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1. Introduction

The Lanczos algorithm is unstable in the sense that, even on the simplest problems,
the output of the algorithm in finite precision arithmetic may be very different than
what would have been obtained in exact arithmetic. Despite this, the Lanczos algorithm
is among the most important algorithms in numerical linear algebra and is commonly
used for a wide variety of fundamental linear-algebraic tasks including approximating
eigenvalues and eigenvectors, the product of a matrix function on a vector, and quadratic
forms involving matrix functions. Understanding the behavior of the Lanczos algorithm
in finite precision arithmetic has been of interest since the introduction of the algorithm
some 70 years ago [4,17,25,26,38].

Algorithm 1 Lanczos algorithm.

1: procedure LANCZOS(A, b, k)
qo =b/|b|, -1 =0,9-1=0

(V)

3 forn=0,1,...,k—1do

4 An+1 = Adn — Br—1dn—1
5 Qp = dn+1Qn

6: An+1 = An+1 — XnQ;

7 Br = llan+1l

8: An+1 = An+1/Bn

9 end for

10: end procedure

Throughout, A will be an N X N real symmetric matrix and b a unit-norm vector of
length N. From (A, b) we obtain the eigenvector empirical spectral distribution (VESD)
defined by

N
pin(dz) = pvesp (de; A, b) := Y (b, )? 6y, (dz), (1.1)
n=1

where (A, u,) are the eigenvalue-vector pairs of A and J, is the Dirac delta distribution
centered at ¢. We use the former notation when A and b are clear from context. When
run on (A,b) for k iterations in exact arithmetic, the Lanczos algorithm (Algorithm 1)
outputs an orthonormal basis [qg, ..., qx| for the Krylov subspace

span{b, Ab, ..., AFb}

and coefficients (ag,...,ax—1), (Bo,-..,Br—1) for a three-term recurrence satisfied by
the basis vectors. In matrix form, this recurrence can be written

AQi = QiTy + Br_1ares_q, (1.2)

where e, 1 = [0,...,0,1]T and
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(1.3)
The Lanczos algorithm run on (A,b) is mathematically equivalent to the Stieltjes
procedure for computing the recurrence coefficients for the orthogonal polynomials of the
VESD gy [15]. It is common to refer to the matrix T} as the Jacobi matrix associated
with g, and from this point on, we will make no distinction between the Lanczos
algorithm in exact arithmetic and Stieltjes procedure. The k-point Gaussian quadrature
rule for py will be written as 1, and is equal to the VESD for (T, ep), where eg =
[1,0,...,0]T. That is,

k
pe(dz) = pvesn (da; Thoeg) = > (egsn)? dg, (dx), (1.4)

n=1

where (0,,,s,) are the eigenvalue-vector pairs of T. Note that (1.1) and (1.4) coincide
once k is large enough that the dimension of the Krylov subspace stops growing. This
occurs once k is equal to the number of points of support for pn. However, implicit in
our analysis, is the assumption £k < N.

When the Lanczos algorithm is run on (A, b) for k iterations in finite precision arith-
metic, the vectors [q, .. .,qy) and coefficients (@, ..., @ 1), (Bg;--.,Bx_;) generated
by the algorithm may be nothing like their exact arithmetic counterparts. Analogously
to (1.4), we define the VESD 71, for (Ty,eq) by

k

7 (dx) = prvesp (da; Tk, eq) = Z(eg§n)2 dg, (dx), (1.5)
n=1
where (0,,,5,), n = 1,..., k are the eigenvalues-vectors pairs of T}, the symmetric tridi-
agonal matrix with diagonal (@p,...,@_1) and sub/super-diagonals (B, ..., B o).

In numerical analysis, there are a number of notions of stability. Arguably, the most
common are forward stability and backward stability, which we now describe in the
context of the Lanczos algorithm.

Definition 1.1. The Lanczos algorithm run for k iterations in finite precision arithmetic
on an input (A, b) to obtain output T} is

o forward stable if T}, is near T}, the output of exact Lanczos run on (A, b), and
o backward stable if T}, is the Jacobi matrix for a nearby input (A, b,); that is, if exact
Lanczos run on (A, b,) produces T}

For the purposes of this paper, nearby is understood to mean differing by an amount
with a polynomial dependence on k and the machine precision €y, (in some reason-
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able metric). Ideally, the dependence on €y is linear, and when €macn = 0, the exact
arithmetic behavior is recovered. As with most stability analyses of the Lanczos algo-
rithm, the value of our work is not in the numerical value of the bounds themselves,
but rather in the intuition the bounds convey. For instance, situations in which our
bounds depend exponentially on k£ provide insight into problems on which the Lanczos
algorithm is potentially unstable. In line with this philosophy, we will not attempt to
optimize polynomial dependencies in k; instead, we aim to minimize the complexity of
the statements and proofs of our results.

As noted above, understanding the stability of the Lanczos algorithm in finite precision
arithmetic has been an active area of the research for the past half century. Perhaps the
most well-known work is that of Paige [34-36] (which we discuss further in Section 2.1)
and Greenbaum [18]. In addition, a number of books and notes contain extensive writing
on the topic [26,38].

Greenbaum'’s analysis, which is the preeminent backwards stability analysis of the
Lanczos algorithm, proves the existence of a nearby problem (A.,b.) such that, when
Lanczos is run on (A, b,) for k iterations in exact arithmetic, T}, is output. Here
nearby roughly means (i) every eigenvalue of A, is near an eigenvalue of A, and (ii)
uvesp (-3 AL, by) is near to un = pyesp(-; A, b). This result is very strong in that it
applies to any input (A, b). The main drawbacks are that the nearby problem (A, b,)
is of a different dimension than the original problem, and the precise definition of nearby
has a sub-linear dependence on the machine precision which is generally believed to be
pessimistic. In addition, the proofs of the result are quite technical.

Another important stability result, which seems to have been mostly overlooked by
the numerical analysis community, is Knizhnerman’s analysis of the modified Chebyshev
moments of 77, [21]. In particular, Knizhnerman shows that the modified Chebyshev
moments of /i, are near those of ;. This paper extends Knizhnerman’s work.

1.1. Motivation

Testing numerical algorithms on random matrices is a widespread practice. However,
as noted by Edelman and Rao [11],

It is a mistake to link psychologically a random matrix with the intuitive notion of a
‘typical’ matrix or the vague concept of ‘any old matrix’.

In particular, numerical algorithms run on random matrices may fail to capture the
typical behavior of the algorithm on an arbitrary matrix. The Lanczos algorithm is a
clear example of this. While the algorithm is not forward stable in general, when run on
a large random matrix, drawn from a suitable distribution, T} matches closely to T},
at least while number of iterations k is sufficiently small compared to the dimension N.
We illustrate this phenomenon numerically in Fig. 1.
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Fig. 1. Here (A, b) corresponds to a 2000 x 2000 random matrix, drawn from the Gaussian orthogonal en-
semble (see Section 5.1), and independent vector. In the large N limit, the VESD of matrices drawn from
this ensemble converge to the semicircle distribution on [—1, 1] (density o +/1 — 22). Therefore the Lanc-
zos coefficients a; and 3; from the “exact” computation (with reorthogonalization in quadruple precision
arithmetic) respectively converge to 1/2 and 0; i.e. the Lanczos algorithm exhibits deterministic behavior.
In our particular experiment we observe fluctuations on the order of 1072 around the limiting values due
to finite N effects. Remarkably, the coefficients @, and En output by the Lanczos algorithm run in single
precision floating point arithmetic without reorthogonalization are within the unit roundoff (= 10~7) of
ay and B,, at least while n is sufficiently small; i.e. the algorithm is forward stable.

The aim of this paper is to provide an intuitive explanation for the observation that
the Lanczos algorithm is stable on problems whose VESD are sufficiently regular. More
specifically, our approach extends the work of Knizhnerman [21] to prove the existence
of a measure p, near to ;ny whose moments agree with i, through degree 2k — 1, at
least when the VESD of (A, b) is sufficiently regular. In fact, under certain regularity
conditions, we show there exists a vector b, near to b such that Lanczos run on (A, b,) in
exact arithmetic for & iterations outputs T}. In other words, on a restricted set of inputs,
we provide a simpler proof for a stronger version of Greenbaum’s results. We then provide
forward stability results by analyzing the orthogonal polynomials of slightly perturbed
measures. This shows that, on many large random matrix models, the output of the
Lanczos algorithm is nearly deterministic, even when computations are carried out in
finite precision arithmetic. Our analysis is accompanied by numerical experiments and
several explicit examples.

1.2. Notation

Throughout this work, we use A(A) to refer to the spectrum of a matrix. For a function
f:U — CwithS CU, wedefine || f||s := sup,cg | f(x)|. For a vector b, ||b|| refers to the
Euclidean 2-norm and ||A|| gives the associated induced operator norm for a matrix A.
The n-th canonical basis vector, indexed from 0, is e,,. The Kolmogorov—Smirnov distance
between two measures vy and vs is dks(vi,v2) 1= sup,eg |V1((—00, z]) — va((—o0, z]).
All measures we consider will be Borel measures. Indeed, all measures will be either fully
discrete or have a continuous density.
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2. Setup and background

Let 4 be a unit-mass measure with support contained in [a, b]. We will refer to p as the
reference measure, and it will be helpful to think of 4 as near to v ; for instance p =
or p being the limiting measure for the VESD of a large random matrix ensemble. In
particular, we will typically have [a, b] & [Amin (A), Amax(A)]. We denote by p,, = p,,(-; ),
n > 0 the orthonormal polynomials for p. That is, the p,,(-; u) satisfy’

/ P )i (2 () = Ln = 4),

where 1(true) =1 and 1(false) = 0.
The modified moments of a measure v with respect to the orthogonal polynomials of
i are defined by

m, (v p) == /pn,(x; wv(dz), n > 0. (2.1)

Clearly m,, (p; ) = L(n = 0) and mo(p; pr) = mo(pens p) = mo (s ) = mo(y; ) = 1.

As mentioned in the introduction, [21] shows that the modified moments of ;1 and
i), through degree 2k — 1 are close when p is a properly scaled and shifted version of
the orthogonality measure for the Chebyshev polynomials of the first kind. A similar
statement, with some polynomial losses in k, can therefore be expected to hold for any
1 whose orthogonal polynomials have a Chebyshev series representation with reasonable
coefficients.

The idea underlying our analysis is to construct a (potentially signed) measure pu. as
a perturbation to the reference measure pu:

2k—1
pi(dz) := (1 + h(z)) p(dz), h(z):= Z (mn (Fs 1) — Mo (s N))Pn (z; 1) (2.2)

n=0

This construction ensures p, has the same moments as 7i;, through degree 2k — 1 and
the same moments as y for higher degrees. Indeed, by definition, the p,, are orthonormal
with respect to p, so

My, (s 1) = / P (@; ) (da)

2k—1

== /Pn(fﬂ; M)M(dx) + /pn (-7:; ,U/) Z (mn (/_11.';”) —my (,U/a M))pi(x; M)M(dx)

=0

! These polynomials are constructed by performing Gram—Schmidt on the monomial basis in order of
increasing degree and are normalized to have a positive leading coefficient.
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2k—1

=, (i) + > (M (g ) — my, (s 1)) /pn,(:c;u)pz(x;u)u(d»r)
=0
2k—1

=y, (s ) + Y (m (g 1) — (s ) 1( = m)
=0

Cfmaep) i=0,1,. 2k -1
my () i=2k2k+1,....

Since the moments of p, match those of ji; through degree 2k — 1, when the Stieltjes
procedure is run on s, for k iterations, T}, is the output.
Introduce the quantities

Mi(; [a,0]) i= max [pa(; 1)l fa ) (2.3)
iz (v, vgi p) == max i (v ) — m (ves ). (2.4)

Clearly

2k—1
”h”[a,b] S Z |1nn (/71«; M) - mu,(N; M)U\[/\(/’(’a [(1, b]) S ka]\A(ﬁAa 3 N)]\[/\(Ma [(1, b])a (25)
=0

so if m& (7, p; ) is sufficiently small relative to the reciprocal of kM; (u;[a,b]), then
1Pllja,p) < 1 and gy is a well-defined non-negative measure. In this case, if =~ y1y then
we also have p, ~ 1i; i.e. backwards stability.

Remark 2.1. If we take p = j1,y, then, assuming ||2[[a(a) < 1, p is the VESD of (A, b,),
where

b. = (I+ h(A))Y?b.
This is a perturbation of b in the sense that
b = bl < T (T+h(A)[l|b] < [[A(A)]-

In Fig. 2 we illustrate this approach for y = 1, where A is the same random matrix
as used in Fig. 1. Bounds for u, are derived in Sections 3 and 4.

There is a fundamental equivalence between the Jacobi matrix T produced by the
Stieltjes procedure and the modified moments of ;1 through degree 2k — 1 with respect
to some fixed measure.? The conditioning of the map from moments to Jacobi matrix is
very poor in general [14-16,29], so even if the modified moments of .y and 7, are close,

2 These quantities are also equivalent to the k-point Gaussian quadrature rule pj, for pip.
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Fig. 2. We use the same 2000 x 2000 random matrix A and fixed vector b from Fig. 1. After running
the Lanczos algorithm on (A, b) in single precision finite precision arithmetic without reorganization, we
use (2.2) and Remark 2.1 to construct a slightly perturbed b,.. Lanczos run on (A,b") “exactly” (with
reorthogonization in quadruple precision floating point arithmetic) produces a nearly identical output as
the original single precision finite precision computation. For reference, ||b — b.| & 3.6 - 107° is only a few
orders of magnitude above the machine precision in which the original computation was carried out.

this does not generally imply the corresponding Jacobi matrices Tj and T}, are close.
However, in certain situations when g is sufficiently regular, then the conditioning
of the map from modified moments to Jacobi matrices is well-conditioned [14] and we
can expect the Lanczos algorithm to be forward stable. Bounds for T}, are derived in
Section 4.

2.1. Perturbed Lanczos recurrences

To carry out our analysis, we require some understanding of the behavior of the
Lanczos methods in finite precision arithmetic. Much is known about this topic [26,38],
but we summarize only what is needed for our analysis.

The finite precision arithmetic outputs Qi and Tj no longer satisfy the three-term
Lanczos recurrence (1.2) exactly. Instead, they satisfy a perturbed recurrence

AQ; = Q1 Tk + By_iqer_1 + Fy, (2.6)

where the perturbation term F; accounts for local rounding errors made by the algo-
rithm. Since F, does not involve accumulated errors, but rather errors made over a single
iteration of the Lanczos algorithm, it can intuitively be expected to be small.
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We denote by R, and Dy, the strictly upper triangular and diagonal parts of Qg@k
so that QJ Q. = Ry + Ry T + Dy iee.

R, := strict-triu(Q} Qy), D), := diag(Q} Qx). (2.7)

Since D;, — I accounts for errors made when normalizing the Lanczos basis vectors,
we expect it to be small. On the other hand, since rounding errors accumulate in the
columns of Qy, the entries of R need not be small. In fact, in many situations R, can
have entries of size O(1) indicating a complete loss of orthogonality in the Lanczos basis
vectors.

The matrix R, satisfies a perturbed three-term recurrence

TrR. = R, Ty + 5,1 Qldrel  + Hy, (2.8)

with an upper triangular perturbation term Hy. Straightforward algebraic manipulations
of (2.6) using (2.7) show that Hj, should be expected to be small as well.
Finally, we define n; > 0 to be the smallest value such that

A(Tk) - [/\min(A) — Nk, /\max(A) + nk}- (29)

Definition 2.2. We say the Lanczos algorithm was run for & iterations with precision €,
if

||Fk|| S ||A||€18117 ||Dl.’t - I” S €lan; ”HAH S ”A”fhm; Nk S ”AHflan
where Fi, Dy, Hy, and 7 are defined in (2.6) to (2.9).

Bounds for ||F||, | Dk, and ||Hg|| appear in [34,35] and the most well-known bound
for n appears in [36]. More recently, Paige has shown a bound for 7 [32, Theorem
A.1] which, when combined with [31, Theorem 3.1] improves the dependence on k in the
bound for 7 over [36].

Proposition 2.3 (informal; see [33,36]). When the Lanczos algorithm is run for k itera-
tions on a computer with relative machine precision €pmacn < O(1/k), then

[[1Aentryll

o= {1405

row-nnz(A)} O(poly(k)emach)-
Here row-nnz(A) is the largest number of nonzero entries in a row of A and |A|entry s
the entry-wise absolute value of A; i.e. [|Alentryli;j = |[Alij]-

Paige’s analysis is far more precise than Proposition 2.3. In particular the analyses
result in explicit bounds on the powers of k and the constants in front of each of the
quantities in Definition 2.2. In Paige’s analyses, terms of order (€pach)? are typically
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discarded for clarity, but the results are essentially the same if the higher order terms
are accounted for.

Remark 2.4. It always holds that |||A|ery|| < NY/2||A][, so for uniformly sparse matrices
with up to O(N 1/ 2) entries per row, the Lanczos algorithm is run with precision e, if
€mach — O(flnn/(pOIy(k)N))

3. Backwards stability

Our first main result shows that constructing p, as in (2.2) gives a nearby problem
to uny when the reference measure p is chosen suitably.

Theorem 3.1 (Backwards stability). There exist absolute constants C, D such that, for
(A, b) with VESD pn and any unit-mass measure . with support contained in [a,b], the
following statement holds:

Suppose Lanczos is run on (A, b) for k > 1 iterations with precision €., < 1/(cCk?),
where o := max {1,2||Al|/(b— a)}, to produce i), and

supp(sv) € [a — (b — a)/(32k%), b+ (b — a) /(32k%)].
Then the (possibly-signed) measure . constructed in (2.2) is close to y in the sense that

(a) mf‘(,u*, pni ) < Do My(u; [a, b)) ke, and
(b) hlla,e) < 2k Mi(pas [a, ) (7 (s 105 48) + M2 (v, pis 1))

Furthermore, provided that ||h||ja5 < 1, ps is non-negative measure whose moments
through degree 2k — 1 exactly match those of 1.

The majority of the remainder of this section is devoted to proving Theorem 3.1.

Asnoted in Remark 2.1, if p = pu, s is the VESD of a nearby problem (A, b..), which
is the same dimension as the original problem (A, b). In this case mﬁ(/zN, unipn) =0
and we have the following corollary:

Corollary 3.2. Under the assumptions of Theorem 3.1 (with 1 = pn), and assuming €.,
1s sufficiently small, there exists a nearby vector b* satisfying

”b - b*” < 20Dk4j\[/;(/4’/N; [a7 bDQGIa‘uy

such that the Lanczos algorithm run on (A,b*) for k iterations in exact arithmetic
produces [i;,.

This implies backwards stability in the classical numerical linear algebra sense if
My, (11iv; [a, b)) has polynomial growth in k. If iy is sufficiently uniform relative to k
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then the orthogonal polynomials through degree k are easily shown to have polynomial
growth using standard techniques; see for instance [14, Lemma 6].

Lemma 3.3. Suppose, supp(p) C [a,b] and, for some K >0 and k > 1,
wlol) > K, Yoy elmb: eyl > (- a)/(16K2). (3.1)
Then,

M (s [, B]) < f—f_(

In some situations, the condition (3.1) can be verified directly for p = 11n. However,
it will typically be easier to assume the Kolmogorov—Smirnov distance dkg(jin, fioo)
between 1 and some sufficiently regular measure pio is small.

Assumption 3.4 (regularity of py ). Suppose oo is a measure with support [a,b] such
that, for some L,y > 0,

poo([,yl) = Llx —y[7,  Va,y € [a,b], (3-2)
that for some k > 1,
supp(/in) C [a — (b — a)/(32k%),b+ (b — a)/(32k2)],
and that for some a > 0,
dis (1, poo) < N7 (3.3)
In Section 5 we will discuss several common random matrix ensembles for which

Assumption 3.4 is satisfied in a probabilistic sense.
When Assumption 3.4 is satisfied, the following result gives us a bound for

A/\'f;‘g(/lj\r; [a,b])

Corollary 3.5. Given Assumption 3./, suppose

b—a [/ LN“ 1/(27)
k< .
=V 32 < 3 )

Then, for [a’, V'] :=[a — (b — a)/(32k?),b+ (b — a)/(32k?)],

/2
My(pnsla’,b']) < — ( 32 ) k7.
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Fig. 3. Maximum value of orthogonal polynomial p,(-;pun) over [—1,1] and the maximum value in the
N — oo limit (==-), where ;i is drawn from the same random matrix model as in Figs. 1 and 2. For
each n, N, the violin plot gives the distribution of ||p, (-; ;n)ll{=1,1], with the 5%, 50%, and 95% quantiles
marked explicitly. Note that for k growing sufficiently slow with N, the maximum value of p,, has polynomial
growth for all n < k.

Fig. 3 shows the growth of the orthogonal polynomials p,,(-; 1) with n corresponding
to the same random matrix model used in other figures. As expected, as IV increases, the
degree n for which the orthogonal polynomials of ;1x grow like those of i, increases.

Our forward stability analysis in Section 4 is based on a perturbation to a measure
with a sufficiently nice density. Assuming g, is sufficiently nice, we apply Theorem 3.1
with y = fieo. This requires bounding My (poo; [a,b]) and me (oo, fin; 14N ).

Corollary 3.6. Given Assumption 3.4, suppose that for some ¢ > 0

b—a v/ (4+27) C\/ZNa 1/(2+7)
k< _ .
(%) ("%)

Then

2 /16 \"? R
]\'[/-'(,uoo; [aa b]) < ﬁ <b — CL) k’ya mﬂ (/1'4\‘3 .uoo;,U‘OO) <ec.

The proofs of Lemma 3.3 and Corollaries 3.5 and 3.6 are given in Section 7.1. Stronger
bounds can be obtained in many situations. The stated bounds are simply meant to give
a simple sufficient condition for the orthogonal polynomials to have polynomial growth
with respect to k.

3.1. Bounding the modified Chebyshev moments

We will make frequent use of the well-known Chebyshev polynomials of the first and
second kinds. These families of polynomials are respectively defined by the recurrences
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To(z)
Uo(CL‘)

e
—
=
Il
R
%
—
&
Il
[\~

tTy—1(x) — Th—2(z), n =2,
xUnfl(I) - Un72(x)v n > 2,

I

1
1, Ui(z) = 2z, Un(z) =

[N}

and are respectively orthogonal with respect to the measures pur and puy, each supported
n [—1,1], defined by

1 1 2
2 =212
pr(dz) == - mdx, pu(dr) = - 1—22da.

The Chebyshev polynomials of the first kind also satisfy the identities
Ton(z) = 2T, (2)? — 1, Tong1(z) = 2T (2)Tpyi(2) — 2, n > 0. (3.4)

To prove Theorem 3.1, it essentially suffices to show that the modified moments of
the finite precision and exact arithmetic computations are near. We begin by providing
a slightly modified version of [21] for u = ur to allow for eigenvalues of A (and therefore
T}) which may be just outside of [—1, 1].

It is well known that ||7y[|[-1,1) < 1 and [[Up||{-1,1) < n + 1. Similar bounds hold on
a slight extension of [—1,1].

Lemma 3.7. For any polynomial p of degree n, with n:= 1/(2n?),
[Pl (=1=n,145) < 2llplI[=1,1-
This implies a bound for matrix Chebyshev polynomials of A and T}.

Lemma 3.8. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
lan < 1/(5k%) and that |A|| < 1+ 1/(4k?). Then, for alln < k,

I NTW (Tl <2, (U(A)]L U(T)] < 2(k +1).

Proof. For k > 1, we have that (1+1/(4k?))(1 4 €1an) < 1+1/(2k?). Thus, since ||A| <
14 1/(4k?), our assumption on €}, and Definition 2.2 imply A(Tx) C [~1—1/(2k?),1+
1/(2k?)]. The result follows by applying Lemma 3.7 and the fact || Uy ||(—1,1] < n+1, since
the operator norm of a matrix function of a symmetric matrix is simply the maximum
value of the function’s absolute value evaluated at the eigenvalues of that matrix. O

We will also use the following fact about perturbed Chebyshev recurrences. This is
a special case of a more general formula involving the associated polynomials of some
family of orthogonal polynomials.

Lemma 3.9. Suppose that

do =0, dy = fo, dp(x) = 2xdy_1(2) — dp—2(x) + 2fn_1, n > 2.
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Then, introducing the notation U_;(xz) = 0,

dn(‘r): f0+2ZUn z fz 15 n 2> 0.
=2

Lemmas 3.7 and 3.9 are proved in Section 7.2.

The next several results and the accompanying proofs follow [21] closely. We include
them so that our analysis is self-contained and in order to compute explicit constants.
In our proofs, for notational brevity, we define and use the vectors:

t = Tn(A)b, E” = Tn(Tk)eo, d]2 = tn — Qkfm r,:= R/,.En. (35)

The first technical lemma we need is a bound on how well polynomials in A applied
to b are approximated by the Lanczos quantities. To the best of our knowledge, a similar
bound first appeared in [7] to analyze the behavior of the well-known Lanczos method
for matrix function approximation; see also [27].

Lemma 3.10. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
€lan < 1/(5k%) and that |A|| < 1+ 1/(4k?). Then, for alln <k — 1,

||Tn(A)b - Qan(Tk))eOH < 91{251&11-

Proof. Since k > 1, using the notation in (3.5) and recalling the perturbed recurrence
(2.6), we have

=b - Qreg =0, d, = Ab - Q;Treo = (Brar—1e;_, + Fr)eg = Fit.

the definition of the
Chebyshev polynomials, and the perturbed recurrence (2.6) to write

For n = 2,...,k — 1, we can use the definitions of t, and t

n?

(2At -1 n 2) (26kaEn—l - Qkﬁ{n—z)
= Q(Atn,fl - (AQk - quk,16£71 - Fl\‘)Enfl) ( —2 6 En 2)
d,

= 2<Atn,71 - (AQkEn,fl - ﬁqu—le—IL—flEn,fl F/ n— 1)) -2

Note that (T)? has half bandwidth 4, so (T})? is zero in the bottom left entry provided
i < k—1. Since T} is a degree i polynomial, this implies that e} ,t, = e} T;(Tx)ep =0
for any ¢ < k — 1. Since n < k, applying this with ¢ = n — 1 we find

dn, = 2Adn,71 - dn,fZ + 2Fk‘fnyfl'

Lemma 3.9 with x — A, d,(z) — d
expression

., and f, — Fyt, allows us to obtain an explicit
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d, =Un 1 (A)Fity+2> Uni(A)Fit, . (3.6)

i=2
Since €., < 1/(5k%) and ||A|| < 1+ 1/(4k?), if £ < k — 1, then Lemma 3.8 gives the
bounds
1T (AN < 2k, €]l = [ Te(Tk)]| < 2.

Using Definition 2.2 and the assumption k£ > 1,

||Fk|| S ||A||€1zm < (1 + 1/(4k2))€la\11 S (17/16)61'()11 < (9/8)€lan-

Finally, we apply the triangle inequality to (3.6), double the first term for convenience,
apply the above bounds, and use the fact n < k to obtain the bound

n
Il <2 IUn—s(AIFLIIE; ]| < 20(2K)((9/8)€10u)(2) < 9k%eran. O
i=1

If Q; had nearly orthonormal columns, we could use (3.4) to upgrade Lemma 3.10 to
a bound on the modified moments produced by the Lanczos algorithm. However, since
we do not have such a guarantee, we require a bit more work. We begin with a lemma
akin to [21, Lemma 1].

Lemma 3.11. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
€lan < 1/(5k?) and that |A|| <1+ 1/(4k?). Then, for alln <k —1,

IR. T (Tx)eoll < 9| Al[E€ran.

Proof. Since R, is strictly upper triangular, again using the notation in (3.5) and re-
calling the perturbed recurrence (2.8), we have

ro =0, r, =R Treg = (TyRi — B,_1QLaref_, — Hi)eg = —Hyt,.

Analogous to the recurrence used in the previous proof, but now using the perturbed
recurrence (2.8), for n = 2,... k — 1 the r,, satisfy the perturbed three-term recurrence

r, = 2R, Tyt ; — Rit,,_,

= 2T R — Bu 1 Qrawes_, — Hp)t, , — 1,

= 2(TxRit, | — Se 1Qlaref 1, | —Hit, |)—r, »
_o— 2Ht,, .

= QTkrn—l - Iy

As above, using Lemma 3.9 with z — Ty, d,, = rp,, and f,, — —Ht

n?
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n
v, = —Un 1(Tp)Hpty — 2 Up_i(Te)Hyt, .
i=2
As before, for £ < k — 1, Lemma 3.8 gives bounds
[U(To)ll <2k, [t = | Te(Tw)ll <2,
and Definition 2.2 and the assumption k > 1 give the bound

||Hkt|| S ||A||€lan < (1 + 1/(4k2))flan < (17/16)61811 < (9/8)618‘11'

We therefore obtain

e 23 Ui (TR)IIHLNE || < 20(2k)((9/8)e1n)(2) < 9K eran. O
i=1

We are now prepared to apply (3.4) to bound the modified Chebyshev moments. For
clarity, and following [21, Lemmas 2 and 3], we split this into a few steps. Note that the
maximal degree of the matrix-polynomials in the quadratic forms we analyze are 2k — 2.
Owing to the fact that T}, is like a Jacobi matrix, one might expect the maximal degree
should be 2k — 1, and indeed, in [21] a similar results for polynomials up to degree 2k — 1
is proved. This is not needed for our analysis.

Lemma 3.12. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
€lan < 1/(5k?%) and that |A|| < 1+ 1/(4k?). Then, for all m,n <k — 1,

Ib" T (Tk) QL Qi T (T )b — €4 T (T T (T )eo| < 37k €.
Proof. Using the notation in (3.5) and the definitions of R;, and Dy,
6, QiQut, =t (R + R, +I1+ (D, —I))t,,.

From Definition 2.2 we have |D; — I|| < €.,. By assumption, ||A| < 1+ 1/(4k?) and
€lan < 1/(5k?), so for all £ < k — 1, Lemmas 3.8 and 3.11 respectively give bounds

[l = 1Te(T)l <2, |Ret,ll = |RxTe(Th)eoll < 9k eran.
Combining these, we find,

|€m,6;lc—6kfn - EIY,ENJ < ||E)71||”R/\¢En” + ”En””RkEm” + HDA' - I””EmHHEn”
S 2(9k2€1an) + 2(9k2€1an) + 610‘11(2)(2) S (36k2 + 4)513‘11-

Since k > 1, 36k> +4 < 37k%2. O
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Lemma 3.13. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
€lan < 1/(5k%) and that | A|| <1+ 1/(4k?). Then, for allm,n <k —1,

b T, (A)T, (A)b — e T (Ti) T (T )eo| < 127k%€ 1.
Proof. Using the notation in (3.5),
t;l;l 77 - (dm + thm) ( n + QkEN) dj;? dn + d;I;IQkE71r + E;I;IQ d + t;l;l QZGkENV'

Thus, applying the triangle inequality and submultiplicativity of the operator norm,

‘tIIL n t;[I_Lt7I| < ‘E'IILQ-]CI—thII t;I;LtVI‘ + ||dIIL”||QkEH|| + ||d”||||6kE7H|| + ||d771||||d”||
(3.7)

By assumption, ||A|| <1+ 1/(4k?) and €., < 1/(5k2), so for all £ < k — 1, Lemmas 3.8
and 3.10 respectively give bounds

[l = 1Tu(Te)ll <2 |ld]l = [ Tu(A)b — QuTn(T)eoll < 9k?eran.
This implies 9k%€1,, < 2, so we find that
1Qut,ll = lld, + toll < lldyll +lIts]l <2+2 = 4.
Under these same assumptions, Lemma 3.12 gives a bound
It,, QLQxt, —t).t, | < 37k%ep,.
Plugging the above bounds into (3.7) we find

[tht, —t]t, | <37k + 9k%e1an(4) + ke (4) + (9K%61.,)(2) < 127K%61,,. O

A bound for the modified moments with respect to the Chebyshev polynomials, akin
to [21, Theorem 1], is now immediate.

Theorem 3.14. Suppose that Lanczos is run on (A,b) for k > 1 iterations with precision
€lan < 1/(5k%) and that ||A|| < 1+ 1/(4k?). Then, for alln < 2k — 2,

‘ [T an — [ 1@

Proof. By definition,

‘ [ ru@nntan) - [ T @

< 381k%€1.n.

=|b"T,,(A)b — e} T,.(T})eo|-
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First, suppose n = 2i for i < k — 1. As noted in (3.4), T,(x) = 2T%(z) — 1. By
assumption b'b = eley = 1. Therefore, we can apply Lemma 3.13 to bound

b T, (A)b — ] T (Tk)eo| = |2t t, — 2] t;| < 2(127k%e1.,) = 254k%e ...

Now, assume n = 2i + 1, i < k — 2. Then T,,(z) = 2T;(x)T;4+1(z) — . Then, since
T1(z) = z, again using Lemma 3.13,

IbTT,,(A)b — e; T, (T )eo| = (2t t,,, —b"Ab) — (2tt,,, — ej Tre)|
<206/t —t/ 6|+ [bTAb —ejTyeo|
< 2(127K% €1y + 127k €1, = 381K% e,

The result follows. 0O
3.2. General modified moments via a change of basis

When the orthogonal polynomials p,,(-; 1) have reasonable Chebyshev series, then a
statement similar to Theorem 3.14 holds for the moments with respect to .

Corollary 3.15 (Stability of moments wrt. ). Let juy be the VESD for (A,b) and u a
unit-mass measure with support contained in [—1,1].

Then, there exist absolute constants C, D such that, whenever Lanczos is run on (A, b)
for k > 1 iterations with precision e, < 1/(Ck?) to produce Ji, and supp(yn) C
[~1—n,1+n] where n < 1/(16k2), then m% (1w, fig; 1) < DMy (p; [~ 1, 1)) k3eray .

Proof. Note that [ T,,(z)?pur(dz) = 1/2 for n > 1. We can therefore decompose p,, (x; 1),
n > 0 into Chebyshev polynomials of the first kind by

Pn(ﬂf; /1') = Cn,OTO(-Z') + Cn,lTl (x) +--+ Cn,nTn(x)a
where the coefficients are obtained by
Cn = /pn (x; p)pr(da), Cnyi = 2/]),1,(x;u)7}(:v)uT(dx), 1<i<n.

Note that for all n < 2k — 1 and i < n, since || T;|—1,1 < 1,

|enil < 2/ |pn (23 )| [ To(@) |pr (d) < 20 (p; [=1, 1) (3-8)

Assuming €1, < 1/(5(k +1)?) and supp(un) C [-1 —n, 1+ n] where n < 1/(16k%) <
1/(4(k +1)?) we can apply Theorem 3.14 and (3.8) to get the bound, for n < 2k — 1,
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o (v 1) — M, (Fis )| =

Zcm (/ Ti(z)pn (de) — /Tz(f)l_’k(d’ﬁ)>‘

i=1

<Z\cm

< AkMy (5 [—1,1])381(k 4 1),

[ T@ntan) - [ Tiwm @)

Finally, since k > 1, 1/(5(k + 1)2) > 1/(20k?)W and 4(381)k(k + 1)? < 6096k>. Setting
C =20 and D = 6096 establishes the result. O

Clearly a better bound could be obtained directly from the coefficients® ¢, ; rather
than in terms of the maximum value of the p,(-; pt). However, we are more interested in
the existence of bounds which deteriorate with polynomials of & rather than the precise
dependencies on k, and the present approach results in slightly simpler statements and
proofs.

3.8. Proof of backwards stability

We are now prepared to prove Theorem 3.1. The approach is straightforward: trans-
form [a, b] to [—1, 1] and then apply Corollary 3.15 to get a bound for the moments. This
will give us a bound on the size of h in (2.2).

Proof of Theorem 3.1. If [|A[[, 5 < 1, then as described in Section 2, i, is a well-defined
positive measure whose moments agree i, through degree 2k — 1.

Define
" 2 b+a ~ 2 b+a
A = A——1 a; = a; — )
b—a b—a’’ @ b— aa b—a
~ 2 _ N 2 N 2 2
= . F = H; .= H N 1=
61 b_aﬁzﬂ k b_ k b—a ks Nk b—a,]]
Then,
AQy = QiTy + B, drer_1 + Fu,
TiR, = Ry Ty, + B, 1 Qiazer | + Hy,
A(Tk) g [)\min (A) - ﬁkta )‘max(A) + ﬁk]
where
92/A 2  9A
N T T A
—a —a b—a

3 The coefficients ¢p,; define a so-called connection coefficient matrix [46]. Since we are always interested in
an expansion in the Chebyshev polynomials of the first kind, we do not introduce this concept in generality.
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Thus, (Tk, Q) can be viewed as the output of the Lanczos algorithm run on (A, b) with

precision

. 2Af _
€lan := MaX ¢ 7—, 1 €lan = O€lan-
b—a

Define

o) =2 (o) etd =10l

and let 4n and & be the pushforward measures of uny and p, respectively, under ¢. That
is, for any measurable function f,

[ t@din@) = [ eedinta), [ r@dut) = [ )

This implies modified moments of iy with respect to the orthogonal polynomials of f
are the same as those of ;i with respect to p. Indeed,

Pu(t(@); 1) = pr(@; p)
=)
my, (b ) = /pn(x;u)d/w = /pn( (z); p)dpn = /pn(fv;/l)dﬂw = My, (AN f1)-
Moreover,
supp(fin) C [—1 — 1/(16k2),1 + 1/(16k>)].
The assumption on e}, ensures é,, < 1/(Ck?), so Corollary 3.15 gives a bound
s (T, s 1) = oy (g, fiovs 1) < DM (s [, b)) > ra.

Since the moments m,, (p«; p) = m,, (fi;,; 1) for n < 2k — 1, we get Theorem 3.1(a). Using
the triangle inequality we also have

mE (T, o5 1) < W5 (T fi0v; 1) + 0 (i, 5 0).
From (25) we have [/l < 2km iy, i 1) M (s [a, b)) Thus,

7l fasp) < 280y (s [a, b)) (i (g, fovs 1) + Mo (e, 15 1)

Replacing €1,y with ey, gives Theorem 3.1(b). O
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4. Perturbation theory for recurrence coefficients

We will now show that T} is close to T}, at least when 1 is near a sufficiently nice
measure jio.. Our forward stability results, which are stated at the end of the section,
are derived by applying Theorem 3.1 with ¢ = p~ and then using a Riemann—Hilbert
approach to analyze perturbations to the orthogonal polynomials of fi.

The conditioning of the map from the modified moments of a measure to the corre-
sponding recurrence coefficients was studied in [14]; see also [15, Section 2.1.6]. However,
it is not immediately clear how to apply the formulas and bounds to the situation in
which k grows as €, tends to zero.

To study such a scaling, we use an alternate approach. As a matter of technical
convenience, we assume that p has a density with square root behavior at the edges.

Assumption 4.1. Suppose that supp(p) = [a,b] and that p has density

p(z) = g(2)V/ (b= 2)(z — a),
where g is positive on [a,b] and analytic on an open set that contains [a, b].

Note that through the obvious affine transformation, we now assume, without loss
of generality, that supp(u) = [—1,1]. We show that when g is perturbed slightly, the
recurrence coefficients for the perturbed measure are near those of p. This culminates
in Theorem 4.7, a forward stability result for the Lanczos algorithm given at the end of
the section.

Suppose p satisfies Assumption 4.1, [a,b] = [—1,1] and let 7,(2; 1) denote the n-th
monic orthogonal polynomial. Consider the matrix-valued function

. _ Tn (25 /'5) Cn, (Z; M)
Yanlzi) = {vn1(u)ﬂn1(zsu) mo(@en 1z "2

where

i) = g [ I ), a) = =2l )

2ri r—z

For a function y, analytic in C \ [—1, 1], define the boundary values

yE(2) = liﬁ)ly(z tie), ze[-1,1],

provided this limit exists.
With this notation in mind, Y, (z; 1) has the following properties:

« Y (zip) =Y, (5m) Ll) p(lz)] ,ze =11



212 T. Chen, T. Trogdon / Linear Algebra and its Applications 682 (2024) 191-237

o Yo(z;p)27 "3 =1+0(z7Y), 200, o3:=diag(l, 1),
o detY,(z;u) =1, and
e Y, (z;u) is analytic in C \ [-1,1].

This is the so-called Fokas—Its—Kitaev Riemann—Hilbert problem [13]: The problem of
finding the sectionally analytic function Y,, from the stated conditions. References [6,
23] provide a comprehensive introduction. It has been used in many contexts, both
computationally and asymptotically, see [6,30,44], for example. But it can also be used
for perturbation theory [9]. The Riemann—Hilbert representation play a role similar to
the contour integral representation of classical orthogonal polynomials and allows one
to estimate quantities related to the polynomials (e.g., recurrence coefficients) under
consideration. And even in the classical cases, it can prove to be a more powerful tool.
Below we will use Riemann—Hilbert theory to estimate Y;,(z; u) which, via Y,!(11) below,
gives estimates on the recurrence coefficients for orthogonal polynomials, i.e., the output
of the Lanczos iteration.
Note that the orthonormal polynomials p,, satisfy

Tn (23 1) 2 / 2
(2 ) = , ("3 = [ ™ dz).

The recurrence coefficients for the orthonormal polynomials are (a;());j>0, (85(1))j>0
such that, with S_;(u) := 0 =: p_1(z; ),

pp (T3 1) = an()pn (T3 1) + Bu ()P (@5 1) + Br1(1)pn—1(2; 1)

These recurrence coefficients can be obtained directly from Y,,(z; u) via the formulae

[6]

an(w) = [YO ()]0 — 1Y (1)1,

(1)
2(0) = % YO ()]s YD (),

where Y%l) is the unique, z-independent matrix such that
Yo(z0)z " =T+ YP () +0(72), 2 o

Let?

|~

4 In the general case where [a,b] # [—1, 1], one would set ¢ = %.
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One considers

Su(z; 1) = ¢ "7 Y (2 u)b(2) "0,

where ¢(2) = z + (2% — 1)1/2 and the branch of the square root is chosen such that it is
analytic in C \ [—1, 1] and positive for z > 1. Then it follows that [22]

Su(zip) =TI+SP ()2 +0(z7%),  z— o0

where SSP(/,L) = O(1) as n — oo. Then, we see that ¢(z) = 22(1 + O(z2)). From this

we obtain the expressions

S () =c YD (e, YD (p) = 28 () ",

n

We are concerned with the case where . is a relative perturbation of u. Suppose
(de) = (1+ h(@)p(a)de,  |h(z)] < L. (4.1)

This encompasses our definition of u, in Theorem 3.1. Now, consider

v

Yn(z;ﬂ> = cinae'Yn(Z; M)a Xn(Z; Hy ,u*) = Yn(zaﬂ*)?n(z;u)il'

Then for z € [-1,1],

XH (25 ) = Y (2 1) Y (230)

=Y, (2 p1) _(1) 1 +h(f))p(z)] Y ()™
=Y, (2 ) _(1) (1+h(f))p(z)] é _pl(z)} Y, ()7

Y, (2 ) (1) h(z)p(z)]Yn(zsu)1

=X (21 ) Y (3 >[5 PO oy
(i) [ L+ B0 Y i) [ | Y.
Define
Mo (e = Yo Gein) | b i (42)

_ {0 ¢ r(zp) ] [ "Y1 (1) Cp_1 (25 1) C"cn(zm)]

— Y1 ()1 (zip) ¢ (2 )



214 T. Chen, T. Trogdon / Linear Algebra and its Applications 682 (2024) 191-237

_ —Yn ()0 (25 )T —1(2; ) C*Z"Wn(z; M)Q

—2 2 ()1 (z ) Y ()1 (2 )T (20) |

For a piecewise-smooth contour I' C C, and matrix-valued functions X : I' — C2*2
we use the norm

1/2

Xl = | [ IX@IR el |
r

where | - || denotes the Frobenius (Hilbert—Schmidt) norm on C?*? and L*(T") is used
to denote the space of measurable functions such that this norm is finite. Define the
Cauchy operator

- . . 1
Cu(z) = IEIJ%ICU(Z —1ie), Cu(z) = 5

|
"‘\»—A
e
—~
[EN
w |~
o,
N\

On L%([-1,1]), C~ is bounded with norm one [1].

Lemma 4.2. Suppose Assumption j.1 holds and that h is as in (4.1). If

A(n) = An; p, ) 2= sup [h(2)p(2) My (z; p)|[F < 1
ze|—1,

then there exists u, € L*([-1,1]) such that

A(n) A(n)v2
. w) = n = 5 n 2([— S ’
X (25 py p1x) = T+ Cup(2) I+O<1+|Z|> [l 22 -1p) 1— A(n)

uniformly with respect to z on closed subsets of C \ [—1,1].
Proof. Due to the analyticity of X,,, it follows from the theory of Hardy spaces [10] that
there exists u,, € L?(supp(u)) such that X,,(z; i, ) = I+ Cu,(2). Then the Plemelj-
Sokhotski lemma gives that u,(2) = X5 (2; i, s) — X, (23 i, p1s). This is a solution of
the singular integral equation

u, — (C"u,)hpM,, = hpM,,,
where the operator

u—u— (CTu)hpM,,, (4.3)

is near identity if A(n) < 1. Thus u,, is the unique solution of this integral equation and
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A(n)v?2
lanllzz2(-1,1) < m

The claim then follows from the expression
Xn(z;phyp) =T+ Cuy(z). O

This lemma is useful when Theorem 3.1 applies. And, as we do in the following section,
it can be used to compare both T}, and T}, to a limiting three-term recurrence relation
satisfied by limiting measure jio.. But Theorem 3.1 with €., = 0 and u = o gives

[ hooll{— 1,1 < 2D Mj(froo; [—1, 1) kmi (1, fhoo Hoo)s (4.4)

where hy, is such that (1 + heo)pioo has its first 2k — 1 moments match with pn. And
this allows one to estimate the behavior of the orthogonal polynomials with respect to
pn - In the context of Lemma 4.2, recall that, for simplicity, that [a,b] = [—1, 1] and that
T is a contour that encircles [—1,1] that is a distance at least v from [—1,1]. Then if
u,(s);; denotes the (i, 7) entry of u,(s),

AN, fhoos JIN)
1- A(n7 Mooy IJ/N)

I (Dijll 21,1 < V2 = [[Can()ijll L= ()

< V2 A(n, poo, pn) z/’1|1"\1/2,
1_A(na.ufooalj‘N)

and therefore

V8Ll A(n, proo, i)
v

X (45 Moo, oo S\/§+ Cuy,| e S\/§+ .
X (45 oo s i) | Los (1) [Cun Lo (r) NCRTTY

And since det Xy = 1, the same estimate holds for X;VI. Now, consider Theorem 3.1
with p = g and suppose that [|[h||s4)y < 1. We wish to again use the Fokas-Its-Kitaev
Riemann—Hilbert problem, but now it must be modified to handle discrete weights. The
reformulation we use can be found in [9], and it involves a jump condition on a contour
that encircles the support (with counter-clockwise orientation) of the measures under
consideration. Instead of the jump matrix being of the form

o

for p(dz) = p(x)dz it becomes, for z € T,

1l p(dz)
|:]' T 27 122]_

0 1
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Define

and we note that ¢ = 1/2. If uy is the VESD for (A, b) and p., is the VESD for (A, b.)
as in Remark 2.1 we find

Xz s i) = X5 (25 v, ) [T+ 7 (2)My (23 u0)] - 2 €T,

where the * superscripts denote the limit to I' from the interior/exterior of T'. Then, we
can write

~

Y, (25 pn) = X (25 oo, in) Y (25 fioo)-

Therefore

—1

Xz s ) = X5 (25 v s foe) {I + 1 (2) X (25 foos 11N ) My (25 oo ) X (23 foos ) J
M, (z5un)

We then use Theorem 3.1 to estimate rx on I' by

k My (5 [-1,1))

— (M (tey v ) + mp (s 15 1))

lrn |l Loe(ry < Hh||A(

- 2my
And here h is such that p. = (14 h)uy has the same moments as 7, the finite precision
Lanczos measure forn =1,2,...,2k — 1.

Assumption 4.3. Suppose Assumption /.1 holds, let fis be the push-forward measure of
oo under x — == (;E - H—“), and let p be the corresponding density. Suppose further
that

(a) there exist E,5,K > 0 such that for all k > K, maxp<k41Sup,epq ) |/(2)Mn(z;
fiso)lF < EK®, and
(b) T is chosen such that there exist E',§', K' > 0 such that for all k > K’,

1
nrglzvxicl sup ML, (2; fioo)|lF < E' k', v> =

Remark 4.4. In this assumption, we want to be able to consider v = O(k™2) because
that is the scale on which orthogonal polynomials grow polynomially, see Lemma 3.7.
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Lemma 4.5. Fix oo with support [—1,1] and constants L,«, E, E’,§,8'. Suppose Assump-
tion 3.4 (with parameters L,y = 3/2,«) holds for pn and po and that p = s satisfies
Assumption /.3 (with parameters E, E’,§,6'). Suppose further that

k= 0(N2a/(8+5)), Elan = 0(k7(9+5/))’ N oo,

Then, for p. as in (4.1),

X =I+0 ElankSJﬂs, N
: L) = Bl I — 00,
(25 Ny pox) T+ 00

uniformly on sets bounded away from T.

Proof. We point out that Assumption 4.1 forces v > 3/2 and v = 3/2 is always possible.
Recall that a = —1 and b = 1. If we set ¢ = N7 and assume

1 v/ (4+27) \/ZNozfﬁ 1/(2+7)
=) ()

8 32

. , (4.5)

then Corollary 3.6 gives the bounds
My (oo [—1,1]) < i87/2k7, M (U foo; floo) < N 7P,
VL
With €,, =0, t = ftoo, Theorem 3.1 then implies
1hoolli-1.1) < 2k My (phoo; [=1, )M (1 fhoo} foo)-
Here o < 2 since ||An|| < 2 by Assumption 3.4. Using Assumption 4.3 we find a bound

Ak proc, i) = sup oo (2)[[1p(2) M (25 pioc ) [l o = O(KHHTHN 7). (4.6)

z€[—1,1]
Assuming €., < 1/(0Ck?), = pn, we revisit Theorem 3.1 which then implies,
[hll—1.1) < 2D M, (pns [—1,1]) %k €lan.

Again o < 2. Provided that A(n; peo, pn) < 1, we estimate

N X (5 oo s 1N )My (5 fo0) Ko (5 oo, in) [ e () <

<1+ 2/[T]  A(n, fioo, v )>2||h||[17

1]
M, (-; PN
v 1 fA(n,,uoo’/Jn TV || n( ;/J/oo)HL ()

(4.7)
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Since the Riemann—Hilbert problem has a jump condition on the contour T', (4.3) is
replaced with

u—u— (Cru)ryM,(:; pun).

And to obtain a near-identity operator, we require that (4.7) is small. Here Cr is the
Cauchy operator on the contour T' and it, operating on L?(T'), may have a norm larger
than one [1] but we may choose I" so that the norm is bounded by 2. Since v = 3/2,
condition (4.5) is stronger than

1 LN 1/(2v)
k< - ,
<:(5)

which, with Corollary 3.5, gives the bound

4

< —167/2k7.
~ VL

Mi(pv; [=1,1])
Suppose
k— o(NB/(3+"/+5)), €lan = O(k7(6’+27+6)). (4.8)
Then,

A1, pos, i) = sup B()p(2)Mi(z; 11x)][oo = O FTHNF) = o(1).
ze|—1,

The assumption on k in (4.8) implies k = o(N?/(1 +~ + §)) so that, using (4.6),

1 A(n, poo, i) TRV
- o0 = o(K*TONT) = o(1),

and therefore
(4.7) = O(lflqank‘y”“‘l) _ 0(618‘11k6'+27+6).
We can conclude that
u, — (Crup)rNMy (55 pun) = v M (55 )

has a unique solution which satisfies ||,/ 2y = O(e1an k9 t2716) and X,, = I+ Cru,.
Recalling that v = 3/2, to balance our constraints on k, we set

g

(16—!—25 )1 9+ 26 a—B 2a-—pB) 28 3
7 )

D —— = _— —— = = = .
7(9 + 26 16+ 20 2+ 7 9+20 3+~7+0
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Thus, both conditions relating k& and N are satisfied k = o N2*/(16+20))
O(Na/(8+5)). O

4.1. Recurrence coefficients

The residue at infinity of S,, can be computed by first defining XV uniquely by

X (2, ) =T+ X ()21 +0(272), 2> o0,

and using

-~

"IV (25 )z T = 9K (25 1 1) Yo (25 1) 28

= ("O3X,, (23 1, f1e) € T3COIY (2 ) 2B

- (I "X ()T 0(2_2)>

b
(I + 271 [c”“’SSS)(,u)a:_""3 - %nag] + 0(2_2)>,

and therefore
b
Yng)(/J*) — (o3 <X£Ll)(,u,'u*) 4 S,(,Ll)(ﬂ) _ %ndg) o

Then, we may express the recurrence coefficients for p, in terms of those for u, and XEJ),
via

an () = o (1) + (XSO (gt )]0 = XS (1t )],
B () = X (11, 1) + S ()] 12X (1, ) + S50 (1)]2,0
= Bn(1)® + X (1, 111,285 (1)) 2,1 4 XD (s 11)]2.1 S (1)]12
+ X (pts )] 1,2 (X8 (1 p20)] 2,1
To obtain the optimal scaling of quantities with respect to supp(u) = [a,b], it is

convenient to rescale first so that the support of p is transformed to [—1, 1], and then
undo the scaling after estimates are obtained. This gives a perturbation result.

Corollary 4.6. Given the assumptions of Lemma 4.2, let i and [i. be the push-forward

measures of pu and [, under T +— ﬁ (ac — HT‘I), respectively. Suppose that A(n) =

A(n; fi, i) satisfies A(n), A(n+1) <1/2. Then

| (1) — an ()] < 7 H(A ) + Al + 1)) (b~ a),

Ba(ae)? = Bu(w)?] < 27" [max ISP ()] A(m)(b - a)? + 7 2A(n)2(b - 0)*
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Proof. Lemma 4.2 applies. We work with the expression

Then if u,(s);; denotes the (4, j) entry of u,(s),

I (sl zr =11 < V20 ()il n2=1.1) (4.9)
and therefore

1 A(n)

X(l) [1 A* mx<_7-
IS ) < 7= A

The same estimates hold with n replaced with n 4+ 1. The claim follows by recalling that
max, ||S£71)(ﬂ)|| < oo and that

b— b b— b
() = “5 () + T an() = T ) +
b— bh—
Bu(pr) = —5—Ba(R), Bulp=) = 5= Bu(fi). D

We now establish our forward stability result.
Theorem 4.7 (Forward stability). Suppose supp(fico) = [a,b] and let
F={zeC:1+k'=|z+Vz—-1Vz+1]}.

Suppose the assumptions® of Lemma /.5 hold for T and fise, in, the push-forward mea-
sures of oo, N, TEspectively, under x — % (ac — Z“LT“) Suppose further that

k = o(N®/(3+3)) €lan = o(k_(g""s/)), N — .

Then
- )| = — _p8'+9
Joax fan () = an(fig)| = O ((b a)eank ) . and
nrggjr(l |Bn(,uN)2 - Bn(ﬁk)Q‘ =0 ((b - a)2‘cla‘nk5/+9> 5 N — oco.

Therefore, if (An,bn))N>1 @S a sequence of problems such that finy (N = pvESD(AN,
by)) satisfies Assumption 3./,

”Tk - Tk”max = O((b - a)ﬂanngr&l)-

5 Note that within the assumptions of Lemma 4.5 is Assumption 4.3 which involves T.
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Proof. Note that

b—a . b+a - b—a ~ b+a
an(pn) = —5—an(in) + ——, an (1) = an(fig) + —5—
b—a N . b—a -~

Bn(/lﬁ“') = 2 ﬂn(p’N)a /BTL(/'[A) = ) ﬂn(uk)

The only portion of this result that does not follow immediately from Lemma 4.5 is the
last claim because one needs to show

B (iin)? = B (11k)?|
1B (AN ) + Bn (7|
Let [l be the pushforward measure of u., under the same mapping as above. Corol-

lary 4.6 gives a lower bound on |3,,(fix) + B, (i )| using the fact that 3, (in) — Bn(fiso)
where the positivity of £, (fico) is crucial. The restrictions on k for this fact are milder

|Bn(pin) = Bn(fiy)| = (b — a) = O((b = a)|Bn(in)* = Bu (111,)?])-

than the assumptions of the theorem. And then S%l)(/l ~) is estimated using the relation

S (i) = 85 (fioo) + XD (toc, finy),
and using Lemma 4.2. O

Remark 4.8. Our approach yields a forwards stability result for the Lanczos algorithm
in the case that 1y is near to a measure yu satisfying Assumption 4.1. This is the case in
many situations, for instance, when i is the VESD associated to many large random
matrices and p is the limiting measure. In particular, in the context of Fig. 1 our approach
explains the observation that @; and Bl are near 0 and 1/2 respectively.

5. Random matrices

A natural setting in which Assumption 3.4 holds is when puy = pvesp(-;A,b) is
the VESD of a random matrix and (random or deterministic) vector and ps is the
limiting spectral distribution. In what follows E and P will denote the expectation and
the probability of an event with respect to a probability distribution that will be clear
from context.

We first define the notion of a local law. This holds for a wide class of random matrices
[12,24] and we suppose the limiting measure i, has bounded support. We discuss two
classical examples of such random matrices below.

Define two N-dependent regions in the complex plane by

D(N,7)={z€C: N <Imz<77% dist(Re z, Supp fioo) < 7_71}’
Do(N,7) ={z€C:0<Imz <77, N7/ <dist(Rez,supp fios) < 7 '}.

The first region is useful for estimating quantities near the interior of the support of p
and the latter is used to estimate quantities near the edges of the support of fiso-
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Definition 5.1. Suppose Ay is an IV x N random matrix and by is an IN-dimensional
vector. The sequence ((An,bn))y>1, |bn] =1 is said to satisty a local law with limit
Poo if (1) for every fixed 7 > 0, € > 0 and D > 0 there exists C' such that

I .
DN P(|b1TV(AN_ZI)_le—S(Z§Nw)|ZN€< mS(Z’“W)Jr = >)

2€D(N,7) NImz NImz
<CN P,
_ ImS(Z'uOO)> _
sup P |bL(AN —2I) tby — S(2; pino)| > N ——2 22 ) <CON P
ZGDO(E)V,T) <| N( N ) o ( : )| N NlImz B

(5.1)

where

and (2) there exists L > 0 such that

P(|Ax| > L) < CN~P.
We pause to note that, importantly,
b;rV(AN — ZI)ile = S(Z; /lVESD(ANa bN)).

For a function I’ of bounded variation we also use the notation

dF
S(z; F) ::/ﬂ, Imz > 0,
T —z
to denote the Riemann—Stieltjes integral.
To turn a local law into an estimate on the KS distance we use the following.

Corollary 5.2 (/2], Corollary B.15). Let F be a distribution function and let G be a

function of bounded variation satisfying [ |F(z) — G(z)|dz < oo. Assume that, for some
constants A > B > 0,

B —B oS}
/dF(x) _1, / 4G (2)| :0:/\dG(x)|.
g . B

Then
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A
dxs(F, G) := sup |F(z) — G(z)| < i H)l(m ) {/A |S(z;dF) — S(z;dG)|du

UV oz
ly|<2va

LI / |G(x+y)—G($)|dyJ7

where Kk satisfies

B 4B
T TA—B -1

L,

z=u+1iv, and v and a are related via
a

_1/ du >1

T 1+u2 ™ 27
—a

Without loss of generality, to estimate a KS distance, we can suppose that supp(tec) C
[~b,b]. For 0 <7 < 1,set A=b+71,B=b+7. Then

. 4(b—|—7') —0
S e s TR ) B

And we choose 7 sufficiently small so that this quantity « is less than 1. We assume 7,
and hence A, are chosen in this way for the forthcoming results.

Lemma 5.3. Suppose supp(pieo) C [=b,b], b > 0, where po has a Hélder continuous,
bounded density on R. Suppose the sequence ((An,bn))N>1 satisfies a local law with
limit pioo. Then for every e >0, D >0, M > 1, z=u+iv € D(N, 1),

A
P /|S(- ) — S(2; fioo)|du > N°© ! + s4° <CMN™P
S %5 Hoo)1GU = NImz (Imz2)2M | — ’

A

where pn(dz) = pvesp(de; Ay, by). Furthermore, if G is the cumulative distribution
function for us then

1
5 Sup / |G(x +y) — G(z)|dy < sup |G’ (x)|2va?.
’ ly|<2va ’

Proof. The last statement follows immediately after using the mean-value theorem. To
establish the first claim, we must discretize the integral that is involved and show that we
need only use polynomially many discretization points to approximate it to any desired
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accuracy. To do this, we show that the Lipschitz constant of the integrand depends on
Im z in a sufficiently benign way. For Im z > 0,

‘iS(HOOQZ)‘ =/u°°(dw) < !

dz |z — 2|2 = (Imz)?’

From this, it follows for f(z) := S(z; pvesp(An,bn)) — S(z; pio) we have

£t i) — 7+ i0)]| < LFu+i0) — (o +0)] < pfu—ull, >0,

This implies that if one discretizes the integral

A

/ I (u + iv)| du,

—A

using M + 1 equally-spaced points —A = xg, x1,...,xy = A, then

M-1 A
3 2 e i) —_4 flu+ildu] < S
because
J )] = s + o)) < 22 240, a0 = 5 (37)
T

Now set v = N~ for 0 < a < 1/2 and fix € > 0. And let En as be the event on which

N Im z; N Imz;
Zj = Ij + iNia,
for some j =0,1,2,..., M —1. Using the estimates for D(N, 7), we have that P(En as) <

CMN~P where D is as large as we like. The result then follows by simply using that
Im S(z; peo) is bounded in the upper-half plane and then bounding

I .
mSCyip) 1\ g [L
N Im z; N Im z; Nv

for a constant K. O
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Theorem 5.4. Suppose the sequence ((An,bn))n>1 satisfies a local law with limit pe
and that p has a Holder continuous, bounded density on R. Then for any D > 0, € > 0,
there exists C > 0 such that

P (dKS(,UVESD(AN; bn), feo) > NE*l/g) <CN P,
for N sufficiently large.

Proof. So, using both Corollary 5.2 and Lemma 5.3 if po has a Holder continuous,
bounded density on R and if the sequence ((Ay,by))n>1 satisfies a local law with limit
loo, We can conclude that

8A?

1
P(d psn (AN, b ) > Ny [+ —— 4+ 2||G"||wa®n ) < CMN—P
< KS(/’\ ESD( N> N)a/j/ ) = N77 + ngM + || || a 77) = )

where all the constants have the same meaning as in Corollary 5.2 and Lemma 5.3. To
optimize the error here, we see that one should take n = N~1/3 and M = N, establishing
the claim. O

Remark 5.5. The portion of the local law that applies to D, can be used to show that

for any € > 0 the support points of the VESD for (A n,by) must lie within a distance
N—2/3%¢ of supp pu with overwhelming probability [12].

5.1. Wigner matrices

Consider a random matrix

1

Ay = m(aij)lsi,jsz\f

(5.2)

where the real-valued random variables a;; are jointly independent for ¢ < j and satisfy

IR
Ela;;] =0, ]E[azzj] = {C iz ) a5 = Qjj,

and
Eljai;|*] = Cr < o0,

for all £ > 2. Such a matrix is called a Wigner matrix and the distribution is referred to
as a Wigner ensemble. In [12], for example, it is shown that for any sequence of vectors
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(by)n>1 that are independent® of a;; for all 4, j, the pairs ((Ax,by))n>1 satisfy a local
law supported on [—1,1] with

too(dx) = pp(dx) \/ 1 —z2dz. (5.3)

The most widely known case of a Wigner matrix is the so-called Gaussian Orthogonal
Ensemble” (GOE):

A X+X' 5.4
v XX (54
where X is an N x N Gaussian matrix with independent and identically distributed (iid)
standard normal entries. In the work of Trotter [43] (see also [5]) a full distributional
characterization of the Householder tridiagonalization of GOE is given. From this, one
can see that the upper-left subblocks of this tridiagonalization tend to

/2 1/2 . 1/2
tridiag | 0 0 ... .. 01,
12 1/2 - 1/2

which correctly reflects the fact that the local law has (5.3) as its limit.®

Then, for p(z) = 2V1 — 22, Uy,(z) = 2"m,(z; ).

) _ 1
L= [Vallzzguy = 250 gy Aeaw) = =im22n L, o=,
and
—7iUp (2)Up—1(2) Un(2)?
M ) =
n(Z,NU) 7"4_2Un71(z)2 —’/TIU ( )Un 1(2)

It follows that

SO

2)M,, (z; < ™
|p() n( uU)|entr;wise §‘Un,1(2)| QU”*

6 This reference actually show that the local law holds for any fixed deterministic sequence of vectors, but
the estimates the authors give are uniform in the choice of vectors, and the result can be extended to hold
for random vectors that are independent of the matrix entries.

7 Note that the scaling of the matrix here is chosen so that the eigenvalues typically lie within the interval
[—1,1].

& This is the Jacobi matrix associated with Chebyshev second-kind polynomials.
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Since ||Up|l[=1,1) £ n + 1, we see that we may set 6 = 1,6’ = 2 in Theorem 4.7. Then
for Assumption 3.4 to hold with high probability, we take v = 3/2, 8 < 1/3. This gives
forward stability, with high probability, provided

k=o0(N#7), e =o(k™), (5.5)

with forward error O(ej,, k). Better bounds could be obtained by deriving a version of
Theorem 4.7 which uses an explicit bound on the growth of the orthogonal polynomials
of uy instead of Corollary 3.6.

5.2. Sample covariance matrices

Consider the random matrix

1
Ay = —XX", X = (2ij)1<i<N, M > N, (5.6)
N 1<5<M

where the real-valued random variables z;; are jointly independent for all 7, j and satisfy
]E[:E”] = 0, E[l‘fj] = 1,
and
]EHCE,,JVC] <O < 0,

for all k > 2. Such a matrix is called a sample covariance matrix. In [24], for example, it
is shown that for any sequence of vectors (by)ny>1 that are independent’ of x;; for all
i,7, the pairs ((An,bn))n>1 satisfy a local law supported on [A_, A;] with

1
2mrdx

Hoo(dz) = pvp (dz) = VO =)@ =A)de,  Ar=(1£Vd)?
if N/M — d € (1,00). This is the well-known Marchenko-Pastur law.

The most widely studied example of a sample covariance matrix is the so-called
Wishart distribution [45] where z;; are iid standard normal random variables and in
this case the Golub-Kahan bidiagonalization procedure can be carried out in a distribu-
tional sense [42] (see also [5]). From this, one sees that the upper-left subblocks of this
tridiagonalization tend to

tridiag | 1 14+d 14d

9 As noted above, the reference here again establishes this result for a deterministic sequence of vectors.
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This leads one to conjecture that this gives three-term recurrence coefficients for the
polynomials orthogonal to the Marchenko—Pastur distribution [28] (in fact, this provides
an alternate proof of this). Consider g, (z), n = 0,1, 2 that satisfy, ¢o(z) = 1,

xqo(z) = \/3q1(év) + qo(z),
24n(2) = Vd gni1(z) + (1 + d)gn(z) + Vdgu-1(z), n>1

Next, note that
y—2yVd+1+d
maps [—1,1] to [A\_, A4 ]. Set = = 2yv/d + 1+ d, Gn(y) = ¢u(2yVd + 1 + d) and we find
Q) = 2y + Vi),  du1(®) +da-1(y) = 20da(y),  n21.
From this it follows that
do(y) = Uo(y), dr(y) = Ur(y) + VdUs(y),
and therefore, if we used the convention that U_;(y) =0
dn(y) =Un(y) + VdU,—1(y), n>0.

By explicitly calculating inner products, it was shown in [8] that

oo ae) = o (2220 = o)

It can also be shown that ¢(A\;,A\_) = V/d is such that ¢, (z;pvp) = pn(2; pup)-
Therefore we obtain similar bounds on M, (x, puyp) as we did for M, (z, pr7). Then (5.5)
holds in the same way as for Wigner matrices.

6. Examples

In this section, we provide numerical experiments for several examples to which our
analysis can be applied.

6.1. Wigner matrices

In Fig. 4, we show plots akin to those in Fig. 1 for several values of N. In particular, we
take A as a random matrix from the Gaussian Orthogonal Ensemble (5.4) and by as
a vector independent of A . As expected, as N increases so that ;. becomes nicer, the
Lanczos algorithm remains forward stable for more iterations. The number of iterations
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10-1 4
1034
10-5 4
10-74
1079 1

10~

T T T T T T T T
0 25 50 75 100 125 150 0 25 50 75 100 125 150

index n index n
(a) Recurrence coefficients @, (» ) and B, ( = ). (b) Forward error of recurrence coefficients |an —
Ezact arithmetic counterparts shown as pluses (+)  @n| (=) and|Bn—B,| ( =) and distance to limiting
and limiting values shown as dotted lines ( - ). values [0 —@n| (=) and |1/2 =5, ( = ).

Fig. 4. Output of Lanczos run on (An,by) in single precision arithmetic, where Ay is a GOE matrix of
size N and by is an independent vector; see Fig. 1 for more details.

for which it remains forward stable grows sublinearly with respect to N. When n is small
enough relative to N, the finite precision coefficients @,, and 3,, are much closer to their
exact arithmetic counterparts than to the limiting values. This behavior is suggested by
Theorem 4.7.

6.2. Solving random linear systems

The mathematical behavior of a number of Krylov subspace methods used to solve
systems involving random matrices have been studied rigorously. Such algorithms include
conjugate gradient and MINRES [8,9,39], (accelerated) gradient descent [37], Neumann
series iteration [47], and GMRES [3]. The most basic result of these analyses is that
the macroscopic behavior of the algorithms, such as the error at step k, often becomes
nearly deterministic when the random matrix is sufficiently large. That is, the error at
step k converges to some fixed deterministic value when the random matrix becomes
large. Since Lanczos-based methods such as conjugate gradient and MINRES are, in
general, very susceptible to the impacts of floating point arithmetic [19] one may wonder
the extent to which analyses such as [8,9,39] hold in finite precision arithmetic.

In exact arithmetic, assuming A is positive definite, the iterate xj := Qk(Tk)*leo is
mathematically equivalent to the iterate produced by the conjugate gradient algorithm
[20] used to solve Ax = b. This implies xj, is the optimal Krylov subspace approximation
to A~'b in the A-norm. When A is a sample covariance matrix of the form described
in Section 5.2, [39] shows that (under certain moment conditions),

dk/2
[A™'b — x|a — T4 in probability as N — oo and N/M — d. (6.1)
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Fig. 5. Error of Lanczos used to solve the system Ax = b in single precision floating point arithmetic. Here
by is proportional to the all ones vector and Ay = N~'XXT where the entries of X are either iid standard
normal random variables or iid Rademacher random variables (1 with equal probability). For each n, N,
the violin plot gives the distribution of error and the 5%, 50%, and 95% quantiles are marked. Notice the
convergence to the “deterministic” behavior (===) as N increases, at least until the maximal accuracy is
reached.

In finite precision arithmetic, the iterate

(6.2)

is, in general, no longer optimal. However, the analysis in this paper can be applied to

the iterate Xy, at least assuming it is computed exactly from the quantities Qj and Tj."°

We perform a numerical experiment with sample covariance matrices Ay

N-'XXT, where the entries of X are either iid standard normal random variables or
iid Rademacher random variables. In particular, we generate matrices for each of these
distributions at d = 0.2 and N = 200 or N = 800 and set by proportional to the all
ones vector. We then run Lanczos on (A, by) in single precision arithmetic to get Q
and T;. We compute X, using a standard linear system solver from numpy in double
precision arithmetic.

The results of 1000 repetitions of each of these experiments are reported in Fig. 5. As
expected, at least until convergence stagnates, the error of the algorithm concentrates
around the estimate (6.1) as N increases. The error ||A~'b —X,||a stagnates around the
machine precision, which is essentially all we could hope for given that T} is computed
in single precision floating point arithmetic.

10 A full analysis of the standard CG implementation [20] is well beyond the scope of this paper. In
fact, to the best of our knowledge, it is not even known rigorously whether Paige’s analysis extends to
such an implementation. In practice the finite precision arithmetic behavior of (6.2) and the standard CG
implementation are quite similar, so it is common to analyze (6.2) [18,41].
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7. Deferred proofs
7.1. Proofs of bounds for regular measures

Proof of Lemma 3.3. The proof follows [14, Lemma 6]. Fix n < 2k — 1. As a special case
of the Markov brothers’ inequality for polynomials [40, Theorem 1.10], the derivative

Pl (-5 ) of p, (-5 p) satisfies

2n?2

b—a

27,5l < 2n (5 1) [l fa,)-

Let 2* be such that | p,,(z*; )| = ||pn(-; 1)l [a,5) and define

B = {x € la,b): |z —a*| < b4;2a}'

Using the triangle inequality, for any x € B,

x

po(a™;p) + /pZ (y; 1) dy‘

x*

‘ Pn (x; M)| =

> | pn(a®s )] = e = 2" [P (5 )l ey

b—a 2n?

An2 mhvn (=" p)

v

| oo (25 )] —

Y

1
§| pu,(x*; :u)‘

Both endpoints of B must be in [a, b], so max(B)—min(B) > (b—a)/(4n?) > (b—a)/(16k?)
and hence pu(B) > K. Using this and the fact that p,,(-; p) is normalized,

b

1 * 1 *
1= /]m,(I;M)QM(de) > /pn,(x;u)%(dx) 2 pule ) u(B) > 1P )’ K.
a B

Solving for | p,, (z*; u)| we find

Sk

20 (5 ) sy = | Pala™; )] <
Since this holds for all n < 2k — 1, the lemma follows. O

Proof of Corollary 3.5. Using the triangle inequality, for any x, y,

lpn ([2,9]) — poo ([, Y]]
= |un((=00,y]) = 1in (=00, 7)) = proo (=00, Y]) + froo((—00,2))]
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< v (=00, 9]) = proo (=00, y])| + |1 (=00, 7)) — proo((—00, 2))]
< 2dks (1N, Hoo)-

Thus, one easily verifies that

/"N([xay]) > Moo([xa y]) - QdKS(/lNa,u'OO)'

Suppose z,y € [a/,b'] and |z —y| > (b — a)/(16k?). Then the length of [x,y] N [a,b] is at
least (b — a)/(32k?), so using (3.2),

b—a\”
oY) 2 L 5555 ) -
el 2 2 (55 )
Using this, our assumption on k, (3.3), and the fact ¥’ — a’ > b — a, we obtain a bound

_ il
il 2L (G ) =N 2N ey W] slo— ol > 0/ - o)/ 68,

Lemma 3.3 with K = N~ then gives a bound for the orthogonal polynomials p,, for

//l/:l’[;\v:
9 3 39 \ /2
Molin:la' b1 < <2\/7 kY.
Kl [0 V]) < —ms < L<b—a>

Clearly 2v/3 < 4, so the result is established. O

Proof of Corollary 3.6. Fix n < 2k — 1. Given (3.2), we can apply Lemma 3.3 with
K = L((b— a)/(16k?))" to get a bound

2 /16K2\/?
M. : < — .
[ J\V(Mcxn [a,b]) > \/Z (ba)

This gives the first part of the lemma.
The Markov brothers’ inequality for polynomials implies

2n?
27,5 oo )llar oy < = 10 (5 o) s -

Thus, since the supports of ;1 and pi are contained in [a/, V'], integrating by parts,

b’

| 0 (s Boo) = T (Moo Moo )| = ‘/pn (25 too) (kv () — proo (d2))
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)
< / | (2 o) v (=00, 2]) = poo (=00, a])| da

< (b = a5 boo) lar b dies (v, fioc)
< 202 [P (- 5 p00) o w1 s (v, Hio)-

Since n < 2k — 1, with n = 1/(16k%) < 1/(2(2k)?) < 1/(2n?), Lemma 3.7 (which is
independent of this result) yields the bound

o )i a+b b—a
L 1 = max ). _ 0
P Moo la’,b] wE[- 1147 Pn 2 + 2 s Moo
a+b b-—a
<2 max |p, | — -
xe[fm] b < 2 + 2 nH )‘

= 2[lpn(+; l/"oo)”[mb] < 2M . (froos [, B]).

Since n < 2k, using (3.3) and our bound on My (po; [a,b]), we obtain a bound for the
modified moments

| 0 (v o) — Mo (oo oo )| < 2(2K)220M ) (poos [a, b)) dies (101 pioo)

<16k2i 16k 7/QN*‘*
- VL \b—a '

Thus, using our assumption on k and that n < 2k — 1,

M ([, Hoos floo) = A [ (5 oo ) — i (oo fhoo )| < €
The lemma is established. O
7.2. Other proofs
Proof of Lemma 3.7. It is well-known that for any z € R\ [-1, 1],
p(z)| < |Tu(2)l.  Vp:deg(p) <n[pl-1 < L.
Thus, it suffices to show
Tn(z)] <2, € [-1-1/(2n?),1+1/(2n?).

We will in fact show |T},(z)] < 2 for all z € E, where E := {(w+w™!)/2:1 < |w| <
r 4+ /12 — 1} is the Bernstein ellipse with rightmost point r = 1 + 1/(2n?).
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Suppose J(w) = %(w +w™1). Then, it is well known that, for any n > 0,

T (J(w)) = = (W™ +w™™).

N[ =

Let z = J(w) be an arbitrary point on the boundary of the Bernstein ellipse E. Set
p = |w]| so

Tu(2) <5 (" +p").

1
2

Suppose n > 2 and let p = p(n) = 1 + In(2 + v/3)/n. Then,

lim % (p(n)" + p(n)™") = 2.

n—oo

By direct computation, one verifies that

(o)™ + p(m) ™) = ()" — pln) ™) (n(p(m)) 1+ pln) ).
We always have

In(p(n)) — 1+ p(n)~* >0, p(n) > 1.

Since p(n)™ is monotonically increasing with n and p(n)~™ is monotonically decreasing
with n,

pmwpm)"z<y+99gl§»2<1+99%1§52>a

Thus, the convergence of (p(n)™ + p(n)~™)/2 to 2 is monotonic from below. This implies
|1 (2)| <2 for z € E, and n > 2.
Now, note that

N =

In(2 +v3)* )

In(2+v3)+n
In(2 +v/3)3 1

1n(2+\/§)+2> =1t

(Pl + o)) = 1+ 51 (24 V)2 -

>1+(ln(2+\/—)

2n2’

This implies £ C E, for n > 2. Clearly To(z) =1 <2 and |Ti(2)| = |2| < 2 forall z € E.
Thus, for all n > 0,

1Tn(2)] < 2, ze€ k.

The result follows since [-1 —1/(2n?),1+1/(2n?)] C E. O
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Proof of Lemma 3.9. Suppose the lemma holds for ¢ < n. Then,
dp(z) = 2xd,—1(x) — dp—o(z) + 2f5 1

n—1 n—2
=20 Up 2(@)fo+2Y U1 i(@)fir | = [ Un-a@)fo+2Y Un 2 i(x)fi
i—2 i—2
+ 2fn71
n—2
= (22U,—2(z) — Up—3(x)) fo + 2 (20Un—1-i(z) — Up—2—i(2)) fi—1

1=2
+ 4$fnf2 + anfl
n—2
=Up_1(z)fo+2 Z Un—i(2) fic1 | +2U1(2) fr—2 + 2Uo(2) fr—1
i=2

=U,—1(z)fo+2 Z Up—i(x)fi_1.

=2

The result follows as the base case is assumed. O
Declaration of competing interest

We declare no competing interests.
Data availability

No data was used for the research described in the article.

References

[1] A. Béttcher, Y.I. Karlovich, Carleson Curves, Muckenhoupt Weights, and Toeplitz Operators,
Birkhduser Basel, Basel, 1997, ISBN: 978-3-0348-9828-7.

[2] Z.D. Bai, J.W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution
of large-dimensional sample covariance matrices, Ann. Probab. 26 (1) (Jan. 1998), https://doi.org/
10.1214/a0p/1022855421.

[3] T. Chen, A. Greenbaum, T. Trogdon, GMRES, pseudospectra, and Crouzeix’s conjecture for shifted
and scaled Ginibre matrices, https://arxiv.org/abs/2303.02042, in preparation, 2023.

[4] E. Carson, J. Liesen, Z. Strakos, 70 years of Krylov subspace methods: the journey continues,
arXiv:2211.00953 [math.NA], 2022.

[5] I. Dumitriu, A. Edelman, Matrix models for beta ensembles, J. Math. Phys. 43 (11) (Oct. 2002)
5830, ISSN: 00222488, https://doi.org/10.1063/1.1507823.

[6] P. Deift, Orthogonal Polynomials and Random Matrices: a Riemann-Hilbert Approach, Amer. Math.
Soc., Providence, RI, 2000, p. 257.

[7] V.L. Druskin, L.A. Knizhnerman, Error bounds in the simple Lanczos procedure for computing
functions of symmetric matrices and eigenvalues, Comput. Math. Math. Phys. 31 (7) (July 1991)
20-30, ISSN: 0965-5425.

[8] P. Deift, T. Trogdon, The conjugate gradient algorithm on well-conditioned Wishart matrices is
almost deterministic, Q. Appl. Math. 79 (1) (July 2020) 125-161, https://doi.org/10.1090/qam/
1574.



236 T. Chen, T. Trogdon / Linear Algebra and its Applications 682 (2024) 191-237

[9] X. Ding, T. Trogdon, A Riemann-Hilbert approach to the perturbation theory for orthogonal
polynomials: applications to numerical linear algebra and random matrix theory, arXiv:2112.12354
[math.PR], 2021.

[10] P. Duren, Theory of H? Spaces, Academic Press, 1970.

[11] A. Edelman, N.R. Rao, Random matrix theory, Acta Numer. 14 (Apr. 2005) 233-297, https://
doi.org/10.1017/50962492904000236.

[12] L. Erdé8s, H.-T. Yau, Dynamical Approach to Random Matrix Theory, Amer. Math. Soc., Provi-
dence, RI, 2017, pp. 1-226, ISBN: 0049-1748.

[13] A.S. Fokas, A.R. Its, A.V. Kitaev, The isomonodromy approach to matrix models in 2D quantum
gravity, Commun. Math. Phys. 147 (2) (1992) 395-430, ISSN: 1432-0916.

[14] H.-J. Fischer, On the condition of orthogonal polynomials via modified moments, Z. Anal. Anwend.
15 (1) (1996) 223—-244, https://doi.org/10.4171/zaa/696.

[15] W. Gautschi, Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics
and Scientific Computation, Oxford University Press, ISBN 9780198506720, 2004.

[16] W. Gautschi, On generating orthogonal polynomials, STAM J. Sci. Stat. Comput. 3 (3) (Sept. 1982)
289-317, https://doi.org/10.1137/0903018.

[17] G.H. Golub, D.P. O’Leary, Some history of the conjugate gradient and Lanczos algorithms:
1948-1976, SIAM Rev. 31 (1) (Mar. 1989) 50-102, https://doi.org/10.1137/1031003.

[18] A. Greenbaum, Behavior of slightly perturbed Lanczos and conjugate-gradient recurrences, Linear
Algebra Appl. 113 (1989) 763, https://doi.org/10.1016/0024-3795(89)90285-1, ISSN: 0024-3795.

[19] A. Greenbaum, Iterative Methods for Solving Linear Systems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, ISBN 0-89871-396-X, 1997.

[20] M.R. Hestenes, E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, vol. 49,
NBS, Washington, DC, 1952.

[21] L.A. Knizhnerman, The simple Lanczos procedure: estimates of the error of the Gauss quadrature
formula and their applications, Comput. Math. Math. Phys. 36 (11) (Jan. 1996) 1481-1492, ISSN:
0965-5425.

[22] A.B.J. Kuijlaars, K.T.-R. McLaughlin, W. Van Assche, M. Vanlessen, The Riemann-Hilbert ap-
proach to strong asymptotics for orthogonal polynomials on [—1,1], Adv. Math. 188 (2) (2004)
337 398.

[23] A.B.J. Kuijlaars, Riemann-Hilbert Analysis for Orthogonal Polynomials, 2003, pp. 167-210.

[24] A. Knowles, J. Yin, Anisotropic local laws for random matrices, Probab. Theory Relat. Fields
169 (1-2) (Oct. 2017) 257-352, https://doi.org/10.1007 /s00440-016-0730-4, ISSN: 0178-8051.

[25] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators, J. Res. Natl. Bur. Stand. 45 (1950) 255 282.

[26] G. Meurant, The Lanczos and Conjugate Gradient Algorithms, Society for Industrial and Applied
Mathematics, 2006, eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9780898718140.

[27] C. Musco, C. Musco, A. Sidford, Stability of the Lanczos method for matrix function approximation,
Soc. Ind. Appl. Math. (Jan. 2018) 1605-1624, https://doi.org/10.1137/1.9781611975031.105.

[28] V.A. Marcenko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices, Math.
USSR Sb. 1 (4) (1967) 457-483, https://doi.org/10.1070/SM1967v001n04ABEH001994, ISSN: 0025-
5734.

[29] D.P. O’Leary, Z. Strakos, P. Tichy, On sensitivity of Gauss—Christoffel quadrature, Numer. Math.
107 (1) (Apr. 2007) 147-174, https://doi.org/10.1007/s00211-007-0078-x.

[30] S. Olver, T. Trogdon, Numerical solution of Riemann—Hilbert problems: random matrix theory
and orthogonal polynomials, Constr. Approx. 39 (1) (Dec. 2013) 101-149, https://doi.org/10.1007/
s00365-013-9221-3, ISSN: 0176-4276.

[31] C.C. Paige, An augmented stability result for the Lanczos Hermitian matrix tridiagonalization
process, STAM J. Matrix Anal. Appl. 31 (5) (2010) 2347-2359, https://doi.org/10.1137/090761343.

[32] C.C. Paige, Accuracy of the Lanczos process for the eigenproblem and solution of equations, STAM
J. Matrix Anal. Appl. 40 (4) (2019) 1371-1398, https://doi.org/10.1137/17M1133725.

[33] C.C. Paige, Practical use of the symmetric Lanczos process with re-orthogonalization, BIT Numer.
Math. 10 (2) (June 1970) 183-195, https://doi.org/10.1007/b{01936866.

[34] C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, PhD the-
sis, University of London, 1971, eprint: https://www.cs.mcgill.ca/~chris/pubClassic/PaigeThesis.
pdf.

[35] C.C. Paige, Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, IMA
J. Appl. Math. 18 (3) (Dec. 1976) 341-349, https://doi.org/10.1093 /imamat /18.3.341, ISSN: 0272-
4960.



T. Chen, T. Trogdon / Linear Algebra and its Applications 682 (2024) 191-2587 237

[36] C.C. Paige, Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenprob-
lem, Linear Algebra Appl. 34 (1980) 235-258, https://doi.org/10.1016/0024-3795(80)90167-6, ISSN:
0024-3795.

[37] C. Paquette, B. van Merriénboer, E. Paquette, F. Pedregosa, Halting time is predictable for large
models: a universality property and average-case analysis, Found. Comput. Math. (Feb. 2022),
https://doi.org/10.1007/s10208-022-09554-y.

[38] B.N. Parlett, The Symmetric Eigenvalue Problem, Society for Industrial and Applied Mathematics,
Jan. 1998.

[39] E. Paquette, T. Trogdon, Universality for the conjugate gradient and MINRES algorithms on sample
covariance matrices, Commun. Pure Appl. Math. (Sept. 2022), https://doi.org/10.1002/cpa.22081.

[40] T.J. Rivlin, An Introduction to the Approximation of Functions, Unabridged and corr. republication
of the 1969 ed. Dover books on advanced mathematics, ISBN 9780486640693, 1981.

[41] Z. Strakos, A. Greenbaum, Open Questions in the Convergence Analysis of the Lanczos Pro-
cess for the Real Symmetric Eigenvalue Problem, University of Minnesota, 1992, eprint: https://
conservancy.umn.edu/handle/11299/1838.

[42] J.W. Silverstein, Eigenvalues and eigenvectors of large dimensional sample covariance matrices,
Contemp. Math. 50 (1986).

[43] H.F. Trotter, Eigenvalue distributions of large Hermitian matrices; Wigner’s semi-circle law and a
theorem of Kac, Murdock, and Szegs, Adv. Math. 54 (1) (1984) 67-82, ISSN: 10902082, https://
doi.org/10.1016 /0001-8708(84)90037-9.

[44] A. Townsend, T. Trogdon, S. Olver, Fast computation of Gauss quadrature nodes and weights on
the whole real line, IMA J. Numer. Anal. 36 (1) (Oct. 2014) 337 358, https://doi.org/10.1093/
imanum/drv002, ISSN: 14643642, arXiv:1410.5286.

[45] J. Wishart, The generalised product moment distribution in samples from a normal multivariate
population, Biometrika 20A (1-2) (1928) 32-52, https://doi.org/10.1093 /biomet /20A.1-2.32, ISSN:
0006-3444.

[46] M. Webb, S. Olver, Spectra of Jacobi operators via connection coefficient matrices, Commun. Math.
Phys. 382 (2) (Feb. 2021) 657-707, https://doi.org/10.1007/s00220-021-03939-w.

[47] Y. Zhang, T. Trogdon, A probabilistic analysis of the Neumann series iteration, Minn. J. Undergrad.
Math. 7 (1) (May 2022), arXiv:1909.07506 [math.PR].



