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We reformulate all general real coupled self-adjoint boundary value problems as integral operators and show that they
are all finite rank perturbations of the free space Green’s function on the real line. This free space Green’s function
corresponds to the nonlocal boundary value problem proposed earlier by Saito [N. Saito, Appl. Comput. Harmonic
Anal., 25, 68-97 (2008)]. We prove these perturbations to be polynomials of rank up to 4. They encapsulate in a
fundamental way the corresponding boundary conditions.

. INTRODUCTION

In this article, we continue the program initiated in Ref. 1, and revisited in Ref. 2. In Ref. 1, Saito proposed the use the
eigenfunctions of the integral operator commuting with the Laplace operator for analyzing functions and data defined on a
general shape domain Q C R?. Computing eigenfunctions of the integral operator is simpler, more stable, and much faster
with mordern fast algorithms such as the Fast Multipole Method** than directly solving the corresponding Laplacian eigenvalue
problem (via the Helmholtz equation). This formulation imposes an interesting nonlocal boundary condition in the Helmholtz
equation formulation, and we have been interested in investigating the nature of this boundary condition. Restricting the domain
Q to intervals in R, but extending the kernel function from that of Saito’s original proposal, we continued our analysis of the
integral operators and their spectral properties?.

This article addresses an old question of Gel’fand & Levitan®, namely the nature of the spectrum under perturbation. We treat
this question in an integral operator setting. This formulation is expressed in terms of the Green’s function, or fundamental solu-
tion, that corresponds to an elliptic operator. Green’s functions are an important tool of Quantum Field Theory, Electrodynamics,
Seismology, and Partial Differential Equations which found new applications in Machine Learning. In Quantum Field Theory,
the Green’s function is called the propagator® or two-point correlation function’. Tt encodes the probability of measuring a field
at a given point given its source at another. In Seismology, the Green’s function plays a fundamental role in the solution of
elastodynamic systems®. Integral operators are prominent in Machine Learning®~'>. They are ubiquitous in spectral clustering
algorithms, kernel methods, and many manifold learning algorithms. Understanding their spectra is fundamental for various
applications'®-!8, Perturbation techniques are traditionally used to obtain closed forms of such kernels'®. In this article we show
that they can also reveal information about the boundary conditions more explicitly.

We focus on the one-dimensional setting of a nonlocal boundary value problem defined by a symmetric kernel on a finite
interval. The problems we treat have roots in the work of Marcel Riesz2%2!, and in the work of Schoenberg??~2* in the discrete
setting. A general formulation is given in Hellwig? (Chap. 4). We offer a unified alternative following Kato!® and more
recent works by Gesztesy and his collaborators?®=Y. The spectral framework proposed in this article provides an efficient and
systematic way of obtaining the Green’s function, especially in the case where A = 0 is one of the eigenvalues (compare, e.g.,
with the Neumann boundary condition calculations in Porter & Stirling®!), or the more recent Fucci et. al*>3 for a more general
setting of the Krein-von-Neumann eigenvalue problem. Our work aligns with Gesztesy & Kirsten?>3*. Our framework explains
the complications in the expression of the Green’s function in terms of Riesz projections.

In its simplest form, our operator of interest is a nonlocal operator defined by

1 l
Hfim= [ sl s m
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We are interested in the spectral properties of this operator. The eigenvalue problem associated with eq. (1), i.e., #Zu = (1/1)u,
corresponds to the following Sturm-Liouville eigenvalue problem:

W' +Au=0 1in(0,1),
' (0) = —u(0) —u(1),
W' (1) = u(0)+u(1). (2)

We are also interested in the spectral properties of the general problem

W' +2Au=0 in(0,1),
' (0) = ow(0) + Bu(1),
u' (1) = yu(0) + Su(1), 3

where y= —f3 (# 0) to guarantee the self-adjointness of the operator (see Ref. 34, especially Sec. 3.5, 3.6). We let

C:(f%g)ewﬂ.

We observe that this boundary condition (BC) corresponds to the General Self-Adjoint Real-Coupled (“GSARC” for short) BC
introduced in Refs. 35-37 (see also Refs. 38 and 39). For a given 2 x 2 matrix C € SL(2,R), i.e., the Special Linear Group acting

on R, the GSARC problem is also given by
u(1)\ _ 5 (u(0)

Note that the restriction detB = 1 is imposed in the literature to simplify the problem. To see that eq. (4) follows from eq. (3),
we calculate the matrix B, explicitly to obtain
5
B= < _B2rad )
B

Remark 1.1. The matrix B is sometimes written in terms of the sines and cosines to reflect the self-adjointness; see, e.g., the
works of F. Gesztesy and his collaborators*®3>33. To highlight this angular dependence, we note that one can indeed recast
eq. (2) in the form eq. (3), using the KAN decomposition of B, viz.,

=™ ™=

B =KAN ®)

. _ [ cos@ —sinf _(r O _(1n . .
with K = ( sinf  cosB >, A= (0 ]/r>’ and N = (0 1 ), where r > 0, and 6,n € R. (This is a unique decompo-

sition called “the Iwasawa decomposition” in the Lie theory literature; it is a special case of QR factorization; see*®). The
correspondence between eq. (5) and eq. (3) is explicitly given by

cos0 +nr?sin O —r r2cos 6

B nd

nrtcos@ —sinf’ nrrcos@ —sinf’ nrtcos O —sin @

O

Remark 1.2. When 3 = —y =0 in eq. (3) the problem corresponds to what can be termed as the General Self-Adjoint Real-
Separated (“GSARS” for short) BC, detailed in the work of Folland** (Section 3.5, pp. 86-95). In the series of articles of Zettl
and his co-authors®%3741 on the geometric structures of spaces of boundary conditions, it sometimes takes the form

u'(0) sin By +u(0) cos By = 0,
u'(1)sin @) +u(1)cos6; =0, (6)
where 6y,0; € [0,1). These correspond to o = —cot8y and & = —cot 0 in our notation. We shall discuss these particular

GSARS cases in this article. A general framework for spaces of boundary conditions for ‘separated’ and ‘coupled’ self-adjoint
BCs for higher order Sturm-Liouville problems can be found in the literature.**=**,
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Recent activity*#, following*®, has focused on minimal extension of operators and their properties. We adopt a more
classical point of view,*>** focusing on lower rank perturbation of eq. (1). We will show that in the most general setting, all
known examples of the Sturm-Liouville problem are polynomial perturbations of eq. (1) by operators of rank at most 4. We
believe the result to be new. This article proposes:

* A unified view of all known boundary value problems (BVPs) recasting them in terms of the integral operator formulation
(e.g., Green’s functions);

* All of these BVPs are equivalent — up to the finite dimensional perturbation — to the base nonlocal integral operator
eq. (1). The BCs for all these problems are indeed encoded in the perturbation in the following sense: The nonlocal oper-
ator eq. (1) corresponds to the Green’s function on the whole real line; introducing BCs on [0, 1] amounts to introducing a
perturbation on this free-space Green’s function.

* A unified approach to obtain the Green’s functions from the expansion of the resolvents. This is an expansion on old ideas
due to Kato'®.

The spectral questions explored here connect in a fundamental way with the works?728-32.33,

Remark L.3. We are interested in trace or sum rules for spectral functions associated with J& in eq. (1), emanating from
our recent work®>. We plan to treat the closed forms for the iterated kernel and spectral functions corresponding to various
Sturm-Liouville problems in our upcoming series of articles. O

Remark 1.4. Perturbation questions of the types treated here have been visited in the literature in applications to the Laplacian
of a graph (in particular, a tree) and its connection with the distance matrix; see>'>2. O

The integral operator framework works very well for the nonlocal operator eq. (1). The literature has focused much on
Dirichlet and Neumann BVPs; see, e. g.,31. However, for the other BVPs we deal with in this paper, it is more difficult to derive
the corresponding Green’s functions. We propose a unified approach to obtain the Green’s functions from the expansion of the
resolvents. This has been explored by Kato!?, but not fully exploited yet as far as we know.

Remark L5. Table I summarizes the values of &, B, and 8 for each BC we deal with in our article, including the periodic and
anti-periodic cases. They are coupled BCs and part of a different setting in the literature. 303741

TABLE 1. Discriminant and rank of perturbation for values of o, 3,8 for various BCs; KvN=Krein-von-Neumann; GSARC=General Self-
Adjoint Real-Coupled; GSARS=General Self-Adjoint Real-Separated; A := 8 —28 — ot + B2+ ad

[Problem HNonlocal[ KvN [Dirichlet[Neumann[ Robin [Radoux[GSARC [ GSARC [GSARS [ GSARS [Periodic[Anti—Periodic]
a=—1l|la=—-1|a—o| a=0 |d—>w|a—w B=01|B=0

Conditions B=-1|B=1| B=0 B=0 |B=0|B=0] A#0 | A=0 | A#0 | A=0 - -
6=1 6§=1| 86— 6=0 |[6=0|6=1

Value of A 4 0 oo 0 —oo 1 #0 0 #0 0 - -

Perturbation Rank - 4 2 2 2 2 2 2,3,or4 2 2 3 1

The organization of this article is as follows. In section II we show the equivalence of the problems eq. (1) and eq. (2). In
section III we show how to obtain the integral operator from the resolvent. In section IV we show that all the problems of the
form eq. (3) are lower rank perturbations of eq. (1) of up to rank 4.

Il. FROM THE INTEGRAL OPERATOR TO THE DIFFERENTIAL EQUATION

To the best of our knowledge the properties of the operator eq. (1) were first explored in a very general setting in the works of
Marcel Riesz?*2!. For simplicity, let

1
K(ey) = =5 =yl Q)

To see that eq. (1) and eq. (2) are equivalent, observe, as in M. Riesz (see formulas of2° (p. 41) and?! (p. 73)), that the function

1
u(x) = /0 K(x.y)f()dy ®)
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is a solution of the Poisson equation

—u"(x) = f(x). ©))
Note that
9*Kk(x,y)
_87))2:6()6_)))’ (10)

where 8 denotes the Dirac delta function. By eq. (9)

1
u(x) = /0 K(x.0) £(7) dy
1

= /0 K(x,y)u (y) dy

_ 182K(x7y) / 81( !

——/0 Tzu(y) dy+ [—u (y)K(x,y)+u(y)7y .

1
:u(x)+[—u’(y)x(w)ﬂ(y)?;] : (11)

0

Therefore, it must satisfy the BC

/ aK 1_
e +ul) 5] <0
This means
/ oK . oK
—u'(1)x(x 1)—|—u(1)a—y L (O)K(x70)+u(0)a—y o
and reduces to
1, o, 1
—Hu () (x—1)+ Eu(l) =u (0)x— Eu(O)

for any x € [0, 1]. Equating the coefficients leads the BCs in eq. (2).

lll. FROM THE RESOLVENT TO THE INTEGRAL OPERATOR

The standard procedure to obtain the integral operator corresponding to a differential operator is to find the fundamental
solution, or Green’s function, first. Then the integral operator is just the formal solution of the problem. In our setting above, the
fundamental solution of eq. (2) is k(x,y) (viz. eq. (9)) satisfying its BCs. Reversing the steps of eq. (11) proves this point.

Rather than following this procedure, we propose a unified framework for GSARC problems. They cover SL(2,R) cases, and
the prominent periodic and anti-periodic cases, which do not follow the GSARC setting. The various BCs are summarized in
table 1.

We propose a framework where the calculations proceed via the resolvent. The Green’s function is then obtained from the
expansion of this resolvent. We note four well-known examples appearing in the literature: Stakgold and Holst>® (Example 1,
pp. 416-420, eigenvalue problem (7.1.28)); Kato!® (Example 6.21, p. 183; Example 4.14, p. 293; and Example 1.4, p. 367).
In these examples, the resolvent is calculated explicitly, but the full extent of the method we are proposing in this article is not
exploited.

The proposed approach exploits in a fundamental way the Taylor and/or Laurent expansion of the resolvent function (or
Neumann series) corresponding to linear operators. This approach aligns with the recent work of Gesztesy and Kirsten?%2%30,
Our procedure explicitly calculates expressions of these operators for all GSARC problems. This method turns out to be an
efficient tool for obtaining closed forms of the zeta spectral function in terms of the iterated Brownian bridge>*.
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A. Review of resolvents and Green’s functions

For relevant materials, we cite the standard literature on the properties of the resolvent, and provide the necessary background
we will need in this article; see Yosida>> (Chap. 8); Kato!? (Chap. 1; Chap. 10); Dunford & Schwartz>° (Chap. 7); and Taylor
& Lay®’ (Chap. 5). These expansions have roots in Nagumo’s 1916 article®®; see also®. Let A be a densely defined and
closed linear operator of trace class on a Hilbert space % with domain 2(A) and range Z(A) in 7. For the applications
we envision in this paper, the spectrum consists of a discrete set of eigenvalues, A} < A, < ... < A < ... accumulating to
oo, i.e., 6(A) = {A};, This is certainly the case of all the problems defined by the eigenvalue problem eq. (3). Finally, let
p(A) = C\ o(A) be the resolvent set of A, and T = A~ its inverse.

On p(A), the resolvent R(z) := (A—zI)~" is a holomorphic function of z. Moreover, it admits the expansion (see, e.g.,’
(p- 23; p- 193)):

R@)=(A(I-zA"")""

= (1—za7") A"

=AT'HATHAT 4

=T+T*4+T7+-- (12)
for |z||A~"|| = |z| IT|| < 1. Here I is the identity operator on . In the applications we propose T will correspond to the

integral operator associated with A, while 7%*! is the associated iterated form of order k. The singularities of R(z) are exactly
the eigenvalues of A. If z = 0 is an eigenvalue, R(z) admits the Laurent series

R(zx)= ) Z'A,. (13)
Nn—=—o0
The coefficients A, are given by
1 —n—1
Ap=— 7" 'R(z)dz. (14)
2mi C(0,¢)
where C(0, €) is a positively-oriented small circle of radius € centered at z = 0, excluding all other eigenvalues of A. We note
that the Riesz projection P := —A_;. In more explicit terms, following Kato!® (Sec. I1.6.5), if z = 0 is an isolated singularity,
then
P =) Dn oo
Rp)=—==Y —+ Y s, (15)
a3 " n=0
with
P 1 56 R(z)dz, D:=AP : R(z)d (16)
=— z)dz, =AP=—— zR(z) dz,
2mi C(0,e) 27 C(0,¢)

D is quasi-nilpotent with

D=DP=PD, a7
and
S = L % @dz, (18)
27 cloe) <
satisfying
AS=I-P, SP=PS=0. (19)

The dimension of the range corresponding to P is the algebraic multiplicity, m(T';0) of z = 0242930
m(T;0) = dimZ(P) =tryy (P). (20)

When z = 0 is not an isolated singularity, P =0, S = A~! = T and we recover eq. (12).
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B. Our one-dimensional setting

For the BVPs we deal with, we set A = — % + BCs on [0, 1]. We present a unified approach to all GSARC problems. We also
investigate a couple of non-GSARC problems that appear in the literature, namely the periodic and anti-periodic cases treated
in32. Our results in this article focus on perturbation questions not pursued in?6-2%-30-32,

For z € p(A), the resolvent R(z) applied to a function f(x) takes the form

1
RO = (=20 ) )= [ G0 e

where G(z,x,y) is the associated kernel. Explicit resolvent kernels for the various BCs considered in this paper are listed in
table I1. We will also denote by Go(x,y) the Green’s function corresponding to the expansion eq. (15)

1
SFx) = (A1 (- P) f) (x) = /0 Golx,y)f(y) dy: 22)

It is explicitly given in table III for the various BCs considered in this paper.

Remark IIL1. Though its study is relegated to our subsequent article, the iterated Green’s function corresponding to 8" in
eq. (15) is denoted by G,(x,y), viz.,

1
S f(x) = /0 Gulx.3) £ () dy. 23)

O

We end this discussion by deriving the condition under which eq. (3) admits A = 0 as an eigenvalue (and hence leads to an
isolated singularity leading to the Laurent series eq. (15) for the resolvent.) Clearly, for A = 0, we are after the condition that all
lines of the form y = mx + b are non-trivial solutions of the BVP eq. (3) (with y = —f3). This means

m=ob+P(m+b)
m=—Bb+06(m+Db)

or

Hence the following secular equation must hold:

1-B —(a+B)| _
18 (P o ”
Simplifying, we are led to the condition A :== 8§ — a — 2B + B? + a8 = 0. We call A the discriminant of the corresponding
Sturm-Liouville problem.

Note that when 8 = 1, eq. (24) leads to & = —1 or 6 = 1. This is a generalized instance of the Krein-von Neumann problem
where @ = —1, B =1, and 6 = 1. In fact, for the BVPs we deal with, only the Krein-von Neumann BVP belongs to the GSARC
class with A = 0 while the other BVPs belong to the GSARC class with A # 0. The discriminant condition and various BCs,
including the “separated” case (8 = 0) are plotted in Fig. 1.

C. The Nonlocal Boundary Conditions eq. (2)

This is the eigenvalue problem eq. (2), which corresponds to the BVP eq. (3) with

ce=(17)
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Krein-von Neumann

Nonlocal (Saito)

2

FIG. 1. Discriminant condition § — &t — 23 + B2 4+ a8 = 0 corresponding to A = 0 being an eigenvalue, with various BCs treated, including
the discriminant condition for the “separated” BCs case (8 = 0) indicated by the curve on the two sheets of the surface.

with discriminant A = 4. Since A = 0 is not an eigenvalue, its Riesz projection P = 0. To obtain the expression of the resolvent
kernel in table II, we first fix 0 <y < 1, and let

<x< 1
ulry) = {1100 DS vEYS (25)
w(x,y) 0<y<x<l1
be a solution of the Helmholtz equation
W' +zu=—8(x—y) (26)

with ’ denote the derivative %. Here, for simplicity, G(z,x,y) = u(x,y), suppressing the dependence on z in the expressions of
u1 and u. We now impose the BCs

up(0,y) = —ui(0,y) —uz(1,y)
ur(1,y) = u1 (0,y) +uz(1,y) o
u(y~,y) = ( ,Y)

wr(y,y) —uy (v, y) =
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TABLE II. Resolvent kernel G(z,x,y) for various BCs; the formulas for GSARC with A = 0, GSARS with A = 0, and GSARS with A # 0 are
too long to list in this table; see appendix A, appendix C, and section IV J, respectively
[ Problem [ Resolvent |
—y/zcos(y/zx) cos (y/z(1 —y)) +2cos 5 ¥Z §in %(1 +2x—2y)), 0<x<y<l1
Nonlocal (Saito) m 7
. 7| —y/zcos (y/zy) cos (v/z(1 — ))+2003 2 ©sin (%5 (1+2y—2x) 0<y<x<lI
Kret N X —/z cos (y/zx) cos (1/z(1 y))+2§1n cos ([ F(14+2x—2y)), 0<x<y<l1
reim-von INeumann -
Va2 2e0s Vit asinv2) —/z cos (1/zy) cos (1/z(1 x))+2sm %(1+2y72x) 0<y<x<l1
Dirichlet?® sin(y/zx) sin(y/z(1 —y)), 0<x<y<1
sin(y/zy) sin(y/z(1 —x)), 0<y<x<1
cos (y/zx) cos(y/z(1—y)), 0<x<y<lI
N
eumant \[““\[ {cos (Vzy) cos(y/z(1-x)), 0<y<x<l1
. 1 (/7 008 (y/2x) + @ sin (y/2¥)) (vz cos (va(l—y))— 8 sin(va(1—y))) 0<x<y<l
Robin (@—8)zc0s 2~ y/aztad) sinv/z ;
2e0s Vvl V2 (Vzcos (y/zy) + asin(/zy)) (yzcos (vz(1 —x)) — 8 sin(y/z(1 —x))) 0<y<x<1
. cos %(1+2x—2y) , 0<x<y<l1
Periodic - N _
2y/zsin 5| cos £(1+2y72x) , 0<y<«x<l1
sin(L(1+2x—2y)), 0<x<y<lI
Anti-Periodic -~
2vzeos 5 | sin (L (1+2y—-2v)), 0<y<x<lI
Radous . Vasin (V2x) cos (V) —sin(Va(1 =), 0=r<y=<1
VaVzeos Va=sin2) | /zsin (y/zy) cos (yz(1 —x)) —sin(y/z(1 —x)), 0<y<x<I
—(z+ B2+ ad)cos (vz(1+x—y))+ (—z+ B>+ a8) cos (vz(1 —x—y))
V(= 2Bsin (2 — )+ (—a+ 8)sin (z(l +x—))
i —x— <x<y<
GSARC, A #£0 1 S -H?+5Bmhﬁ0 x=y)), i 0<x<y<l
(—4Bz+22(—a+8)cos a2 Va(z+B2+ad)sinv2) | — (24 B2+ &) cos (y/z(1 +y —x)) + (—z+ B2 + ad) cos (v/z(1 —y —x))
(= 2Bsin (20— )+ (—a+ 8)sin (y2(l +y—x))
+ (o +8)sin(yz(1—y—x))), 0<y<x<l
TABLE III. Green'’s function G(x,y) for various BCs; see appendix A and appendix C for the formulas of GSARC and GSARS with A=0
[ Problem [ Green’s function ]
Nonlocal (Saito) \x |
Krein-von Neumann —%\x —y+ % % (x+y)+2 (x +y ) + xy 3xy (x+y) (3 +5%) +2xy (2 +3%)
Dirichlet?® \x y| + T+y) -
Neumann \x y| +1-1 (x+y) (x +5%)
Robin —Th—y- m (2 25+(O¢+5 ad)(x+y)+2adxy)
Periodic z‘x_YH‘ﬁ"‘%(X—Y)Z
Anti-Periodic T — y\ +7
Radoux — =y + T +y) - xy+ 13 (2 +y%)
GSARC, A #0 —faxfyL+EZE§iﬂaﬂ$(i71+5)+%5ﬁ2+3? )a 8) (x+y) — (B +ad)x)
B0 cos 0 Fsin(6 1 01)) (x1y)—2xycos By cos 0
GSARS, A#0 _%|x _y‘ - coos(gseol—ejl)nJrcgs(G(]ﬁrOl)i2sin(9(;0i6?;:os :

The last two equations of eq. (27) reflect, respectively, the continuity and jump condition at y (obtained by integrating eq. (26))
It is a common strategy60 to set

ui(x,y) = aj cos (v/zx) +az sin (y/zx) ,
uz(x,y) = by cos (y/zx) + basin (y/zx) ,

0<x<y<T;
(28)
0<y<x<l1,

and then plug eq. (28) into eq. (27) to determine a;,a;,b, and b,. These then lead to a solution G(z,x,y), which depends on the
spectral parameter z, as well as x and y:

—y/z cos (y/zx) cos (y/z(1 — ))—I—Zcos‘/ sin (72(1—1—2)5 2y))
G(Z,X,y) = ? (29)
VZ (242cos/z+/z sin/z)

for 0 < x <y < 1, and by symmetry, the expression G(z,y,x) when 0 <y <x < 1. The poles of G(z,x,y) as a function of z
are exactly the eigenvalues of our differential operator. Note that Gy (x,y) = lim__,o+ G(z,x,y) =

j(x—y), for0<x<y<l,
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thus recovering the expression of the integral operator eq. (1). Here, we use the convention of Kato!, for 0 < y<x<l,ie.,
Go(x,y) = %(y —x) by symmetry. The full expressions for all BVPs considered in this paper are listed in tables II and III. Explicit
expressions for the kernel of the Riesz projection, p(x,y), are displayed in table IV for various conditions.

TABLE IV. Riesz Projection kernel for various BCs; the case of GSARC, A =0, ov = —1 reduces to a generalized Krein-von Neumann problem
(with & as a free parameter); see remark I11.8 for further details

[ Problem [ Riesz Projection Kernel |
Nonlocal (Saito) 0 (None)
Krein-von Neumann —4+6x+ 6y — 12xy
Dirichlet?® 0 (None)
Neumann —1
Robin 0 (None)
Periodic —1
Anti-Periodic 0 (None)
Radoux —3xy
GSARC,A#0 0 (None)
GSARC. A=0and o # —1 | 2B PPl
GSARS,A#0 0 (None)
GSARS,A—0 | “n e

D. Krein-von Neumann Boundary Conditions

27,28,45-48

This problem received special attention in the literature, both in one dimension, and in higher dimensions, , partially

in connection with work on self-adjoint extensions of the operator .7, = f%. Note that the Krein-von Neumann extension is
the smallest (or soft) positive self-adjoint extension while the Friedrichs extension is the largest (or hard) positive self-adjoint
extension. For the definitions and relevant characterizations we refer the reader to the cited literature as well as®'.

In one dimension, it corresponds to the problem eq. (3) with

c=( 1)

with discriminant A = 0. Strauss®® (pg. 101, Exercise 12; pg. 145, Exercise 4) calls this problem an “unusual” eigenvalue
problem. We owe this remark to M. Ashbaugh who brought it to our attention. Solving eq. (26) for u given by eq. (25) (and
eq. (28)), and imposing the boundary, continuity, and jump conditions

w;(0,y) = —u1(0,y) +uz(1,y)
M/Z(lay) = —up (O7y) +u2(1,y)
30
ul(y77y>:u2(y+ay> ( )
Wy ) —ui(y,y) =—1

gives

—+/zcos (y/zx) cos (v/z(1 —y)) —&—ZSin%cos (%(l —|—2x—2y))
VZ(—242c0s/z+ \/zsin/z)

for 0 < x <y < 1, and by symmetry, the expression G(z,y,x) when 0 <y < x < 1. The kernel of the Riesz projection is given by

G(z,x,y) =

p(x,y) := lim zG(z,x,y) = —4 + 6x+ 6y — 12xy. 31
z—07F

The quasi-nilpotent operator D defined in eq. (16) is null in this case because

lim 2 G(z,x,y) = 0.

z—0
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The Green’s function corresponding to this problem is obtained by finding the limit

. px,y
G()()C,y) = 21*13(1)1+ G(Zaxvy) - %

1
=% (4 — 3x — 33y + 60x? -+ 60y* + 36xy — 30x> — 90x%y — 90xy* — 30y°
+ 60x3y + 60xy3)

for 0 <x <y < 1. A unified expression, valid for all x,y € [0, 1], and relating to the nonlocal operator appears in table IIL

E. Dirichlet Boundary Conditions

This example is found in many sources, e.g.,!»1%28-31:50.6263 "t i5 the easiest as it captures the essence of many features of

GSARC problems. As a GSARC problem, this is the limiting case when o — o0, f = —y =0, and § — o (e.g., & = § — oo,
thus A — oo, ).
Solving eq. (26) for u given by eq. (25) (and eq. (28)), and imposing the boundary, continuity, and jump conditions

u1(07y) =0
u2(17y) =0
32
ur(y",y) =u2(y",y) 2
wp(y"y) —ui (y7y) = -1

yields
~sin(y/zx) sin(v/z(1 —y))
G(z,x,y) = VZsiny/z ’

Note that lim,_,¢+ zG(z,x,y) = 0. Thus the Riesz projection P = 0 and G(z,x,y) admits a pure Taylor series at z = 0, from which
we get

Go(x,y) = Zgr;g G(z,x,y) = x(1 —y),

for 0 <x <y <1, and the symmetric expression for 0 <y < x < 1. This fundamental solution assumes the unified form

1 1
Go(x,y) = *E\x*yl +5 (x+y) —x,

valid for all x,y € [0, 1]. The resolvent and Green’s function are tabulated in tables II and III (see also!%2%).

F. Neumann Boundary Conditions

The expression for the Green’s function Gy (x,y) corresponding to this eigenvalue problem appear, for example, in!3!. To
obtain the resolvent kernel and Green’s function expressions in tables II and III, we proceed as before, with the associated
GSARC matrix C = 0, and the discriminant A = 0. For 0 <x <y < 1, the resolvent kernel is explicitly given by

 cos (/2x) cos (VE(1 — )
V/2siny/z '
The kernel of Riesz projection P is given by p(x,y) = lim,_,q+ 2G(z,x,y) = —1, while the nilpotent operator D = 0 (since

lim, ,+ 72 G(z,x,y) = 0). The singularity z = 0 corresponds to a simple eigenvalue of the problem eq. (3). The Green’s function
corresponding to this problem is then

G(z,x,y) =

p(x,y)

Go(x,y) = Jim, G(z,x,y) —
1
= (2—6y+3x*+3y%),

for 0 < x <y < 1. This agrees with the expressions in'~!.
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G. Robin Boundary Conditions

In the Robin boundary problem (named after the French mathematician Victor Gustave Robin; see, e.g.,64*65), we still deal
with the eigenvalue problem eq. (3) but now subject to (the separated) conditions where the flux at the boundary is proportional
to its value, i.e., u'(0) = au(0) and «’(1) = Su(1). In the recent literature the problem is sometimes called the “Generalized
Robin Problem”®®. We will first focus on the general case, then treat particular cases which received special attention in the
literature!®>3. The discriminant is given by A = 8 — ot + o0 §. We will treat the case when A = 0, relegating the null case to the
most general setting. We solve for the resolvent kernel as before, to get, for0 <x <y <1

(/2 008 (/1) + sin (y/21)) (/7 cos (y(1—3)) = § sin ({1 -y)))
(¢ — &) zcos\/z—/z(z+ad) siny/z ’
and the symmetric expression G(z,y,x) for 0 <y <x < 1.

Since lim, g+ zG(z,x,y) = 0, the Riesz projection P and nilpotent operator D are identically equal to zero. For 0 <x <y <1,
the Green’s function corresponding to this problem is given by

G(z,x,y) =

GO(xvy) = zli}r(%_ G(Z,)@y)

(I4+ax)(1-56(1—y))
d—a+ad

b

and the symmetric expression Gy (y,x) for0 <y <x < 1.

Example IIL2. One of the simplest cases of the Robin BCs is: u(0) =u'(1) =0, i.e., o — o and § — 0, A — —oo, corresponding
to Dirichlet BC at one end, and free Neumann BC at the other end. For 0 < x <y < 1, the resolvent kernel is explicitly given by

~sin(y/zx) cos (/z(1 —y))
G(vaa )* \/ECOS\/E ’

The Green’s function corresponding to this problem is then

Go(x,y) = lim G(z,x,y)=x for0<x<y<lI,
z—0t

and the symmetric expression Go(y,x) for0 <y <x < 1. O

Example ITL3. Another example appears in Kato’s work as Example 4.14'° (p. 293) where the BCs are given by u(0) = 0 and
/(1) —u(1) =0, and 0 < 7 < 1 is a fixed parameter (our 7 is the K in Kato’s book). Note that ot — oo and 8 = 1/7 in this
example.

Hence,

sin (/zx)
TZCOS /7 — /Z8in/Z
This expression agrees with the result in Kato’s book. For 0 < x <y < 1, the Green’s function corresponding to this problem

1
Go(x,y) = lim G(z,x,y) =x— ——
o(x,y) = lim Glz,x,y) =x——xy

G(z,x,y) = (TVzcos(vz(1—y)) —sin (vVz(1-y))).

and the symmetric expression for 0 <y < x < 1. We note that this problem admits a unique negative eigenvalue; see'.

O

Example IIL4. Another variation of this Robin problem appears as Example 1.4'° (p. 367) where the BCs are replaced with
u(0)=0and u'(1)+1u(1) =0, i.e., & — o0 and § = —1/7 in the general setting. Hence, we have

sin (y/2x) (/2 cos ({1 —)) + 7 sin(VZ(1-))
7€0S4/Z+ T+/Zsiny/z ’

for 0 < x <y < 1. This expression is also equivalent to Kato'. The Green’s function corresponding to this problem is given by

G(zx,y) =

Go(x,y) :ZE%L G(z,x,y) =x xy for0<x<y<l. (33)

147

Unlike example 111.3, this problem does not exhibit negative eigenvalues. O



Nonlocal Integral Operators and SLP 12

Example IIL5. Yet another variation of this Robin eigenvalue problem also appears in the work of Stakgold and Holst>
(Example 1, pp.416-420), with BCs of the form: u(0) =0, and u'(1)sin 0 + u(1) cos @ = 0. This is equivalent to example 111.4
with T=cot@ (or ¢ — o and § = —tan0).

For 0 < x <y <1, and in terms of the angle 0, the resolvent kernel takes the form

sin (y/zx) (1/zsin @ cos (1/z(1 —y)) +cosBsin (1/z(1 —y)))

G Ny = p -
@x.7) z8in 6 cos \/z+/zcos 0 sin/z

while, the Green’s function corresponding to the integral operator is then given by

1
= i — Xy, 34
Golx,y)i= lim G(z,x,y) =x— 1oy (34)
These expressions are equivalent to those appearing in>>. O

Remark IIL.6. For 6 —o+ad =0, ie, 6 = (XLH ora = % the Riesz projection P has a kernel given by

3(1+ax) (1+ay)
3+30+ a?

p(xay) =
while the nilpotent operator D = 0. The Green’s function corresponding to this problem is then

. px,y)
GO(xay) = Z]_l>r(§l+ G<Z7xay) - T

3
=coo +crox+co1y + ca0x” + e 1xy+ Cozy2 + 30X + c21x2y

+ 012Xy2 + 603)’3 + 631X3y + Clsxy3

for 0 < x <y <1, where the coefficients are explicitly given in appendix A, with B = 0. The expression 3 +3a+ a*> > 0
(its discriminant is negative). It appears in the expression of the Riesz projection kernel, and in all the expressions of the c;;
coefficients. The Green’s function Go(x,y) is a fourth-order polynomial in x and y.

H. Periodic Boundary Conditions

Historically, this is a well-studied eigenvalue pro-blem, due to its tight connection to Fourier series®’. Although it is not of
GSARC type, we include it for comparison sake with the work of32. In lieu of the BCs in eq. (3), we treat the eigenvalue problem
with #(0) = u(1) and «/(0) = u'(1).

Solving the Helmholtz equation eq. (26) for u with these BCs, and imposing the continuity and jump conditions as before,
leads, for0 <x <y <1,to

cos (%(1 +2x—2y))
2\/Esin§

G(Z,X,y) =

The kernel of Riesz projection P is given by p(x,y) = lim,_,o+ zG(z,x,y) = —1. The nilpotent operator D = 0 since
lim,_,o+ 2> G(z,x,y) = 0.
The Green’s function corresponding to this periodic case is then

p(x,y)

GO(xay) = lim G(Zaxvy) -
7z—07T
1
=15 (1 + 6x — 6y + 6x% — 12xy—|—6y2) ,
for 0 <x <y <1, and the corresponding expression by symmetry for 0 <y <x < 1.

I. Anti-Periodic Boundary Conditions

This is one of the eigenvalue problems revisited in the recent article of Fucci, et al.*?, though not an GSARC problem. The
BCs are given by u(0) = —u(1) and «/(0) = —u'(1). The resolvent kernel ensuing from the proposed technique herein is given,
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for0<x<y<1,by

sin (%(1 +2x—2y))

G(z,x,y) =
2,/zcos %

The kernel of Riesz projection P = 0 since p(x,y) = lim,_,g+ 2G(z,x,y) = 0, and thus the nilpotent operator D = 0.
The Green’s function corresponding to the anti-periodic case is then

(1+2x—2y)

FNp-

Go(xay) = lim G(vaay) =
z—0t

for 0 <x <y <1, and the corresponding expression by symmetry for 0 <y <x < 1.

J. Radoux Boundary Conditions

The Radoux eigenvalue problem®® appears in the literature in the context of obtaining sum rules for the roots for the tran-
scendental equation tanx = x. Sum rules are closed form expressions for the zeta function of these roots with a history that
is traceable back to Rayleigh and others; see’. Radoux used spectral techniques for solving eq. (3) with the BCs u(0) = 0,
/(1) = u(1) to find these sum rules. This eigenvalue problem is a limiting case of section III G when & — o, and § = 1, (or
when 7 — 1 in example II1.3). The discriminant A — o and the formulas of section III G are no longer valid.

While the resolvent kernel is recoverable from this limit, the Green’s function is not. Proceeding as before, we obtain

sin (/1) (y/Z <0 (y/2(1 —y)) —sin (/2(1-1)))
7C08\/z —/z8in/Z '

The kernel of Riesz projection P is given by p(x,y) = lim, o+ 2G(z,x,y) = —3xy, and the nilpotent operator D = 0 since
lim, o+ 7 G(z,x,y) = 0. For 0 < x <y < 1, the Green’s function is then

G(z,x,y) =

. ; 1
Go(x,y) = zlir& G(z,x,y) — @ =10 (—10x+ 18xy—5x3y—5xy3) . (35)

K. GSARC Boundary Conditions with Non-Zero Discriminant

We now focus on the general problem eq. (3), with A = § — a — 28 4 B% + a8 # 0. The technique described yields a resolvent
kernel where
The expression for

(=4Bz+2z(—a+8)cosv/z+2v/z(z+ B + ad) siny/z) G(z,x,y)
is given by

— (z4+B* +ad)cos (vz(1+x—y)) + (—z+ B>+ ad) cos (Vz(1 —x—y))
+z(—2Bsin (Vz(x—y)) + (—a+8)sin (vz(1+x—y))
+ (o +8)sin (vz(1 —x—y)))

for 0 <x <y <1, and thus by symmetry for full expression in table II. For 0 <x <y < 1, the kernel of Riesz projection P=0=D
since lim,_,o+ 2" G(z,x,y) = 0, for n = 1,2. The Green’s function is then

Go(x,y) = lim G(z,x,y)

z—0t
—1+6—(a+B)x+(B—8)y+ (B> +ad)x(1—y)
§—a—-2B+p%+ad

for 0 <x <y <1, and the symmetric expression Go(y,x) for 0 <y <x < 1.
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L. GSARC Boundary Conditions with Zero Discriminant

We now discuss the case when the discriminant A = § — a — 28 + B2 + a8 = 0. We first discuss the generic case, with
2 2
6= afﬁfﬁ (equivalently o = 5_12E :{B ), then discuss the three limiting cases: (i) @ — —1 (so that § = 1, and 9 is arbitrary);
(ii) 8 — 1 (so that § = 1, and « is arbitrary); and (iii) the special case satisfying both (i) and (ii), i.e., c = -1, =1, 6 = 1.
The expression of the resolvent kernel following from the same method is such that

2z(—2(14+a)B— (a*+ B2 —2B) cos/z+ (1+a)z+ (OH—ﬁ)z) siny/z) G(z,x,y)

is equal to

—((1+a)z+ (o +B)*) cos (vVa(1+x—y)) + (= (1 + &)z + (@ +B)?) cos (vz(1 —x—))

+ﬁ{ —2(1+0) Bsin (Vz(x—y)) — (@ + B = 2B) sin (Vz(1 +x—))
+(2+O¢—[3)(O€+ﬁ)sin(\/2(l —x—y)) }

Upon calculating lim,_,¢+ 2" G(z,x,y) forn = 1,2, ..., we realize that the kernel of the Riesz projection is given by

3A-B+(a+p)x) (1-B+(ax+B)y)
3+a’+p2—af+30—3p

p(x’y) =

while the nilpotent operator D = 0.
The Green’s function corresponding to this problem is then

. P,y
GO(-x7y) = Zl_l)%l+ G(Zﬂxay) - %

= coo + cr0x+co1y + ca0x® + e 1xy + Cozy2 + e300 + c21x2y
+ Clzxy2 + Co3y3 + C31x3y + Cl3xy3

for 0 <x <y < 1. The coefficients depend on the parameters and are explicitly given in appendix A.
We opted not to include the expressions for G(z,x,y) and Go(x,y) in table II and table III since the expressions are too long.

Remark IIL.7. Note that c19 — co1 = 1, co0 = coa, €21 = €12, €30 = €03, and c31 = c13. These identities will prove useful in the
calculation of the perturbation in section IV H. O

Remark III.8. We now treat the limiting cases (i), (ii), and (iii). Again, we list the results for 0 < x <y <1 and complete the
expression for 0 <y < x < 1 by symmetry.

(i) &« — —1 (so that B =1, and J is arbitrary)
The expression of the resolvent kernel following from the same method is such that
(Vz(=2+ (1+ 8)cosy/z) + (1 — 8 +2)siny/z) G(z,x,y)

is equal to

(—v/zcos (vz(1—y)) 4+ & sin (v/z(1 —y)) +sin (v/zy)) cos (v/zx)

+ (VEcos (Va1 =) —eos(v2) (1 = 8)sin(a(1 —))) *L.

The Riesz projection has a kernel
pxy) ==3(1—-x)(1-y)

and the corresponding Green’s function is

Go(x,y) = — ((—9+48) + (19— 48)x —30(1 — §)x* +10(1 — §)x°

1

20(1-8)
+ (39— 248)y + (—69 +248)y* +10(1 — 8)y*
+3(—23+88)xy+30(1 — &§)xy* +30(1 — 8)x%y
—10(1—8)x*y —10(1 — 5)xy3).
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(ii) 6 — 1 (so that B =1, and « is arbitrary). The expression of the resolvent kernel following from the same method is such
that

(Vz(—2+ (1 —a)cos/z) + (1 + a+2z)siny/z) G(z,x,y)

is equal to
(—vzcos (vz(1—y)) +sin (vz(1—y)) +sin (v/zy)) cos (v/zx)

—/z (acos (v/z(1 - y)) +cos (V) — (1 +a)sin (va(1 —))) Sm(\/\fx)

The Riesz projection has a kernel
p(x,y) = —=3xy

and the corresponding Green’s function is

Go(x,y) = 20—30x+ 10(—142a)y

201+ ) (
+(9—36a)xy+10(1+ a)xy* + 10(1 + a)x>y).

(iii) a=—1,B=1and 8 =1

This is the most particular of all these cases. The expression of the resolvent kernel following from the same method is
such that

(2y/z(—1+cosy/z+2zsiny/z) G(z,x,y)

is equal to

(—v/zcos (vz(1 —y)) +sin (vz(1 —y)) +sin (v/zy)) cos (v/zx)
, 1 sin (y/zx)
mn(ﬁ(zy)) 2sin ¥ .

2

The Riesz projection kernel is given by p(x,y) = —4+ 6x+ 6y — 12xy. The corresponding Green’s function is

1
Go(x,y) = T (4 —3x+60x% — 30x> — 33y + 36xy — 90x%y
+60xy + 60y — 90xy* — 30y* + 60xy°).
In all cases, the nilpotent operator D = 0. O

IV. PERTUBATIONS OF THE NONLOCAL OPERATOR EQ. (I.1)

With ¢ as defined in eq. (1), we are interested in understanding the nature of the integral operator .7 := % — ¥4, where

Hyg f(x) == fol Go(x,y)f(y)dy, Go(x,y) is one of the Green’s functions developed in section III for various GSARC problems.
The perturbation 7 we aim to study is then given by

1
T () = /O (K(x,y) — Gole.y)) £(7) d, 36)

where k(x,y) was defined by eq. (7). The method consists of finding the eigenvalues and corresponding eigenfunctions of this
operator using Linear Algebra. In each of the BVPs in this article, we proceed as follows:

Step 1: Determine the form of the kernel T'(x,y) = k(x,y) — Go(x,y) for x <y;

Step 2: Set the kernel T'(x,y), for x > y, by symmetry;
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Step 3: Simplify the expression of

1 X 1
| rensow = [ rensma [T sma G7)
X
(This leads to the appropriate form of the function f(x). It turns out to be a polynomial with a degree off by 1 from the
size of the matrix corresponding to the operator .7.)

Step 4: Find the spectral resolution of the operator .7 by working out the spectral resolution of the corresponding matrix
problem.

The range of the operator 7 is a space of polynomials. If n is the rank of the matrix M s corresponding to the operator .7. The
spectral resolution of this operator is given by

n

Tf(x) =Y {f ) we(x) (38)

k=1

where (f,g) 1= fol f(x)g(x)dx is the usual dot product, and uy, . .., u, are the eigenvectors of the matrix M s which we determine
for the various eigenvalue problems discussed earlier.

In all cases, we will show that T'(x,y) = T(y,x), thus the split of the integral in eq. (37) is not needed. In fact the resolved
kernel associated with .7 is symmetric as well in x and y.

Remark IV.1. Perturbation is treated in a multiplicative framework in Section 2.8 of®® where the finiteness of the rank of the
perturbation implies the existence of boundary triplets (see Theorem 2.8.1). Krein-type resolvent formulas (and thus Green
functions) appear in’® (Sec.4.3, 7.5, 11.3, 13.10, 14.13, Appendix D.6).

A. Dirichlet Boundary Conditions

As noted in! and?, the Green’s function corresponding to the Dirichlet problem (consult table III) is given by

Golwy) = 5 (r49) == 3 sl == (k=3 ) (3= 3 ) + 5= 5h ol (9)

The latter form appears in the 1959 paper of Lidskii*’. From eq. (39), we easily get

T(oy) = 5 ().

Since this expression is symmetric, viz. T (x,y) = T (y,x), the perturbation operator takes the simple expression

750 = [ (oS soe

([ o)~ ([ G-rme)x (0)

By virtue of eq. (40), the eigenvalue problem 7 f(x) = A f(x) leads to a linear eigenfunctions of the form f(x) = ap + a;x and

the matrix eigenvalue problem
_% _% o) _ 5 (%0
0 &/ \a a /)’

Thus 4} = —%, A= 11—2, and the corresponding eigenvectors are

u(x) =1, ug(x):x—%. (41)

This agrees with Lidskii** and our earlier work?. We have the immediate theorem:
Theorem IV.2. The Dirichlet operator Jz is a rank 2 perturbation of . Moreover,

T f(x) = (fsunyur (x) + (f,uz)u (x),
where uy (x),uz(x) are defined in eq. (41).
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B. Neumann Boundary Conditions

The calculation of the perturbation .7 appears as Remark 2.9 in?, where we used the method of”!"72. We offer here a succinct
scheme. From the expression of Green’s function,

1
Go(x,y) = g (2+3x2 76y+3y2),

the kernel of the perturbation is

(273x+3x2 73y+3y2)

N =

T(X,y) = -

for x < y. Since this expression is symmetric, viz. T (x,y

~

= T(y,x), the operator .7 acts as

1
Tf(x) = /0 T(x,3)f () dy

- (/01 _é (2—3y+3y2)f(Y)dy) + (/01 ;f(y)dy> (=) (42)

Hence, the eigenvalue problem corresponding to this operator, .7 f(x) = A f(x), leads to a quadratic form of the eigenvector
f(x) =ap+a; (x—x?), and the matrix eigenvalue problem

1 _ 7
4 180 (ao) 1 (a()) .
1 1 aq aq
2 12
Thus A1 = & (—=5—1+/30), and A, = & (—5+1/30). The corresponding eigenvectors are:
1 1

uy (x) = (10+\/%) +x—x2, uz(x):%

- (—10+\/@) Fx—a2 (43)

98]

Hence we have:

Theorem IV.3. The Neumann operator Je is a rank 2 perturbation of ¢ . Moreover,
T f(x) = (f,u)ur (x) + (f, uz)uz (x),

where uy (x) and uy(x) are defined in eq. (43).

Remark IV4. The expression of the perturbation operator  f(x) in eq. (42) is quadratic in x, and thus one can simply write
fx)=ao+ a1x+ a>x>. This leads to an eigenvalue problem with a matrix M 7 given by

1 _1 _31
2 78 36l
L1 1
My=|2 4 6
L _1r _1
2 T4 76

Notice that the first column is twice the second, hence the column vectors are linearly dependent and the rank of this 3 x 3
matrix is 2. Indeed the eigenvalues of this matrix are A and Ay above, with the eigenfunctions given in eq. (43), and Ay = 0,
with corresponding eigenfunction up(x) = —% + x. Alternatively one can perform a Singular Value Decomposition (SVD) of the
matrix M o which immediately gives the number of non-zero singular values in this case as 2. This is also the rank since the
number of non-zero singular values is also the rank (see Theorem 5.1 of Ref. 73).

C. Krein-von Neumann Boundary Conditions

In section III D, we derived the Green’s function Gy(x,y) corresponding to this problem with BCs /(0) = /(1) = —u(0) +
u(1). For 0 < x <y < 1,itis explicitly given by

1
Go(x,y) = 35 (4 — 3x — 33y +60x* + 60y* + 36xy
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—30x° —90xy — 90xy? — 30y” + 60x’y + 60xy*).
The expression of T'(x,y) is given by
1
T(x,y) = 5 (—2+9x— 30x% 4 15x° +45x%y — 30x7y

— 18xy — 30x’y +45xy* + 155" — 30y +9y).

This is again symmetric, viz. T (x,y) = T (y,x). This is a cubic polynomial in x, and thus the eigenvector of the matrix problem
is of the form f(x) = ag + a1 x + axx”> + a3x>. The corresponding matrix has the explicit form

1123 109
4 6 180 1050
11 1 87
2 4 6 700
e T (44)
2 12 10
1 1 3
0 =5 =5 ~%

Its eigenvalues are: 41 = 45 (—5—/30), 4 = &5 (=5+/30), A3 = 335 (21 - \/462), and A4 = 735 (21 + \/462). The corre-

sponding eigenvectors are

uy (x) = %(10+\ﬁ)—x+x

1z (x) = %( 0— f)—x+x s
u3(x) %( \/K)*—(21+\/K) x+x

us(x) = %0(14+\/K)—7(21—@)x—;x 2.

‘We now have:

Theorem IV.5. The Krein-von Neumann operator % is a rank 4 perturbation of . Moreover,

Z fou)ur(x

where uy(x), k =1,2,3,4, are defined in eq. (45).
D. Robin Boundary Conditions

Using the expression of the Green’s function developed in section III G, the expression of the perturbation is given by

T(ry) = 2-26+(a+0—ad)x+(a+0—ad)y+2adxy
M= 2(6 —a+ad)

,x) for all x,y € [0,1]. The eigenvectors are then of the form f(x) = ag + a;x. The matrix

for 0 <x <y <1, with T(x,y) =T(y
is given by,

4+a-36—ad 3+o—-26—ad
4(6—a+ad) 6(6—a+ad)
My =

o+0 30+36+0d
2(6—a+oad) 12(6—a+oad)

with eigenvalues

6+30-36—a3-2,/(3-+3a+02) (3-35+8) 6+30-36—ad+2,/ (3+3a+02) (3-36+52)
A= 2(6—a+ad) Ay = 2(6—a+ad) ’
and corresponding eigenvectors

3—36—a6—\/(3+3a+a2)(3—36+62)+x

i (x) = 3(a+0)
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and

3-35—ad+/(3+3a+a?)(3-35+82)
= +x
3(a+9)

up(x)
Example IV.6. In example 1I1.2 the limiting BC case u(0) = u'(1) = 0 example of the Robin problem was discussed. The
perturbation kernel takes the form

T(xy) = —5 ()

Jor 0 <x <y <1, with T(x,y) = T (y,x) for all x,y € [0,1]. The eigenvectors are then of the form f(x) = ag+ a\x. The matrix
is given by,

1 1
i 6
Mz =
_1 1
2 "%
with eigenvalues A = —%ﬁ and Ay = — 3*122‘6, and corresponding eigenvectors
1
up(x) = 7 +x
and
1
ur(x) = A +x.

Example IV.7. In Kato’s first variation on the Robin example discussed in example I11.3, the perturbation kernel takes the form

7)== (c0) +

l—rxy

Jor 0 <x <y <1. Clearly, T(x,y) = T (,x) for all x,y € [0,1]. The eigenvectors are then of the form f(x) = ag+ajx. The
matrix of the finite rank operator is 2 X 2,

T 1+37

2(1-1) 12(1-71)

321 2 _ 1z 2 ) )
with eigenvalues A = —% and Ay = —W, and corresponding eigenvectors

1—vV1-37+3172
+x
37

up(x) = —

and

1+v1— 2
+ 31437 .
37

up(x) = —

Example IV.8. In Kato’s second variation on the Robin BC of example I11.4, the perturbation kernel takes the form

T(xy) = —5(e+) +

T
X
1+ry

Jor0<x<y< 1. Wealso have T (x,y) = T (y,x) for all x,y € [0, 1]. The eigenvectors are then of the form f(x) = ap+ a;x. The
associated matrix is also 2 X 2,

i

—_
aQ

3—
2(1+7)  12(1+7)
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with eigenvalues Ay =

20
_ 347+24/3437+72 d A — _ 347-24/3437+72
12(1+7) and /2 =

(117) , and corresponding eigenvectors

T+V3+37+12
up(x) = f%—x

and

T—V1+31+12
ua (x) =
3
Example IV.9. In example I11.5 of Stakgold and Holst, the perturbation kernel takes the form

T(x,y) 1 (x+y) + cotO
xy)=—=(x —x
Y 2T T T cote™
for 0 <x<y<1, and again T (x,y) = T (y,x) for all x,y € [0,1]. The eigenvectors are then of the form f(x) = ap+ aix. The
matrix of the finite rank operator is 2 X 2,

1 _1
4 6
Mz
. 1 __3—cotb
2(1+cotB) 12(14-cot )
with eigenvalues A; =

3+cot 8+24/3+cot 8+cot? 6 -
- 2(I+cot9) and 2y =

_ 3+cotf—24/3+cotO+cot?
12(14-cot )

, and corresponding eigenvectors

cotO ++/3+3cotf +cot? 0
uy (x) = +
and

3

cot® —v/3+3coth +cot2 6
up(x) = 3 +

Remark IV.10. When 6 — a+ ad = 0, and by the virtue of remark II1.6, the perturbation kernel takes the form

_ 1 B Iy 5 2 3
T(x,y) = —coo + 5 10 Jx—{ cor+ 5 |y —eaox” —erixy — ey —cox
- Cz1x2y - Clzxy2 - 003)’3 - C31X3y - C13)Cy3

(46)
:= doo + dyox + dioy + daox® + di1xy + daoy® + dsox’ +do Xy
+d21xy2+d30y3 +d31x3y+d31xy3.

where the c;j and d;j coefficients are again explicitly given in appendix A, with B = 0. The eigenfunctions have the form

f(x) = ap + arx + axx* + a3x’, and the corresponding matrix M5 = (mjj), is 4 x 4 with elements given by appendix B with
B = 0. This is a rank 2 matrix with A = 0 as a double eigenvalue; see also section IV J.

E. Periodic Boundary Conditions

The Green’s function in this case is given in section III H, for 0 <x <y <1, by

Go(x,y) = 0 (1+6x— 6y + 6x% — 12xy+6y2) .
The expression of T'(x,y) is given by

1
T(x,y) = 7 (-1 —6x° + 12xy—6y2) .
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It is symmetric, viz. T(x,y) = T(y,x). Since it is a quadratic polynomial in x, the eigenvector of the matrix problem is of the
form f(x) = ap + a1 x + axx’. The corresponding matrix is

11 >

4 6 80
111
My=|2 3 3
N S B |

2 4 6

The eigenvalues are: A; = 11—2 A = & (—5 V3 ) Az = % ( 54V 30). The corresponding eigenvectors are

ul(x):—%ﬂ, o (x) = %(lOﬂ—\/@)—x—ﬁ—xz, s (x) = 30(10 W)—Hx 47)

‘We have:

Theorem IV.11. The periodic operator Je is a rank 3 perturbation of ¢ . Moreover,

Mw

Tfx) = ) Fsu)u(x),

k=1

where uy(x), k =1,2,3, are defined in eq. (47).

F. Anti-Periodic Boundary Conditions

The anti-periodic integral operator turns out to be the “closest” to the nonlocal integral operator. To see this, note that for
0 <x <y<1, the derived Green’s function takes the form

1
Go(x,y) = 1(1 +2x—2y) (48)
and T (x,y) = —1. Thus 7 has eigenvalue A = —1 and eigenvector u (x) = 1. Hence, we have:

Theorem IV.12. The anti-periodic operator g is a rank 1 perturbation of . Moreover,

T 1) = (foum)un (x /f dy,

which is simply a constant often called the “DC” component of f(x).

G. Radoux Boundary Conditions
The Green’s function Go(x,y) corresponding to this problem is explicitly given in section II1J as
Go(x,y) = 1—10 (10x — 18xy +5xy° +5x%y)
for 0 <x <y < 1. That of T(x,y) is given by

T(x,y) = 5x—5y+ 18xy — 5xy° — 5x y)

1
10 (
This is again symmetric, viz. T (x,y) = T (y,x), and we only need a single integral to calculate the corresponding matrix operator.

1
1
ﬂf(x):/o 10( 5x—5y+ 18xy — 5xy° foy)f(y)dy

1 3 1
x 14+x
=10/ (=5+ 18y —5y°) f(v)dy — 5 / yf(y)dy
0 0
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Hence, the eigenvalue problem corresponding to this operator, .7 f(x) = A f(x), leads to a cubic form of the eigenvector f(x) =
apx+a; (1+x), and the matrix eigenvalue problem

307

1
04\ a4\ . (ao
(@) -2 ()

_1 _
20
Its eigenvalues are 1| = ﬁ (721 -V 2982), and A, = ﬁ (721 +V 2982). The corresponding eigenvectors are

5
() = x— 52 (126-+v/2982) (14x°).

5
() =+ o (—126-+v2982) (1+7).

(49)

In conclusion, we have the following theorem.

Theorem IV.13. The Radoux operator Fe is a rank 2 perturbation of ¥ . Moreover,

T f(x) = {frur)ur (x) + (f, u2)uz(x),
where uy (x) and uy(x) are defined in eq. (49).
H. GSARC Boundary Conditions with Non-Zero Discriminant

For A =8 —a — 2B + %+ ad # 0 the Green’s function developed in section IIIK is a quadratic polynomial given, for
0<x<y<Iby

—1+68—(a+B)x+(B—8)y+ (B>+ad)x(1—y)

Go(x,y) = §—a—-2B+B2+as

The kernel of the perturbation is then

T (x,y) = coo +c1ox+cory + c11xy

where
1-6
€00 = A
a+8—p?—ad
C = (i = "
10 = €01 A )
and
B>+ ad
cll=—:
11 A
The eigenvectors corresponding to this finite rank operator are of the form f(x) = ap + a;x, and the 2 x 2 matrix of the operator
4 2 3 2 2 .
M 7 has the entry m; = W, mpy = W, my| = 0‘2—'25, and myy = W. Its eigenvalues are
—6— 2 05—2VA _6— 2 X
A= =0 3a+361+211 +ad NZ’ Ay = =8 3a+35;r2ﬁA +a5+2\/K’ where

A:=9+9a+30>—6B%—3aB%+p*—95 —9a8 +3a>8 +3B%8 + 20825 +38> + 326> + a* 5>
and the corresponding eigenvectors are
2(3—[32—36—056—\/5)
(%) = 3(a+0)

+x

and
2(3—ﬁ2—36—a6+\/Z)
u2(x) = 3(a+0)

+x.
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l. GSARC Boundary Conditions with Zero Discriminant

The Green’s function Gy (x,y) is detailed in section IIT L. It assumes the form Go(x,y) = —3|x—y| — T(x,y), where T(x,y) is
the kernel of the perturbation given by the expression

1 1 2 2 3
T(x,y) = —coo + 5 —c0 ) x—{cot 5 |y —c20x” —crxy —cony” — c30x
- Clezy - Clzxy2 - Co3y3 - C31X3y - 613)@’3 (50)
:= doo + d1ox + d1oy + daox* + d11xy + daoy* + d3ox’ + darx’y
+dayxy? +daoy® +d3ixy +dyxy’.

By virtue of remark II1.7, T'(x,y) = T (y,x) for all x,y € [0, 1]. This is also a cubic polynomial in x. The eigenvector of the matrix
problem is of the form f(x) = ag + ayx + a>x> 4 azx>. The corresponding matrix is 4 x 4

Mg = (m,-j,) .

where explicit forms of these entries, obtained using Wolfram Mathematica® are given in appendix B.
Its four eigenvalues A, and four eigenvectors, uy(x), k = 1,2,3,4 are too complicated to list.
We now have:

Theorem IV.14. The GSARC operator K is an up-to-rank 4 perturbation of ¢ . Moreover,

rank (%)

Tfx)= /;1 (f s g )ug (x).

Remark IV.15. The case B = —a merits special attention since T (x,y) in eq. (50) reduces to a quadratic polynomial; see also
the expressions of c;;’s in appendix A. Since A =0, we also have § = —o. For a # 0, —1, the Green’s function reduces to
4+a o 2+« o 1, 1,
G = — — = =y~ 51
= Hare T 00 2050 Tra T2F T2 ©D
The kernel of the Riesz projection is given by p(x,y) = —1, and therefore
44+ 1 1 a 1, 1,
T =— = —y-. 52
=570 T a0 T 2070 T iFeY T T (52)

. . . . . _ a
Proceeding as before, we obtain a rank 3 perturbation with eigenvalues A, = sa)y
_ =5-30 _ =5+V30
h==g" k="

and corresponding eigenvectors

1
up(x) = ) +x
10—+/30
o) = =5 —xe
104+ +/30
3(x) = —30 —x+x%
The cases o« = —1 and o = 0 have already been treated, i.e., the Krein-von Neumann case (rank 4) and the Neumann case (rank

2), respectively. In light of these discussions, we note that rank 1 perturbation in the GSARC problem with A = 0 cannot occur.

J. GSARS Boundary Conditions

We briefly discuss the GSARS BC case, in the form of eq. (6). It corresponds in our notation to § = —y = 0 (see Remark 1.2).
It is indeed equivalent to the generalized Robin problem treated in section III G and section IV D. We focus on the dependence
on the angles 6y and 6;. The discriminant condition for not having a zero eigenvalue is A = 6 — a + a8 # 0, which is equivalent
to A = cos(8y — 6;) +cos(6p + 6;) — 2sin(By — ;) # 0. In this case, the Riez projection P = 0. For 0 < x <y < 1, with

c=(—1+z)sin(v/z2— 60— 01)+ (—14+2y/z—z)sin(/z+ 6 — 61)



Nonlocal Integral Operators and SLP 24

+(=1-2yz—2)sin(y/z— 600+ 601)+ (—1+2)sin(/z+ 6+ 6;)

the resolvent kernel is such that

¢V2G(z,x,y)

is equal to

(=1 = V3 sin(v/2x— 80) + (=1 + V3 sin(v/2x+ ) ((—1 = V) sin(vZ (=1 +) = 01) + (=1 + V) sin(vZ (1 +3) + 1))
The Green’s function corresponding to the GSARS BC with non-zero discriminant is then

2(xcos By —sinBy) ((1—y) cosB; +sin6;)

G = .
0(x.) cos(6y — 0;) +cos(6y + 6;) — 2sin(6y — 6;)

The kernel of the perturbation is given by

(cos By cos 0; +sin(6y + 61)) (x+y) — 2xycos Oy cos 6;
cos(8p — 0;) +cos(Bp + 6;) —2sin(6y — ;)

T(x,y) =

The matrix of the associated finite rank operator is 2 x 2, and is given by

3cos(Bp—0;)—5cos(Bp+6;)+4sin(6By—6;)+2sin(6p+6;) 2cos(6yp—6;)—4cos(6p+6;)+3sin(6y—6;)+sin(6y+6)

4(cos(8y—6;)-+cos(6y+06;)—2sin(6)—6;)) 6(cos(6p—0;)+cos(8y+6;)—2sin(6y—06))
Mg =
—sin(6p+6;) cos(6p—6))+cos(6p+6;)—6sin(6y+6;)
cos(8p—6; )+cos(6p+6;)—2sin(6y—6) " 12(cos(89—61)+cos(By+6;)—2sin(6p—61))

The eigenvalues of the rank 2 perturbation in this case, are solutions of the quadratic equation
AA*+2BA+C=0

where A = 48 A, B = —20cos(8 — 61) +29cos(6 + 6)) — 24sin(6y — 6), and C = —A.

The various GSARS cases are displayed in fig. 2 for (6, 6;) € [0,7) x [0, 7): Dirichlet (0,0), Neumann (7/2,7/2), Robin
(0,7/2), and Radoux (0,37/4). The curve represents the level sets of the discriminant condition A = 0.

The case (8y,0;) = (7/4,0) represents an interesting case not treated in the literature, with A = 0, corresponding to the
boundary conditions «'(0) +u(0) = u(1) = 0. Its resolvent has the kernel

(vzeos(v/zx) —sin(y/zx)) (sin(v/z(1 —y)))
7C08/z —/z8in/Z ’

Its Riesz projection has the kernel p(x,y) = —3(1 —x)(1 —y), and the nilpotent operator D = 0. The Green’s function is given
by

G(z,x,y) =

1
Go(x,y) = i (2—2x+15x% — 5% — 12y + 12xy — 1557y + 5x°y + 15)* — 15x)* — 5)° + 5xy°) .
Working as before, we obtain the kernel of the perturbation

1
T(x,y) = o (=2+7x— 1557 + 57 + Ty — 12xy+ 15x%y — 527y — 15% + 15xy* + 5° — 5x)°) . (53)

Note that 7'(x,y) = T'(y,x). The operator .7 then acts as
1
750 = [ TwS0)d
b1
- (/0 70 (24— 15y* +5y°) £() dy) (1-x)

+</01110(1—)’)f(y)dy> (5v— 152 1+ 55).
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The eigenvalue problem .7 f(x) = A f(x) leads to a linear eigenfunctions of the form f(x) = ag(—1 —x) + a1 (5x — 15x> + 5x°)

and the matrix eigenvalue problem
1199
()
3 70 ay ay

Thus A; = *ZIT VOZ%Z, A = *21%‘6@, and the corresponding eigenvectors are
—14—+/2982 —14++/2982
i (1) = — YL ) 4 (5x - 152450, na(x) = — YT (1) 4 (Sx— 1542 4 520). (54)

14 14

Remark IV.16. The expression of the perturbation in eq. (53) is cubic in x. An alternative analysis with an eigenfunction of the
form f(x) = ag +ai1x + axx’> + a3x>, with a corresponding matrix

~9 _ 17 _ 13 _ 3L
40 120 120 350
19 9 3 159
40 40 20 1400
i i 8 70

1 1 1
2 24 40

EST
-

This leads to the same eigenvalues and eigefunctions as above, and Ay = 0, a double eigenvalue. Its SVD gives two non-zero
singular values, hence a rank of 2. Notice that the determinant of M 7 is zero, and so is the case of the 3 x 3 subdeterminant
extracted from the first three columns (but not the 2 X 2 subdeterminant of the first two columns), another way to conclude that
the rank is indeed 2. This is a general fact for every point on the level sets in Fig. 2.

Remark IV.17. The discriminant condition A = 0 corresponds to the level sets on Fig. 2. It is equivalent to tan 8; = —1 -+ tan 6,
leading to two possibilities: 0 = 1+ arctan (—1+tan 6y) for 6y € [0,7/4) U (n/2,7), and 6; = arctan (—1+-tan 6) for 6y €
[m/4,7/2). The case (6y,0:) = (7/2,7/2) corresponds to Neumann BCs. Curious enough, along these level sets the expressions
of resolvent, Riesz projection, Green’s function, and perturbation kernel are different from the calculations in this subsection
(since the discriminant is zero). The problem leads to a 4 x 4 matrix M 7, but the rank of the perturbation is 2. The calculations
are no different from the case (6y,0) = (n/4,0). The details of these expressions are in appendix C.

K. Square of the Volterra Operator

The earliest treatment of the eigenvalues of the operator eq. (1) appears in the seminal paper of Lidskii*°, in the context of
the Volterra operator—specifically the context of nonselfadjoint operators not satisfying the completeness property for Hibert-
Schmidt operators. We find it also in the book of Gohberg and Krein® (pp. 208-210), where it is referred to as a “Volterra
operator with a two dimensional imaginary component”.

With ¥ f(x) := fxl f(v)dy, one immediately obtains #2f(x) = Ll (x—1y) f(y)dy. This operator is then decomposed into its
Hermitian components**-%-74

V2= (V) +i(7?), (56)
where

(7/2>R f= :

1 1
(1) f =5 [ sl
| 0 (57)

‘»—a N

1
(2), 1= 5, (P =7*) f= 5 [ =) 50

[\

The real part (#?), is clearly our operator % in eq. (1). In this light, ¢ = ¥*+ 7 where Jy f = —i(¥?), f =

L=y f) dy.
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61
3.0
Radoux
20+
15® Robin Neumann
1.0+
0.5
Dirichlet

2.0 2.5 3.0

R

FIG. 2. Examples of GSARS cases treated with respect to the discriminant condition cos(6y — 6;) + cos(6y + 6;) — 2sin(6y — 6;) = 0, for
6,6, € [0,717).

Theorem IV.18. The operator Ty is a rank 2 perturbation of ¢ .

Proof. To see this, we calculate the eigenvalues and eigenvectors of this perturbation, i.e., solve the eigenvalue problem .7y f =
Af. This statement is equivalent to the problem

1
-5 | censm=asw.

Note that A # 0 otherwise f(x) = 0. This immediately implies that f(x) = mx+ b, where m = —ﬁ fol f(y)dy and b =
—ﬁ fol yf(y)dy. The problem then reduces to the matrix eigenvalue problem

)6 6)

Thus A; = ﬁ, A = fﬁ, and the corresponding complex-valued eigenvectors u(x) = %(73+i\@)x+ L, up(x) =
% (73 — 1\@) x+ 1. This agrees with Lidskii*®. O

V. CONCLUSION

In this article we offered a unified framework of looking at general real coupled self-adjoint BVPs, where the use of the
resolvent kernel was essential to the analysis, and where the Green’s formula corresponding to the integral operator formulation
of Sturm-Liouville problems was obtained using an abstract and very classical formulation in'®. While apparently similar in
formulation to the nonlocal integral operator commuting with the Laplacian corresponding to the free space Green’s function,
the Krein-von Neumann problem was shown to be the “farthest”, while the anti-periodic problem proved to be the “closest”
when seen as finite-rank perturbations. In>*, we will develop the spectral theory of the associate iterated Brownian bridge
kernels corresponding to this GSARC framework, and show how to recover the values of the spectral zeta function for the
nonlocal operator eq. (1) from the power series of the resolvent in a unified way; see also?’236373,
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Appendix A: Details of the Green’s Function for GSARC BCs with A=0

The coefficients of Go(x,y) were generated using Wolfram Mathematica®. Noting also remark II1.7, they are given by the
following equations.

2003+ 0% + B — af +3a—3B)%coo = 4 (15+30a + 210> +50°)
—(75+87a+28a%) B
+2(27+17a+20%) B* — (23 +7a) B> +4B*

203+ &+ B —af+3a—3B) cio=4a (15+30a +21a* +5a°)
— (30+135a+ 123a* + 340°) B
+3(5+24a+11a%) B*+(9-7a) B* —4B*

20
?(3+a2+[32—aﬁ+3a—3ﬂ)2cm =—4(15+25a+ 150% +3a°)

+ (11041150 +390% +20°) B
— (954560 +90%) B> + (43 + 11ax) B* — 8B*

20
?(3+a2+[52—a[3 +3a-3B)? e = —4a (15+25a+150% +3a)

+a (100495 +27a%) B
+2(10-25a — 11a?) B2 — (25— Ta) B° + 8B*

3(1-p)
23+ a?+p?—af+3a—3P)

€20 =C02 =

(1-B)(x+B)
3+a’+p2—af+30—3p)

€30 = €03 = 2(

3(1-B)(a+p)
23+ a?+p?—af+3a—3P)

1 =C12 =

(x+p)
23+ a?+p?—af+3a—3P)

€31 =C13 =

Appendix B: Details of the perturbation kernel for GSARC BCs with A=0

The following is the list of entries of the matrix associated with the GSARC case with zero discriminant in section IV I. They
were calculated using Wolfram Mathematica®. The d;j coefficients are defined by eq. (50). They are explicitly given by

doo = —coo
1 1

dip = 70 ="c—3

dro = —C20 = —Cp2
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dip = —ci1
dzo = —C30 = —C03
dry) = —c1 = —c12
d31 = —c31 = —c13
dio  dy | d3o
— doo L 210 920, €30
mi 00+ ) + 3 + 1
d, do | dy  di
e T T
doo dio  dy | dio
MITF LTS e
doo dio  dy | dio
Myt s ety
dn | dx
—dyy Ly B
my 10+ ) 1
oy — 40 du | da
2T T3S
_dy | di | d3
m3=t ot
g — 0 du da
#HTYy TS Ty
m31 = dy
iy — 420
2=
s — 920
3=
g — 220
=
d
my1 = d3o + ;1
ey = B0 B3
2= 3

28

(BI)
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_dy | da
my3 = 3 + 1
_dy | di
myq = 1 + 5

In terms of the GSARC parameters, o, B (when the discriminant is equal to zero), after a lot of simplifications using Wolfram
Mathematica®, the matrix elements reduce to the following:

40 (3+3a—3B — af + o2+ B%)’ myy = — (90+ 195+ 1730% + 690 + 10a*)
+ (16542240 + 1140 +190°) B
— (143 + 1200 +310%) B> +3 (19 + 7)) B° — 9B*

120 (343 — 3B — o + &>+ B2)° mn = — (135 +291a + 27302 + 1200 +20a*)
+2(147+201a + 1080 +200°) B
—3(90+770+210%) B +4(27+ 10a) B> — 17B*

240 (3430 —3B — af + o> + B2)” mi3 = —2 (93 + 1980 + 1890 + 860 + 150
+ (438 +597a + 3250 + 620°) B
— (41143520 +97a%) B2 + (165 +61a) B> — 268*

2800 (3+ 3 — 3B — af + a2+ B2)° mig = —4 (420 + 8850 + 8500 + 3930 + 700
+ (4125 + 56050 +3064a” +5920°) B
—2(1955+ 1673 +4620%) B + (1573 + 581ax) B — 248 *

40 (3430 —3B — af + a2+ B2)" my = (1804200 + 34502 + 1170 + 11a*)
—2(150+270a + 1470 +29a°) B
+3(65+87a+20a%) B2 —4(12+ 13ct) B — B*

40 (3430 =3 — af + a2+ B2)" my = 2 (45+ 1200 + 1096 + 420 + 50
— (150 + 329 + 1990 + 440’ ) B
+ (83 +160a +410%) B* — (7+31a) B — 68*

80 (3+ 3 — 3B — af + a® + B2)” mas = 4 (30 + 85 + 800> + 320 + 4ar*)
— (200 + +4800 +3010* + 690%) B
+2(50+117a+310%) B> +3 (1 — 15a) B* — 128*

2800 (3+ 30— 3B — o + >+ B2)° may = 2 (1575 + 46200 + 44250 + 18000 +229:*)
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— (5250 + 132750 + 8475 + 19780 ) B
+3(815+2160a +581a%) B>+ (285 — 1243ax) B — 3823*

_ 3(1-B)°
T T B+3a—3B—aB+ol+ B
_ 3(1-B)°
" T 3 13a—3B—af + a2+ B2
i (1-B)°
BT T 2B+30-3—aBf+al+p?)
_ 3(1-B)°
M4 T 8B 3038 _aB tolt B
o — — (2+a—p)(a+p)
T 4B+ 30—-3B—aB+al+p)
_ B+20—B)(a+p)
m42__12(3+3a73ﬁ7aﬁ+a2+[32)
B 4+30—B)(a+p)
M T T 43130 —3B —aBf + a2+ B?)
(5+4a—-B)(ac+p)
Mm44 = —

403+30—3—af+oa2+B2)

Appendix C: Details of the perturbation kernel for GSARS BCs with A=0

In either case 6; = m + arctan (—1 +tan 6y) for 6y € [0,/4) U (/2,7), or 8; = arctan (—1+tan 6y) for 6y € [/4,7/2), for
0 <x <y <1, the resolvent is such that

(21/zcos \/zcos® By +sin/z(—1 —z— (1 —z) cos 26y +zsin26))) G(z,x,y)
is equal to
2sin 6 (cos By sin(y/z(1 —y)) + /zcos(y/z(1 —)) (sin 6y — cos 6p)) cos(y/zx)

+2cos 6y (—cos By sin(v/z(1 —y)) + v/zcos(v/z(1 —y)) (cos 6y — sin 6) ) Sm(\[\fx)

Calculating lim,_,o+ 2" G(z,x,y) forn=1,2,... give a Riesz projection with a kernel

6(xcos By —sinBy) (ycos By —sin6p)
—4+2c0s26y+ 3sin26y

plxy) =

and a nilpotent operator D = 0. Note by simple calculus that the expression —4 4 2cos26) + 3sin26 is never zero, since it has
a maximum value of —4++/13 ~ —0.394 at 6 = % arctan% and minimum value of —4 ++/13 =~ —7.606 at 6y = % + % arctan %
The Green’s function is such that

—20(—4+2c0s 26 + 35in260)* Go(x, )
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is equal to

where

ap(x,y) +aa(x,y) cos260p + as(x,y) cos46y + ba(x,y) sin26p + bs (x,y) sin46y,

—132 —90x + 360y — 150x> + 204xy — 150y% — 15x° — 45x%y — 45xy* — 15y° — 30x>y — 30xy°
a(x, 120 — 40x — 360y + 180x> 4+ 72xy + 180y> — 20x>y — 20xy”

ao(x,y)
(x,)

ag(x,y) = 124 50x — 30x% — 132xy — 30y + 15x° +45x%y + 45xy* + 15y° + 10>y + 10xy°
(x,y)
(x,y)

140 + 144x — 336y + 90x> — 360xy + 90y? + 40x° + 120x%y + 120xy? + 40y> + 30x°y 4 30xy°
—504 12x + 132y — 45x% — 45y> — 10x> — 30x%y — 30xy* — 10y* + 1523y + 15xy°

b2 X,

b4 X,

With T'(x,y) = k(x,y) — Go(x,y), the expression of the integral operator .7 f(x) is a cubic polynomial, hence the eigenvector
takes the form f(x) = ag +a1x + axx* + a3x> and the corresponding 4 x 4 matrix M = (m;;) is such that

473 73 63
—20(—4+42co0s26y+3 sin260)2 my = v 80c0s26) — vy cos40y — 132sin26 + 5 sin46,

123 115 59 137 57
—20(—4+2cos26p+3 sin290)2 miy = w3 cos26y — 3 cos40y — - sin26y + T sin40,

171 27 142 28
—20(—4+2co0s26p+3 sin260)2 mi3 === = 260820y — ) cos46) — ES sin20 + Y sin40y

1278 246
35 sin26y + 35 sin40,

429 47 457 263
—20(—442co0s26p+3 sin260)2 my = — +169co0s26) + 5 cos40y + - sin26) — vy sin40,

232 36
—20(—4+2co0s26p+3 sin260)2 mi4 = - - 20co0s26y — - cos46y —

473 73 63
—20(—4+2co0s26y+3 sin260)2 myp ===~ +80co0s26y + Y cos40y+132sin26) — 5 sin40,

41
—20(—4+42co0s26y+3 sin260)2 mp3 = —82+452¢0s26y + 14cos46y +93sin26y — 5 sin40,

8787 1346 1571 502 . 106 .
TO + ? COSZB() + TO COS49() + 7 Sln260 — 7 Sln49()

345 15
,20(f4+2005290+3sin290)2 mz; = - 180co0s26y + 7005490 —150sin26y + 60sin46,

—20(—4+2c0s26) + 35in26)* may = —

65
—20(—4+2c0s26p + 3sin 260)2 mzy =90 —90co0s20y — 85sin20y + 5 sin40y
245 5 45
—20(—4+2co0s26p+3 sin290)2 myy = — == 60co0s26) — 3 cos46y — 60sin26y + > sin46,
93 3 93 69
—20(—4+2c0s26p+ 3sin 260)2 My =~ 45¢c0s260) — 2 cos48y — > sin28y + vy sin46,

5
—20(—4+42co0s26y+3 sin260)2 my4; = 30+ 10c0s26) —20cos46y — 55sin26y + 3 sin46,

35 20 65
—20(—4+2co0s26p+3 sin260)2 may = — + £y €0826y — < cos48y —30sin20y

25 15 125 5
—20(—4+2cos26p+3 sin290)2 ma3 = > +5c0s26) — > cos40y — s sin26y + D sin40,

39 23 1
—20(—4+2co0s26p+3 sin260)2 Mmas = - +4c0s260) — Y c0s40y — 16sin26y — 5 sin40.

The determinant of M & is zero and so is the case of the 3 x 3 subdetermiant extracted from the first three columns (but not the
2 x 2 subdeterminant of the first two columns). Hence the rank of the perturbation is 2. A calculation on Wolfram Mathematica®
confirms this, and shows that A = 0 is a double eigenvalue.
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