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GMRES, PSEUDOSPECTRA, AND CROUZEIX’S CONJECTURE
FOR SHIFTED AND SCALED GINIBRE MATRICES

TYLER CHEN, ANNE GREENBAUM, AND THOMAS TROGDON

ABSTRACT. We study the GMRES algorithm applied to linear systems of equa-
tions involving a scaled and shifted N x N matrix whose entries are independent
complex Gaussians. When the right-hand side of this linear system is indepen-
dent of this random matrix, the N — oo behavior of the GMRES residual error
can be determined exactly. To handle cases where the right hand side depends
on the random matrix, we study the pseudospectra and numerical range of
Ginibre matrices and prove a restricted version of Crouzeix’s conjecture.

1. INTRODUCTION

Solving linear systems of equations Ax = b is one the most important tasks
in the computational sciences, and Krylov subspace methods are among the most
widely used algorithms for this task. If A is Hermitian, or more generally normal,
then the (exact arithmetic) behavior of Krylov subspace methods is comparatively
well understood. On the other hand, when A is non-normal, the behavior of Krylov
subspace methods can be extremely colorful and remains an ongoing area of research
[6]. In this paper, we analyze behavior of GMRES on systems involving a scaled and
shifted N x N complex Gaussian random matrix Ay called a Ginibre matrix (see
Section 3). While such matrices are non-normal (their eigenvalue condition number
grows linearly with the matrix size N [7]) one would be incorrect to assume this is
a difficult problem for GMRES. Thus, this paper provides yet another example of
the statement of Edelman and Rao that “it is a mistake to link psychologically a
random matrix with the intuitive notion of a ‘typical’ matrix” [19].

Like other Krylov subspace methods, GMRES applied for k& steps to the system
Ax = b outputs an approximation p(A)b to A~!'b, where p is a degree k — 1
polynomial. The residual r(¥) of the kth GMRES iterate is characterized by the
fact that it has minimal 2-norm among all approximations of this form. That is,

1.1 B = mi b— Ap(A)b| = mi A)b|.
(1.1) (e deg(l;?<k|| p(A)b| de%r(l]);?gkllp( )b
p(0)=1

The expression (1.1) depends on the right hand side vector b and its relation to the
matrix A. Often, we would like to obtain bounds for [[r(*)|| that do not depend on
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2 T. CHEN, A. GREENBAUM, AND T. TROGDON

b in more than a trivial way. Perhaps the simplest such bound is

I Ip(a)]
Bl = degtmy<k T
p(0)=1

where ||p(A)|| denotes the induced operator 2-norm of the matrix p(A). The poly-
nomial attaining this bound is typically called the ideal GMRES polynomial, and
such polynomials have been studied in a range of settings [20,23].

For normal matrices, bounding ||p(A)]|| simply amounts to bounding p on the
eigenvalues of A. When the eigenvalues of A are real, i.e. if A is Hermitian, then
this is essentially a problem in classical approximation theory. However, for non-
normal matrices, the eigenvalues alone are not enough to determine the convergence
of GMRES. In fact, any non-increasing convergence curve is possible with any
eigenvalues! More precisely, [22] shows the following:

Proposition 1.1. Let fo > f1 > > fn_1 >0 and A\1,..., Ay € C. Then, there
exists an N x N matriz A with eigenvalues A1, ..., Ay and a right hand side vector
b such that such when GMRES is applied to (A, b), |t®)| = fr, k=0,1...,N—1.

Therefore, in order to relate the estimation of ||p(A)|| to a problem in scalar
approximation theory, one must consider more than the eigenvalues alone.

An open set 2 C C containing the spectrum of A is said to be a K-spectral
set for A if for all functions f analytic on 2 and extending continuously to the
boundary 912,

IF (A < K[ flla-
Here || f||q := sup,cq | f(2)|. For convenience, we will denote by C'(2, A) the small-
est value K so that € is a K-spectral set for A; i.e.
C(Q,A) == sup{||f(A)|I/IIfllq: f analytic on , f # 0, and continuous on 9Q}.

Thus, for any matrix A and any set ) containing the eigenvalues of A, the GMRES
residuals satisfy the bound

(1.2) 1= C(Q,A) min |pllo-
bl = 7 deg(p)<k
p(0)=1
Also, note that the maximum modulus principle implies that if Q C €/, then
(1.3) C(Y,A) <C(Q,A).

One standard choice for €2 is the numerical range (also called the field of values)
W(A) := {v7Av :|lv] = 1},

for which is conjectured that C(W(A), A) < 2 for any matrix A [12]. Alternately,
we might choose €2 to be the e-pseudospectrum

A(A):={z€C:|R(z,A)| >},
where R(z,A) := (21 — A)~! is the resolvent. For any € > 0, using the fact that
| =e

|R(z,A) ~1for z € OA,,
) @I = g [ R A < SR g

That is, A is a len(OA(A))/(2me)-spectral set for A.
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 3

Both pseudospectra and the numerical range are widely used in the study of
non-normal matrices [36]. For normal matrices, A.(A) consists of the union of
disks of radius e about the eigenvalues, but for non-normal matrices, A.(A) can be
significantly larger. Therefore, the size of A(A) can be viewed as a measure of the
non-normality of A. Likewise, the numerical range of a normal matrix is simply
the convex hull of the eigenvalues while the numerical range can be significantly
larger for non-normal matrices.

In the remainder of this paper, we study GMRES applied to a system of equa-
tions involving a scaled and shifted Ginibre matrix by looking at several numerical
quantities such as the numerical range and pseudospectrum. In Section 2 we intro-
duce a bit of background and fix notation. In Section 3 we describe our main results
(Theorems 3.1 to 3.4). The first and the last directly relate to the performance of
the GMRES algorithm and Theorem 3.3 is our main result concerning Crouzeix’s
conjecture, showing that it, in effect, holds almost surely for sufficiently large Gini-
bre matrices. In Section 4 we provide a full distributional characterization of the
GMRES algorithm applied to Ginibre matrices with independent right-hand side
vectors. This leads directly to the proof of Theorem 3.1. Then in Section 5 we
provide results on the resolvent norms and pseudospectra of Ginibre matrices. In
Section 6 we use estimates on the field of values of a Ginibre matrix which are
crucial in the arguments leading to Theorem 3.3 stating in a precise way that, for
any € > 0, C(W(Gy),Gn) < (2+¢€) as N — oo. We include an appendix where
we give numerical evidence that indeed C(W (Gy), Gn) = /2 for large N. So, it
remains an open question to improve Theorem 3.3 by reducing 2 to v/2.

The primary aim of this paper is to highlight connections between several areas
of mathematics including numerical linear algebra, matrix analysis, and random
matrix theory. While many of the statements we make might not surprise the
right expert, we believe the context in which they are made is new, and that the
resulting connections between disciplines are of interest to a broad audience. It is
clear there is great potential for cross-pollination of ideas between these fields, so
we hope that this paper will serve to motivate further works in the intersection of
these disciplines.

2. PRELIMINARIES

In this section we outline some basic notation as well as review some standard
definitions and results regarding the convergence of random variables.

2.1. Notation. We denote by D(c,r) C C the closed disk of radius r centered at
¢ and by A(7,7r) C C the closed annulus with inner radius 7 and outer radius r
centered at the origin.

The Hausdorff distance between sets X C C and Y C C is denoted di(X,Y)
and defined as

dg(X,Y) = inf |z — inf |z —y|p.
n(X,Y) maX{jlelgylgylfc y\,sg%gxlw yl}

In this paper, one of X or Y will always be a closed disk in which case we often use
Lemma 2.1:
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4 T. CHEN, A. GREENBAUM, AND T. TROGDON

Lemma 2.1. Let S C C be a closed subset of the complex plane and r > 0. Suppose
that for some e > 0, D(0,r —€) €S CD(0,r +€). Then,

du(S,D(0,1)) < e.
Further, if S is convex, then the converse is also true.

2.2. Convergence of random variables. The sequence X1, Xs,... of random
variables is said to converge to a random variable X in probability if, for all € > 0,
lim P[|XN ~X|< e} ~ 1

N—o00
Alternately, this sequence is said to converge to X almost surely if

IP’[ lim Xy :X} —1.
N—00
We respectively denote convergence in probability and almost surely by
Xy 2P X and Xy 22 X
N—oo N—oo

Almost sure convergence is equivalent to the condition that, for all € > 0,

(2.1) 1 |XN—X|<6} L
N—o0
Here 1[true] = 1 and 1[false] = 0. If Ay and By are sequences of events, we also
have
(2.2) 1[AN] 22— 1 — 1[By] =1, if Ax C By.
N—o00 N—o0

For ¢ € R fixed, we write
Xn < c almost surely as N — oo,

if, for all € > 0,

1[Xy <c+e —=1.
N—o00

3. GMRES ON RANDOM SYSTEMS

Define the random matrix

1
Gy = —
N7 VAN
where X and Yy are independent N x N matrices with independently and identi-

cally distributed (iid) real standard Gaussian entries. Hence Xy +iY y has entries
from Ng(0,2). The matrix Gy is called a (complex) Ginibre matrix. Our main

Xy +iYyn),

aim is to analyze the residual norm ||r$\’,€) || corresponding to the GMRES algorithm
applied for k steps to linear systems of the form (I+0Gy)x = b, where o € (0,1)
is some fixed constant.

Systems of the form (I+0Gy)x = b where Gy is a random Gaussian matrix are
common test problems for GMRES [35, Example 35.1] or [6, Section 3.2]. While we
have set Gy to be a complez Gaussian matrix, similar results can be expected to
hold for other distributions satisfying certain moment conditions; i.e. universality.
In particular, if Gy were a real Gaussian matrix with the same mean and variance,

I'While the size of the matrices we deal with will vary (since N is variable), we assume we are
working with a single probability space and have a semi-infinite array of random variables defined
on this probability space. Then an N X N matrix is formed by taking a principal sub-block of
this infinite array.
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 5

we expect the same theorems to hold. However, the spectra of real Gaussian ma-
trices are somewhat more complicated than their complex counterparts [18], due to
the lack of rotational invariance of the eigenvalue distribution. So we only study
the complex case here, for simplicity.

In Section 4, we consider the case when b is independent of A. In this case,
we can describe an exact distributional parameterization of the Arnoldi algorithm
underlying GMRES. This allows us to characterize the residual norm:

Theorem 3.1. Let Gy be an N x N complex Ginibre matriz. Then, for o € (0,1)

and by independent of Gy, the step k GMRES residual norm ||r§\];)|| for the linear
system (I+ oGyn)x = by satisfies

[ T et
byl Nooo \1— g2t2F '

If b is allowed to depend on G, then this estimate cannot be expected to hold.
We therefore turn to (1.2) with the aim of characterizing some K-spectral sets of
G (and therefore I+ 0Gp). In Section 5 we use existing theory to characterize
the e-pseudospectrum of G y:

Theorem 3.2. Let Gy be a complex Ginibre matrix of size N X N. Then, for any
€ >0,
di(A(Gn), D(0,e7"(€%))) —= 0.
N—00
Here ¢ : [1,00) — [0,00) is a deterministic increasing function with ¢(1) = 0
defined by
8 — (9 — 8d)3/? — 36d 4 27 9
1 = d:=1-—
(3.1) ¢(2) S , .
and ¢! :[0,00) — [1,00) is the inverse of e.
The numerical range of Gy is also nearly circular for IV large. Specifically, it is
known [9] that

dg(W(Gy),D(0,V?2)) m 0.

In Section 6 we use this fact, in conjunction with existing theory on the growth
of matrix functions on the numerical range, to show that the numerical range of a
Ginibre matrix is a 2-spectral set almost surely as N — co. More precisely:

Theorem 3.3. Let Gy be a complex Ginibre matrix of size N x N. Then,
C(W(GN), GN) <2
almost surely as N — oo.

Since both the numerical range and pseudospectra are nearly circular for large N,
we may hope to obtain a bound in terms of min{||p|lp(i, : deg(p) < k,p(0) = 1}.
This is an elementary problem which can be solved exactly. Indeed, on the disk
D(1,7), the minimal infinity norm degree k& monic polynomial is (z — 1), so we
obtain our desired polynomial by rescaling the (z—1)* to take value 1 at the origin;
i.e. the minimizing polynomial is p(x) = (z — 1)*/(—1)* = (1 — 2)*. This gives the

relation

3.2 min P = k.

(3.2) deg(p)SkaHD(l, )
p(0)=1
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6 T. CHEN, A. GREENBAUM, AND T. TROGDON

iteration k

Ficure 1. Convergence of GMRES on linear systems (I +
oGy )x = b for b chosen independently and dependently of Gy.
When b is chosen independently of Gy, then the residual norm
lrg]l of GMRES (circles) is described by Theorem 3.1 (dashed
line). If instead b is allowed to depend on Gy, then the resid-
ual norm ||rg|| of GMRES (squares) need not be described by
Theorem 3.1. However, the bounds in Theorem 3.4 based on the
pseudospectrum (dotted lines) and numerical range (dash-dot line)
are still relevant. In this experiment, N = 1500 and o = 1/4.

Combining this with the above results we can prove the following bound.

Theorem 3.4. Let Gy be an N X N complex Ginibre matriz. Then, for o € (0,1)

and by possibly depending on Gy, the step k GMRES residual norm ||r§\],”)|| for the
linear system (I+ oGy)x = by satisfies

(k:)||
< minne(n) " Y2(on)* and I < 2(vV20)"
o] ~ inn (m)~=(om) R (V20)

almost surely as N — oo.

Figure 1 shows a numerical example with N = 1500 and ¢ = 1/4. As expected,
when b is independent of G, the convergence is determined by Theorem 3.1. Once
we have sampled the random matrix I+ 0G n, we then attempt to find a b which
increases the value of ||r(*)||. Maximizing the residual norm at a given iteration is
a hard problem [20], so instead of seeking to find the worst case b for each k, we
simply compute the b which maximizes |p(I+ oG x)b||/||b|| when p = (2 — 1)1°.
This appears to be sufficient to break agreement with the rate in Theorem 3.1.
Even so, the bounds in Theorem 3.4 remain valid.

4. LIMITING BEHAVIOR OF GMRES WITH INDEPENDENT RIGHT HAND SIDES

We begin by studying the case where b is independent of Gy. It has been
observed that many algorithms have essentially deterministic behavior when applied
to random matrices of large dimension [14,32]. This has been rigorously established
for a range of iterative methods for linear systems including conjugate gradient and
MINRES [13,15,30] and gradient and stochastic gradient descent [27-29]. Some
numerical experiments for the GMRES algorithm in the case ¢ = 1 are given in
[14] where one sees non-deterministic behavior (see also [40]).
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 7

It is well known, and can be seen from the joint density of the matrix entries, that
Ginibre matrices are invariant under unitary conjugation. That is, for any fixed
unitary matrix Q, we have that QGyQ* el ~- Thus, without loss of generality,
we can assume that by /||by| = e; :=[1,0,...,0]" by applying a unitary transform
Q with Qby = ||bx]|e1 to by and considering the system involving I+ cQG yQ*
and ||by|le:.

We now construct a unitary matrix V so that V(I4+0G ) V* is upper-Hessenberg
and Ve; = e;. The residual norm obtained by GMRES applied for k iterations to
the system Ax = b is the same as GMRES applied for k iterations to VAV*x = Vb
for any unitary matrix V (even if V depends on A). Indeed, using the unitary
invariance of the 2-norm,

[p(A)b|| = [[p(A)VVD|| = [[Vp(A)V*VDb| = [[p(VAV*)Vb].

We can therefore study the residual norm of GMRES on Ax = b by studying the
residual norm of VAV*x = Vb, which we can analyze directly.

The approach is by constructing suitable Householder reflectors, and is similar
in spirit to approaches for other matrix ensembles [17,33,37]. For convenience,
partition Gy as

GN_L{@ YT}
VON |x G

Now, conditioning on the probability one event that ||v| # 0, define Uy as the
Householder reflector

1 OT _i0 vv* AT B T
Uy = [0 F]’ F=e <12v*v)’ v =¢"|x|]le; —x, 6 =arg(e;x).

Then Uye; = e; and

. _ 1 [g y'F*
UnGyUl = V2N {Fx FGF*] '

By construction, Fx = [||x||,0,...,0]T. Moreover, since the real and imaginary
parts of the entries of x are iid standard normal random variables,

x| ‘2 x(2(N - 1)),

where x(j) is the Chi distribution with j degrees of freedom. Next, note that y
and G are independent of x and therefore independent of F. Then, by the unitary
dist. _ T . . .
=" y' and by the invariance of Gaussian
matrices under unitary conjugation FGF* el
We can now apply this process to the submatrix Gn_; := FGF* which itself is
distributed as a complex normal matrix of size (N — 1) x (N — 1). In total, this
will produce a sequence of i X i unitary matrices U;, i = N, N — 1,...,2 (since no
transform is needed for the 1 x 1 case). For each 4, define the N x N unitary matrix
U; as the block-diagonal matrix with an (N —i) x (N —i) identity in the upper-left
corner and Uj; in the lower right. Thus, inductively, we obtain (with probability

invariance of Gaussian vectors y'F*
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8 T. CHEN, A. GREENBAUM, AND T. TROGDON
one) a unitary matrix V = U, - Upn_1Up which satisfies Ve; = e; and
NC<0’2) NC(O’Q)_
. x(2(N - 1)) :
x dist.
(4.1) VGNV* = —\/m Y(2(N = 2))

x(2(1))  Ne(0,2)]
Here N¢(0,2) is a complex Gaussian with mean zero and variance 2.

Denote by Hy the matrix in (4.1) and let Ay := I+ ocHy for some o € (0,1).
Then the GMRES residual for the system Anx = ||by]|e1 at step k has identical
distribution to the GMRES residuals for the system (I+ oG y)x = by at step k.

The residual norm ||r(*)|| for the system Ax = b can be written as

Ie®)2 1
D12 14 [ ([Alamsre) (A" |2

where A is the (k+ 1) x k upper-Hessenberg matrix produced by the Arnoldi algo-
rithm run for & iterations on A and b and —* denotes the inverse conjugate trans-
pose [25, Theorem 5.1]. Tt is well known that the Arnoldi algorithm applied to a
upper-Hessenberg matrix and the first unit vector will produce back the same upper-

(4.2)

Hessenberg matrix. Thus, since Ay is upper-Hessenberg, A = ||b||[[An]:k+1,:%-
With % remaining fixed, we will use (4.2) to analyze the GMRES residual norm
in the N — oo limit. Direct computation shows that

0 --- 0 1
rob. 1 - . .
[AN}:k—i-l,:k: %) I+o = g = Aoo
— 00 -, 0 -, ) 1
1
Now note that [A]1. = e] so that, by basic properties of Jordan blocks,
- -1 o1
g2
_ T "4
([Ascl2kt1,:k) €1 = o e = o
1 o (_l)k'—lo—k

We therefore have

X X T2 a 24 1— g2k 2k
L (Aol ) (Bocl )T =1+Zol=<i1_02 )0‘ -
i=1

Thus, using (4.2) and the continuity of the matrix inverse in the neighborhood of
any invertible matrix, we obtain:

Theorem 3.1. Let Gy be an N x N complex Ginibre matriz. Then, for o € (0,1)

and by independent of Gy, the step k GMRES residual norm ||rg\/;)|| for the linear
system (I+o0Gn)x = by satisfies

Il o (10 N 4
byl Nooo \1— o2t2F '
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 9

We remark that it would be interesting to study the fluctuations in ||r(®)||, either
by characterizing the asymptotic distribution or deriving quantitative bounds for
the rate of convergence in probability. This has been done for the related conjugate
gradient and MINRES algorithms [13,15,30].

5. RESOLVENT NORMS AND PSEUDOSPECTRA OF GINIBRE MATRICES

The analysis in the previous section relied on the fact that b is independent of
Gy. If b is allowed to depend on Gy, then the estimate in Theorem 3.1 need not
hold. Indeed, in Figure 1 we illustrated an example where the estimate is far from
accurate. As such, we turn to (1.2). We begin by studying the pseudospectra of
Ginibre matrices by bounding resolvent norms. For some nice pictures and a high
level discussion of pseudospectra of random matrices, see [36, Chapter 35].

For r, 7 with r > 7 > 1, recall that A(7, r) is the closed annulus with inner radius
7 and outer radius r. Our first goal is to show the resolvent is bounded on A(7, r):

Lemma 5.1. Let Gy be an N X N complex Ginibre matriz. Then for any r,7 with
r>7>1, forall £ >0,
1z € A7) o) 2 = € < Rz, Gl < o) /2 4 €] 221

N—o0

Proof. Note that, for any z,
|R(2, GN)|| = Amin(Y) Y2, where Y% = (2I - Gn)"(2I— Gn).

Studying the eigenvalues of Y3, is a common approach for studying the resolvent

norm since Y% is Hermitian and therefore potentially simpler to analyze. The

matrix Y73 is a special case of a family of matrices called information plus noise

matrices (with zI being the information matrix and Gy being the noise matrix).
Let p% (t) be the empirical spectral measure of Y%;; i.e.

1 N
) = Zé(t = Xi(YR)),

where §(t) is the delta distribution centered at zero and {)\;(Y%)}¥; are the eigen-
values of Y%,. In the N — oo limit, p% (t) converges in distribution to a determin-
istic limiting density p?(t) almost surely [16]. Specifically, [16, Theorem 1.1] shows
that the associated Stieltjes transform

m%@:/mf@&

w—t

satisfies a certain integral equation determined by properties of the information
and noise matrices. For Y5, the equation for the Stieltjes transform reduces to an
algebraic relation
1 1
m*(w) 14 |z?m?(w)

where it is required that Im(m?(w)) > 0 if Im(w) > 0 [8, Equation 9]. From this
expression, the support of p*(t) can be directly computed. In particular, for z with
|z| > 1, as seen in [8, Equation 18a], p*(t) is supported on [¢(2), f(z)] where

82 + (9 — 8d)3/2 — 36d + 27
5.1)  e(2)f(2) = ( 8(1) 5 LI R

(1+ |2[*m*(w))w = 0,
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10 T. CHEN, A. GREENBAUM, AND T. TROGDON

N =100 N =500 N = 2000

[R(z,Gn)l

0.1 1 10 100 0.1 1 10 100 0.1 1 10 100
2 —1 [2* =1 [z =1

FIGURE 2. Relationship between ||R(z, Gy)| and |z|? — 1 for 10
samples of Gy. The dotted curve is ¢(z) /2. Here we take z on
the real axis, although the same result is expected for any z due
to the rotational symmetry of Gy. Note that as N — oo, the
estimate ¢(z) /2 becomes more accurate; see also Figure 3.

For |z| > 1, the limiting density p*(¢) has square root behavior at the edges e(z),
f(z) [8, Equation 18b]. This means that p*(t) is non-negative just to the right of
e(2) so that, for all £ > 0, 1[Apin(Y%) < e(2) +&] — 1 almost surely as N — oo.
It is known that almost surely no eigenvalues of information plus noise matrices
lie outside the support of the limiting spectral density [2,38]. In particular, for any
5 > 07
1 Awin (Y5) > e(2) — €] 225 1.

N—o0
Thus, combining the previous results and using that ¢(z) is increasing as a function
of |z|, for each z € A(r, ), for all £ > 0,

(5.2) 1e(r) 2 € < IR(:, G| <o) 2 4] o

The relationship between |R(z,Gy)|| and |z| is explored numerically in Figure 2.

We will now upgrade (5.2) to simultaneously hold for all z € A(r,7); i.e. prove
Lemma 5.1. Our basic approach is to construct a finite set Ne(r,7) C A(r, 7) such
that for any point Z € A(r, ), there is a point z € N¢(7,r) for which [|R(z, Gn)||
is bounded and for which |z — Z| is small enough so that |R(Z,Gn)|| is close to
|R(z,Gn)||. Towards this end, set e = e(r) /24 0.1, f =+ 0.1, and g = 2.1.
Then, for each z € A(r,7),

(5.3) 1[IR(, Gr)ll < e 2] < £, |G| < g] =2 1.

Here we have used the results above and the well-known fact that |G || < 2 almost
surely as N — oo [21].

Fix € > 0 and, with the benefit of foresight, define h := min{1, (4e*(f+g+1)) '}
and L := 3e3(f + g+ 1). Let Ne(r,7) C A(7,7) be a finite set of points so that
any other point in A(r,7) is within min{h/2,¢/(2L)} of a point in N¢(r,7). This
is possible since A(r, 7) is compact and min{h/2,£/(2L)} > 0. Then, since N,(r,T)
contains a finite number of points, (5.2) implies

64)  1[¥2 Nl ?): )2 G < IR Gl < )4 ]
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’S CONJECTURE 11
and (5.3) implies
(5.5) 1|Vz € Ne(r,7) : |R(2,Gn)| <e, 2| < f,[|Gn] < g} %) 1.

Let z € A(r,7). By construction, there exists z € Ng(r,7) such that |z — Z| <
min{h/2,£/(2L)}. Condition on the event: {Vz € Ne(r,7) : |[R(z, Gn)|| <e,|z| <
£ IGN]l < g}. Then, reveling in our excellent choices of h and L, we can use basic
properties of the resolvent norm (see Section 7.2) to show that

[I1R(z, GN)l = [|1R(2, G| < L]z — 2| < £/2
which, combined with (5.4), implies that
e(F) 2+ € <|IR(Z, G| < e(r) M2+ &

Applying (2.2) yields Lemma 5.1. d

5.1. Pseudospectra. Lemma 5.1 gives a bound for the e-pseudospectrum of A.
Recall ¢ : [1,00) — [0, 00) is increasing with ¢(1) = 0, and relate € > 0 with » > 1 by
e ' =¢(r)~'/2. Then, for all € > 0 (r > 1) and for all zi > 0, using Lemma 5.1 and
the fact that 1[Vz € D(0,1) : |R(z,Gn)| > T ﬁ) 1 for any T' > 0 (because

the spectrum of Gy fills the unit disk), we have

(5.6) 1[¥z € DO.) : [B(z. Gl > e(r) V2~ wi] 2251,

N—o00

(5.7) 1 [vZ € A(r,00) : |R(z, Gy)|| < e(r)~/2 + m} g,
— 00
We will use this to show that the e-pseudospectrum of G is near to D(0,r) when
N is large. Fix xi > 0 and condition on the events: {Vz € D(0,r) : ||[R(z, GN)| >
e 1 —zi} and {Vz € D(r,00) : |R(2,Gn)| < € 1+ zi}. Then

D(0,r —zi) C A(Gn) C D(0,r + xi).
Thus, by Lemma 2.1 we have
dr(A(GN),D(0,7)) < zi.

We visualize the relationship between e and the e-pseudospectra in Figure 3. Fi-
nally, using (2.2) and e~! = ¢(r)~Y/2 <= r = ¢7!(€?) we establish:

Theorem 3.2. Let Gy be a complex Ginibre matrix of size N X N. Then, for any
€>0,
drr (AE(GN),D(O, 671(62))) 2% 0.
N—o00

Note that this result is for the e-pseudospectrum corresponding to a fixed value
of € > 0. From a random matrix theory perspective, it is more interesting to study
other limits. Bounds on the eigenvalues of Y% in the case |z| < 1 are used in proofs
of the circular law, and the case |z| < 1+ CN'/? is the main focus of [8]. Other
work focuses on pseudospectra directly. For instance, [4] studies the volume of A,
in an € — 0 limit where € depends on N.
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12 T. CHEN, A. GREENBAUM, AND T. TROGDON

Gy =€t

z:|[R(

T T T T T T
0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10
€ € €

FicurE 3. Relationship between e and the value of z > 1 such
that |[R(z,Gn)| = €' (used as a proxy for the radius of the e-
pseudospectrum). The dotted curve is e~!(e?). Note that as N —
00, the estimate ¢ !(e?) for the radius of the e-pseudospectrum
becomes more accurate.

6. THE NUMERICAL RANGE OF GINIBRE MATRICES AND CROUZEIX'’S
CONJECTURE

We now turn our attention to the numerical range. For any matrix A, the numer-
ical range W(A) is convex. It is not hard to show that Re(W(A)) = W (He(A)),
where He(A) := (A + A*)/2 is the Hermitian part of A. The real part of the
rightmost point of W (He(A)) is simply the largest eigenvalue of He(A). Thus, we
can obtain a tangent line to the numerical range: Apax(He(A)) + i, t € (—o0, 00).
Now, note that exp(i#)W(A) = Wi(exp(if)A); i.e. the numerical range is pre-
served under rotations of the complex plane. Thus, applying the above procedure
to exp(if)A, rather than A, allows us to compute a set of tangent lines for the
numerical range. Since the numerical range is convex, this procedure will construct
a polygon enclosing the numerical range, which converges to the numerical range
as more values of 6 are evaluated. This is a standard technique for computing the
boundary of the numerical range (see for instance [24]) which we use to plot the
numerical range for several instances of Gy in Figure 4.

This technique can be applied to Ginibre matrices analytically [9]. Towards this
end, note that
Gy + Gy

2
is a scaled Gaussian Unitary Ensemble (GUE) matrix. The eigenvalues of GUE
matrices are well studied, and when scaled so that the diagonal entries have variance
1/N, the limiting distribution is a semicircle on [—2, 2]. Indeed, this is the celebrated
Wigner semicircle law [39] which arguably pioneered what is now called random
matrix theory. The diagonal entries of He(G y) have variance 1/(2N), so accounting
for this difference, we therefore have that [1]

He(GN) =

(6.1) | He(Gy)| =2 V2.
N—o00

This fact is then applied to rotated matrices exp(if)Gy, 6 € [0,27). Since
exp(i)G n el ~, the analog of (6.1) applies for all fixed §. A covering argument

[9, Theorems 4.1] similar to the one we used above allows the result to be transferred
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 13

FIGURE 4. Numerical range (interior of solid curve) and eigenval-
ues (dots) of Gy. The boundary of the disk D(0,/2) is shown
as the dotted circle. Note that as N — oo, the numerical range
approaches D(0, v/2).

from fixed 6 to simultaneously hold for all § € [0,27). The result is that, as
expected, the numerical range of Gy converges to the disk of radius v/2 centered
at the origin almost surely as N — oo [9, Theorem 4.1]. Specifically,

(6.2) dr(W(Gn),D(0,V2)) -2 0.
N—o00

An open question in matrix analysis is determining the minimum value K so
that W(A) is a K-spectral set for every matrix A. Crouzeix’s conjecture is that
this minimum value is 2 [3,11]. It is known that the numerical range is a (1 4+ v/2)-
spectral set for any A [10], and for practical purposes, this bound is hardly worse
than the conjectured value of 2. Even so, determining classes of matrices for which
the value (1 + v/2) can be improved remains an active area of research. In this
section, we add to these results by establishing a version of Crouzeix’s conjecture
for large Ginibre matrices.

If the numerical range of a matrix is circular, then the numerical range is a
2-spectral set for the given matrix [5,26]. We will show a perturbative version of
this statement which will hold for the numerical range of Gy; i.e. nearly circular
numerical ranges are nearly 2-spectral sets. Our exposition follows that of [5] which
itself is based on [10]. It is an interesting question whether the numerical range
of W(Gy) is nearly a K spectral set for Gy for any K < 2. We have performed
numerical experiments which suggest the numerical range of G may nearly be a
V/2-spectral set. This is discussed further in Appendix A.

Let € be a region with a smooth boundary containing in its interior the spectrum
of a matrix A. Then for any function f analytic on € and continuous on the
boundary,

£(A) J;Sgwm@Amm

~omi
where R(o, A) := (61 — A)~! is the resolvent. Now define
1 -

o(8) = 5= | TR Ao
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14 T. CHEN, A. GREENBAUM, AND T. TROGDON
and consider the matrix
L
FA)+9(A) = [ s ) (o (s)) s,
where we have defined the Hermitian matrix

pis, A) = [%

a'(s)

R(a(s),A)] + [WR(U(S),A)]*.

Here we have parametrized 002 by s € [0, L] with o : [0, L] — 99 giving the map
from the parametrization to the boundary.

When Q = W(A), it can be shown that || f(A) + g(A)*|| < 2 from which the
constant K = 1++/2 is then obtained [10]. One of the aims of [5] was to consider Q
other than the numerical range, for instance a set just inside the numerical range.
In this case, u(s, A) may not be positive semidefinite so the authors introduce the
necessarily positive semidefinite matrix

118, A) — Amin (11(s, A))L.
From this, they establish [5, Lemma 2.1] that
(6.3) 1£(A)+ g(A) + 1) <246,

where

L L
v o= —/0 Amin (16(3, A)) f(o(s))ds and 0= —/O Amin (1t(s, A))ds.

Note that if o is positively oriented, then o’(s)/i is the outward normal vector to
0Q at o(s). Therefore, assuming ) is convex, if we view p as a scalar function,
then for fixed s, the set

{zeC\{o(9)}: n(s,2) > 0} ={z € C\{a(s)} : Re((0’(5)/1)/ (0 (s) — 2) > 0}

is the open half plane containing © which is tangent to 9 at o(s). Next, note that

/
Amin(p(s,A)) = ”nrhin1 viu(s,A)v = ”m”inl Re [if)v*R(a(s), A)v|.
vi]|= vi= Vs

Thus, we see that the sign of § depends on 2 in relation to the numerical range
[5]. Specifically, if Q@ = W(A) then § = 0, if @ C int(W(A)) then § > 0, and if
Q2 W(A) then § < 0.

6.1. Nearly circular numerical range. We follow [5]. For any N x N matrix
A there exists a function f which attains the ratio C(W(A), A). Without loss of
generality, we will assume || f|[(a) = 1. It is known that this function is of the
form f = Bo¢ where B is a finite Blaschke product of degree at most N —1 and ¢ is
any conformal mapping from the field of values to the unit disk [11]. Suppose B is
the Blaschke product which maximizes ||(B o ¢)(A)| among all Blaschke products
of degree at most N — 1. Then, assuming ||(B o ¢)(A)| > 1, ujvy = 0, where uy
and vy are the left and right singular vectors of (B o ¢)(A) corresponding to the
largest singular value [5, Theorem 5.1].

Let © be any disk D(c,r) containing the numerical range. For z € Q, provided
f is analytic in a neighborhood of 2, it’s not hard to show that

6(2) = — [ Fo)(o - 2)tdo = T(0).

B 2mi o0
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 15

Let f = B o ¢ where ¢(z) = (2 — ¢)/r and B maximizes ||(B o ¢)(A)|. Then if
I(Bog)(A)]>1,

ui(f(A) +g(A)" +9D)vi =ujf(A)vi = || f(A)].
This, in conjunction with (6.3) and the fact W(A) C Q shows that
1F(A)] < max{1,2+6} <2.

Now, let Q be any disk D(¢, ) contained in the numerical range. Define o(s) :=
c+rexp(is/r) and (8) := ¢+ 7 exp(i5/7) for s € [0,27r] and 5 € [0, 277]. We will
take § = (7/r)s. Then

(6.4) lo(s)—a(5)|=r—7 and  o'(s) =6 (5) =iexp(is/r).

Define i and ) analogously to p and §. Then the above argument shows that, as
long as the eigenvalues of A are contained within €, then Q is a max{1,2 + §}-
spectral set for A. Our aim is to bound |d| in terms of a quantity depending on
T—T.

Note that Apin(u(s, A)) is positive whereas Apin(fi(8, A)) is negative. Thus,
using standard eigenvalue perturbation bounds [31, Fact 1.11] we find

Amin (74(8, A))| < [Amin(1(s, A)) = Amin (A3, A))| < [lu(s, A) — (3, A).
Now, by definition,
0’(§)R(U(S)’A) _76)

i 27

wu(s,A) — (5, A) = 2He

R(5(s),A)

Thus, using the first resolvent identity and the fact since ¢’(s) = &’(§) as in (6.4),
suppressing the dependence of ¢(s) and &(5) on s and § for notational clarity,

/ ~/ /

o' — o’

7 R A) - L RGA) = LR, A) - LR, A) + R(5,A)
2ri o2mi- T 2w 2mi '
/
g ~ ~
= —%(o —6)R(0,A)R(G,A) + 0.
Thus, using the fact that ||He(B)|| < ||B|| and |¢’(s)| =1,
-

"RG0, ARG, A)],

|/\min(ﬂ(§, A))‘ < p

and therefore, provided that |[R(z, A)|| < A for all z € 9Q U 9Q,
2m
(6.5) o] < / Amin (71(s, A))|ds < 2(r — 7) A2,
0

Assuming that |r — 7| is small relative to A2, this implies that Q, and therefore
W (A), is a (2 + 8)-spectral set for some || small.

In the case of Ginibre matrices, for any € (0,v/2—1.1), we can take r = v/2+7
and 7 = /2 — 1. From (6.2), Lemma 2.1 we see that, for all 5 € (0,v/2),

H[QCW(GN)CQ Na—5>1
—o0

Moreover, all eigenvalues of Gy are contained in the disk D(0,1.1) C Q almost
surely as N — co. Since |r — 7| = 27, from Lemma 5.1, as long as n < V211, it
suffices to take A = ¢(1.1)~/2. Thus, for any € > 0, Q is a (2 + €)-spectral set for
G almost surely as N — oo. The maximum modulus principle then implies that:
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16 T. CHEN, A. GREENBAUM, AND T. TROGDON

Theorem 3.3. Let Gy be a complex Ginibre matrixz of size N x N. Then,
C(W(Gn),Gn) S 2

almost surely as N — oo.

7. DEFERRED PROOFS

7.1. Proof of main bound.

Theorem 3.4. Let Gy be an N x N complex Ginibre matriz. Then, for o € (0,1)

and by possibly depending on G, the step k GMRES residual norm ||r§\1,€)|| for the
linear system (I14+ o0Gy)x = by satisfies

®)l
< minne(n)~Y?(on)* and I < 2(V20)F
o]~ nn (m) == (on) bl (V20)

almost surely as N — oo.

Proof. In both cases we will use the fact that if Q is a K-spectral set for G then
1+ 08 is a K-spectral set for I+ oGy

Fix n > 1. The eigenvalues of Gy are contained in D(0, (n+ 1)/2) C D(0,7)
almost surely as N — oo [34] (this is also implied by Theorem 3.2 with € sufficiently
small). Conditioning on the eigenvalues of Gy being contained in D(0,7),

1

— f(z)R(z,Gy)dz
- /3 o TORG.G)

21
IF(GN)I = < 5 Ifllpm  sup [IR(z, G)ll.
z€0D(0,m)

Theorem 3.2 implies that, for any € > 0,

]1[ sup  ||R(z, Gp)|| < e(n)~Y/? +e} 2% .
2€9D(0,n) N—o0

Therefore

1[D(0, ) is an n(e(n)™/? + e)-spectral set for G| - ** 1.
—00

Since this holds for any 1 > 1, we can take 7 as the value minimizing ne(n)~/2(an)*.
Applying (1.2), (3.2) proves the first part of the statement.

Next, note that in the proof of Theorem 3.3, we in fact establish that, for any
n > 0and e > 0, D(0,v/2 —n) is a (2 + ¢)-spectral set for Gy almost surely as
N — oo. This implies that for any € > 0, D(0,v/2) is a (2 + €)-spectral set for G x
almost surely as N — oo, see (1.3). Applying (1.2), (3.2) proves the second part of
the statement. O

7.2. Proof of resolvent norm bound. In proving Lemma 5.1 we have used the
following:

Lemma 7.1. Fiz z € C and suppose |R(z,G)| < e, |z| < f, and |G| < g. Set
h:=min{1, (4e*(f + g+ 1))"'}. Then for all Z with |z — z| < h

Bz, G)|| = [IR(Z, G)[I| < Lz — Z],
where L= 3e3(f +g+1).
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GMRES, PSEUDOSPECTRA, AND CROUZEIX’'S CONJECTURE 17

Proof. Define Y := (z — G)*(z — G) and Y* := (2 — G)*(Z — G). By a standard
eigenvalue bound we have that
|/\min(Yz) - /\min(Yz)‘ < ||YZ - YE”
Since |z| < f and |z — Z] < 1, then |Z] < |z| 4+ |2z — 2] < f + 1 so bounding the
derivative of x — 22 gives that
122 = |21%] < 2max{|z], |2}z = 2 < 2(f +1)]= - 2].
Thus, using the definitions of Y# and Y?, and the assumption |G| < g,
IYZ = Y5 = |2 T = |ZPI - (2 = 2)G" — (z = 2)G]|
<l = 2P| + 212 - 2G|
<2(f+g+1)|z— 2.
Next, note that |R(z, G)| < e implies Apmin(Y?) > e~ 2 so using that [z — 2| < h <
(4e*(f+g+1))71,
Amin(Y?) = Amin (Y?) — ||[Y* = Y| = e >~ 2(f+ g+ 1)h>e ?/2.
Next, note that bounding the derivative of z — x~1/2 gives that for any z,y > 0,

‘3;1/2 2 3/2

1 . _
| < 5 minfe,y} 2~y

Thus,

|)‘min(YZ)71/2 - Amill(Y2)71/2| < %(672/2)73/2(20( +g+1))|z— 2.

The result follows from the definition of I and the fact that 23/2 < 3. O
7.3. Other proofs.

Proof of Lemma 2.1. Suppose D(0,7 —¢) C S C D(0,r+¢€). Let x € D(0,7). Then
x is within € of a point in D(0,r — €) and therefore of S. Now, let € S. Then
|z| <7+ €so x is within € of a point in D(0,r).

Suppose now that S is convex and that dgy(S,D(0,7)) < e. Certainly S C
D(0,7+¢€). Let z € D(0,r —e). Let y be the point on the boundary of S with same
argument as = and, for the sake of contradiction, that |y| < |z|. Let z be a point
on the boundary of D(0, r) such that the segment between y and z is perpendicular
to some line which passes through y but no other points in S. Now, note that this
line separates z from S and that all points in S are therefore a distance at least
|z — y| > € from z, contradicting the assumption dg(S,D(0,r)) < €. Thus, we find
that |y| > |z| which implies that D(0,r —¢) C S. O

Proof of (2.2). Suppose Ay C By and 1[An] converges almost surely to 1 as
N — o00. Then, for all N and for all w € Q, w € Ay = w € By so
1[An](w)=1 = 1[By](w)=1, VN, w.

Therefore, since 1[C](w) is either zero or one for any event C,

P lim 1[By] :1] 21?[ lim 1[Ay] =1] =1,

N—oc0 N—oco

so 1[By] =2 1. O
N—o0
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18 T. CHEN, A. GREENBAUM, AND T. TROGDON

APPENDIX A. IS THE FIELD OF VALUES OF A LARGE GINIBRE MATRIX
APPROXIMATELY A V/2-SPECTRAL SET?

As we mentioned above, the function f which attains the ratio C(W(A), A) is

of the form f = B o ¢ where B is a finite Blaschke product

N—1

B(z) = exp(if) [ ] (2 — i)/ (1 — @2)

i=1
of degree at most N — 1 and ¢ is any conformal mapping from the field of values
to the unit disk [11]. Here we assume |o;| < 1 to allow products with degree less
than NV — 1. Numerical codes to search for extremal Blaschke products have been
used in previous studies of Crouzeix’s conjecture [3].

For large Ginibre matrices, W (Gy) =~ D(0, \/5) Therefore, we expect that
C(W(Gp),Gyn) =~ C(D(0,v2),Gy). To approximate C(D(0,v2),Gy) we first
approximately scale the problem to the unit disk using ¢(z) = z/v/2 and then ap-
ply a black box numerical optimizer to try and find the roots {«;} of the Blaschke
product maximizing ||(B o ¢)(Gn)||. We observe that the B we compute are nu-
merically close to degree one Blaschke products. That is, if we allow for higher
degree products, we find that all but one of the {a;} have magnitude extremely
close to 1 and contribute very little to the norm of the resulting product.

Thus, in the N — oo limit, we might expect that the function maximizing
C(W(A), A) has the form f = B, o ¢ where B,(z) = (z — «)/(1 — @z) for some
value of o and ¢(z) = z/v/2. In Figure 5, we explore the relationship between
[(Ba 0o ¢)(Gy)|| and a when ¢(z) = z/v/2. We observe that this quantity seems
to concentrate about some curve which is bounded above by V2 and maximized
at @ = 0. In the a = 0 case we have that (By o ¢)(Gy) = Gn/Vv?2 so that
1(Bo 0 0)(G) | =22 V2

[(Ba 0 9)(G )|
CE T

—
—
1

—
o
L

0.0 0.5 10 00 0.5 L0 0.0 0.5 1.0
lol lo la

FIGURE 5. Relationship between ||(Bq © ¢)(Gn)| and « for 10
samples of Gy when ¢(z) = z/v/2. The dotted line is at /2. Here
we take a on the real axis, although the same result is expected
for any |a| < 1 due the rotational symmetry of Gy.
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