictly tighter upper bounds
for a special case with only deletions, i.e., when smax = 1.

A. Row Matching Scheme and Achievability

To prove the achievability, we consider the following match-
ing scheme, also given in Algorithm 5:
1) Given the ith row Y Kn

i of Y and the corresponding row An
i

of the partial deletion location information A, we discard
the jth column of X if Ai,j = 1, ∀j ∈ [n] to obtain X̄
since it does not offer any additional information due to
the independent nature of the database entries.

2) We convert the problem into a deletion-only one by elemen-
twise repeating all the columns of X̄ smax times, which we
call “stretching by smax”, to obtain X̃. At this step, Y Kn

i

can be seen as the output of the noisy deletion channel
where the σ−1

n (i)th row of X̃ is the input.
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Xn = [X1X2X3 . . . Xn−1Xn]

Column DiscardingAn = [010 . . . 01]

X̄n−|An| = [X1X3 . . . Xn−1]

Stretching

X̃(n−|An|)smax = [X1. . .X1X3. . .X3. . .Xn−1. . .Xn−1]

smax smax smax

Fig. 4. An illustrative example of the column discarding and the stretching
of Xn into X̃(n−|An|)smax , for a given the deletion detection pattern An.
First, we discard each know deleted element known from Xn to obtain
X̄n−|An|. Then, each element of X̄(n−|An|) is repeated smax times to
obtain X̃(n−|An|)smax .

3) We perform a generalized version of the decoding algo-
rithm introduced in [36] for the noiseless deletions with
deletion detection probability. Note that the latter itself is
an extension of the one proposed in [57].

Observe that Algorithm 5 has a runtime of O(m2
nn), similar

to Algorithms 3-4.
The full proof of the achievability part (equations (85) and

(89)) via the matching scheme described above can be found
in Appendix D.

An illustrative example of the “stretching” is given in
Figure 4. The idea behind this stretching is that since each
entry can be repeated at most smax times when we stretch Xn

smax times to obtain X̃nsmax , the output of the synchronization
channel (before the noise pY |X ) is guaranteed to be a subse-
quence of X̃nsmax . This way, we can convert the general noisy
synchronization problem into a noisy deletion-only problem.
We note that when smax becomes large compared to the
alphabet size |X|, the lower bound given in (85) goes to zero,
even when pS(smax) is very small.

Note that for any repetition structure, including the ones not
considered in this work, one can simply ignore the underlying
structure and apply the matching scheme described above.
Therefore the achievable rate of Theorem 3 (equation (85))
is achievable for any repetition structure.

B. Converse

In this subsection, we prove the converse part of Theo-
rem 3 and evaluate the given upper bound for some special
cases. First, we observe that by following the genie argument
provided in the converse of Theorem 1, we can argue that
Theorem 1 is an upper bound on C for any α and for any
repetition structure.

We next prove the converse of Theorem 3 (equation (86)).
We then analytically evaluate this for some n ∈ N and we
argue that the evaluated upper bounds are strictly tighter than
that in Theorem 1.

Proof of Converse of Theorem 3. We start with the modified
Fano’s inequality used in Section III-D. Let

Pe ≜ Pr (σn(J) ̸= σ̂n(J)) , J ∼ Unif([mn]) (90)

Then, we have

H(σn) ≤ 1 +mnPe logmn + I(σn;X,Y,A) (91)

where

I(σn;X,Y,A) = I(σn;X|Y,A) (92)
≤ I(σn,Y,A;X) (93)

=

mn∑
i=1

I(Xn
i ;Y

Kn

σn(i)
, An

σn(i)
) (94)

= mnI(X
n;Y Kn , An) (95)

where (94) and (95) follow from the fact that non-matching
rows and their corresponding probabilistic side information on
deletion locations are respectively independent and identically
distributed. Following similar steps to Section III-D, we obtain

R ≤ lim
n→∞

I(Xn;Y Kn , An)

n
(96)

whenever Pe → 0 as n→∞.
Note that from Fekete’s lemma [59], for any subadditive

sequence {an}n∈N, we have

lim
n→∞

an
n

= inf
n≥1

an
n

(97)

Therefore, it is sufficient to prove the subadditivity of
I(Xn;Y Kn , An).

Choose an arbitrary r ∈ [n − 1] and let Mr ≜
∑r

j=1 Sj

where Sn is the repetition pattern through which Y Kn is
obtained from Xn. Note that Mr denotes a marker, stating
which part of Y Kn depends on the first r elements of Xn,
denoted by Xr

1 . Therefore we have a bijective relation between
(Y Kn ,Mr) and (Y

∑r
j=1 Sj

1 , Y Kn∑r
j=1 Sj+1) where the subscripts

and the superscripts denote the starting and the ending points
of the vectors, respectively. Thus,

I(Xn;Y Kn , An)

≤ I(Xn;Y Kn ,Mr, A
n) (98)

= I(Xn;Y
∑r

j=1 Sj

1 , Y Kn∑r
j=1 Sj+1, A

n) (99)

= I(Xr
1 , X

n
r+1;Y

∑r
j=1 Sj

1 , Y Kn∑r
j=1 Sj+1, A

r
1, A

n
r+1) (100)

= I(Xr
1 ;Y

∑r
j=1 Sj

1 , Ar
1) + I(Xn

r+1;Y
Kn∑r

j=1 Sj+1, A
n
r+1)

(101)

where (101) follows from the fact that Xn and An have i.i.d.
entries and the noise pY |X acts independently on the entries.
Thus, I(Xn;Y Kn , An) is a subadditive sequence. Hence,

R ≤ inf
n≥1

I(Xn;Y Kn , An)

n
(102)

whenever Pe → 0 as n→∞, concluding the proof.

We note that since the upper bound given in Theorem 3 is
the infimum over all n ≥ 1, its evaluation at any n ∈ N yields
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Fig. 5. The evaluation of the lower and upper bounds on the matching
capacity for the binary noisy deletion case with pX ∼Bernoulli(1/2),
pS ∼ Bernoulli(1 − δ), α = 0.7 and pY |X ∼ BSC(0.05). The dash-
dotted (blue) curve is the achievable rate stated in Theorem 3. The dashed
(yellow) and the dotted (red) curves are the evaluations of the upper bound
stated in Theorem 3, at n = 10 and n = 2, respectively. The solid (purple)
curve shows the loose upper bound given in Theorem 1. We see that the gap
between the lower and the upper bounds shrinks as n increases.

an upper bound on the matching capacity. In Corollaries 3 and
4, we analytically evaluate this upper bound at n = 2 under
some assumptions on pX,Y when smax = 1, i.e., when we only
have deletions, and explicitly demonstrate the gap between the
upper bounds given in Theorem 1 and Theorem 3.

First, we consider a noiseless deletion setting with arbitrary
database distribution pX in Corollary 3.

Corollary 3. (Upper Bound for Noiseless Deletion) Con-
sider a noiseless deletion setting where pY |X(y|x) = 1[x=y],
∀(x, y) ∈ X2 and S ∼ Bernoulli(1− δ). Then for any input
distribution pX , we have

C ≤ 1

2
I(X2;Y K , A2) (103)

= (1− δ)H(X)− (1− α)δ(1− δ) (1− q̂) (104)

where q̂ ≜
∑

x∈X pX(x)2.

Proof. See Appendix E.

Note that for any X with |X| ≥ 2 and α ∈ [0, 1) the
upper bound given in Corollary 3 is strictly lower than the
one provided in Theorem 1 which is

I(X;Y, S) = (1− δ)H(X). (105)

Next, we consider a noisy deletion setting with binary X
and arbitrary noise pY |X in Corollary 4.

Corollary 4. (Upper Bound for Binary Noisy Deletion) Con-
sider a binary noisy deletion setting where X ∼ Bernoulli(p)
and S ∼ Bernoulli(1− δ). Then, for any binary DMC pY |X ,

we have

C ≤ 1

2
I(X2;Y K , A2) (106)

= (1− δ)I(X;Y )

− 2(1− α)δ(1− δ)p(1− p)I(U ;V ) (107)

where U and V are binary random variables with
U ∼ Bernoulli(1/2) and pV |U = pY |X .

Proof. See Appendix F.

Again, for any p ∈ (0, 1) and α ∈ [0, 1), the upper bound
given in Corollary 4 is strictly lower than the one provided in
Theorem 1 which is

I(X;Y, S) = (1− δ)I(X;Y ) (108)

We note that the tighter upper bounds in Corollaries 3
and 4 become generalizations of the upper bound on the
noiseless deletion channel mutual information, given in [60,
Corollary 1]. Specifically, [60] considers noiseless deletion
channel with i.i.d. Bernoulli inputs. Corollary 3 extends the
results to noiseless deletion channels with arbitrary alphabet
sizes. Furthermore, Corollary 4 extends the results to binary
noisy deletion channels with arbitrary noise.

For the binary noisy case considered in Corollary 4, the
numerical comparison of the lower bound and the two upper
bounds on the matching capacity is provided in Figure 5. Note
that the upper bound provided by Corollary 4 is not tight
as it can be shown that a larger value of n gives a tighter
upper bound, implying that the gap between the lower and the
upper bounds in Theorem 3 is smaller than the one shown in
Figure 5.

V. EXTENSIONS

In this section, we discuss extensions to the system model
and results. Specifically, in Section V-A, we investigate the
adversarial repetition case instead of random repetitions, where
the repetitions are not due to random sampling of the time-
indexed data, but due to a constrained privacy mechanism. In
Section V-B, we consider the identical repetition model with
no seeds. In Section V-C, we discuss the zero-rate regime,
where the row size mn is not necessarily exponential in
the column size n, and derive conditions necessary for the
detection algorithms discussed in Section III to work.

A. What If Repetitions Are Intentional?

So far, as stated in Definition 2, we have assumed that the
identical repetitions occur randomly according to a discrete
probability distribution pS with finite integer support. In this
subsection, we study the case of an adversary who controls the
repetition pattern (under some constraints) to make matching
as difficult as possible. This could arise for example where
a privacy-preserving mechanism denies the sampling of the
geolocation data when that data contains the most information
about the users, such as their home addresses. We consider the
adversarial setting under identical repetition assumption.

We stress that in the identical repetition setting, the replicas
either have no effect on the matching capacity as in the
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noiseless case (Theorem 2) or offer additional information
acting as a repetition code of random length, in turn increasing
the matching capacity (Theorem 1). Hence, it is expected that
any adversary who tries to hinder the matching process to not
allow the replication of entries. Therefore in the adversarial
repetition setting, it is natural to focus on the deletion-only
case. We assume an adversary with a δ-deletion budget, which
can delete up to δ fraction of the columns, to maximize
the mismatch probability. For tractability, we focus on the
noiseless case with i.i.d. database entries. More formally, we
assume Xi

iid∼ pX where

pY |X(y|x) = 1[y=x], ∀(x, y) ∈ X2 (109)

Under these assumptions, we define the adversarial match-
ing capacity as follows:

Definition 13. (Adversarial Matching Capacity) The adver-
sarial matching capacity Cadv(δ) is the supremum of the set of
all achievable rates corresponding to a database distribution
pX and an adversary with a δ-deletion budget when there is
identical repetition. More formally,

Cadv(δ) ≜ sup{R :∀Idel = (i1, . . . , inδ) ⊆ [n],

Pr(σ̂n(J) ̸= σn(J))
n→∞−→ 0,

J ∼ Unif([mn]))} (110)

where the dependence of the matching scheme σ̂n on the
database growth rate R and the column deletion index set
Idel is omitted for brevity.

Note that in this setting, although the deletions are not
random, the matching error is still a random variable due to
the random natures of X and σn. In the proof of Theorem 4
below (Appendix G), we argue that in the adversarial setting,
we can still convert deletions into erasures via the histogram-
based repetition detection algorithm of Section III-E. After
the detection part, we use the following matching scheme: We
first remove deleted columns from X, and then perform exact
sequence matching, as described in Algorithm 6 which has
O(m2

nn) runtime, similar to Algorithms 3-5.
We state our main result on the adversarial matching capac-

ity in the following theorem:

Theorem 4. (Adversarial Matching Capacity) Consider a
database distribution pX and an adversary with a δ-deletion
budget when there is identical repetition. Then the adversarial
matching capacity is

Cadv(δ) =

{
D(δ∥1− q̂), if δ ≤ 1− q̂
0, if δ > 1− q̂

(111)

where q̂ ≜
∑

x∈X pX(x)2.

Proof. See Appendix G.

The matching capacities for random and adversarial dele-
tions as a function of the deletion probability/budget are
illustrated in Figure 6. Note that for δ > 1 − q̂, we have
Cadv(δ) = 0 whereas C = (1− δ)H(X) > 0. Furthermore,
when δ ≤ 1− q̂ the matching capacity is significantly reduced
when the column deletions are intentional rather than random.

Algorithm 6: Exact Sequence Matching Scheme Un-
der Adversarial Deletions
Input : (X,Y)
Output: σ̂n
(X̃, Ỹ)← CollapseDatabases(X,Y); /* (70) */
(H̃(1), H̃(2))← ColumnHistograms(X̃, Ỹ); /* (71) */
/* Histogram-based repetition detection */
for i = 1 to columnSize(H̃(1)) do

count← 0;
for j = 1 to columnSize(H̃(2)) do

if H̃(2)[:][j] = H̃(1)[:][i] then
count← count + 1;

end
end
Ŝ[i]← count;

end
/* Discard deleted columns */
for j = 1 to columnSize(X) do

if Ŝ[j] = 0 then
X̂[:][j]← [];

else
X̂[:][j]← X[:][j];

end
end
/* Exact sequence matching (See Appendix G.) */
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

if Y[j][:] = X̂[i][:] then
σ̂n[i]← j;
count← count + 1;

end
end
/* count > 1: Collision Error. */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

B. What If There Were No Seeds?

In Section III, we assumed the availability of seeds with a
seed size Λn = Ω(log logmn). Now, we focus on the identical
repetition scenario with no seeds.

Note that the replica detection algorithm of Section III-A
does not require any seeds. Therefore in the seedless scenario,
we can still detect the replicas with a vanishing probability
of error. On the other hand, in the general noisy setting,
the deletion detection algorithm of Section III-B necessitates
seeds. Therefore, in the case of no seeds, we cannot perform
deletion detection and we need to modify the matching scheme
of Section III-C to obtain lower bounds on the matching
capacity C.

For tractability, we focus on the case with i.i.d. database
entries, i.e., γ = 0. More formally, we assume Xi

iid∼ pX .
Under this assumption, we state a lower bound on the unseeded
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Fig. 6. Matching capacities C vs. deletion probability/budget (δ) when X ∼
Unif(X), X = [5]. Notice that in this case q̂ = 0.2 and for δ > 1− q̂ = 0.8
the adversarial matching capacity Cadv(δ) is zero, while the matching capacity
with random deletions C is positive.

Algorithm 7: Seedless Matching Scheme (Identical
Repetition)
Input : (X,Y, pX , pY |X , pS , ϵ)
Output: σ̂n
isReplica← Algorithm 1(Y, pX , pY |X );
Ỹ ← MarkerAddition(Y,isReplica);
for i = 1 to rowSize(X) do

count← 0;
for j = 1 to rowSize(Y) do

/* Typical subsequence check (See
Appendix H.) */
if TypicalSubsequenceCheck(X[i][:], Ỹ[j][:
], pX , pY |X , pS , ϵ) then
σ̂n[i]← j;
count← count + 1;

end
end
/* count = 0: Ỹ[j][:] is not jointly typical with any
subsequence of any row of X. */
/* count > 1: Ỹ[j][:] is jointly typical with a
subsequence of multiple rows of X. */
if count ̸= 1 then

σ̂n[i]← 0; /* Matching error. */
end

end

matching capacity with identical repetition in the following
theorem via Algorithm 7 which has O(m2

nn) runtime, similar
to Algorithms 3-6.

Theorem 5. (Seedless Matching Capacity with Identical
Repetition) Consider a database distribution pX , a noise
distribution pY |X , a repetition distribution pS and an identical
repetition pattern. Then, in the seedless case, the matching

capacity C satisfies

C ≥
[
I(X;Y S , S)−Hb(δ)

]+
(112)

C ≤ I(X;Y S , S) (113)

where δ ≜ pS(0) is the deletion probability, S ∼ pS and Y S

has the following distribution conditioned on X such that

Pr(Y S = yS |X = x) =


S∏

j=1

pY |X(yj |x) if S > 0

1[ys=E] if S = 0

(114)

where E denotes the empty string.
Furthermore, for repetition distributions with δ ≤ 1− 1/|X|,

the lower bound can be tightened as

C ≥ [I(X;Y S , S)−Hb(δ)

+ δ[H(X)− log(|X| − 1)]+]+ (115)

Proof. See Appendix H.

We note that although the converse results of Theorems 1
and 5 match, the achievable rates differ by Hb(δ). In other
words, Theorem 5 implies that the gap between the lower and
the upper bounds on the seedless matching capacity is at most
Hb(δ). We note that this gap is due to our inability to detect
deletions in the achievability part. Hence, we conjecture that
the lower bound in Theorem 5 is loose while the converse
is tight. This is because in the noiseless setting, as discussed
in Section III-E, deletion detection can be performed without
seeds and the achievability bound is indeed improved and tight.

C. Zero-Rate Regime

In Section III, we considered at the matching capacity C
for Λn = Ω(log logmn) when the database growth rate R is
positive. In other words, so far, we have assumed

lim
n→∞

1

n
logmn > 0 (116)

The detection algorithms we presented in Sections III-A
through III-E depended on the row size mn being large
compared to the column size n. In this section, we further
investigate these algorithms to derive the sufficient and/or
necessary conditions on the relation between mn and n in
order for them to work in the zero-rate regime where

lim
n→∞

1

n
logmn = 0. (117)

Since R = 0, we define the non-asymptotic database growth
rate Rn as

Rn ≜
1

n
logmn. (118)

Here, R = 0 trivially implies Rn → 0 as n → ∞. Below
we investigate the sufficient conditions on Rn such that the
results of Sections III and IV hold.

1) Noisy Replica Detection: We consider the replica detec-
tion algorithm discussed in Section III-A. Note that the RHS of
equation (163) of Appendix A has 2K−2 ≤ 2nsmax = O(n)
additive terms, each decaying exponentially in mn. Thus, for a
given average Hamming distance threshold τ ∈ (p1, p0) which
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is chosen based based on P and pY |X and in turn constant
with respect to n

mn ≥
log(nsmax)

min{D(τ∥p0), D(1− τ∥1− p1)}
(119)

= Θ(log n) (120)

is enough to ensure a vanishing replica detection error proba-
bility. In other words, as long as mn = Ω(log n) and in turn

Rn = Ω

(
log log n

n

)
(121)

our replica detection algorithm works.
2) Seeded Deletion Detection: We study the seeded dele-

tion detection algorithm discussed in Section III-B. Note that
we only run the deletion detection algorithm on the seeds
(G(1),G(2)) and not on the database pair (X,Y) directly, the
relationship between mn and n does not affect the success
of the deletion detection. Thus, as long as the seed size
Λn = Ω(log n) our deletion detection algorithm works for
any database growth rate, including the zero-rate regime. This
in turn implies that mn ≥ Λn = Ω(log n) and

Rn = Ω

(
log logn

n

)
. (122)

3) Noiseless Joint Deletion-Replication Detection: We in-
vestigate the histogram-based joint deletion-replication detec-
tion algorithm introduced in Section III-E for the noiseless
scenario. By Lemma 4, mn = ω(n4) is sufficient. Thus, as
long as logmn ≥ 4 logn, the histogram-based detection can
be performed with a performance guarantee. In turn, for any

Rn = Ω

(
log n

n

)
(123)

the histogram-based detection algorithm has a vanishing prob-
ability of error.

Therefore, in the noiseless setting, database growth rate
Rn = Ω(logn/n) provides enough granularity on the column
histograms and we can perform detection with a decaying
probability of error which then leads to asymptotically-zero
mismatch probability.

Note that, for tractability, so far we have collapsed the
databases into binary-valued ones. Further, in Lemma 4, we
showed that for the collapsed databases mn = ω(n4) is
enough for the asymptotic uniqueness of the column his-
tograms. We now tighten this order relation for the special
case where γ = 0 results in an i.i.d. database distribution
Xi,j

i.i.d.∼ pX with support X.

Lemma 5. (Asymptotic Uniqueness of the Uncollapsed
Histograms) Consider an i.i.d. database distribution pX . Let
H

(1)
j denote the histogram of the jth column of X. Then,

Pr
(
∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j

)
→ 0 as n→∞ (124)

if mn = ω(n
4

|X|−1 ).

Proof. See Appendix I.

Note that in the binary setting the results of Lemmas 4 and

5 agree.
Lemma 5 implies that we only need a row size mn polyno-

mial in n to guarantee enough granularity for the uniqueness
of H(1)

i and that the degree of the polynomial scales inversely
with the alphabet size |X|. Furthermore, to demonstrate the
tightness of this requirement of having mn = ω(n

4
|X|−1 ), we

consider the special case where pX is uniform over X. This
leads to the following proposition:

Proposition 4. Let H(1)
j denote the histogram of the jth

column of X. If pX(x) = 1
|X| , ∀x ∈ X, then

Pr
(
∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j

)
= n2m

1−|X|
2

n C|X|(1 + on(1)) (125)

where C|X| = (4π)
1−|X|

2 |X|
|X|
2 .

Proof. See Appendix J.

Proposition 4 states that in the setting with i.i.d. uniform
database distribution, for the asymptotic uniqueness of the
column histograms mn = ω(n

4
|X|−1 ) is not only sufficient

but also necessary.
4) Independent Repetition Row Matching Scheme: In the

independent repetition scenario, we have no detection algo-
rithms which depend on the large-mn assumption. Therefore,
so long as the RHS of (85) is positive, any Rn = on(1)
is achievable. We stress that this observation trivially applies
to the identical repetition case as well since one can simply
ignore any underlying structure and perform the matching
scheme given in Section IV-A.

VI. CONCLUSION

In this work, we have presented a unified information-
theoretic foundation for database matching under noise and
synchronization errors. We have showed that when the repe-
tition pattern is constant across rows, the running Hamming
distances between the consecutive columns of the correlated
repeated database can be used to detect replicas. In addition,
given seeds whose size grows double-logarithmic with the
number of rows, a Hamming distance-based threshold testing,
after an adequate remapping of database entries, can be used to
infer the locations of the deletions. Using the proposed detec-
tion algorithms, and a joint typicality-based rowwise matching
scheme, we have derived an achievable database growth rate,
which we prove is tight. Therefore, we have completely char-
acterized the database matching capacity under noisy column
repetitions. Furthermore, we have derived achievable database
growth rates proposing a typicality-based matching scheme
and a converse result for the setting where the repetition takes
place entrywise, where we build analogy between database
matching and synchronization channel decoding. We have also
discussed some extensions, such as the adversarial column
deletion setting rather then the random one.

Other natural extensions beyond those studied in this paper
include the finite column size regime, where tools from
finite-blocklength information theory could be useful, and
practical algorithms with theoretical guarantees. An extensive
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analysis of the parallels between database matching under
synchronization errors and two-dimensional synchronization
channels [61], [62] and the construction of codes tailored to
correct the error patterns investigated in this paper could be
an interesting line of future work. Finally, one can extend
our adversarial setting into a noisy one where the privacy-
preserving mechanism not only deletes columns but also in-
troduces intentional noise on the microdata, and investigate the
adversarial matching capacity through a worst-case analysis.

APPENDIX A
PROOF OF LEMMA 2

Observe that since the rows of Y are i.i.d. conditioned
on the column repetition pattern Sn, the Hamming distance
Hj between consecutive columns Cmn

j and Cmn
j+1 follows a

Binomial distribution whose success parameter depends on
whether Cmn

j and Cmn
j+1 are noisy replicas or not. More

formally, if Cmn
j and Cmn

j+1 being noisy replicas, then there
exist an i ∈ [mn] such that

Pr(Yt,j ,Yt,j+1 = y1, y2|Xσ−1
n (t),i = x)

= pY |X(y1|x)pY |X(y2|x), ∀t ∈ [mn] (126)

More specifically, let Cmn
j and Cmn

j+1 correspond to the j1st

and j2
nd columns of X and let r ≜ j2 − j1 − 1 denote

the number of deleted columns between Cmn
j and Cmn

j+1.
Note that r = −1 denotes the case when Cmn

j and Cmn
j+1

are noisy replicas. Then we have Hj ∼ Binom(mn, p1) if
Cmn

j and Cmn
j+1 are noisy replicas and Hj ∼ Binom(mn, p

(r)
0 )

otherwise. Thus, proving that p(r)0 and p1 are bounded away
from one another for any r ≥ 0 will allow us to use the
running Hamming distance based threshold test discussed in
Section III-A.

Our goal is to prove that p(r)0 > p1 for any r ≥ 0. First, we
can formally rewrite p0 as

p
(r)
0 =

∑
x1∈X

∑
x2∈X

∑
y∈X

Pr(X1,j1 = x1)

Pr(X1,j2 = x2|X1,j1 = x1)

Pr(Yσn(1),j = y|Xj1 = x1)

Pr(Yσn(1),j+1 ̸= y|X1,j2 = x2) (127)

=
∑
x1∈X

∑
x2∈X

∑
y∈X

Pr(X1,j1 = x1)

Pr(X1,j2 = x2|X1,j1 = x1)

pY |X(y|x1)[1− pY |X(y|x2)] (128)

=

|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui (P
r)i,j pY |X(k|i) [1− pY |X(k|j)]

(129)

=

|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui [(1− γr)uj + γrδij ]

pY |X(k|i) [1− pY |X(k|j)] (130)

=

|X|∑
i=1

|X|∑
k=1

ui [(1− γr)ui + γr]

pY |X(k|i) [1− pY |X(k|i)]

+

|X|∑
i=1

∑
j ̸=i

|X|∑
k=1

ui [(1− γ)uj ]

pY |X(k|i) [1− pY |X(k|j)] (131)

= (1− γr)
|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui uj

pY |X(k|i) [1− pY |X(k|j)]

+ γr
|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (132)

= (1− γr)p′0 + γrp′1 (133)

where

p′0 ≜
|X|∑
i=1

|X|∑
j=1

|X|∑
k=1

ui uj pY |X(k|i) [1− pY |X(k|j)] (134)

p′1 ≜
|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (135)

Similarly, we rewrite p1 as

p1 =
∑
x∈X

∑
y∈X

Pr(X = x)

Pr(Y1 = y|X = x) Pr(Y2 ̸= y|X = x) (136)

=

|X|∑
i=1

|X|∑
k=1

ui pY |X(k|i) [1− pY |X(k|i)] (137)

= p′1 (138)

Thus, for any γ ∈ [0, 1) and r ≥ 0, we have

p0 > p1 ⇐⇒ p′0 > p′1 (139)

Note that p′0 and p′1 would correspond to

p′0 = Pr(Yσn(1),j ̸= Yσn(1),j+1|r ≥ 0) (140)
p′1 = Pr(Yσn(1),j ̸= Yσn(1),j+1|r = −1) (141)

if the entries Xi,j of X were drawn i.i.d. from the stationary
distribution π of P, instead of a Markov process. Thus, to
consider the i.i.d. database entries case, we introduce the
discrete random variable W with

pW (i) = ui, ∀i ∈ X (142)

pY |W (y|w) = pY |X(y|w), ∀(w, y) ∈ X2 (143)

We note that this equivalence induced by (139) is due to
the specific Markov structure we adopted in Definition 1.

Let pY (y) ≜
∑
w∈X

pW,Y (w, y) ∀y ∈ X. Then, we can rewrite

p′0 and p′1 as

p′0 =
∑
w1∈X

∑
w2∈X

∑
y∈X

pW (w1)pW (w2)

pY |W (y|w1)
[
1− pY |W (y|w2)

]
(144)

=
∑
w1∈X

∑
y∈X

pW (w1)pY |W (y|w1)
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∑
w2∈X

pW (w2)
[
1− pY |W (y|w2)

]
(145)

=
∑
w∈X

∑
y∈X

pW (w)pY |W (y|w) [1− pY (y)] (146)

p′1 =
∑
w∈X

∑
y∈X

pW (w)pY |W (y|w)
[
1− pY |W (y|w)

]
(147)

Thus, we have

p′0 − p′1 =
∑
w∈X

∑
y∈X

pW,Y (w, y)
[
pY |W (y|w)− pY (y)

]
. (148)

For every y ∈ X, let

ψ(y) ≜
∑
w∈X

pW (w)
[
pY |W (y|w)− pY (y)

]2
(149)

=
∑
w∈X

pW (w)

[
pY |W (y|w)−

∑
z∈X

pY |W (y|z)pW (z)

]2
(150)

≥ 0 (151)

where (151) follows from the non-negativity of the square
term in the summation. It must be noted that ψ(y) = 0 only
if pY |W (y|w) = pY (y), ∀w ∈ X with pW (w) = uw > 0.

Expanding the square term, we obtain

ψ(y) =
∑
w∈X

pW (w)pY |W (y|w)2

− 2pY (y)
∑
w∈X

pW (w)pY |W (y|w)

+
∑
w∈X

pW (w)pY (y)
2 (152)

=
∑
w∈X

pW (w)pY |W (y|w)2 − 2pY (y)
2 + pY (y)

2

(153)

=
∑
w∈X

pW (w)pY |W (y|w)2 − pY (y)2 (154)

Next, we rewrite p′0 − p′1 as

p′0 − p′1 =
∑
y∈X

∑
w∈X

pW,Y (w, y)
[
pY |W (y|w)− pY (y)

]
(155)

=
∑
y∈X

[(∑
w∈X

pW (w)pY |W (y|w)2
)
− pY (y)2

]
(156)

=
∑
y∈X

ψ(y) (157)

≥ 0 (158)

with p′0 − p′1 = 0 only when pY |W (y|w) = pY (y), ∀(w, y) ∈
X2. In other words, p′0 > p′1 and in turn p(r)0 > p1 as long as
the two databases are not independent.

We next choose any τ ∈ (p1, p
(0)
0 ) bounded away from both

p
(0)
0 and p1. Let Aj denote the event that Cmn

j and Cmn
j+1

are noisy replicas and Bj denote the event that the algorithm
declares Cmn

j and Cmn
j+1 as replicas. Via the union bound, we

can upper bound the total probability of replica detection error

as

Pr(

Kn−1⋃
j=1

Fj) ≤
Kn−1∑
j=1

Pr(Ac
j) Pr(Bj |Ac

j)

+ Pr(Aj) Pr(B
c
j |Aj) (159)

Note that conditioned on Ac
j , we have Hj ∼

Binom(mn, p
(r)
0 ) and conditioned on Aj , we have

Hj ∼ Binom(mn, p1). Then, from the Chernoff bound [63,
Lemma 4.7.2], we get

Pr(Bj |Ac
j) ≤ 2−mnD(τ∥p(r)

0 ) (160)

≤ 2−mnD(τ∥p(0)
0 ) (161)

Pr(Bc
j |Aj) ≤ 2−mnD(1−τ∥1−p1) (162)

where (161) follows from the fact that D(τ∥p) is an increasing
function of p for p > τ .

Thus, we get

Pr(

Kn−1⋃
j=1

Ej) ≤ Kn

[
2−mnD(τ∥p(0)

0 ) + 2−mnD(1−τ∥1−p1)
]

(163)

Observe that since the RHS of (163) has 2Kn = O(n) terms
decaying exponentially in mn, for any mn = ω(log n) we
have

Pr(

Kn−1⋃
j=1

Fj)→ 0 as n→∞. (164)

Finally observing that n ∼ logmn concludes the proof.

APPENDIX B
PROOF OF LEMMA 3

Let (X̃i,j , Ỹi,j) be a pair of matching entries. Since the
database distribution is stationary, WLOG, we can assume
(i, j) = (1, 1). Now, given (X̃1,1, Ỹ1,1), and the non-matching
pair (X̃1,j , Ỹ1,1) with j − 1 = r ̸= 0, we first prove the
existence of such a bijective mapping Φ such that for any
r ∈ [n− 1]

Pr(Φ(Ỹ1,1) ̸= X̃1,1) < Pr(Φ(Ỹ1,1) ̸= X̃1,r+1). (165)

For given Φ and r ∈ [n− 1] let

q
(r)
0,Φ ≜ Pr(Φ(Ỹ1,1) ̸= X̃1,r+1) (166)

q1,Φ ≜ Pr(Φ(Ỹ1,1) ̸= X̃1,1) (167)

Here, our goal is to show that there exists at least one Φ
satisfying

q
(r)
0,Φ > q1,Φ, ∀r ∈ [n− 1]. (168)

We can rewrite q(r)0,Φ as

q
(r)
0,Φ =

∑
x1∈X

∑
x2∈X

Pr(X̃1,1 = x1)

Pr(X̃1,r+1 = x2|X̃1,1 = x1)

Pr(Φ(Ỹ1,1) ̸= x2|X̃1,1 = x1) (169)
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=

|X|∑
i=1

|X|∑
j=1

ui (P
r)i,j [1− pY |X(Φ−1(j)|i)] (170)

=

|X|∑
i=1

|X|∑
j=1

ui [(1− γr)uj + γrδij ]

[1− pY |X(Φ−1(j)|i)] (171)

= (1− γr)
|X|∑
i=1

|X|∑
j=1

ui uj [1− pY |X(Φ−1(j)|i)]

+ γr
|X|∑
i=1

ui [1− pY |X(Φ−1(i)|i)] (172)

= (1− γr)q′0,Φ + γrq′1,Φ (173)

where

q′0,Φ ≜
|X|∑
i=1

|X|∑
j=1

ui uj [1− pY |X(Φ−1(j)|i)] (174)

q′1,Φ ≜
|X|∑
i=1

ui [1− pY |X(Φ−1(i)|i)] (175)

Similarly, we rewrite q1,Φ as

q1,Φ =
∑
x∈X

Pr(X̃1,1 = x) Pr(Φ(Ỹ1,1) ̸= x|X̃1,1 = x) (176)

=

|X|∑
i=1

ui[1− pY |X(Φ−1(i)|i)] (177)

= q′1,Φ (178)

Thus, for any γ ∈ [0, 1), we have

∃Φ, ∀r ∈ [n− 1], q
(r)
0,Φ > q1,Φ ⇐⇒ ∃Φ, q′0,Φ > q′1,Φ (179)

Note that q′0,Φ and q′1,Φ correspond to

q′0,Φ = Pr(Φ(Ỹ1,1) ̸= X̃1,j), j ̸= 1 (180)

q′1,Φ = Pr(Φ(Ỹ1,1) ̸= X̃1,1) (181)

if the entries X̃i,j of G(1) were drawn i.i.d. from the dis-
tribution π = [u1, . . . , u|X|], instead of a Markov process.
Thus, we recall the discrete random variable W , defined in
equations (142)-(143), with

pW (i) = ui, ∀i ∈ X (182)

pY |W (y|w) = pY |X(y|w), ∀(w, y) ∈ X2 (183)

We note that similar to Appendix A, this equivalence induced
by (179) is due to the specific Markov structure we adopted
in Definition 1.

Then, we can rewrite q′0,Φ and q′1,Φ as

q′0,Φ =
∑
w1∈X

∑
w2∈X

pW (w1)pW (w2)[1− pY |X(Φ−1(w2)|w1)]

(184)

q′1,Φ =
∑
w∈X

pW (w)[1− pY |W (Φ−1(w)|w)] (185)

We first prove the following:∑
Φ

q′0,Φ − q′1,Φ = 0 (186)

where the summation is over all permutations of X. For
brevity, let

Qi,j ≜ pY |W (j|i) ∀i, j ∈ X (187)

Note that from (187), we have
|X|∑
j=1

Qi,j = 1 ∀i ∈ X (188)

|X|∑
i=1

|X|∑
j=1

Qi,j = |X| (189)

Taking the sum over all Φ, we obtain

∑
Φ

q′0,Φ − q′1,Φ =
∑
Φ

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j)

−
∑
Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) (190)

Combining (188)-(190), we now show that both terms on the
RHS of (190) are equal to (|X| − 1)!. We first look at the
second term on the RHS of (190).∑
Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) =

|X|∑
i=1

pW (i)
∑
Φ

Qi,Φ−1(i) (191)

= (|X| − 1)!

|X|∑
j=1

|X|∑
i=1

pW (i)Qi,j (192)

= (|X| − 1)!

|X|∑
i=1

|X|∑
j=1

pW,Y (i, j) (193)

= (|X| − 1)! (194)

where (192) follows from the fact that for any j ∈ X, we have
exactly (|X|−1)! permutations assigning j to i (or equivalently
Φ−1(i) = j).

Now we look at the first term.∑
Φ

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j)

=

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)
∑
Φ

Qi,Φ−1(j) (195)

=

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)(|X| − 1)!

|X|∑
k=1

Qi,k (196)

= (|X| − 1)! (197)

Again, (196) follows from the fact that for each k ∈ X, there
are exactly (|X| − 1)! permutations Φ which map k to j (or
equivalently Φ−1(j) = k).

Thus, we have shown that both terms on the RHS of (190)
are equal to (|X| − 1)!, proving (186). Now, we only need to
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show that

∃Φ q′0,Φ − q′1,Φ ̸= 0. (198)

This is because unless q′0,Φ − q′1,Φ = 0 ∀Φ, due to (186),
we automatically have a Φ such that this difference is strictly
positive. This follows from the fact if ∃Φ q′0,Φ− q′1,Φ ̸= 0, we
have either

• q′0,Φ − q′1,Φ > 0, which is the desired result, or
• q′0,Φ− q′1,Φ < 0, which from (190) requires the existence

of another permutation Φ̃ with q′
0,Φ̃
− q′

1,Φ̃
> 0.

We will prove (198) by arguing that

q′0,Φ − q′1,Φ = 0 ∀Φ
⇐⇒ pY |W (y|w) = pY (y) ∀(w, y) ∈ X2 (199)

which contradicts our pY |X ̸= pY assumption.
We first prove the “only if” part. Suppose

pY |W (y|w) = pY (y), ∀(w, y) ∈ X2. In other words,
Qi,k = Qj,k, ∀(i, j, k) ∈ X3. Then for any Φ, we have

q′0,Φ =

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) (200)

=

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qk,Φ−1(j), k ̸= i (201)

=

|X|∑
j=1

pW (j)Qk,Φ−1(j) (202)

=

|X|∑
j=1

pW (j)Qj,Φ−1(j) (203)

= q′1,Φ (204)

finishing the proof of the “only if” part.
Now, we prove the “if” part. Suppose the LHS of (199)

holds. In other words, for any Φ

|X|∑
i=1

pW (i)Qi,Φ−1(i) =

|X|∑
i=1

|X|∑
j=1

pW (i)pW (j)Qi,Φ−1(j) (205)

First, we look at the binary case X = {1, 2}. In this case,
we obtain

pW (1)Q1,1 + pW (2)Q2,2 =pW (1)2Q1,1

+ pW (1)pW (2)Q1,2

+ pW (2)pW (1)Q2,1

+ pW (2)2Q2,2 (206)

Q1,1 +Q2,2 = Q1,2 +Q2,1 (207)
Q1,1 +Q2,2 = 1−Q1,1 + 1−Q2,2 (208)
Q1,1 +Q2,2 = 1 (209)

for the identity permutation. This implies that Q1,1 = Q2,1

and Q1,2 = Q2,2 and this in turn implies pY |W (y|w) = pY (y)
∀(w, y) ∈ X2, concluding the proof for the binary case.

Now, we investigate the larger alphabet sizes (|X| ≥ 3).
Since the equality holds for all Φ, we now carefully select

some one-cycle permutations Φ to construct a system of linear
equations.

Let Φid be the identity permutation and Φi−j ,Φi−k,Φi−j−k

denote the one-cycle permutations with the respective cycles
(i j), (i k) and (i j k) for some distinct (i, j, k) triplet. For the
rest of this proof, we will jointly solve the system of equations
put forward by these permutations.

Recall that pW (l) = ul, ∀l ∈ X. Then, Φid leads to

uiQi,i + ujQj,j + ukQk,k +
∑

l ̸=i,j,k

ulQl,l

= ui

|X|∑
t=1

utQt,i + uj

|X|∑
t=1

utQt,j

+ uk

|X|∑
t=1

utQt,k +
∑

l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (210)

Similarly, Φi−j leads to

uiQi,j + ujQj,i + ukQk,k +
∑

l ̸=i,j,k

ulQl,l

= ui

|X|∑
t=1

utQt,j + uj

|X|∑
t=1

utQt,i

+ uk

|X|∑
t=1

utQt,k +
∑

l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (211)

When we subtract (211) from (210), we obtain

ui(Qi,i −Qi,j)− uj(Qj,i −Qj,j)

= (ui − uj)
|X|∑
t=1

ut(Qt,i −Qt,j) (212)

Equivalently, we have

pW,Y (i, i)− pW,Y (i, j)− pW,Y (j, i) + pW,Y (j, j)

= pW (i)pY (i)− pW (i)pY (j)

− pW (j)pY (i) + pW (j)pY (j) (213)

Following the same steps, from Φi−k we get

pW,Y (i, i)− pW,Y (i, k)− pW,Y (k, i) + pW,Y (k, k)

= pW (i)pY (i)− pW (i)pY (k)

− pW (k)pY (i) + pW (k)pY (k) (214)

We can rearrange the terms in (214) to obtain

pW,Y (i, k) = pW,Y (i, i)− pW,Y (k, i) + pW,Y (k, k)

− pW (i)pY (i) + pW (i)pY (k)

+ pW (k)pY (i)− pW (k)pY (k) (215)
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Furthermore, Φi−j−k gives us

uiQi,k + ujQj,i + ukQk,j +
∑

l ̸=i,j,k

ulQl,l

= ui

|X|∑
t=1

utQt,k + uj

|X|∑
t=1

utQt,i

+ uk

|X|∑
t=1

utQt,j +
∑

l ̸=i,j,k

ul

|X|∑
t=1

utQt,l (216)

Subtracting (216) from (211) yields

ui(Qi,j −Qi,k) + uk(Qk,k −Qk,j)

= (ui − uk)

 |X|∑
t=1

utQt,j −
|X|∑
t=1

utQt,k

 (217)

Equivalently,

pW,Y (i, j)− pW,Y (i, k)− pW,Y (k, j) + pW,Y (k, k)

= pW (i)pY (j)− pW (i)pY (k)

− pW (k)pY (j) + pW (k)pY (k) (218)

Plugging pW,Y (i, k) from (215) into (218) yields

pW,Y (i, j)− pW,Y (i, i)− pW,Y (k, j) + pW,Y (k, i)

= pW (i)pY (j)− pW (i)pY (i)

− pW (k)pY (j) + pW (k)pY (i) (219)

Taking a summation over k in (219) gives us

|X|pW,Y (i, j)− |X|pW,Y (i, i)− pY (j) + pY (i)

= |X|pW (i)pY (j)− |X|pW (i)pY (i)

− pY (j) + pY (i) (220)
pW,Y (i, j)− pW,Y (i, i)

= pW (i)pY (j)− pW (i)pY (i) (221)

Similarly, taking a summation over j in (221) yields

pW (i)− |X|pW,Y (i, i) = pW (i)− |X|pW (i)pY (i) (222)
pW,Y (i, i) = pW (i)pY (i) (223)

Plugging (223) into (221) yields

pW,Y (i, j)− pW,Y (i, i) = pW (i)pY (j)− pW (i)pY (i) (224)
pW,Y (i, j) = pW (i)pY (j) (225)

Note that i and j are chosen arbitrarily. Therefore the
condition given in (205) implies that pY |W (y|w) = pY (y),
∀(w, y) ∈ X2, concluding the proof of the “if” part.

Hence, we have proved (198). Thus, there exists a deter-
ministic bijective mapping Φ satisfying q′0,Φ > q′1,Φ and in
turn q(r)0,Φ > q′1,Φ, ∀r ∈ [n− 1].

Now choose such a mapping Φ and note that for any γ ∈
[0, 1)

q
(r)
0,Φ − q

′
1,Φ = (1− γr)[q′0(Φ)− q′1(Φ)] (226)

≥ (1− γ)[q′0(Φ)− q′1(Φ)], ∀r ∈ [n− 1] (227)
> 0, ∀r ∈ [n− 1] (228)

Next, define

qmin
0,Φ ≜ (1− γ)q′0,Φ + γq′1,Φ (229)

and choose a τ̄ ∈
(
q′1,Φ, q

min
0,Φ

)
bounded away from both ends

of the interval.

Let K̂n ≜ n −
∑n

j=1 Ij and Lj denote the jth 0 in In,
j = 1, . . . , K̂n. In other words, Lj holds the index of the jth

retained column C(2)
j (Φ) of G̃(2)

Φ in G(1). Similarly, for i with
Ii = 0, let Ri ≜ i−

∑i
l=1 Il store the index of C(1)

i in G̃
(2)
Φ .

Now note that when we have Ii = 1,
dH(C

(1)
i , C

(2)
j (Φ)) ∼ Binom(Λn, q

(|i−Lj |)
0,Φ ) and when

Ii = 0, dH(C
(1)
i , C

(2)
Ri

(Φ)) ∼ Binom(Λn, q
′
1,Φ).

Next, we write the misdetection probability Pe,i of C(1)
i as

Pe,i = Pr
(
∃j ∈ [K̂n] : ∆i,j(Φ) ≤ Λnτ̄ , Ii = 1

)
+ Pr

(
∀j ∈ [K̂n] : ∆i,j(Φ) > Λnτ̄ , Ii = 0

)
(230)

≤ Pr
(
∃j ∈ [K̂n] : ∆i,j(Φ) ≤ Λnτ̄ , Ii = 1

)
+ Pr (∆i,Ri(Φ) > Λnτ̄ , Ii = 0) (231)

where

∆i,j(Φ) ≜ dH(C
(1)
i , C

(2)
j (Φ)). (232)

From the union bound and Chernoff bound [63, Lemma
4.7.2], we obtain

Pe,i ≤
K̂n∑
j=1

Pr (∆i,j(Φ) ≤ Λnτ̄ , Ii = 1)

+ Pr (∆i,Ri(Φ) > Λnτ̄ , Ii = 0) (233)

≤
K̂n∑
j=1

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (234)

It is straightforward to show that D(τ̄∥p) is an increasing
function of p for p > τ̄ . Thus ∀i ∈ [n], j ∈ [K̂n], we have

q
(|i−Lj |)
0,Φ ≥ q′0,Φ (235)

D(τ̄∥q(|i−Lj |)
0,Φ ) ≥ D(τ̄∥qmin

0,Φ) (236)

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) ≤ 2−ΛnD(τ̄∥qmin

0,Φ) (237)

Thus, we have

Pe,i ≤
K̂n∑
j=1

2−ΛnD(τ̄∥q
(|i−Lj |)
0,Φ ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (238)

≤
K̂n∑
j=1

2−ΛnD(τ∥qmin
0,Φ) + 2−ΛnD(1−τ∥1−q′1,Φ) (239)

= K̂n2
−ΛnD(τ∥qmin

0,Φ) + 2−ΛnD(1−τ∥1−q′1,Φ) (240)

Thus, by simple union bound the total misdetection probability
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Pe,total can be bounded as

Pe,total ≤
n∑

i=1

Pe,i (241)

≤
n∑

i=1

K̂n2
−ΛnD(τ̄∥qmin

0,Φ) + 2−ΛnD(1−τ̄∥1−q′1,Φ) (242)

= nK̂n2
−ΛnD(τ̄∥qmin

0,Φ) + n2−ΛnD(1−τ̄∥1−q′1,Φ) (243)

≤ n22−ΛnD(τ̄∥qmin
0,Φ) + n2−ΛnD(1−τ̄∥1−q′1,Φ) (244)

Hence, Pe,total → 0 as n→∞ if the seed size Λn satisfies

ΛnD(τ̄∥qmin
0,Φ)− 2 log n > 0 (245)

ΛnD(1− τ̄∥1− q′1,Φ)− log n > 0 (246)

Thus any seed size Λn satisfying

Λn >
log n

min
{

1
2D(τ̄∥qmin

0,Φ), D(1− τ̄∥1− q′1,Φ)
} (247)

is sufficient to drive Pe,total to 0. Thus a seed size
Λn = Ω(log n) is enough for successful deletion detec-
tion.

APPENDIX C
PROOF OF LEMMA 4

First, observe that from [64, Theorem 3] and the specific
Markov structure given in Definition 1, the rows of the
collapsed database X̃ become i.i.d. first-order stationary binary
Markov chains, with the following probability transition matrix
and stationary distribution:

P̃ =

[
γ + (1− γ)u1 (1− γ)(1− u1)
(1− γ)u1 1− (1− γ)u1

]
(248)

π̃ =
[
u1 1− u1

]
(249)

For brevity, we let µn ≜ Pr(∃i, j ∈ [n], i ̸= j, H̃
(1)
i = H̃

(1)
j ).

Next, from the union bound, we obtain

µn ≤
∑

(i,j)∈[n]2:i<j

Pr(H̃
(1)
i = H̃

(1)
j ) (250)

≤ n2 max
(i,j)∈[n]2:i<j

Pr(H̃
(1)
i = H̃

(1)
j ) (251)

Due to stationarity of P̃, this maximum is equal to Pr(H̃
(1)
1 =

H̃
(1)
s+1) for some s. For brevity, let Q ≜ P̃s and q ≜

Pr(H̃
(1)
1 = H̃

(1)
s+1). Observe that H̃(1)

1 and H̃(1)
s+1 are correlated

Binom(mn, 1 − u1) random variables and for any s, Q has
positive values, i.e., the collapsed Markov chain is irreducible
for any s. Now, we have

q =

mn∑
r=0

Pr(H̃
(1)
1 = r) Pr(H̃

(1)
s+1 = r|H̃(1)

1 = r) (252)

=

mn∑
r=0

(
m

r

)
(1− u1)rumn−r

1 Pr(H̃
(1)
s+1 = r|H̃(1)

1 = r)

(253)

Note that since the rows of X̃ are i.i.d., we have

Pr(H̃
(1)
s+1 = r|H̃(1)

1 = r) = Pr(M +N = r) (254)

where M ∼ Binom(r,Q2,2) and N ∼ Binom(mn − r,Q1,2)
are independent. Note that there are two ways leading to state
2 in the collapsed column after s steps. The first one is the
state 2 staying in the same state after s steps, and the second
one is state 1 being converted to state 2 after s steps. Here
the Binomial random variables M and N keep counts of the
former and the latter ways, respectively.

Then, from Stirling’s approximation [50, Chapter 3.2] on the
factorial terms in the Binomial coefficient and [49, Theorem
11.1.2], we get

q =

mn∑
r=0

(
mn

r

)
(1− u1)rumn−r

1 Pr(M +N = r) (255)

≤ e√
2π
mn

−1/2
mn∑
r=0

Π−1
r 2−mnD( r

mn
∥(1−u1))

Pr(M +N = r) (256)

where Πr = r
mn

(1− r
mn

). Let

T =

mn∑
r=0

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r) (257)

= T1 + T2 (258)

where

T1 =
∑

r:D( r
mn

∥1−u1)>
ϵ2n

2 loge 2

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r)

(259)

T2 =
∑

r:D( r
mn

∥1−u1)≤
ϵ2n

2 loge 2

Π−1
r 2−mnD( r

mn
∥(1−u1)) Pr(M +N = r),

(260)

ϵn > 0, which is described below in more detail, is such that
ϵn → 0 as n→∞.

First, we look at T1. Note that for any r ∈ N, we have
Πr ≤ mn

2, suggesting the multiplicative term in the summa-
tion in (259) is polynomial with mn. Note that we can simply
separate the cases r = 0, r = mn whose probabilities vanish
exponentially in mn. Therefore, as long as mnϵ

2
n →∞, T1

has a polynomial number of elements that decay exponentially
with mn. Thus

T1 → 0 as n→∞ (261)

as long as mnϵ
2
n →∞.

Now, we focus on T2. From Pinsker’s inequality [49,
Lemma 11.6.1], we have

D
( r

mn

∥∥∥1− u1) ≤ ϵ2n
2 loge 2

⇒ V
(

r

mn
, 1− u1

)
≤ ϵn (262)

where V denotes the (unnormalized) total variation distance
between the Bernoulli distributions with given parameters.
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Therefore∣∣∣{r : D( r

mn

∥∥∥1− u1) ≤ ϵ2n
2 loge 2

}
∣∣∣

≤
∣∣∣{r : V( r

mn
, 1− u1

)
≤ ϵn}

∣∣∣ (263)

= O(mnϵn) (264)

for small ϵn. Furthermore, if V
(

r
mn

, 1− u1
)
≤ ϵn, we have

Π−1
r ≤ 1

(1− u1)u1
(265)

Now, we investigate Pr(M + N = r) for the values of r in
the interval mn(1− u1)±mnϵn.

Pr(M +N = r) =
r∑

i=1

Pr(M = r − i) Pr(N = i)

+ Pr(M = r) Pr(N = 0) (266)

= Qr
2,2Q

mn−r
1,1

+
r∑

i=1

(
r

i

)
Qr−i

2,2 (1−Q2,2)
i

(
mn − r

i

)
Qi

1,2(1−Q1,2)
mn−r−i (267)

Again, from Stirling’s approximation [50, Chapter 3.2] on
the factorial terms in the Binomial coefficient in (267) and
from [49, Theorem 11.1.2], we have

Pr(M +N = r) ≤ Qr
2,2Q

mn−r
1,1 +

e2

2π
[r(mn − r)]−1/2U

(268)

where

U =

r∑
i=1

Π−1
i/rΠ

−1
i/mn−r2

−rD(1− i
r ∥Q2,2)−(mn−r)D( i

mn−r ∥Q1,2)

(269)

Then, from r ∈ [mn(1− u1 − ϵn),mn(1− u1 + ϵn)] we
obtain

Pr(M +N = r) ≤ Qr
2,2Q

mn−r
1,1

+
e2

2π

mn
−1√

(1− u1 − ϵn)(u1 − ϵn)
U (270)

and

U ≤
r∑

i=1

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r ∥Q2,2)

2−mn(u1−ϵn)D( i
mn−r ∥Q1,2) (271)

=
∑

i/∈R(ϵn)

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r ∥Q2,2)

2−mn(u1−ϵn)D( i
mn−r ∥Q1,2)

+
∑

i∈R(ϵn)

Π−1
i/rΠ

−1
i/mn−r2

−mn(1−u1−ϵn)D(1− i
r ∥Q2,2)

2−mn(u1−ϵn)D( i
mn−r ∥Q1,2) (272)

where we define the set R(ϵn) as

R(ϵn) ≜
{
i ∈ [r] : D

(
1− i

r

∥∥∥Q2,2

)
≤ ϵ2n

2 loge 2
,

D
( i

mn − r

∥∥∥Q1,2

)
≤ ϵ2n

2 loge 2

}
(273)

Note that similar to T1, the first summation in (272) van-
ishes exponentially in mn whenever mnϵ

2
n → ∞, and using

Pinsker’s inequality once more, the second term can be upper
bounded by

O(|R(ϵn)|) = O(mnϵn) (274)

Now, we choose ϵn = mn
− 1

2Vn for some Vn satisfying
Vn = ω(1) and Vn = o(m

1/2
n ). Thus, T1 vanishes exponen-

tially fast since mnϵ
2
n = V 2

n →∞ and

Pr(M +N = r) = O(ϵn) (275)

T = O(mnϵ
2
n) = O(V 2

n ) (276)

µn = O(n2mn
−1/2V 2

n ) (277)

By the assumption mn = ω(n4), we have mn = n4Zn for
some Zn satisfying lim

n→∞
Zn =∞. Now, taking Vn = o(Z

1/4
n )

(e.g. Vn = Z
1/6
n ), we get

µn ≤ O(Z−1/2
n V 2

n ) = o(1) (278)

Thus mn = ω(n4) is sufficient to have µn → 0 as n → ∞,
concluding the proof.

APPENDIX D
PROOF OF ACHIEVABILITY OF THEOREM 3

The proof of the achievability part follows from successive
union bounds exploiting the following:

• For any typical row Y Kn of Y, there are approximately
2KnH(X|Y ) jointly typical sequences with respect to
pX,Y .

• If the output of the synchronization channel has length
Kn then there are at least kmin =

⌈
Kn

smax

⌉
retained (not

deleted) elements.
• For the number of columns n, the number of deletion

patterns with kmin retained elements is(
n

kmin

)
≤ 2nHb(kmin/n) (279)

• Any stretched row has the same probability as the original
row.

• If the original length-n sequence and the retained length-
kmin sequence after the deletion channel are ϵ-typical
with respect to pX , then the complementary length-
(n − kmin) subsequence is ϵ̃-typical with respect to pX ,
where ϵ̃ = n+kmin

n−kmin
.

• The cardinality of the set of ϵ̃-typical sequences of
length n − kmin with respect to pX is approximately
2(n−kmin)H(X).

We need to show that for a given pair of matching rows,
WLOG, Xn

1 of X and Y Kn
t of Y with σn(1) = t, the proba-

bility of error Pe ≜ Pr(σ̂n(1) ̸= t) of the following matching

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2024.3388990

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: New York University. Downloaded on May 01,2024 at 23:21:45 UTC from IEEE Xplore.  Restrictions apply. 



25

scheme can be made arbitrarily small asymptotically where
Kn =

∑n
j=1 S1,j is the random variable corresponding to

the length of Y Kn
t . The matching scheme we propose follows

these steps:
1) For all j ∈ [n], discard the jth column of X if Aj = 1 to

obtain X̄ whose column size is n−A where A =
∑n

j=1Aj .
2) Stretch each row X̄n−A

i = X̄i,1, . . . , X̄i,n−A of X̄ into
X̃

(n−A)smax

i , by repeating each element of X̄n−A
i smax

times as follows

X̃
(n−A)smax

i = 1smax ⊗ X̄i,1, . . . , 1
smax ⊗ X̄i,n−A (280)

where 1smax is an all-one row vector of length smax and
⊗ denotes the Kronecker product.

3) Fix ϵ > 0. If Kn < k ≜ n(E[S]− ϵ) declare error, whose
probability is denoted by κn where k is assumed to be
an integer for computational simplicity. Otherwise, proceed
with the next step.

4) If A < a = n(αδ − ϵ) declare error, whose probability is
denoted by µn. Otherwise, proceed with the next step.

5) Match the tth row Y Kn
t of Y Xn

1 of X, assigning σ̂n(1) =
t, if i = 1 is the only index in [mn] such that i) X̄n−A

i

is ϵ-typical and ii) X̃(n−A)smax

i contains a subsequence
jointly ϵ-typical with Y Kn

t with respect to pX,Y . Otherwise,
declare a collision error.

Since additional columns in Y and additional detected
deleted columns in X would decrease the collision probability,
we have

Pr(collision between 1 and i|Kn ≥ k,A ≥ a)
≤ Pr(collision between 1 and i||Kn = k,A = a) (281)

for any i ∈ [mn]\{1}. Thus, we can focus on the case Kn = k,
A = a, as it yields an upper bound on the error probability of
our matching scheme.

Let A(n−a)
ϵ (X) denote the set of ϵ-typical (with respect to

pX ) sequences of length n − a and Aϵ(X
k|Y k

t ) denote the
set of sequences of length k jointly ϵ-typical (with respect to
pX,Y ) with Y k

t . For the matching rows Xn
1 , Y k

t of X and Y,
define the pairwise collision probability between Xn

1 and Xn
i

for any i ∈ [mn] \ {1} as

Pcol,i ≜ Pr(∃zk : zk ∈ Aϵ(X
k|Y k

t ) and zk is a

subsequence of X̃(n−a)smax

i .). (282)

Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈
X, the probability of error Pe can be bounded as

Pe ≤ Pr(∄zk : zk ∈ Aϵ(X
k|Y k

t ) and zk is a

subsequence of X̃(n−a)smax

1 .)

+ Pr(Xn
1 /∈ A(n)

ϵ (X))

+
2nR∑
i=2

Pcol,i + κn + µn (283)

≤ 2ϵ+
2nR∑
i=2

Pcol,i + κn + µn (284)

≤ 2ϵ+ 2nRPcol,2 + κn + µn (285)

where (285) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}.

We now upper bound Pcol,2. First, we investigate repetition
distributions with 1

smax
E[S] ≥ 1−αδ

|X| . Let F (n, k, |X|) denote
the number of |X|-ary sequences of length n, which contain
a fixed |X|-ary sequence of length k. We note that this
F (n, k, |X|) is constant for any |X|-ary sequence of length
k [65, Lemma 1]. Now we define Gzk(nsmax, k, |X|) as the
number of smax times stretched sequences of length nsmax,
containing a |X|-ary sequence zk of length k. We stress that
this counting function Gzk will not be independent of zk as
is the case for the counting function F . For example, let
smax = 2, X = {0, 1}, n = 2, k = 2, zk1 = 01 and
zk2 = 00. Then we have Gzk

1
(nsmax, k, |X|) = 1 since only

0011 contains zk1 = 01, whereas Gzk
2
(nsmax, k, |X|) = 3 since

0000, 0011 and 1100 all contain zk2 = 00.

Observe that the maximum value of Gzk(nsmax, k, |X|) is
attained when zk consists only of one symbol repeated k
times, as this grouping of elements in zk yields the maximum
number of possible elementwise replicated sequences. WLOG,
let zk = 00 . . . 0. Then, to count Gzk(nsmax, k, |X|), we group
the consecutive smax 0’s in zk together, allowing the last group
to have possibly fewer than smax elements. It is clear that there
are

⌈
k

smax

⌉
of such groups of 0’s. Since we put a stretching

constraint on the sequences of length nsmax when we count
Gzk(nsmax, k, |X|), we are looking for sequences of length
n, containing a subsequence of length

⌈
k

smax

⌉
. Thus, counting

this number will be the same as counting F
(
n,
⌈

k
smax

⌉
, |X|

)
.

Thus we have

Gzk(nsmax, k, |X|) ≤ F (n, ⌈k/smax⌉ , |X|) , ∀zk ∈ Xk

(286)

We note that the inequality given in (286) is the tightest upper
bound independent of zk, equality being achieved when zk is
a constant (e.g., all-zeros) sequence.

Now, let

T (zk, An) ≜ {xn ∈ Xn : x̄(n−a) ∈ A(n−a)
ϵ (X)

and x̃(n−a)smax contains zk.} (287)

Then, we obtain

|T (zk, An)| ≤ Gzk((n− a)smax, k, |X|) (288)
≤ F (n− a, ⌈k/smax⌉ , |X|) (289)

For the sake of computational simplicity, suppose k
smax

is an
integer. Since 1

smax
E[S] ≥ 1−αδ

|X| , from [65] and [49, Chapter
11] we have the following upper bound:

F (n− a, k/smax, |X|) ≤ (n− a)2(n−a)Hb( k
smax(n−a) )

(|X| − 1)(n−a− k
smax

) (290)

Furthermore, for any xn ∈ T (zk, An), since T (zk, An) ⊆
A

(n−a)
ϵ (X), we have

pXn(xn) ≤ 2−(n−a)(H(X)−ϵ) (291)
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and since the rows Xn
i of X are i.i.d., we have

Pr(Xn
2 ∈ T (zk, An)|Xn

1 ∈ T (zk, An))

= Pr(Xn
2 ∈ T (zk, An)) (292)

Finally, we have

|Aϵ(X
k|Y k

t )| ≤ 2k(H(X|Y )+ϵ) (293)

Combining (289)-(293), we can upper bound Pcol,2 as

Pcol,2 ≤
∑

zk∈Aϵ(Xk|Y k
t )

Pr(Xn
2 ∈ T (zk, An)) (294)

=
∑

zk∈Aϵ(Xk|Y k
t )

∑
xn∈T (zk,An)

pXn(xn) (295)

≤
∑

zk∈Aϵ(Xk|Y k
t )

∑
xn∈T (zk,An)

2−(n−a)(H(X)−ϵ) (296)

=
∑

zk∈Aϵ(Xk|Y k
t )

|T (zk, An)|2−(n−a)(H(X)−ϵ) (297)

≤
∑

zk∈Aϵ(Xk|Y k
t )

2−(n−a)(H(X)−ϵ)

F (n− a, k/smax, |X|) (298)

= |Aϵ(X
k|Y k

t )|2−(n−a)(H(X)−ϵ)

F (n− a, k/smax, |X|) (299)

≤ |Aϵ(X
k|Y k

t )|(n− a)(|X| − 1)(n−a− k
smax

)

2−(n−a)[H(X)−ϵ−Hb(
k

smax(n−a)
)] (300)

≤ 2k(H(X|Y )+ϵ)(n− a)(|X| − 1)(n−a− k
smax

)

2−(n−a)[H(X)−ϵ−Hb(
k

smax(n−a)
)] (301)

Thus, we have the following upper bound on the error prob-
ability

Pe ≤ 2ϵ+ κn + µn

+ 2nR2k(H(X|Y )+ϵ)(n− a)(|X| − 1)(n−a− k
smax

)

2−(n−a)[H(X)−ϵ−Hb(
k

smax(n−a)
)] (302)

By LLN, we have κn → 0 and µn → 0 as n → ∞. Hence,
we can argue that any database growth rate R satisfying

R <
[
(1− αδ)

(
H(X)−Hb

(
E[S]

(1− αδ)smax

))
−
(
1− αδ − E[S]

smax

)
log (|X| − 1)− E[S]H(X|Y )

]+
(303)

is achievable, by taking ϵ small enough.
Now, we focus on general repetition distributions. For any

subsequence zk of smax-times stretched sequence of length
(n−a)smax, let r(zk) be the number of runs in zk with at most
smax elements and note that r(zk) ≤ n − a. Then, let z̃r(z

k)

be the sequence storing the values of each run in zk. Observe
that for any zk ∈ Aϵ(X

k|Y k
t ), we have z̃r(z

k) ∈ A(r(zk))
ϵ (X).

For any such grouping of r(zk) runs, the ϵ-typicality of
xn = (x1, . . . , xn) ∈ T (zk, An) and z̃r(z

k) with respect to pX
implies the ϵ̃-typicality of the remaining sequence of length
n− a− r(zk) obtained after discarding z̃r(z

k) from x̄n−a,

where ϵ̃ = n−a+r(zk)
n−a−r(zk)

ϵ. Furthermore, by a similar argument
made above, we stress that T (zk, An) attains its maximum
value when r(zk) is the minimum, which is kmin ≜ ⌈ k

smax
⌉,

attained when zk is a smax times stretched sequence itself.
Therefore for any zk ∈ Aϵ(X

k|Y k
t ), taking the union bound

over all possible groupings with r(zk) runs, the cardinality of
T (zk, An) can be upper bounded as

|T (zk, An)| ≤
(
n− a
kmin

)
|A(n−a−kmin)

ϵ̃ (X)| (304)

≤ 2
(n−a)Hb

(
kmin
n−a

)
|A(n−a−k̂)

ϵ̃ (X)| (305)

≤ 2
(n−a)Hb

(
kmin
n−a

)
2(n−a−kmin)(H(X)+ϵ̃) (306)

= 2
n
[
(1− a

n )Hb

(
kmin
n−a

)
+(1− a

n− kmin
n )(H(X)+ϵ̃)

]
(307)

Plugging (307) into (297) and following the same steps, one
can show that any rate R satisfying

R <
[E[S]
smax

H(X)− E[S]H(X|Y )

− (1− αδ)Hb

(
E[S]

(1− αδ)smax

)]+
(308)

is achievable. Simply taking the maximum of the two proven
achievable rates ((303) and (308)) when 1

smax
E[S] ≥ 1−αδ

|X|
yields (89). This concludes the proof.

APPENDIX E
PROOF OF COROLLARY 3

Let E denote the empty string and X̃ denote the sequence
obtained after discarding the detected deleted entries from X2.
The dependence of X̃ on X2 and A2 and that of Y on X2

and S2 are omitted for brevity.
We start with the fact that since the entries of X2 are

independent, the deleted entries do not offer any information.
Thus, we can discard them without any information loss. Thus,
we have

I(X2;Y,A2) = I(X̃;Y |A2) (309)

= H(X̃|A2)−H(X̃|Y,A2) (310)

We have

H(X̃|A2) =
∑

a2∈{0,1}2

Pr(A2 = a2)H(X̃|A2 = a2) (311)

= Pr(A2 = 00)H(X̃|A2 = 00)

+ Pr(A2 = 01)H(X̃|A2 = 01)

+ Pr(A2 = 10)H(X̃|A2 = 10)

+ Pr(A2 = 11)H(X̃|A2 = 11) (312)

= (1− αδ)22H(X)

+ αδ(1− αδ)H(X)

+ (1− αδ)αδH(X)

+ 0 (313)
= 2(1− αδ)H(X) (314)
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Furthermore, we have

H(X̃|Y,A2) =
∑
y,a2

Pr(Y = y,A2 = a2)

H(X̃|Y = y,A2 = a2) (315)

= Pr(Y = E,A2 = 00)H(X̃|Y = E,A2 = 00)

+ Pr(Y = E,A2 = 01)H(X̃|Y = E,A2 = 01)

+ Pr(Y = E,A2 = 10)H(X̃|Y = E,A2 = 10)

+
∑
x∈X

Pr(Y = x,A2 = 00)H(X̃|Y = x,A2 = 00)

+
∑
x∈X

Pr(Y = x,A2 = 01)H(X̃|Y = x,A2 = 01)

+
∑
x∈X

Pr(Y = x,A2 = 10)H(X̃|Y = x,A2 = 10)

(316)

Note that in (316), we discarded the terms with
A2 = 11 for |Y | ≥ 1, since in that case we have
Pr(|Y | ≥ 1, A2 = 11) = 0. We can further discard the terms
with |Y | = n = 2, since in that case we have no deletion
and Y = Y 2 = X2. Finally, we can also discard the last two
terms in (316) since for any x ∈ X we have

H(X̃|Y = x,A2 = 01) = H(X̃|Y = x,A2 = 10) = 0
(317)

Thus, we have

H(X̃|Y,A2) = δ2(1− α)22H(X)

+ δ2(1− α)αH(X)

+ δ2α(1− α)H(X)

+
∑
x∈X

Pr(Y = x,A2 = 00)

H(X̃|Y = x,A2 = 00) (318)

= 2δ2(1− α)H(X)

+
∑
x∈X

Pr(Y = x,A2 = 00)

H(X̃|Y = x,A2 = 00) (319)

We first compute Pr(Y = x,A2 = 00). For any x ∈ X, we
have

Pr(Y = x,A2 = 00)

=
∑

x2∈X2

Pr(Y = x,A2 = 00, X2 = x2) (320)

= Pr(Y = x,A2 = 00, X2 = xx)

+ 2
∑
y ̸=x

Pr(Y = x,A2 = 00, X2 = xy) (321)

= pX(x)22δ(1− δ)(1− α)

+ 2
∑
y ̸=x

pX(x)pX(y)δ(1− δ)(1− α) (322)

= 2δ(1− δ)(1− α)pX(x)
∑
y∈X

pX(y) (323)

= 2δ(1− δ)(1− α)pX(x) (324)

Now, we compute H(X̃|Y = x,A2 = 00). For any x ∈ X
we have 2|X| − 1 possible patterns for X̃ , given that Y =
x. 2|X| − 2 of these patterns have probabilities proportional
to pX(x)pX(y) y ∈ X \ {x} and the remaining pattern has
probability proportional to 2pX(x)2. Thus we have

H(X̃|Y = x,A2 = 00)

= H
(pX(1)pX(x)

c
,
pX(x)pX(1)

c
,

. . . ,
2pX(x)2

c
, . . . ,

pX(|X|)pX(x)

c
,
pX(x)pX(|X|)

c

)
(325)

where the normalization constant c is c = 2pX(x). Thus,

H(X̃|Y = x,A2 = 00) = H
(pX(1)

2
,
pX(1)

2
,

. . . , pX(x), . . . ,

pX(|X|)
2

,
pX(|X|)

2

)
(326)

= H(X) + 1− pX(x) (327)

Combining (319)-(327), we can compute H(X̃|Y,A2) as

H(X̃|Y,A2) = 2δ2(1− α)H(X)

+
∑
x∈X

2δ(1− δ)(1− α)pX(x)

[H(X) + 1− pX(x)] (328)

= 2δ2(1− α)H(X)

+ 2δ(1− δ)(1− α)
(H(X) + 1− q̂) (329)

= 2δ(1− α)H(X)

+ 2δ(1− δ)(1− α)(1− q̂) (330)

Finally, combining (314) and (330), we obtain

I(X̃;Y K |A2) = H(X̃|A2)−H(X̃|Y (X2), A2) (331)
= 2(1− αδ)H(X)− 2δ(1− α)H(X)

− 2δ(1− δ)(1− α) (1− q̂) (332)
= 2(1− δ)H(X)

− 2δ(1− δ)(1− α) (1− q̂) (333)

Thus, we have
1

2
I(X2;Y K , A2) = (1− δ)H(X)

− δ(1− δ)(1− α) (1− q̂) (334)

concluding the proof.

APPENDIX F
PROOF OF COROLLARY 4

We start by observing that

I(X2;Y,A2) = I(X2;Y, |Y |, A2) (335)

= H(X2)−H(X2|Y, |Y |, A2) (336)

= 2H(X)−H(X2|Y, |Y |, A2) (337)
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Furthermore, we have

H(X2|Y, |Y |, A2)

=
2∑

i=0

Pr(|Y | = i)H(X2|Y, |Y | = i, A2) (338)

= δ2H(X2|Y, |Y | = 0, A2)

+ 2δ(1− δ)H(X2|Y, |Y | = 1, A2)

+ (1− δ)2H(X2|Y, |Y | = 2, A2) (339)

= δ22H(X)

+ 2δ(1− δ)H(X2|Y, |Y | = 1, A2)

+ (1− δ)22H(X|Y ) (340)

= δ22H(X)

+ 2δ(1− δ)α[H(X) +H(X|Y )]

+ 2δ(1− δ)(1− α)H(X2|Y, |Y | = 1, A2 = 00)

+ (1− δ)22H(X|Y ) (341)

Note that we can rewrite H(X2|Y, |Y | = 1, A2 = 00) as

H(X2|Y, |Y | = 1, A2 = 00)

= H(X2|Y, |Y | = 1) (342)

= 2H(X)− I(X2;Y ||Y | = 1) (343)

= 2H(X)− [H(Y )−H(Y |X2, |Y | = 1)] (344)

where we have

H(Y |X2, |Y | = 1)

=
∑

x2∈X2

Pr(X2 = x2)

H(Y |X2 = x2, |Y | = 1) (345)

Writing the sum in (345) explicitly, we obtain

H(Y |X2, |Y | = 1)

= (1− p)2H(Y |X2 = 00, |Y | = 1)

+ p2H(Y |X2 = 11, |Y | = 1)

+ p(1− p)H(Y |X2 = 01, |Y | = 1)

+ p(1− p)H(Y |X2 = 10, |Y | = 1) (346)

Observing the following,

H(Y |X2 = 00, |Y | = 1) = H(Y |X = 0) (347)

H(Y |X2 = 11, |Y | = 1) = H(Y |X = 1) (348)

H(Y |X2 = 01, |Y | = 1) = H(V ) (349)

H(Y |X2 = 10, |Y | = 1) = H(V ) (350)

H(Y |X = 0) +H(Y |X = 1)

= 2

[
1

2
H(Y |X = 0) +

1

2
H(Y |X = 1)

]
(351)

= 2H(V |U) (352)

we obtain

H(Y |X2, |Y | = 1) = (1− p)H(Y |X = 0)

− p(1− p)H(Y |X = 0)

+ pH(Y |X = 1)

− p(1− p)H(Y |X = 1)

+ 2p(1− p)H(V ) (353)
= H(Y |X) + 2p(1− p)I(U ;V ) (354)

Hence, we have

H(X2|Y, |Y | = 1, A2 = 00) = 2H(X)− I(X;Y )

+ 2p(1− p)I(U ;V ) (355)

Combining (337)-(355), we have

1

2
I(X2;Y K , A2) = (1− δ)I(X;Y )

− 2δ(1− δ)(1− α)p(1− p)I(U ;V ) (356)

concluding the proof.

APPENDIX G
PROOF OF THEOREM 4

First, we focus on δ ≤ 1 − q̂ and prove the achievability
part. For a given pair of matching rows, WLOG, Xn

1 of X
and Y Kn

t of Y with σn(1) = t, let Pe ≜ Pr(σ̂n(1) ̸= t) be
the probability of error of the following matching scheme:

1) Construct the collapsed histogram vectors H̃
(1),n
j and

H̃
(2),Kn

j as in (71)-(72).
2) Check the uniqueness of the entries H̃

(1)
j j ∈ [n] of

H̃(1),n. If there are at least two that are identical, declare
a detection error whose probability is denoted by µn.
Otherwise, proceed with Step 3.

3) ∀i ∈ [n] if ∄j ∈ [Kn], H̃
(1)
i = H̃

(2)
j , declare the ith column

of X deleted, assigning i ∈ Îdel. Note that conditioned on
Step 2, this step is error-free.

4) Match the tth row Y Kn
t of Y with the 1st row Xn

1 of X,
assigning σ̂n(1) = t if the 1st row X̂Kn

1 (Îdel) of X̂ is the
only row of X̂ equal to Y Kn

t where X̂Kn
i (Îdel) is obtained

by discarding the elements of Xn
i whose indices lie in Îdel.

Otherwise, declare a collision error.

Let I(δ) be the set of all deletion patterns with up to nδ
deletions. For the matching rows Xn

1 , Y k
t of X and Y, define

the pairwise adversarial collision probability between Xn
1 and

Xn
i for any i ∈ [mn] \ {1} as

Pcol,i ≜ Pr(∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = Y Kn

t ) (357)

= Pr(∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = X̂Kn

1 (Îdel)). (358)

Note that the statement ∃Îdel ∈ I(δ) : X̂Kn
i (Îdel) = X̂Kn

1 (Îdel)
is equivalent to the case when the Hamming distance between
Xn

i and Xn
1 being upper bounded by nδ. In other words,

Pcol,i = Pr(dH(Xn
1 , X

n
i ) ≤ nδ) (359)
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where

dH(Xn
1 , X

n
i ) =

n∑
j=1

1[X1,j ̸=Xi,j ] (360)

Note that due to the i.i.d. nature of the database elements,
dH(Xn

1 , X
n
i ) ∼ Binom(n, 1 − q̂). Thus, for any δ ≤ 1 − q̂,

using Chernoff bound [63, Lemma 4.7.2], we have

Pcol,i = Pr(dH(Xn
1 , X

n
i ) ≤ nδ) (361)

≤ 2−nD(δ∥1−q̂) (362)

Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈
X, the probability of error Pe can be bounded as

Pe ≤ Pr(∃i ∈ [mn] \ {1} : X̂Kn
i = X̂Kn

1 ) (363)

≤
2nR∑
i=2

Pcol,i + κn (364)

≤ 2nRPcol,2 + κn (365)

where (365) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}. Combining (362)-(365),
we get

Pe ≤ 2nR Pr(dH(Xn
1 , X

n
i ) ≤ nδ) + κn (366)

≤ 2nR2−nD(δ∥1−q̂) + κn (367)

= 2−n[D(δ∥1−q̂)−R] + κn (368)

By Lemma 4, κn → 0 as n → ∞. Thus, we argue that any
rate R satisfying

R < D(δ∥1− q̂) (369)

is achievable.
Now we prove the converse part. Suppose Pe → 0. Then,

we have

Pe = Pr(∃i ∈ [mn] \ {1} : dH(Xn
1 , X

n
i ) ≤ nδ) (370)

= 1− Pr(∀i ∈ [mn] \ {1} : dH(Xn
1 , X

n
i ) > nδ) (371)

= 1−
mn∏
i=2

Pr(dH(Xn
1 , X

n
i ) > nδ) (372)

= 1−
mn∏
i=2

[1− Pr(dH(Xn
1 , X

n
i ) ≤ nδ)] (373)

= 1− [1− Pr(dH(Xn
1 , X

n
2 ) ≤ nδ)]mn−1 (374)

where (371)-(374) follow from the i.i.d.ness of the rows of
X. Since Dn,2 ∼ Binom(n, 1 − q̂), for δ ≤ 1− q̂, from [63,
Lemma 4.7.2], we obtain

Pr(Dn,2 ≤ nδ) ≥
2−nD(δ∥1−q̂)

√
2n

(375)

Plugging (375) into (374), we get

Pe ≥ 1−
[
1− 2−nD(δ∥1−q̂)

√
2n

]mn−1

(376)

Now let y = − 2−nD(δ∥1−q̂)
√
2n

∈ (−1, 0). Then, we get

Pe ≥ 1− (1 + y)mn−1 (377)

Since y ≥ −1, and mn ∈ N, we have

1 + y(mn − 1) ≤ (1 + y)mn−1 ≤ ey(mn−1) (378)

where the LHS of (378) follows from Bernoulli’s inequal-
ity [66, Theorem 1] and the RHS of (378) follows from the
fact that

∀x ∈ R, ∀r ∈ R≥0 (1 + x)r ≤ exr (379)

Thus, we get

Pe ≥ 1− (1 + y)mn−1 (380)

≥ 1− ey(mn−1) (381)
≥ 0 (382)

since y < 0, mn − 1 > 0. Note that since Pe → 0, by the
Squeeze Theorem [66, Theorem 2], we have

lim
n→∞

1− ey(mn−1) → 0. (383)

This, in turn, implies ymn → 0 since the exponential function
is continuous everywhere. In other words,

lim
n→∞

− 2−nD(δ∥1−q̂)

√
2n

mn → 0. (384)

Equivalently, from the continuity of the logarithm function,
we get

lim
n→∞

− nD(δ∥1− q̂) + logmn −
1

2
log(2n)→ −∞ (385)

lim
n→∞

− n
[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)

2n

]
→ −∞

(386)

lim
n→∞

[
D(δ∥1− q̂)− 1

n
logmn +

log(2n)

2n

]
≥ 0 (387)

This implies

D(δ∥1− q̂) ≥ lim
n→∞

1

n
logmn (388)

= R (389)

finishing the proof for δ ≤ 1− q̂. Thus, we have shown that

Cadv(δ) = D(δ∥1− q̂) (390)

for δ ≤ 1− q̂.
We argue that for δ > 1 − q̂, the adversarial matching

capacity is zero, by using two facts: i) Since the adversarial
deletion budget is an upper bound on deletions, the adversarial
matching capacity satisfies

Cadv(δ) ≤ Cadv(δ′), ∀δ′ ≤ δ (391)

and ii) Cadv(1− q̂) = 0. Thus, ∀δ > 1− q̂, Cadv(δ) = 0. This
concludes the proof.

APPENDIX H
PROOF OF THEOREM 5

First, note that the converse part of Theorem 5 (Equa-
tion (113)) is trivially true since C is a non-decreasing function
of the seed size Λn. Hence it is sufficient to prove the
achievability part of Theorem 5 (Equation (112)).
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For the achievability, we use a matching scheme which
i) utilizes replica detection and marker addition as done in
Section III-C and ii) checks the existence of jointly typical
subsequences as done in Section IV-A. The matching scheme
we propose is as follows:
1) Perform replica detection as in Section III-A. The proba-

bility of error of this step is denoted by ρn.
2) Based on the replica detection step, place markers between

the noisy replica runs of different columns to obtain Ỹ.
Note that at this step we cannot detect runs of length 0 as
done in Section III-C. Therefore conditioned on the success
of the replica detection we have K̃n =

∑n
j=1 1[Sj ̸=0] runs

separated with markers.
3) Fix ϵ > 0. If Kn < k ≜ n(E[S]− ϵ) or K̂n < k̂ ≜ n(1−

δ − ϵ) declare error, whose probability is denoted by κn
where k and k̂ are assumed to be integers for computational
simplicity. Otherwise, proceed with the next step.

4) Match the tth row Y Kn
t of Y Xn

i of X, assigning σ̂n(i) =
t, if i is the only index in [mn] such that i) Xn

i is ϵ-typical
with respect to pX and ii) Xn

i contains a subsequence of
length K̃n, jointly ϵ-typical with Ỹ K

t with respect to pX,Y,Ŝ

where Ŝ ∼ pŜ with

pŜ(s) =

{
pS(s)
1−δ if s ∈ {1, . . . , smax}
0 otherwise

(392)

and

Pr(Y S = yS |X = x, Ŝ = s) =
s∏

j=1

pY |X(yj |x). (393)

Otherwise, declare a collision error.
Since additional runs in Y and additional columns in each run
would decrease the collision probability, we have

Pr(collision between 1 and i|Kn ≥ k, K̃n ≥ k̃)
≤ Pr(collision between 1 and i||Kn = k, K̃n = k̃)

(394)

for any i ∈ [mn] \ {1}. Thus, for the sake of simplicity, we
can focus on the case K = k as it yields an upper bound on
the error probability of our matching scheme.

Let A(n)
ϵ (X) denote the set of ϵ-typical (with respect to pX )

sequences of length n and Aϵ(X
k̂|Y k

t , Ŝ
k̂) denote the set of

sequences of length k̂ jointly ϵ-typical (with respect to pX,Y,Ŝ)
with Y k

t conditioned on Ŝn. For the matching rows Xn
1 , Y k

t

of X and Y, define the pairwise collision probability between
Xn

1 and Xn
i where i ̸= 1 as

Pcol,i ≜ Pr(Xn
i ∈ A(n)

ϵ (X) and ∃zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂)

which is a subsequence of Xn
i .). (395)

Therefore given the correct labeling for Y k
t ∈ Y is Xn

1 ∈ X,
the probability of error Pe can be bounded as

Pe ≤ Pr(∄zk̂ : zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂) and zk̂

is a subsequence of Xn
1 .)

+ Pr(Xn
1 /∈ A(n)

ϵ (X)) +
2nR∑
i=2

Pcol,i + κn + ρn (396)

≤ 2ϵ+
2nR∑
i=2

Pcol,i + κn + ρn (397)

≤ 2ϵ+ 2nRPcol,2 + κn + ρn (398)

where (398) follows from the fact the the rows are i.i.d. and
thus Pcol,i = Pcol,2, ∀i ∈ [mn] \ {1}.

We now upper bound Pcol,2. For any zk̂ define

T (zk̂) ≜ {xn ∈ Xn : xn ∈ A(n)
ϵ (X), xn contains zk̂.}. (399)

Observe that for any zk̂ ∈ Aϵ(X
k̂|Y k

t , Ŝ
k̂), we have zk̂ ∈

A
(k̂)
ϵ (X). Furthermore, for a given deletion pattern with n −

k̂ = Θ(n) deletions, WLOG (k̂ + 1, . . . , n), the ϵ-typicality
of xn = (x1, . . . , xn) and zk̂ = (x1, . . . , xk̂) with respect
to pX implies the ϵ̃-typicality of (xk̂+1, . . . , xn), where ϵ̃ =
2−δ−ϵ
δ+ϵ ϵ. Therefore for any zk̂ ∈ Aϵ(X

k̂|Y k
t , Ŝ

k̂), taking the
union bound over all possible deletion patterns with n − k̂

deletions, the cardinality of T (zk̂) can be upper bounded as

|T (zk̂)| ≤
(
n

k̂

)
|A(n−k̂)

ϵ̃ (X)| (400)

≤ 2nHb(
k̂
n )|A(n−k̂)

ϵ̃ (X)| (401)

≤ 2nHb(
k̂
n )2(n−k̂)(H(X)+ϵ̃) (402)

= 2
n
[
Hb(

k̂
n )+(1− k̂

n )(H(X)+ϵ̃)
]

(403)

Furthermore, for any xn ∈ T (zk̂), since T (zk̂) ⊆ A(n)
ϵ (X),

we have

pXn(xn) ≤ 2−n(H(X)−ϵ) (404)

and since the rows Xn
i of X are i.i.d., we have

Pr(Xn
2 ∈ T (zk̂)|Xn

1 ∈ T (zk̂)) = Pr(Xn
2 ∈ T (zk̂)). (405)

Finally, we note that

|Aϵ(X
k̂|Y k

t , Ŝ
k̂)| ≤ 2k̂(H(X|Y Ŝ ,Ŝ)+ϵ) (406)

and

H(X|Y Ŝ , Ŝ) =

smax∑
s=1

pŜ(s)H(X|Y Ŝ , Ŝ = s) (407)

=
1

1− δ

smax∑
s=1

pS(s)H(X|Y Ŝ , Ŝ = s) (408)

=
1

1− δ

[ smax∑
s=0

pS(s)H(X|Y Ŝ , Ŝ = s)

− δH(X|Y S , S = 0)
]

(409)

=
1

1− δ
[
H(X|Y S , S)− δH(X)

]
(410)

=
1

1− δ
[
(1− δ)H(X)− I(X;Y S , S)

]
(411)

= H(X)− I(X;Y S , S)

1− δ
(412)

Thus, we get

|Aϵ(X
k̂|Y k

t , Ŝ
k̂)| ≤ 2

k̂

[
H(X)− I(X;Y S,S)

1−δ +ϵ

]
. (413)
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Combining (403)-(413), we can upper bound Pcol,2 as

Pcol,2 ≤
∑

zk̂∈Aϵ(Zk̂|Y k
t ,Ŝk̂)

Pr(Xn
2 ∈ T (zk̂)) (414)

=
∑

zk̂∈Aϵ(Zk̂|Y k
t ,Ŝk̂)

∑
xn∈T (zk̂)

pXn(xn) (415)

≤
∑

zk̂∈Aϵ(Zk̂|Y k
t ,Ŝk̂)

∑
xn∈T (zk̂)

2−n(H(X)−ϵ) (416)

=
∑

zk̂∈Aϵ(Zk̂|Y k
t ,Ŝk̂)

|T (zk̂)|2−n(H(X)−ϵ) (417)

≤
∑

zk̂∈Aϵ(Zk̂|Y k
t ,Ŝk̂)

2−n(H(X)−ϵ)

2
n
[
Hb(

k̂
n )+(1− k̂

n )(H(X)+ϵ̃)
]

(418)

= |Aϵ(Z
k̂|Y k

t , Ŝ
k̂)|2−

[
k̂H(X)−nϵ−Hb(

k̂
n )−(n−k̂)ϵ̃

]
(419)

≤ 2
k̂

[
H(X)− I(X;Y S,S)

1−δ +ϵ

]

2
−
[
k̂H(X)−nϵ−nHb(

k̂
n )−(n−k̂)ϵ̃

]
(420)

= 2−n[ 1−δ−ϵ
1−δ I(X;Y S ,S)−Hb(δ+ϵ)−(δ+ϵ)(ϵ+ϵ̃)] (421)

= 2−n[ 1−δ−ϵ
1−δ I(X;Y S ,S)−Hb(δ+ϵ)−2ϵ] (422)

Thus, we have the following upper bound on the error prob-
ability

Pe ≤ 2ϵ+ 2nR2−n[ 1−δ−ϵ
1−δ I(X;Y S ,S)−Hb(δ+ϵ)−2ϵ]

+ κn + ρn (423)

By LLN, we have κn → 0 and from Lemma 2, we have
ρn → 0 as n → ∞. Hence, we can argue that any database
growth rate R satisfying

R < I(X;Y S , S)−Hb(δ) (424)

is achievable by taking ϵ small enough.

Now, we investigate repetition distributions with δ ≤ 1− 1
|X| .

Recall from Appendix D the counting function F (n, k̂, |X|)
denoting the number of |X|-ary sequences of length n, which
contain a fixed |X|-ary sequence of length k̂ as a subsequence.
From [57], [65], we have

F (n, k̂, |X|) ≤ n2n
[
Hb

(
k̂
n

)
+(1− k̂

n ) log(|X|−1))
]
. (425)

Furthermore, disregarding the typicality constraint, we can
trivially bound the cardinality of T (zk̂) as

|T (zk̂)| ≤ |{xn ∈ Xn : xn contains zk̂}| (426)

≤ F (n, k̂, |X|) (427)

≤ n2n
[
Hb

(
k̂
n

)
+(1− k̂

n log(|X|−1))
]

(428)

Plugging (428) into (417) and following the same steps, one
can show that any rate R satisfying

R <
[
I(X;Y S , S)−Hb(δ) + δ(H(X)− log(|X| − 1))

]+
(429)

is achievable. Simply taking the maximum of the two proven
achievable rates when δ ≤ 1 − 1/|X| yields the desired
achievability result. This concludes the proof.

APPENDIX I
PROOF OF LEMMA 5

For brevity, we let µn denote
Pr(∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j ). Notice that since the

entries of X are i.i.d., H(1)
i are i.i.d. Multinomial(mn, pX)

random variables. Then,

µn ≤ n2 Pr(H(1)
1 = H

(1)
2 ) (430)

= n2
∑
h|X|

Pr(H
(1)
1 = h|X|)2 (431)

where the sum is over all vectors of length |X|, summing up
to mn. Let mi ≜ h(i), ∀i ∈ X. Then,

Pr(H
(1)
1 = h|X|) =

(
mn

m1,m2, . . . ,m|X|

) |X|∏
i=1

pX(i)mi

(432)

Hence, we have

µn ≤ n2
∑

m1+···+m|X|=mn

(
mn

m1,m2, . . . ,m|X|

)2 |X|∏
i=1

pX(i)2mi

(433)

where
(

mn

m1,m2,...,m|X|

)
is the multinomial coefficient corre-

sponding to the |X|-tuple (m1, . . . ,m|X|) and the summation
is over all possible non-negative indices m1, . . . ,m|X| which
add up to mn.

From [49, Theorem 11.1.2], we have
|X|∏
i=1

pX(i)2mi = 2−2mn(H(p̃)+D(p̃∥pX)) (434)

where p̃ is the type corresponding to |X|-tuple (m1, . . . ,m|X|):

p̃ ≜

(
m1

mn
, . . . ,

m|X|

mn

)
. (435)

From Stirling’s approximation [50, Chapter 3.2], we get(
mn

m1,m2, . . . ,m|X|

)2

≤ e2

(2π)|X|m
1−|X|
n Π−1

p̃ 22mnH(p̃)

(436)

where Πp̃ =
∏|X|

i=1 p̃(i).
Combining (433)-(436), we get

µn ≤
e2

(2π)|X|n
2m1−|X|

n

∑
p̃

Π−1
p̃ 2−2mnDKL(p̃∥pX) (437)

Let

T̃ =
∑
p̃

Π−1
p̃ 2−2mnDKL(p̃∥pX) = T̃1 + T̃2 (438)
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where

T̃1 =
∑

p̃:DKL(p̃∥pX)>
ϵ2n

2 loge 2

Π−1
p̃ 2−2mnDKL(p̃∥pX) (439)

T̃2 =
∑

p̃:DKL(p̃∥pX)≤ ϵ2n
2 loge 2

Π−1
p̃ 2−2mnDKL(p̃∥pX), (440)

ϵn, which is described below in more detail, is a small positive
number decaying with n.

First, we look at T̃2. From Pinsker’s inequality [49, Lemma
11.6.1], we have

DKL(p̃∥pX) ≤ ϵ2n
2 loge 2

=⇒ V(p̃, pX) ≤ ϵn (441)

where V denotes the (unnormalized) total variation distance.
Therefore∣∣∣{p̃ : DKL(p̃∥pX) ≤ ϵ2n

2 loge 2
}
∣∣∣ ≤ |{p̃ : V(p̃, pX) ≤ ϵn}|

(442)

= O(m|X|−1
n ϵ|X|−1

n ) (443)

where the last equality follows from the fact in a type we have
|X| − 1 degrees of freedom, since the sum of the |X|-tuple
(m1, . . . ,m|X|) is fixed. Furthermore, when V(p̃, pX) ≤ ϵn,
we have

Πp̃ ≥
|X|∏
i=1

(pX(i)− ϵn) ≥ ΠpX
− ϵn

|X|∑
i=1

∏
j ̸=i

pX(j) (444)

Hence

Π−1
p̃ ≤ 1

ΠpX
− ϵn

|X|∑
i=1

∏
j ̸=i

pX(j)

(445)

and

T̃2 ≤
1

ΠpX
− ϵn

|X|∑
i=1

∏
j ̸=i

pX(j)

O(m|X|−1
n ϵ|X|−1

n ) (446)

= O(m|X|−1
n ϵ|X|−1

n ) (447)

for small ϵn.
Now, we look at T̃1. Note that since mi ∈ Z+, we

have Πp̃ ≤ m|X|
n , suggesting the multiplicative term in the

summation in (439) is polynomial with mn. If mi = 0 we
can simply discard it and return to Stirling’s approximation
with the reduced number of categories. Furthermore, from [49,
Theorem 11.1.1], we have∣∣∣∣{p̃ : DKL(p̃∥pX) >

ϵ2n
2 loge 2

}
∣∣∣∣ ≤ |{p̃}| (448)

≤ (mn + 1)|X| (449)

suggesting the number of terms which we take the summation
over in (439) is polynomial with mn as well. Therefore, as
long as mnϵ

2
n →∞, T̃1 has a polynomial number of elements

that decay exponentially with mn. Thus

T̃1 → 0 as n→∞. (450)

Define

Ui = e2(2π)−|X|m1−|X|
n T̃i, i = 1, 2 (451)

and choose ϵn = m
− 1

2
n Vn for some Vn satisfying Vn = ω(1)

and Vn = o(m
1/2
n ). Thus, U1 vanishes exponentially fast since

mnϵ
2
n = V 2

n →∞ and

U2 = O(ϵ|X|−1
n ) = O(m(1−|X|)/2

n V (|X|−1)
n ). (452)

Combining (450)-(452), we have

U = U1 + U2 = O(m(1−|X|)/2
n V (|X|−1)

n ) (453)

and we get

µn ≤ n2O(m(1−|X|)/2
n V (|X|−1)

n ) (454)

By the assumption m = ω(n
4

|X|−1 ), we have mn = n
4

|X|−1Zn

for some Zn satisfying lim
n→∞

Zn =∞. Now, taking

Vn = o(Z
1/2
n ) (e.g. Vn = Z

1/3
n ), we get

µn ≤ O(n2n−2Z(1−|X|)/2
n V (|X|−1)

n ) = o(1). (455)

Thus mn = ω(n
4

|X|−1 ) is enough to have µn → 0 as n →
∞.

APPENDIX J
PROOF OF PROPOSITION 4

For brevity, we let µn denote
Pr(∃i, j ∈ [n], i ̸= j,H

(1)
i = H

(1)
j ). Then,

µn = n(n− 1)Pr(H
(1)
1 = H

(1)
2 ) (456)

= n(n− 1)
∑
h|X|

Pr(H
(1)
1 = h|X|)2 (457)

= n(n− 1)
∑

m1+···+m|X|=mn

(
mn

m1, . . . ,m|X|

)2

|X|−2mn

(458)

= n(n− 1)|X|−2mn

∑
m1+···+m|X|=mn

(
mn

m1, . . . ,m|X|

)2

(459)

= n(n− 1)|X||X|/2(4πmn)
(1−|X|)/2

(1 + omn(1))(1− on(1)) (460)

= n2m
1−|X|

2
n (4π)(1−|X|)/2|X||X|/2

(1 + omn(1))(1− on(1)) (461)

where (460) follows from [67, Theorem 4].
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