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Abstract
Model-based clustering tackles the task of uncovering heterogeneity in a data set to extract
valuable insights. Given the common presence of outliers in practice, robust methods for
model-based clustering have been proposed. However, the use of many methods in this
area becomes severely limited in applications where partially observed records are com-
mon since their existing frameworks often assume complete data only. Here, a mixture of
multiple scaled contaminated normal (MSCN) distributions is extended using the expectation-
conditional maximization (ECM) algorithm to accommodate data sets with values missing at
random. The newly proposed extension preserves the mixture’s capability in yielding robust
parameter estimates and performing automatic outlier detection separately for each principal
component. In this fitting framework, the MSCN marginal density is approximated using
the inversion formula for the characteristic function. Extensive simulation studies involv-
ing incomplete data sets with outliers are conducted to evaluate parameter estimates and to
compare clustering performance and outlier detection of our model to other mixtures.

Keywords Model-based clustering · Outliers · Missing data · Contaminated normal
distribution · Multiple scaled distributions · EM algorithm

1 Introduction

Model-based clustering refers to the use of finite mixture models in cluster analysis. In these
models, the population of interest is assumed to be a mixture of sub-populations, each of
which is considered as a cluster and can be modeled by a probability distribution (McLachlan
& Peel, 2000). The first choice for modeling each cluster has been the Gaussian distribution,
which is appealing due to its computational and theoretical convenience. Dating back to 1965,
many papers can be found on Gaussian mixture models (GMM); see, for example, Wolfe
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(1965), Banfield and Raftery (1993) and Celeux and Govaert (1995). Other distributions with
greater flexibility have also been used in statistical literature, including but not limited to the
skew normal distribution (Lin, 2009), the normal inverse Gaussian distribution (Karlis &
Santourian, 2009), the shifted asymmetric Laplace distribution (SAL; Franczak et al. 2014),
and the generalized hyperbolic distribution (GHD; Browne & McNicholas 2015).

The need for modeling each cluster with a more flexible distribution arises from the
shape limitation of the Gaussian distribution. Specifically, being symmetric with lighter tails,
models based on the Gaussian distribution lack robustness and often exhibit sensitivity to
outlying observations. Even though various robust models that use heavy-tailed distributions
have been proposed to overcome such a drawback in mixture modeling settings, choosing
an appropriate model still largely depends on the structure of outliers at hand. Regarding
that point, outliers may roughly be divided into two types: gross and mild (Ritter 2014,
pp. 79-80). Outliers are gross when they do not appear to be sampled from a population.
Consequently, they are unpredictable and incalculable, and no probability distribution can be
used to sufficiently model them. When gross outliers are present, it is common to handle them
by maximizing a trimmed likelihood of a partition model (Gallegos & Ritter, 2005, 2009) or
by simultaneously clustering the non-noise observations and identifying a noise component;
see, for example, Coretto and Hennig (2016) and Novi Inverardi and Taufer (2020).

In contrast, mild outliers, referred to as bad points in Aitkin and Wilson (1980), can be mod-
eled using a weighted likelihood function or a more flexible distribution. A few approaches
based on the weighted likelihood function have been proposed that show good performance
in clustering and outlier detection, and represent a valid solution for data sets with no miss-
ing values; see for example, Greco and Agostinelli (2020), Sugasawa and Kobayashi (2022).
Alternately, a more flexible distribution that is symmetric and endowed with heavy tails can
be used, such as, the multivariate t (Mt) distribution (Peel & McLachlan, 2000; Andrews
& McNicholas, 2012) or the multivariate contaminated normal (MCN) distribution (Punzo
et al., 2018). Compared to the former, the MCN distribution can be more appealing due to its
ability to automatically detect outliers. Furthermore, it has two additional parameters besides
the mean vector and covariance matrix to characterize the proportion of good observations
and the extra variability introduced by outliers, which greatly enhances interpretability. How-
ever, one important limitation that both distributions share is that they possess the exact same
parameter(s) governing their tail behaviors in all dimensions. This limitation implies the
following consequences.

1. All marginals are (M)t with the same degree of freedom or (M)CN distributions with
the same proportion of good observations and degree of contamination, respectively, and
thus, the same amount of tail weight.

2. Outliers are automatically down-weighted in the maximum likelihood estimation of each
distribution’s parameters but in the same way for each dimension.

3. Both distributions’ outlier detection procedures could be defined as an omnibus in the
sense that when a point is detected as bad, it is globally bad, and the specific dimension(s)
to which it is outlying remains unknown.

To overcome the aforementioned limitation, multiple scaled distributions have been proposed,
in which the idea is to introduce multidimensional weight random variables in a normal-
scale mixture. Recall that a normal-scale mixture consists of different Gaussian distributions
sharing the same mean vector, each of which has its covariance matrix determined by one
realization of a univariate weight random variable. Many distributions can be derived from a
normal-scale mixture; for example, choosing the weight random variable to follow a gamma
distribution generates an Mt distribution, while choosing it to be Bernoulli results in an
MCN distribution. To obtain a multiple-scaled distribution, the covariance matrix is first
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decomposed using the eigen-decomposition, and then, a different weight random variable is
assigned to each dimension spanned by the columns of the eigenvector matrix (the principal
components in other words). The multiple scaled t distribution was proposed by Forbes and
Wraith (2014), whereas the multiple scaled contaminated normal (MSCN) distribution was
introduced by Punzo and Tortora (2021). Many other distributions have been transformed
using the same approach to increase their flexibility; see, for example, Franczak et al. (2015),
and Tortora et al. (2019).

Despite their extensive robustness and flexibility, all the mentioned models use only com-
plete data sets without any missing values, which can be unreasonable given how ubiquitous
missing values are in many real applications. Given that limitation, in this paper, we consider
the problem of fitting mixtures of MSCN distributions with missing information. In dealing
with data sets with missing values, determining the underlying missing data mechanism is
critical to select an appropriate strategy. Hence, herein, we specifically focus on data missing
at random (MAR; Little & Rubin, 2020), in which the probability for missingness to occur in
some variates of a particular individual depends only on the values of other observed variates
of such individual, but not on the values of the missing variates themselves.

When handling missing data, it might be tempting to apply case deletion, that is, exclud-
ing observations with partially observed information and proceeding with regular statistical
methods. However, although convenient and simple, doing so comes at the cost of producing
biased estimators which can lead to some invalid inferences. A more common approach is
data imputation, in which missing values are filled in to result in a complete data set. Among
the most popular imputation techniques are mean imputation (Wilks, 1932), regression impu-
tation (Buck, 1960), and multiple imputations (Rubin, 1987, 1996). Alternately, there are
also likelihood-based approaches where a statistical model is imposed so that inference and
parameter estimation can be based on the likelihood under such a model. One well-known
method under this category is the expectation-maximization (EM) algorithm (Dempster et al.,
1977). In particular, the algorithm outlines an iterative procedure that alternates between an
expectation (E) step and a maximization (M) step until convergence to obtain maximum like-
lihood parameter estimates in the presence of missing data and/or some latent variables. For
a comprehensive survey of statistical methods for analyzing missing data, refer to Schafer
and Graham (2002), Little and Rubin (2020), and Buuren (2021).

Parameter estimation in model-based clustering is also commonly obtained using the EM
algorithm. Essentially, to fit in the EM framework, the clustering problem can be reformu-
lated as an incomplete-data problem where the grouping information of every individual is
unobserved. When data are not fully observed due to missingness, extending the EM algo-
rithm to accommodate MAR values presents a sensible solution. This idea has been reflected
by previous work in model-based clustering via various distributions: the multivariate normal
distribution (Ghahramani & Jordan, 1994; Serafini et al., 2020), the Mt distribution (Wang
et al., 2004; Goren & Maitra, 2022), the MCN distribution (Tong & Tortora, 2022b), the skew-
t distribution (Wang & Lin, 2015), and the generalized hyperbolic distribution (Wei et al.,
2019). Although other models have yet to be developed, this approach can be extended to
models based on other distributions in which maximum likelihood parameters are estimated
with the EM algorithm (or its variations). However, the existence and computability of the
marginal and joint densities of the used distribution are necessary. The marginal distribution
of the MSCN proposed by Punzo and Tortora (2021) is unknown, and thus, the extension of
the MSCN to data sets with missing data is not trivial.

In this paper, we employ the expectation-conditional maximization (ECM) algorithm,
a variant of the EM algorithm introduced by Meng and Rubin (1993), to propose a new
framework for fitting mixtures of MSCN distributions in data sets whose values are MAR. The
paper is organized as follows. In Sect. 2, we provide the necessary background of the MCN and
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MSCN distributions, with a note that the former is not a special nor limiting case of the latter.
In Sect. 3, we obtain the marginals of the MSCN distribution and some useful results related
to them. From there, we then outline the ECM algorithm for parameter estimation in detail. In
Sect. 4, we describe computational aspects when implementing the newly proposed model,
namely initialization, convergence, cluster assignment, outlier detection, model selection,
and other computational details regarding the ECM algorithm. In Sect. 5, we discuss results
from extensive simulation studies where our model and other mixtures are benchmarked
using incomplete data sets. In Sect. 6, we analyze the World Happiness Report data using
our model. We conclude the paper in Sect. 7. Besides, Appendix A includes useful details on
the characteristic functions and the inversion formula. Appendix B provides proofs for most
propositions introduced in the paper. Supplementary material Section 1 covers mathematical
details of the E-step. The tables summarizing results from the simulation studies are available
in supplementary material Section 2.

2 Background

2.1 TheMultivariate Contaminated Normal Distribution

The multivariate contaminated normal (MCN) distribution was first introduced by Tukey
(1960) as a mixture of two multivariate normal (MN) distributions, one of which, despite
sharing the same mean vector with the other, has an inflated covariance matrix to represent
outliers. Mathematically, the probability density function (pdf) of a p-variate random vector
X = (

X1, . . . , X p
)� that follows an MCN distribution with mean vector μ, covariance

matrix �, proportion of good observations α ∈ (0.5, 1), and degree of contamination η > 1
is given by

fMCN (x ; μ,�, α, η) = α fMN (x ; μ,�) + (1 − α) fMN (x ; μ, η�) , (1)

where fMN (x ; μ,�) is the pdf of a p-variate normal random vector with mean vector μ

and covariance matrix �. Herein, the constraint of α to be within (0.5, 1) is imposed to be
consistent with the common assumption in robust statistics that at least half of the observations
are good. In addition, the degree of contamination η multiplied by � captures the increase
in variability due to the presence of outliers. It can be seen from Eq. 1 that as α and η tend
to 1, we obtain the MN distribution as a limiting case of the MCN distribution. In general,
decreasing α and/or increasing η has the effect of inflating the variability and kurtosis of the
distribution, and, as a consequence, the tails. For more details on the variance and kurtosis
of the MCN, see Appendix G of Bagnato et al. (2017).

Modeling data sets with outliers using the MCN distribution has several advantages.
First, the two additional parameters α and η provide useful interpretations of the behavior of
outlying observations. Second, robust estimation for the mean vector μ and covariance matrix
� can be obtained, ensuring valid inference about the population. Third, the identifiability of
the model is already shown in Punzo and McNicholas (2016). Last but not least, once all the
parameters are estimated, a generic point x∗ can be classified as outlying if its corresponding
a posteriori probability does not exceed 0.5. This outlier detection procedure follows from
the maximum a posteriori clustering procedure, i.e., once the cluster membership is defined,
a point is flagged as an outlier or not based on the value of its a posteriori probability of
belonging to the outlying component for that cluster. In addition, it is done automatically as
a byproduct of parameter estimation without the need for a subjective threshold.
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2.2 TheMultiple Scaled Contaminated Normal Distribution

Punzo and Tortora (2021) introduced the multiple scaled contaminated normal (MSCN)
distribution to address some drawbacks of the MCN distribution. Based on the idea of Forbes
and Wraith (2014), the MSCN distribution is obtained by decomposing the covariance matrix
� into eigenvalues and eigenvectors matrices, � and �, and then introducing Bernoulli
random variables V ’s each indicating whether a point is good or outlying separately for
each principal component of the space spanned by the columns of �. The parameters α =
(α1, . . . , αp)

� and η = (η1, . . . , ηp)
� are now two vectors controlling the proportions of

good points and degrees of contamination for all principal components. Formally, the pdf of
the MSCN distribution can be written as

fMSCN(x;μ,�,�,α, η) =
p∏

h=1

fCN

([
��(x − μ)

]

h
; 0, λh, αh, ηh

)
, (2)

where p is the number of variables, ��(x − μ) is the principal-component transform of
x, or equivalently a rotation and a re-centering of x,

[
��(x − μ)

]
h is the hth element of

��(x − μ), and λh is the hth eigenvalue of the matrix �. It can be shown that when X ∼
MSCN p(μ,�,�,α, η),

X = μ + ��1/2W1/2
V Y , (3)

where V = (V1, . . . , Vp
)�

,Y = (Y1, . . . , Yp
)� ∼ Np(0, I p), and

WV = diag

{(
V1 + 1 − V1

η1

)−1

, . . . ,

(
Vp + 1 − Vp

ηp

)−1
}

. (4)

The MSCN distribution has more flexibility in terms of symmetric shapes and tail behav-
iors in different principal components compared to the MCN distribution which is constrained
to be elliptical. Tortora et al. (2019) showed that multiple scaled distributions are identifiable
up to multiplication for negative one of �, if the univariate distribution they are based on is
identifiable. On the other hand, Punzo and McNicholas (2016) showed that mixtures of CN
distributions are identifiable, and therefore mixtures of MSCN distributions are identifiable
under the sign conditions discussed in Tortora et al. (2019).

3 Methodology

3.1 Marginals of theMultiple Scaled Contaminated Normal Distribution

Apart from the univariate case, the MCN distribution is not a special nor limiting case of the
MSCN distribution; therefore, the marginal distribution of the MSCN is unknown and needs
to be derived from the characteristic functions. Some concepts and formulas that will be used
in this section can be found in Appendix A. From Eq. 3, we denote

Ỹ = W1/2
V Y =

((
V1 + 1 − V1

η1

)−1/2

Y1, . . . ,

(
Vp + 1 − Vp

ηp

)−1/2

Yp

)�
. (5)

In this notation, Ỹ is a vector of p independent univariate contaminated normal random
variables with mean 0 and variance 1, each of which has its own proportion of good observa-
tions and degree of contamination. Marginals of the MSCN distribution turn out to be linear
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combinations of the independent components of Ỹ for which no closed-form expression is
available in general. However, marginal densities can still be obtained by means of the inver-
sion formula, in which the first step is to identify the characteristic function of a marginal
variable. The following propositions introduce the characteristic functions of the MCN and
MSCN distributions.

Proposition 3.1 Let X ∈ R
p be a p-variate random vector that follows a multivariate con-

taminated normal distribution with mean vector μ, covariance matrix �, proportion of good
observations α ∈ (0.5, 1), and degree of contamination η > 1. The characteristic function
of X is

φX (t) = α exp

(
i t�μ − 1

2
t�� t

)
+ (1 − α) exp

(
i t�μ − 1

2
ηt�� t

)
, (6)

where t = (t1, . . . , tp
)� ∈ R

p and i is an imaginary unit.

Proof See Appendix B ��
Proposition 3.2 Let X ∈ R

p be a p-variate multiple scaled contaminated normal random
vector with mean vector μ, eigenvalues matrix �, eigenvectors matrix �, proportions of
good observations α = (

α1, . . . , αp
)�, and degrees of contamination η = (

η1, . . . , ηp
)�.

Consider a positive integer q ≤ p and partition X as

X =
⎡

⎢
⎣

X1
q×1

X2
(p−q)×1

⎤

⎥
⎦ .

Then, the characteristic function of the marginal variable X1 is given by

φX1(t) =
q∏

j=1

exp(i t jμ j )

p∏

h=1

φỸh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠ , (7)

where

φỸh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠ = αh exp

⎡

⎢
⎣−1

2

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠

2
⎤

⎥
⎦

+(1 − αh) exp

⎡

⎢
⎣−1

2
ηh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠

2
⎤

⎥
⎦ , (8)

t = (t1, . . . , tq
)� ∈ R

q and i is an imaginary unit.

Proof See Appendix B ��
Using the inversion formula described in Theorem A.1, we can obtain the pdf of X1,

which is the marginal density of X . However, evaluating such marginal density involves a
numerical procedure for multiple integrations such as the adaptive multivariate integration
over hypercubes (see, for example, Dooren & Ridder 1976; Berntsen et al. 1991).

Here, we outline some useful propositions regarding an MSCN random vector and its
marginals when conditioned on some directional good-observation indicator random vari-
ables. Let X ∈ R

p be a p-variate MSCN random vector with mean vector μ, eigenvalues
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matrix �, eigenvectors matrix �, proportions of good observations α = (
α1, . . . , αp

)�,

and degrees of contamination η = (
η1, . . . , ηp

)�. Also let Vh be the indicator variable
such that Vh = 1 if the hth element of the principal-component transformed random vector
��(X −μ) is good and Vh = 0 otherwise, for h = 1, . . . , p. Consider a vector of 0/1 values
v = (v1, . . . , vp

)� and the corresponding p × p diagonal matrix of inverse weights

Wv = diag

{(
v1 + 1 − v1

η1

)−1

, . . . ,

(
vp + 1 − vp

ηp

)−1
}

.

We have the following propositions regarding the relationship between the MSCN and
MN distribution.

Proposition 3.3 (Punzo & Tortora, 2021) Given V1 = v1, . . . , Vp = vp , X follows a multi-
variate normal distribution with mean vector μ and covariance matrix M = �Wv���.

Proposition 3.4 Let q ≤ p be a positive integer. If we partition X,μ, and M as

X =
⎡

⎢
⎣

X1
q×1

X2
(p−q)×1

⎤

⎥
⎦ , μ =

⎡

⎢
⎣

μ1
q×1

μ2
(p−q)×1

⎤

⎥
⎦ , and M =

⎡

⎢
⎣

M11
q×q

M12
q×(p−q)

M21
(p−q)×q

M22
(p−q)×(p−q)

⎤

⎥
⎦ ,

then given V1 = v1, . . . , Vp = vp , X1 follows a multivariate normal distribution with mean
vector μ1 and covariance matrix M11.

Proposition 3.5 With the same notations as in Proposition 3.4, the conditional distribution
of X2, given X1 = x1 and V1 = v1, . . . , Vp = vp , is a multivariate normal distribution with
mean vector and covariance matrix, respectively,

μ2 + M21M
−1
11 (x1 − μ1) and M22 − M21M

−1
11 M12.

Given Proposition 3.3, the properties of the multivariate normal distribution can be applied
to obtain Propositions 3.4 and 3.5. For more information on these properties, readers are
invited to refer to Chapter 4 of Johnson and Wichern (2007).

Thus far, in this section, we have assumed the knowledge of all p indicator random
variables V1, . . . , Vp which reduces the MSCN distribution to the MN distribution with nice
properties and closed-forms results. Now, in the following proposition, we adopt a more
general view by assuming that we only know the values of a subset of the indicator random
variables.

Proposition 3.6 Let A and B be two disjoint subsets of {1, . . . , p} such that A ∪ B =
{1, . . . , p}. We define VA = {Vr , r ∈ A} and VB = {Vs, s ∈ B} in which we observe
the value of every element in VA, that is, vr ∈ {0, 1}, for r ∈ A, but not any in VB. With
the same notations as in Proposition 3.4, the characteristic function of the marginal variable
X1 | Vr = vr , r ∈ A is given by

φX1 | Vr=vr ,r∈A(t)

=
q∏

j=1

exp(i t jμ j )
∏

r∈A

⎧
⎪⎨

⎪⎩
exp

⎡

⎢
⎣− 1

2

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

vr
⎧
⎪⎨

⎪⎩
exp

⎡

⎢
⎣− 1

2
ηr

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1−vr

×

×
∏

s∈B

⎧
⎪⎨

⎪⎩
αs exp

⎡

⎢
⎣− 1

2

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠

2
⎤

⎥
⎦+ (1 − αs ) exp

⎡

⎢
⎣− 1

2
ηs

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
, (9)
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where t = (t1, . . . , tp
)� ∈ R

p and i is an imaginary unit.

Proof See Appendix B ��

3.2 Model-Based Clustering via theMultiple Scaled Contaminated Normal
Distribution

The MCN and MSCN distributions, as well as many other distributions like the MN distribu-
tion (Wolfe, 1965; Banfield & Raftery, 1993; Celeux & Govaert, 1995) or the multivariate t
distribution (Peel & McLachlan, 2000; Andrews & McNicholas, 2012), are commonly used
for model-based clustering, also known as cluster analysis on the notion of mixture models
(McLachlan & Peel, 2000; Fraley & Raftery, 2002; Frühwirth-Schnatter, 2006; Melnykov
& Maitra, 2010; McNicholas, 2016). Fundamentally, mixture models treat the population
as a mixture of sub-populations, each modeled by a specified density function with differ-
ent parameters. On model-based clustering via the MSCN distribution (Punzo & Tortora,
2021), a p−variate random vector X that arises from an MSCN mixture (MSCNM) with G
components has its pdf given by

fMSCNM(x;�) =
G∑

g=1

πg fMSCN
(
x;μg,�g,�g,αg, ηg

)
, (10)

where πg is the mixing proportion of the gth component such that πg > 0 and
∑G

g=1 πg = 1; the gth component is an MSCN distribution as defined in Eq. 2; and

� = {πg,μg,�g,�g,αg, ηg}Gg=1 contains all the parameters. The likelihood function of
� based on the observed data {xi }ni=1 is then given by

L(�; x1, . . . , xn) =
n∏

i=1

⎡

⎣
G∑

g=1

πg fMSCN
(
xi ;μg,�g,�g,αg, ηg

)
⎤

⎦ . (11)

However, as mentioned by Melnykov and Maitra (2010), obtaining maximum likelihood
estimates for � using the observed likelihood function is typically challenging due to its
complicated and multi-modal form, and thus, the EM algorithm (Dempster et al., 1977)
has become a more common tool for fitting mixture models in general. In this algorithm,
maximum likelihood estimation is carried out by maximizing the complete-data likelihood
function that incorporates both the observed data {xi }ni=1 and some missing values and/or
latent variables. The EM algorithm iteratively alternates between two steps, the expectation
(E) step and the maximization (M) step. In the E-step, the conditional expectation of the
complete data log-likelihood given the observed data and the current parameter estimates
is computed. In the M-step, the parameters that maximize the expected log-likelihood from
the E-step are computed. The framework for fitting the MSCNM using the EM algorithm is
outlined in Punzo and Tortora (2021).

3.3 Mixtures of Multiple Scaled Contaminated Normal Distributions with Missing
Values

Mixture models are generally formulated on complete data sets, i.e., there are no miss-
ing values. Some work has been done using the EM algorithm or its variants, such as
the expectation-conditional maximization (ECM) algorithm (Meng & Rubin, 1993) or the
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expectation-conditional maximization either (ECME) algorithm (Liu & Rubin, 1994), to
extend mixtures of some well-known distributions to data sets with values missing at ran-
dom; see, for example, Ghahramani and Jordan (1994) for the MN distribution, Wang et al.
(2004), Lin (2014), and Goren and Maitra (2022) for the multivariate t distribution, and Tong
and Tortora (2022b) for the MCN distribution. The MSCN distribution can also be extended
in a similar fashion. Specifically, assuming a missing-at-random (MAR) mechanism, if we
denote xoi and xmi as the observed and missing values per each observation xi , respectively,
then xi can be decomposed into (xoi , x

m
i ). Note that this is just a simplified notation where

the superscripts o and m are used instead of oi and mi which represent how each observation
can have a different number of missing values more accurately. In fact, our notation does not
imply that the pattern of missingness is the same across all observations. Herein, we adopt the
ECM algorithm for maximum likelihood estimation when fitting an MSCNM to incomplete
data sets. This algorithm differs from the traditional EM algorithm in that the maximization
steps are replaced by simpler conditional maximization (CM) steps where disjoint subsets of
model parameters are updated. In light of the algorithm, we frame the problem as a maximum
likelihood parameter estimation problem with three sources of missing data:

1. Cluster memberships for all observations: Z = {zi }ni=1, where zi = (zi1, . . . , ziG)�.
Herein, zig = 1 if observation xi belongs to cluster g and zig = 0 otherwise for g =
1, . . . ,G;

2. Within cluster g, whether the hth variate of the transformed observation ��
g (xi − μg)

is good or bad (outlier): V = {vi1, . . . , viG}ni=1, where vig = (
vi1g, . . . , vi pg

)� for

g = 1, . . .G. Herein, vihg = 1 if
[
��

g (xi − μg)
]

h
is good and vihg = 0 otherwise for

h = 1, . . . , p;
3. Missing values of each observation: Xm = {xmi

}n
i=1.

The complete-data set of the MSCNM with missing values is thus given by D =
{Xo, Xm, Z, V } = {

xoi , x
m
i , zi , vi1, . . . , viG

}n
i=1. If we let π = {πg}Gg=1,α = {αg}Gg=1

and ϑ = {μg,�g,�g, ηg}Gg=1, the complete-data likelihood is defined as

Lc(�;D) =
n∏

i=1

G∏

g=1

[

πg

p∏

h=1

[
αhg fN

([
��
g

([
xoi
xmi

]
− μg

)]

h
; 0, λhg

)]vihg

×
[
(1 − αhg) fN

([
��
g

([
xoi
xmi

]
− μg

)]

h
; 0, ηhgλhg

)](1−vihg)
]zig

,

where the notation [. . .]h refers to the hth coordinate of the vector within the brackets. Then,
the complete-data log-likelihood function for � can be written as l(�;D) = l1(π;D) +
l2(α;D) + l3(ϑ;D) with

l1 (π ; D) =
n∑

i=1

G∑

g=1

zig log πg, (12)

l2 (α ; D) =
n∑

i=1

G∑

g=1

p∑

h=1

zig
[
vihg log αhg + (1 − vihg) log(1 − αhg)

]
, (13)

and l3 (ϑ ; D) ∝ −1

2

n∑

i=1

G∑

g=1

zig
[
log |Wvig�g| + δ(xoi , x

m
i ,μg;�gWvig�g�

�
g )
]
, (14)
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where

δ(xoi , x
m
i ,μg;�gWvig�g�

�
g ) =

([
xoi
xmi

]

− μg

)�
�gW−1

vig
�−1

g ��
g

([
xoi
xmi

]

− μg

)

(15)

is the squared Mahalanobis distance and

Wvig = diag

{(
vi1g + 1 − vi1g

η1g

)−1

, . . . ,

(
vi pg + 1 − vi pg

ηpg

)−1
}

. (16)

In our proposed framework, the ECM algorithm alternates between three steps, one E-step
and two CM-steps, until convergence. Using maximum likelihood estimation, in the first CM-
step, we update π ,α, and {μg,�g, ηg}Gg=1, while in the second CM-step, we update {�g}Gg=1.
The details for each step are outlined in the following subsections.

3.3.1 E-Step

In the E-step for the (r + 1)th iteration, we need to compute the expectations of
Zig, ZigVihg, Zig log |WV ig�g|, and Zig δ(xoi , X

m
i ,μg;�gWV ig�g�

�
g ). Note that the last

three expectations involve interactions between different random variables, so the law of
iterated expectations can be employed. For ease of presentation, we show below only the
most important results regarding the required expectations and leave additional details in
supplementary material Section 1.

Conditional Expectations of Zig and ZigVihg The first two expectations are obtained as
the result of Bayes’ rule. Specifically,

E�(r) (Zig
∣∣ xoi ) = π

(r)
g fXo

i | Zig=1
(
xoi ;�(r)

)

∑G
b=1 π

(r)
b fXo

i | Zib=1
(
xoi ;�(r)

) =: z̃(r)ig , (17)

where fXo
i | Zig=1

(
xoi ;�(r)

)
is the marginal density of the MSCN random vector X i which

can be approximated using the inversion formula as described in Sect. 3.1. In a similar manner,

E�(r) (ZigVihg
∣∣ xoi ) = z̃(r)ig E�(r) (Vihg

∣∣ xoi , Zig = 1) = z̃(r)ig ṽ
(r)
ihg, (18)

where

E�(r) (Vihg | xoi , Zig = 1) = α
(r)
hg fXo

i | Zig=1,Vihg=1
(
xoi ;�(r)

)

fXo
i | Zig=1

(
xoi ;�(r)

) =: ṽ
(r)
ihg. (19)

In the formula of ṽ
(r)
ihg, fXo

i | Zig=1,Vihg=1
(
xoi ;�(r)

)
can be approximated using the inver-

sion formula of the characteristic function under Proposition 3.6 with A = {h} and
B = {1, . . . , p} \ {h}.

Conditional Expectation of Zig log |WVig�g| First, recall that, vig = (vi1g, . . . , vi pg)
�

is a 0/1 vector with 2p possible patterns. We now introduce the superscript k so that for
k = 1, . . . , 2p ,

vkig =
(
vki1g, . . . , v

k
ipg

)�
(20)
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refers to the kth 0/1 pattern and

W (r)
vkig

= diag

⎧
⎪⎨

⎪⎩

⎛

⎝vki1g + 1 − vki1g

η
(r)
1g

⎞

⎠

−1

, . . . ,

(

vkipg + 1 − vkipg

η
(r)
pg

)−1
⎫
⎪⎬

⎪⎭
(21)

refers to the inverse weight diagonal matrix built upon v
k(r)
ig . Table 1 provides an example of

v
k(r)
ig and W (r)

vkig
when p = 3 and k goes from 1 to 2p = 23 = 8. The new notations allow for

a compact representation of the conditional expectation of Zig log |WV ig�g| given xoi and

the current parameter estimates �(r), in which

E�(r) (Zig log|WV ig�g|
∣
∣ xoi )

= z̃(r)ig E�(r) (log|WV ig�g|
∣
∣ xoi , Zig = 1)

= z̃(r)ig

2p∑

k=1

v̂
k(r)
ig log|W (r)

vkig
�(r)

g |, (22)

where

v̂
k(r)
ig =

[ p∏

h=1

(
α

(r)
hg

)vkihg
(

1 − α
(r)
hg

)1−vkihg

] fMN

(
xoi ;μo(r)

g , (�(r)
g W (r)

vkig
�(r)

g �(r)�
g )oo

)

fXo
i | Zig=1

(
xoi ;�(r)

) .

(23)
In the above, the superscript oo denotes the po × po sub-matrix of �

(r)
g W (r)

vkig
�(r)

g �
(r)�
g ,

with po being the dimension of xoi .

Table 1 Possible binary patterns
of Vi1g, . . . , Vipg, corresponding

vector vkig = (vki1g, . . . , vkipg)�
for k = 1, . . . , p, and inverse

weight matrix W (r)
vkig

when p = 3.

A value of 1 indicates that the hth
variate of the i th transformed
observation ��

g (X i − μg) is
good in cluster g; 0 otherwise

k vki1g vki2g vki3g vkig W (r)
vkig

1 0 0 0 (0 0 0)� diag
{
η
(r)
1g , η

(r)
2g , η

(r)
3g

}

2 0 0 1 (0 0 1)� diag
{
η
(r)
1g , η

(r)
2g , 1

}

3 0 1 0 (0 1 0)� diag
{
η
(r)
1g , 1, η

(r)
3g

}

4 0 1 1 (0 1 1)� diag
{
η
(r)
1g , 1, 1

}

5 1 0 0 (1 0 0)� diag
{

1, η
(r)
2g , η

(r)
3g

}

6 1 0 1 (1 0 1)� diag
{

1, η
(r)
2g , 1

}

7 1 1 0 (1 1 0)� diag
{

1, 1, η
(r)
3g

}

8 1 1 1 (1 1 1)� diag {1, 1, 1}
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Conditional Expectation of Zig δ(xoi , X
m
i , μg;�gWVig�g�

�
g ) To conclude the E-step,

we have

E�(r) (Zig δ(xoi , X
m
i ,μg;�gWV ig�g�

�
g )
∣
∣ xoi )

= z̃(r)ig E�(r) ( δ(xoi , X
m
i ,μg;�gWV ig�g�

�
g )
∣
∣ xoi , Zig = 1)

= z̃(r)ig

2p∑

k=1

v̂
k(r)
ig trace

[
M(r)

ikg �̃
(r)
vkig

]
, (24)

where

M(r)
ikg =

[
�(r)

g W (r)
vkig

�(r)
g �(r)�

g

]−1

= �(r)
g W−1(r)

vkig
�−1(r)

g �(r)�
g (25)

and

�̃
(r)
vkig

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(
xoi − μ

o(r)
g

) (
xoi − μ

o(r)
g

)� (
xoi − μ

o(r)
g

) (
x̃k(r)ig − μ

m(r)
g

)�

(
x̃k(r)ig − μ

m(r)
g

) (
xoi − μ

o(r)
g

)� (
x̃k(r)ig − μ

m(r)
g

) (
x̃k(r)ig − μ

m(r)
g

)� +
˜̃xk(r)ig − x̃k(r)ig x̃k(r)�ig

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (26)

with

E�(r) (Xm
i

∣∣ xoi , Zig = 1, Vi1g = vki1g, . . . , Vipg = vkipg)

= μm(r)
g +

(
M(r)

ikg

)mo (
M(r)

ikg

)oo−1 (
xoi − μo(r)

g

)
,

=: x̃k(r)ig , (27)

E�(r) (Xm
i Xm�

i

∣∣ xoi , Zig = 1, Vi1g = vki1g, . . . , Vipg = vkipg)

=
(
M(r)

ikg

)mm −
(
M(r)

ikg

)mo (
M(r)

ikg

)oo−1 (
M(r)

ikg

)om + x̃k(r)ig x̃k(r)�ig

=: ˜̃xk(r)ig . (28)

In the above, x̃k(r)ig and ˜̃xk(r)ig are obtained by the conditional distribution properties of an
MSCN distribution as described in Sect. 3.1. Moreover, the superscript oo denotes the po× po

sub-matrix of M(r)
ikg, with po being the dimension of xoi . The superscript mm denotes the

pm × pm sub-matrix of M(r)
ikg, with pm being the dimension of xmi . On the other hand, the

superscripts mo and om denote the pm × po and po × pm sub-matrices of M(r)
ikg. We also

note that the terms
(
M(r)

ikg

)mo (
M(r)

ikg

)oo−1 (
xoi − μo(r)

g

)
in x̃k(r)ig (29)

and

−
(
M(r)

ikg

)mo (
M(r)

ikg

)oo−1 (
M(r)

ikg

)om
in ˜̃xk(r)ig (30)

can be regarded as the adjustment for imputing the conditions in the expectation computation
according to the kth 0/1 pattern.
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3.3.2 CM-Steps

In the first CM-step for the (r + 1)th iteration, we fix �g at �
(r)
g and update π

(r)
g ,μ

(r)
g ,�(r)

g ,

and η
(r)
g with π

(r+1)
g ,μ

(r+1)
g ,�(r+1)

g , and η
(r+1)
g respectively. We will also update α

(r)
g , but

unlike the mentioned parameters, we update it through each of its hth component, αhg, for
h = 1, . . . , p. Specifically, the mixing proportion and the proportion of good observations
per cluster are updated first

π(r+1)
g = 1

n

n∑

i=1

z̃(r)ig , (31)

α
(r+1)
hg =

∑n
i=1 z̃

(r)
ig ṽ

(r)
ihg

∑n
i=1 z̃

(r)
ig

, (32)

where z̃(r)ig and ṽ
(r)
ig depends on the observed values. The update of the cluster means is then

computed, in which the expected value x̃k(r)ig is used.

μ(r+1)
g = �(r)

g

⎡

⎣
n∑

i=1

z̃(r)ig

2p∑

k=1

v̂
k(r)
ig W−1(r)

vkig

⎤

⎦

−1⎧
⎨

⎩

n∑

i=1

z̃(r)ig

2p∑

k=1

v̂
k(r)
ig W−1(r)

vkig
�(r)�

g

[
xoi

x̃k(r)ig

]⎫⎬

⎭
.

(33)
The update of �g is

�(r+1)
g =

[
n∑

i=1

z̃(r)ig

]−1
⎧
⎨

⎩
I p � �(r)�

g

⎡

⎣
n∑

i=1

z̃(r)ig

2p∑

k=1

v̂
k(r)
ig �̃

(r)
vkig

W−1(r)
vkig

⎤

⎦�(r)
g

⎫
⎬

⎭
, (34)

where � is the Hadamard product and I p is a p × p identity matrix, and the computation

of �̃
(r)
vkig

involves x̃k(r)ig and ˜̃xk(r)ig . The update η
(r+1)
g of η

(r)
g is the solution of the following

equation

n∑

i=1

z̃(r)ig

2p∑

k=1

v̂
k(r)
ig

[

W−1(r)
vkig

∂

∂η
(r)
g

W (r)
vkig

− I p � W−1(r)
vkig

�−1(r)
g �(r)�

g �̃
(r)
vkig

�(r)
g W−1(r)

vkig

∂

∂η
(r)
g

W (r)
vkig

]

= 0p,

(35)

where 0p is a vector whose p entries are all zeros and

∂

∂η
(r)
g

W (r)
vkig

= diag

⎧
⎪⎨

⎪⎩

⎛

⎝vkihg + 1 − vkihg

η
(r)
hg

⎞

⎠

−2
⎛

⎜
⎝

1 − vkihg
(
η

(r)
hg

)2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
for h = 1, . . . , p. (36)

It is worth noting that for the hth diagonal entry of ∂

∂η
(r)
g
W (r)

vkig
, its value is 0 if vkihg = 1 or 1

if vkihg = 0, so as a whole, this partial derivative matrix actually does not contain anything

relevant to η
(r)
g .
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In the second CM-step for the (r + 1)th iteration, the update �
(r+1)
g of �

(r)
g would be the

solution of the following optimization problem

�(r+1)
g = argmin

�
(r)
g

n∑

i=1

z̃(r)ig

2p∑

k=1

v̂
k(r)
ig trace

[
�(r)

g W−1(r)
vkig

�−1(r)
g �(r)�

g �̃
(r)
vkig

]
, (37)

with �
(r+1)
g constrained to be an orthogonal matrix. To satisfy such constraint, the PLR

decomposition for orthogonal matrices proposed by Bagnato and Punzo (2021) is first applied
on �

(r)
g before solving the optimization problem.

4 Notes on Implementation

4.1 Initial Values

Despite its popularity and effectiveness in incomplete data problems, the EM algorithm, as
well as its variants, are known to be highly dependent on the choice of initial values, which
in turn can affect clustering performance and convergence speed (Biernacki et al., 2000;
Karlis & Xekalaki, 2003; Shireman et al., 2017). Some recent literature such as Michael and
Melnykov (2016) and You et al. (2023) focused on improving the initialization of the EM
algorithm. When the data are characterized by outliers, the problem becomes more complex;
see for example, Cuesta-Albertos et al. (2008). A study on the impact of the initialization
technique is beyond the scope of this work and deserves further investigation. In this paper,
we use the following standard initialization technique:

• From the full data set, obtain observations without any missing variates.

• Set mixing proportions equal across G clusters, that is, π
(0)
g = 1

G
.

• Perform k-medoids clustering (Kaufman & Rousseeuw, 1990) and assign component
mean vector μ

(0)
g and covariance matrix �

(0)
g according to the resulting solution.

• Apply an eigen-decomposition on component covariance matrix �
(0)
g to obtain �

(0)
g and

�(0)
g .

• Set proportions of good observations α
(0)
g = (0.999, . . . , 0.999)� and degrees of con-

tamination η
(0)
g = (1.001, . . . , 1.001)�.

4.2 Convergence, Cluster Assignment, and Directional Outlier Detection

In our framework, convergence is determined using the Aitken stopping criterion (Aitken,
1926). At convergence of the ECM algorithm, ẑig and v̂ihg are computed as the values of

z̃(r)ig and ṽ
(r)
ihg, respectively. Then, cluster memberships can be assigned to all observations by

means of the maximum a posteriori probabilities (MAP). More information on the Aitken
stopping criterion and the MAP in the context of model-based clustering can be found in
McNicholas et al. (2010). Within cluster g, observation xi is considered good with respect to
the hth principal component if MAP

(
ẑig
) = 1 and v̂ihg > 0.5. As a byproduct of the ECM

algorithm, this outlier detection procedure is done automatically and requires no additional
distributional assumptions or subjective thresholds. Not only that, it is said to be directional,
meaning whether observation xi resembles an outlier or not is evaluated separately for each
principal component, and thus, complex behaviors of outliers in a multivariate setting can be
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effectively captured. This provides an important advantage compared to the outlier detection
procedure of the MCN mixture where outlying observations can be identified, but without
the knowledge of which dimension(s) yielding such decision (see, for example, Punzo et al.
2018; Tong & Tortora 2022b).

4.3 Model Selection

In practice, the number of mixture components G is often not given in advance, thus resulting
in the model selection problem. One common strategy to address this problem is to fit the
assumed model multiple times over a range of values forG and select the model that optimizes
an information criterion such as Akaike information criterion (AIC; Akaike 1998) or Bayesian
information criterion (BIC; Schwarz 1978). Their formulas are AIC = −2l(�̂) + 2ρ and
BIC = −2l(�̂)+ρ log n, where �̂ the estimated parameters at convergence of the ECM algo-
rithm, l(�̂) is the associated observed log-likelihood, and ρ is the number of free parameters
in the model. In our model, ρ = (G − 1) + 4Gp + Gp(1 − p)/2. Many other criteria have
also been proposed; commonly used criteria are integrated classification likelihood (ICL;
Biernacki et al. 2000), Kullback information criterion (KIC; Cavanaugh 1999), corrected
Kullback information criterion (KICc; Seghouane & Bekara 2004), approximate weight of
evidence criterion (AWE; Banfield & Raftery 1993), modified Akaike information criterion
(AIC3; Bozdogan 1993), consistent Akaike information criterion (CAIC; Bozdogan 1987),
corrected Akaike information criterion (AICc; Hurvich & Tsai 1989), and classification like-
lihood criterion (CLC; Biernacki & Govaert 1997). Using different simulated and real data
sets, some studies have been conducted to compare these information criteria in model-based
clustering of complete data sets; see for example, Tran and Tortora (2021) for the MSCN
distribution and Akogul and Erisoglu (2016) for the MN distribution. The mentioned papers
also contain a unified summary of the formulas of the information criteria.

4.4 Other Computational Details

Like many mixture models including normal mixtures, the likelihood function of the pro-
posed model presents spurious local maxima and is unbounded. Therefore, the existence of
the global maximizer is not guaranteed. Some possible solutions to this issue are discussed in
Melnykov (2013). The proposed model is estimated using the ECM algorithm, whose con-
vergence to a stationary point is obtained under the same conditions as the classification EM
algorithm (McLachlan & Krishnan 2008, Chapter 5). However, the expectations z̃(r)ig and ṽ

(r)
ihg

in the E-step involve marginal densities obtained from the inversion formula, these densities,
in turn, require the numerical calculation of multiple integrals; moreover, two parameter
updates do not have closed-form solutions, implying additional conditions for monotonicity
and convergence; for more details, see McLachlan and Krishnan (2008, Chapter3).

To numerically calculate multiple integrals required to compute the expectations z̃(r)ig and
ṽ

(r)
ihg in the E-step, we employ the adaptive multivariate integration over hypercubes intro-

duced by Berntsen et al. (1991). It is similar to the idea suggested by Dooren and Ridder
(1976) for single integrands. This method is based on a globally adaptive subdivision strat-
egy, which carries out numerical integration over hyperrectangular regions, and is readily
implemented in the R package cubature (Narasimhan et al., 2022).

In the CM-steps, we also need some numerical procedures for two parameters. The first
is η

(r)
g , where its update amounts to solving p non-linear equations that can be achieved
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using the Newton–Raphson method implemented in the multiroot() function of the R
package rootSolve (Soetaert, 2009; Soetaert & Herman, 2009). The second is �

(r)
g , which

involves an optimization problem subject to the constraint that �(r)
g is orthogonal. To turn this

problem into an unconstrained problem, we first apply the PLR decomposition introduced
by Bagnato & Punzo (2021) to �

(r)
g and obtain the objective function described in Eq. 37.

This decomposition factorizes an p × p invertible orthogonal matrix Q into the product of
a p × p permutation matrix P , a p × p unit lower-triangular matrix L, and R−1, where R
a p × p upper-triangular matrix with a positive diagonal and obtained from the QR decom-
position of the matrix PL. Bagnato and Punzo (2021) showed that there exists a one-to-one
correspondence between Q and the lower-triangular unconstrained real values in L, which
allows the optimization problem to be instead formulated in terms of L. Advantageously,
the new formulation can be solved with unconstrained optimization methods implemented
in the function optim() of base R. In this paper, our optimization method of choice is
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970).

5 Simulation Study

In this section, we evaluate the clustering and outlier detection performance of our newly
proposed extension in Sect. 3.3 through a series of four simulation studies involving data sets
with outliers and missing-at-random values. In the first three studies, the number of clusters
is fixed to the real known number of clusters. In Sect. 5.1, we evaluate the performance of
our model in recovering the true underlying parameters. In Sect. 5.2, we focus on direc-
tional outliers which refer to outlying observations along particular principal components.
In Sect. 5.3, we consider a higher number of overlapping clusters sampled from heavy-tailed
distributions. Lastly, in Sect. 5.4, we revisit the simulated scenarios in studies 2 and 3 and
examine model selection using the information criteria introduced in Sect. 4.3. The detailed
results of all simulation studies can be found in supplementary material Section 2.

Herein, clustering performance is measured using the adjusted Rand index (ARI; Hubert
& Arabie 1985) which corrects the Rand index (Rand, 1971) for chance and has an expected
value of 0 under random partitions and an expected value of 1 under perfect agreement (for
more information, see Steinley 2004). Since all the clustering techniques used in the simula-
tion study also assign cluster labels to the outliers, the outliers are included in the computation
of the ARI. To assess outlier detection, we rely on the true positive rate (TPR), measuring
the proportion of outliers correctly detected, and the false positive rate (FPR), measuring
the proportion of good observations incorrectly detected as outliers. Our competitors include
mixture models via different distributions: MCN, multivariate t (Mt), and MN. However,
we do not consider the multivariate normal mixture (MNM) with regard to outlier detection
due to it not being a robust model-based clustering method. The outlier detection rule of
the multivariate contaminated normal mixture (MCNM) is similar to the MSCNM, except
that it is limited to global detection only, i.e., an outlier is identified without knowing in
which specific dimension(s) it is outlying. Such detection rule of the MCNM is described in
greater detail by Punzo and McNicholas (2016) and Tong and Tortora (2022b). On the other
hand, in the multivariate t mixture (MtM), an observation xi is considered bad based on the
quantity

G∑

g=1

MAP(ẑig)δ(xi , μ̂g; �̂g), (38)

123



Journal of Classification

where μ̂g and �̂g are the values of μg and �g at convergence of the MtM’s fitting frame-
work, respectively, and the corresponding squared Mahalanobis distance random variable
δ(X i , μ̂g; �̂g) is approximately χ2

p . According to Peel and McLachlan (2000), if the quan-
tity is greater the 95th percentile of the χ2

p distribution, then xi is treated as a bad point. A
different percentile could be used, but this would become a tuning problem that undermines
the automatic outlier detection benefit.

All the algorithms are initialized by setting the means equal to the medoids obtained using
k-medoids clustering, equal proportions across clusters, and covariance matrices as identity
matrices. The analysis was conducted using the software R (R Core Team, 2021), the code
for the mixtures of MCN, multivariate t (Mt), and MN distributions with missing data can
be found in the package MixtureMissing (Tong & Tortora, 2022a).

5.1 Study 1: True Parameter Recovery

In this study, we examine the performance of our model in recovering true parameters when
the number of components is correctly specified. For data simulation, we consider the setting
of two bivariate multiple scaled contaminated normal clusters (G = 2) with the following
parameters

n1 = 420, μ1 =
[

0

0

]

, �1 =
[

2 1.5

1.5 2

]

, α1 = (0.95, 0.95)�, η1 = (10, 10)�,

n2 = 180, μ2 =
[

0

8

]

, �2 =
[

2 −1.5

−1.5 2

]

, α2 = (0.7, 0.7)�, η2 = (3, 10)�.

The number of observations in each cluster implies that the true mixing proportions are
π1 = 0.7 and π2 = 0.3. Then, using the function rmscn() in the package MSclust (Tortora
et al., 2023), we generate 20 complete data sets based on the above setting. For each of these
complete data sets, we hide one of the two variates of 10%, 30%, 50%, and 70% observations
under the missing-at-random mechanism in a way such that there are 10 general MAR
missing-data patterns per percentage using the ampute() function. Essentially, in doing
so, with each missing percentage, we replicate the complete data set 10 times and introduce a
different general MAR missing data pattern to each replicate, yielding 10 different data sets
with the same number of observations missing one variate. In total, we have (20)(4)(10) =
800 data sets for this study. Figure 1 provides an example of data sets generated for this study.

Herein, we compare our model to the complete case analysis using the multiple scaled
contaminated normal mixture proposed by Punzo and Tortora (2021). Recall that the model
of Punzo and Tortora (2021) assumes no missing values so it is fitted to complete observations
only in our simulation, whereas our model is fitted to the full data set. The number of clusters
for each model is fixed to the ground truth G = 2. After fitting both models, their parameter
estimates are compared to the true parameters used for the data simulation above. Tables 1, 2,
3 and 4 in supplementary material Section 2 summarize the results of the simulation study for
each missing percentage. The estimates for the mixing proportions and the component mean
vectors of our model have lower bias and standard deviation than in the complete case analysis
for almost every missing percentage. This is expected as the complete case analysis only uses
information from complete observations and thus can yield biased estimates overall. Also
with the complete case analysis, as more observations are subject to missingness, the amount
of bias and standard deviation rises up. For component covariance matrices, proportions of
good observations, and degrees of contamination, the estimates of our model have higher

123



Journal of Classification

−15 −10 −5 0 5 10 15

−
15

−
10

−
5

0
5

10
15

Variable 1

V
ar

ia
bl

e 
2

Fig. 1 An example of data set generated in the simulation study 1

bias and standard deviation than in the complete case analysis when there are 10% and 30%
observations with missing values. However, when the missing percentage goes to 50% and
70%, our model yields estimates with lower bias and standard deviation for those parameters
compared to the complete case analysis.

5.2 Study 2: Clusters with Directional Outliers

Herein, we consider the following four scenarios of directional outliers, all of which are
bivariate (p = 2) and contain 600 observations (n = 600).

(a) Three parallel elongated clusters with outliers in the first principal component.
Example in Fig. 2a. The setup is inspired by the supplementary materials of Forbes and
Wraith (2014). We first generate three Gaussian clusters (G = 3), 200 observations
each (n1 = n2 = n3 = 200), with mean vectors μ1 = (−4, 0)�,μ2 = (0, 0)�, and
μ3 = (0,−4)�, respectively, and the common covariance matrix

� =
[

1 0.75

0.75 1

]

.

For each cluster, we introduce directional outliers by applying a principal component
analysis, in which we denote x̄ ( j) and s( j) as the sample mean and standard deviation
of principal component scores associated with the j th principal component, for j =
1, 2. Then, in the space spanned by the two principal components, we replace some
observations by (x∗

i1, x
∗
i2), where
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Fig. 2 Examples of data sets generated according to the four scenarios considered in the simulation study 2

• x∗
i1 can be drawn with an equal chance from either a uniform random variable over

the interval (
x̄ (1) − 15s(1), x̄ (1) − 4s(1)

)

or a uniform random variable over the interval
(
x̄ (1) + 4s(1), x̄ (1) + 15s(1)

)
.

• x∗
i2 is a realization of a uniform random variable over the interval

(
x̄ (2) − s(2), x̄ (2) + s(2)

)
.

Finally, we transform back to the original data space to obtain the simulated data set.
(b) One cluster with outliers in the second principal component and 1 elliptical cluster.

Example in Fig. 2b. We first generate two Gaussian clusters (G = 2) with the following
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parameters

n1 = 420, μ1 =
[

0

0

]

, �1 =
[

2 1.5
1.5 2

]
, n2 = 180, μ2 =

[
0

8

]

,

and �2 =
[

2 −1.5

−1.5 2

]

.

Then, in cluster 1, we apply a principal component analysis, in which we denote x̄ ( j) and
s( j) as the sample mean and standard deviation of principal component scores associated
with the j th principal component, for j = 1, 2. Now, in the space spanned by the two
principal components, we replace some observations by (x∗

i1, x
∗
i2), where

• x∗
i1 is a realization of a uniform random variable over the interval

(
x̄ (1) − s(1), x̄ (1) + s(1)

)
.

• x∗
i2 can be drawn with an equal chance from either a uniform random variable over

the interval (
x̄ (2) − 25s(2), x̄ (2) − 5s(2)

)

or a uniform random variable over the interval
(
x̄ (2) + 5s(2), x̄ (2) + 25s(2)

)
.

Finally, we transform cluster 1 back to the original data space and combine it with
cluster 2, which remains unchanged, to obtain the simulated data set.

(c) One cluster with outliers in both principal components and 1 elliptical cluster.
Example in Fig. 2c. We first generate two Gaussian clusters (G = 2), apply a princi-
pal component analysis on cluster 1, and introduce some sample statistics as in scenario
(b). However, in the space spanned by the two principal components, we replace some
observations with an equal chance by (x∗

i1, x
∗
i2) or (x∗∗

i1 , x∗∗
i2 ). Herein, (x∗

i1, x
∗
i2) is defined

as in scenario (b), while (x∗∗
i1 , x∗∗

i2 ) is made as follows

• x∗∗
i1 can be drawn with an equal chance from either a uniform random variable over

the interval (
x̄ (1) − 8s(1), x̄ (1) − 4s(1)

)

or a uniform random variable over the interval
(
x̄ (1) + 4s(1), x̄ (1) + 8s(1)

)
.

• x∗∗
i2 is a realization of a uniform random variable over the interval

(
x̄ (2) − s(2), x̄ (2) + s(2)

)
.

Finally, we transform cluster 1 back to the original data space and combine it with cluster
2, which remains unchanged, to obtain the simulated data set.

(d) Two clusters with outliers forming an angle with their first principal component.
Example in Fig. 2d. We first generate two Gaussian clusters (G = 2) as in scenario (b).
Let S1 and S2 be the sample covariance matrices of clusters 1 and 2, respectively. We
then perform the following spectral decompositions on the following two matrices

�1S1�
�
1 and �2S2�

�
2 ,
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where �1 and �2 are rotation matrices of angles θ1 = 5π

6
and θ2 = π

4
, respectively.

Note that a rotation matrix of angle θ is defined as follows

� ≡ �(θ) =
[

cos θ − sin θ

sin θ cos θ

]
.

We transform the data using the eigenvectors and eigenvalues obtained from each decom-
position. This is equivalent to identifying the two principal components of each cluster
and rotating them by an angle as specified. For cluster g, we denote x̄ ( j)

g and s( j)
g as the

sample mean and standard deviation of principal component scores associated with the
j th rotated principal component, for j = 1, 2 and g = 1, 2. Now, in the same fashion as
in scenario (b), in the space spanned by the two rotated principal components, we replace
some observations in cluster g by (x∗

ig1, x
∗
ig2), where

• x∗
ig1 is a realization of a uniform random variable over the interval

(
x̄ (1)

g − s(1)
g , x̄ (1)

g + s(1)
g

)
.

• x∗
ig2 can be drawn with an equal chance from either a uniform random variable over

the interval (
x̄ (2)

g − 10s(2)
g , x̄ (2)

g − 3s(2)
g

)

or a uniform random variable over the interval
(
x̄ (2)

g + 3s(2)
g , x̄ (2)

g + 10s(2)
g

)
.

Finally, we transform both clusters back to the original data space to obtain the simulated
data set.

Note that to generate each Gaussian cluster, we use thermvnorm() function of themvtnorm
package (Genz et al., 2021). Under each scenario, we generate 20 complete data sets, in
which the number of outliers can account for 10% and 20% of 600 observations. For each
of these complete data sets, we hide one of the two variates of 10%, 30%, 50%, and 70%
observations under the missing-at-random mechanism per percentage using the ampute()
function of the R package mice (Buuren & Groothuis-Oudshoorn, 2011). In doing so, with
each missing percentage, we replicate the complete data set 10 times and introduce a different
general MAR missing data pattern to each replicate, yielding 10 different data sets with
the same number of observations missing one variate. For ease of presentation, we denote
κ ∈ {10%, 30%, 50%, 70%} to refer to the percentage of observations missing one variate.
In total, we have (4)(20)(2)(4)(10) = 6, 400 data sets for this study.

The detailed results of this study containing the average ARIs, TPRs, and FPRs, with
associated standard deviations, are available in supplementary material Section 2. Figure 3
shows the box plots of resulting ARIs over different percentages of observations with missing
values (κ’s), scenarios, and percentages of outliers. Recall that the ARI measures clustering
performance of the methods. Here, in every scenario and for every mixture model, the ARI
decreases as the percentage of observations with missing values increases. In scenario (a),
the MSCNM tends to outperform the other methods in most cases and perform equally in the
rest. All the methods perform better with 10% outliers when the percentage of observations
with missing values is 50% or below. However, with 10% observations with missing values
and 20% outliers, the variability is higher. In scenario (b), the MSCNM clearly outperforms
the others, with the MNM being the second best. Moreover, in this scenario, there is less
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Fig. 3 Box plots of resulting ARIs over different percentages of observations with missing values (denoted
by κ) and colors representing the mixture. Each row is a different scenario and each column is a percentage
of outliers

difference between the cases with 10% and 20% outliers. In scenario (c), all the methods
have similar clustering performance without any particular differences between 10% and 20%
outliers. In scenario (d), the MSCNM still has better performance than other competitors.
The 10%-outliers case is similar to the corresponding one of scenario (c), except that there
are more outlying results, especially when 70% observations have missing values. Outlying
results appear more in the 20%-outliers case, and we can see high variability when 50%
observations have missing values.

Figures 4 and 5 show the TPRs and FPRs, respectively, over different percentages of
observations with missing values (κ’s), scenarios, and percentages of outliers. In scenario
(a), the MSCNM’s TPRs are lower and exhibit greater variability than the competitors for
50% and 70% observations of missing values. The performances of all the methods are similar
in the other cases, with the exception of 70% missing data and all missing percentages in
the 20%-outliers case of scenario (d) where the MSCNM has a lower TPR. When looking at
the FPRs in Fig. 5, the MtM always has the highest values, i.e., the worst performance. The
MSCNM and MCNM have similar performance, with the exception of scenario (A) - 20%
outliers where the MCNM always has higher FPRs. Overall, although the MtM performs
fairly well in detecting true outliers, it also labels many points that are not outliers as outliers.
In contrast, the MSCNM and MCNM have better performance, although it is not clear which
one is better in terms of outlier detection, unlike in terms of clustering performance where
the MSCNM excels.
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Fig. 4 Box plots of resulting TPRs over different percentages of observations with missing values (denoted
by κ) and colors representing the mixture. Each row is a different scenario and each column is a percentage
of outliers

5.3 Study 3: Four Overlapping Heavy-Tailed Clusters

Herein, we evaluate our proposed model and its competitors on data sets with overlapping
clusters simulated from heavy-tailed distributions. Using the R package MixSim (Melnykov
et al., 2012), with a desired average pairwise overlap of 0.05, we first generate 20 parameter
sets each containing four mean vectors and four covariance matrices. Note that in MixSim,
the pairwise overlap is defined as a sum of two misclassification probabilities (Maitra &
Melnykov, 2010). Then, for each parameter set, we use the corresponding mean vectors and
covariance matrices to generate four clusters (G = 4), each containing 150 observations
(n = 600 in total) from a multivariate Student’s t whose degrees of freedom are randomly
chosen between 5 and 20. With the exact same parameter set, we generate another four
clusters but from multivariate contaminated normal distributions whose proportions of good
observations and degrees of contamination are randomly chosen between 0.6 and 0.9 and
between 2 and 10, respectively. For each of the (2)(20) = 40 complete data sets obtained so
far, just like in the previous study, we hide one of the two variates of 10%, 30%, 50%, and
70% observations under the missing-at-random mechanism in a way such that there are 10
general MAR missing-data patterns per percentage using the ampute() function. In total,
we have (2)(20)(4)(10) = 1, 600 data sets for this study. Figure 6 provides examples of data
sets generated for this study.

Figure 7 shows the ARIs of our model and its competitors over different percentages of
observations with missing values (κ’s) and percentages of outliers for the two distributions
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Fig. 5 Box plots of resulting FPRs over different percentages of observations with missing values (denoted
by κ) and colors representing the mixture. Each row is a different scenario and each column is a percentage
of outliers

Fig. 6 Examples of data sets generated in the simulation study 3. The mean vectors and covariance matrices
here are just one of the 20 parameter sets generated
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Fig. 7 Box plots of resulting ARIs over different percentages of observations with missing values (denoted
by κ) and colors representing the mixture models. Each column is a distribution of the four clusters

mentioned. We can observe a decreasing linear trend as more observations with missing
values appear. The stronger overlap between clusters results in much lower ARIs for cases
with 10% observations with missing values compared to the corresponding results in study
1, but for higher missing percentages, the results are generally comparable and stable.

5.4 Study 4: Information Criteria for Model Selection

In this study, we revisit all the scenarios mentioned in simulation studies 2 and 3 in the case
where 70% of observations have one variate missing. Furthermore, for those in study 2, we
focus specifically on data sets with 20% outliers. On these (6)(20)(10) = 1, 200 data sets of
consideration, we fit our model and the other three competitors with the number of mixture
components (clusters) to be G = 2, 3, and 4. For each fitted model, we record its AIC, BIC,
ICL, KIC, KICc, AWE, AIC3, CAIC, and CLC. After (3)(1, 200) = 3, 600 simulations, we
obtain the percentage of time each criterion correctly specifies the number of clusters in a
particular scenario for every model.

Figure 8 visualizes percentages of times the information criteria correctly specify the
number of clusters. Numerical results can be found in Table 12 in supplementary material
Section 2. In scenario (d), none of the criteria is able to detect the correct number of clus-
ters for any of the methods. BIC, CAIC, and ICL work best for the MSCN in scenarios
(a), (b), and (c) in study 2, while AWE only excels in scenarios (b) and (c). Interestingly,
those indices have the worst performance in study 3. Similar behavior of BIC, CAIC, ICL,
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Fig. 8 Percentage of times the information criteria correctly specify the number of clusters in different scenarios
of simulation studies 2 and 3 with colors and shapes representing the mixture. For both studies, only the case
of 70% observations with missing values is considered. For study 1 specifically, only the case of 20% outliers
is considered

and AWE can be seen for the other distributions; however, for the MCN, Mt, and MN
those indices also have low success in study 2. To summarize, BIC, CAIC, and ICL tend to
detect the correct number of clusters for the MSCN when directional outliers in the direc-
tion of the principal components are present, but, for overlapping clusters, the other indices
are better. When the outliers are not in the direction of the principal components, all the
indices fail. For the MCN, Mt , and MN, CLC works best in detecting the correct number of
clusters when there is overlap, but none of the indices works particularly well in the other
situations.

6 World Happiness Report data

World Happiness Report by the United Nations Sustainable Development Solutions Network
(Sachs et al., 2018) contains six main measurements of happiness in 142 countries. The data
used are from 2016. The first two variables areLogGDPper capita (per capita Gross Domestic
Product on the log scale) and Healthy life expectancy at birth, while the last three variables
are obtained as averages of binary responses to Gallup World Poll (GWP) questions. Social
support, is the response to the question “If you were in trouble, do you have relatives or friends
you can count on to help you whenever you need them, or not?” Freedom to make life choices
answers the question “Are you satisfied or not with your freedom to choose what you do with
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your life?”Perception of corruption is the average of two questions “Is corruption widespread
throughout the government or not?” and “Is corruption widespread within businesses or not?”
The last variable, Generosity, is measured by the residual of regressing the national average
of GWP responses to the question “Have you donated money to a charity in the past month?”
on GDP per capita. Out of the 142 countries, 14 have missing values, contributing to a total
of 21 missing values in the data set. Moreover, the data is characterized by outliers, i.e.,
countries with anomalous traits.

Herein, the goal is to find homogeneous groups of countries. The number of clusters is
unknown, and the algorithm is thus run with G = 2, 3, 4, and 5. The corresponding BIC
values are 2128.104, 2127.574, 2202.824, and 2390.527, where the lowest value is obtained
by settingG = 3. Figure 9 shows the countries colored based on cluster memberships. Cluster
1 has Rwanda as a single outlier, while cluster 3 has 12 outliers, namely China, France,
Hong Kong, Iceland, Indonesia, Malta, Myanmar, Norway, Somalia, Thailand, the UK, and
Uzbekistan. With respect to cluster 3, China is an outlier for two principal components, while
all the others are outliers for one of the components.

The means per each cluster are represented in Fig. 10. In the figure, each line represents
a cluster mean vector, and the overall mean vector is set to 0. Countries in cluster 1, red,
have the lowest averages for all the variables but the Perception of corruption whose value is
equal to the global average. Countries in cluster 2, blue, are average, with a high perception
of corruption. Cluster 3, green, contains the happiest countries, with high values for all the
variables and a low perception of corruption.

Clusters

1 2 3

Fig. 9 Countries colored according to cluster membership, white countries have no data
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Fig. 10 Parallel coordinate plots, each line represents a cluster mean where the overall mean is set to 0

7 Conclusion

The literature on cluster analysis and model-based clustering is extensive. Many distributions
have been used within the model-based clustering framework to offer greater flexibility
to the shape of the clusters. Among them, the multivariate contaminated normal (MCN)
distribution has the advantage of performing clustering and outlier detection simultaneously.
The multiple-scaled contaminated normal distribution (MSCN) solves some limitations of
the MCN distribution because it has flexible tails that allow for directional outlier detection
and different down-weighting of outlying observations per principal component. This paper
extends the MSCN mixture to accommodate data sets with missing values at random (MAR).
The marginals of the MSCN distribution are first obtained and then used within the ECM
algorithm’s framework to perform cluster analysis and directional outlier detection on data
sets with values missing at random. The advantages and limitations of the MSCN mixture,
compared to its main competitors, are illustrated on simulated data sets. For all the methods, as
the percentage of missing values increases, clustering performance measured using the ARI
decreases. The impact on outlier detection is less evident; the true positive rate (TPR) slightly
decreases as the percentage of missing observation increases, while the false positive rate
(FPR) seems stable. Overall, the proposed MSCN mixture has good clustering performance,
great FPR, and variable TPR. Moreover, when there is a high percentage of observations
with missing values, it yields parameter estimates with lower bias and standard deviations.
A study on model selection finds that BIC, CAIC, and ICL are the best indices to select the
number of clusters when there is not much overlap among clusters.

Despite the interesting results, the proposed model has three main limitations. First, the
MSCN and all the other models used in this paper assume symmetric clusters, which can be
a limitation in some real-world applications. Some recent work focused on outlier detection
using asymmetric distributions (see for example, Morris et al. 2019). The extension of meth-
ods that include asymmetric clusters to data sets with missing values can be very valuable
in many applied fields. Second, all the results shown are obtained on a small number of
variables, six maximum, because the computational cost of the algorithm does not make it
usable on large data sets, and this is an avenue for future research. Third, the initialization
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method plays a key role in EM-based algorithms, and this is, even more, emphasized when
data sets have missing values and outliers. Future work can focus on a study on the effect of
the initialization techniques on the performance of the algorithm.

Appendix A: Characteristic Functions and the Inversion Formula

In statistics, characteristic functions provide a powerful tool for deriving probability density
functions by means of Fourier transformations. One major advantage of this approach is that
there always exists a unique characteristic function for every probability distribution.

Definition A.1 Let X = (
X1, . . . , X p

)� ∈ R
p be a p-variate random vector, t =

(
t1, . . . , tp

)� ∈ R
p , and i be an imaginary unit. The function

φX (t) = E
(

exp(i t�X)
)

(39)

is called the characteristic function of X .

From a characteristic function, the associated probability density function can be obtained
using the inversion formula.

Theorem A.1 (Inversion Formula) Let X = (
X1, . . . , X p

)� ∈ R
p be a p-variate random

vector, φX (t) be the characteristic function of X with t = (
t1, . . . , tp

)� ∈ R
p , and i be an

imaginary unit. The probability density function of X can be obtained by

fX (x) = (2π)−p
∫ ∞

−∞
. . .

∫ ∞

−∞
exp

(
−i t�x

)
φX (t) d t

= (2π)−p
∫ ∞

−∞
. . .

∫ ∞

−∞
exp

⎛

⎝−i
p∑

j=1

t j x j

⎞

⎠φX (t1, . . . , tp) dt1 . . . dtp. (40)

To obtain the marginals of the MSCN distribution, the propositions describing the charac-
teristic functions of the MN and MCN distributions are needed. The marginals of the MCN
and MSCN distribution are outlined in the methodology under Sect. 3.

Proposition A.1 The characteristic function of a p-variate random vector X=(X1, . . . , X p
)�

∈ R
p that follows a multivariate normal distribution with mean vector μ and covariance

matrix � is

φX (t) = exp

(
i t�μ − 1

2
t�� t

)
, (41)

where t = (t1, . . . , tp
)� ∈ R

p and i is an imaginary unit.

Appendix B: Proofs

Proposition 3.1

Proof For data generation purposes, the MCN random variable X can be represented as

X =
(
V + 1 − V

η

)−1/2

Y ,
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where V follows a Bernoulli distribution such that V = 1 with probability α ∈ (0.5, 1) and
V = 0 with probability 1 − α; and Y follows an MN distribution with mean vector μ and
covariance matrix �. By Definition A.1 and the law of total expectation, we can establish
the following

φX (t) = E(exp(i t�X)) =
1∑

v=0

E(exp(i t�X)
∣
∣ V = v)P(V = v)

= αE(exp(i t�Y)) + (1 − α)E(exp(iη1/2 t�Y))

= αφY (t) + (1 − α)φY (η1/2 t)

= α exp

(
i t�μ − 1

2
t�� t

)
+ (1 − α) exp

(
i t�μ − 1

2
ηt�� t

)
.

��
Proposition 3.2

Proof From Definition A.1 and the fact that Ỹ contains p independent univariate contam-
inated normal random variables, the characteristic function of the marginal variable X1 is
given by

φX1(t) = E
(

exp(i t�X1)
)

=
q∏

j=1

exp(i t jμ j )

p∏

h=1

φỸh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠ ,

where from Proposition 3.1, for h = 1, . . . p, we know that

φỸh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠ = αh exp

⎡

⎢
⎣−1

2

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠

2
⎤

⎥
⎦

+(1 − αh) exp

⎡

⎢
⎣−1

2
ηh

⎛

⎝
q∑

j=1

t j [��1/2] jh
⎞

⎠

2
⎤

⎥
⎦ .

��
Proposition 3.6

Proof From Definition A.1 and the fact that we are dealing with linear combinations of
independent random variables, we have the characteristic function of X1 | Vr = vr , r ∈ A
to be

φX1 | Vr ,r∈A(t) =
q∏

j=1

exp(i t jμ j )
∏

r∈A
φỸr

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠
∏

s∈B
φỸs

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠ .

Herein, for r ∈ A, Ỹr follows a univariate normal distribution with mean 0 and variance
1 if vr = 1 or variance ηr if vr = 0. Thus,

φỸr

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠

=

⎧
⎪⎨

⎪⎩
exp

⎡

⎢
⎣−1

2

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

vr
⎧
⎪⎨

⎪⎩
exp

⎡

⎢
⎣−1

2
ηr

⎛

⎝
q∑

j=1

t j [��1/2] jr
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

1−vr

.
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On the other hand, for s ∈ B, Ỹs follows a univariate contaminated normal distribution
with mean 0, variance 1, proportion of good observation αs , and degree of contamination ηs .
As the result,

φỸs

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠

=

⎧
⎪⎨

⎪⎩
αs exp

⎡

⎢
⎣−1

2

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠

2
⎤

⎥
⎦+ (1 − αs) exp

⎡

⎢
⎣−1

2
ηs

⎛

⎝
q∑

j=1

t j [��1/2] js
⎞

⎠

2
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
.
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