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62 Frames 66 Frames 70 Frames

Fig. 1: Example of the small multiple stimuli used in Experiment 1 that varied in frame quantity from 2 to 70, incremented
by four frames. The stimuli depicted power (in megawatts) over time (one year per frame).

Abstract—Small multiples are a popular visualization method,
displaying different views of a dataset using multiple frames,
often with the same scale and axes. However, there is a need
to address their potential constraints, especially in the context
of human cognitive capacity limits. These limits dictate the
maximum information our mind can process at once. We explore
the issue of capacity limitation by testing competing theories that
describe how the number of frames shown in a display, the scale
of the frames, and time constraints impact user performance
with small multiples of line charts in an energy grid scenario.
In two online studies (Experiment 1 n = 141 and Experiment
2 n = 360) and a follow-up eye-tracking analysis (n = 5), we
found a linear decline in accuracy with increasing frames across
seven tasks, which was not fully explained by differences in frame
size, suggesting visual search challenges. Moreover, the studies
demonstrate that highlighting specific frames can mitigate some
visual search difficulties but, surprisingly, not eliminate them.
This research offers insights into optimizing the utility of small
multiples by aligning them with human limitations.

Index Terms—Small multiples, time-series data, cognition

I. INTRODUCTION

mall multiples have been a popular visualization technique
since the late 1800s [1]. They present different views of
a dataset through multiple small frames [2]. These frames
maintain a consistent scale and axes and are typically arranged
in a two-dimensional grid layout [3]-[5]. Visualizations from
displays of election data to population demographic shifts
utilize small multiples [6], [7]. Their popularity can likely be
attributed to extensive research demonstrating their effective-
ness in conveying complex data trends [8]-[12].
Although previous research has demonstrated small multi-
ples’ effectiveness [8], their potential constraints remain under-

investigated. Notably, human cognitive capacity limits and vi-
sual search capabilities could inform guidelines for designing
small multiples for large datasets. Cognitive capacity limits
refer to the maximum amount of information the mind can
effectively process and retain at any given moment [13]. Visual
search capabilities are how the visual system completes pattern
recognition and identifies task-relevant items in an array [14].
Cognitive capacity limits and visual search capabilities are
two theories that could inform when and how small multiples
become less effective. However, no work has evaluated how
cognitive processes drive the use of small multiples.

Missing guidance about the cognitive underpinning of small
multiples becomes apparent in environments such as energy
grid control rooms (see Figure 2). Energy grid control displays
might feature over 100 small multiple frames, potentially
challenging cognitive limits, and visual search capabilities.
Without guidance on the impact of frame quantity on per-
formance, designers may produce displays that cognitively
overload analysts, potentially leading to errors, such as data
misinterpretation or oversight. Understanding the relationship
between cognitive mechanisms and small multiples is even
more critical when analysts face time [15] or display con-
straints [16], which underscores the need for aligning small
multiple design guidelines with human cognitive abilities.

We created small multiple line charts to explore capacity
limits and visual search capabilities, and to provide cog-
nitively informed guidance to small multiple designers. In
the first experiment, we examined the relationship between
frame quantity and the accuracy of responses across seven
visualization tasks. In the second experiment, we controlled for
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Fig. 2: Pennsylvania-New Jersey-Maryland (PJM) Intercon-
nection control room, using numerous small multiples [17].

the scale of the frames and the presence of time constraints.
Finally, in a small follow-up eye-tracking investigation, we
explored participants’ visual search strategies during the tasks.

Overview and Contributions: This work contributes the
first empirical evidence that increasing the number of frames
in small multiples results in a linear decline in accuracy.
Although the notion that larger frame quantities are more
difficult to use may seem obvious, this observation challenges
the practice of using small multiples in vast datasets without
adding appropriate cognitive supports. For example, we found
that highlighting specific frames for comparison can mitigate
the negative impact of increased frame quantities on accuracy.
The second significant contribution of this work is that it
provides converging evidence that visual search strategies are
an essential driver of small multiples usage. The implications
of this finding are that interventions that focus on making the
visual search process easier may provide the most benefits
for small multiples. Visual search interventions would allow
users to explore specific frames selectively, such as zooming,
panning, and filtering [18], reducing the reliance on visual
search. This work also provides an example of using con-
verging evidence to test competing cognitive theories, which
is a practice that could strengthen theory development in
visualization research [19]-[21].

II. RELATED WORK
A. Small Multiples

Small multiples can mitigate the risk of overlooking crit-
ical information patterns by providing a broader view of
the data [12]. Their application includes multifaceted explo-
ration [22], pattern exploration [23], and general data explo-
ration [12]. Small multiples also facilitate direct visual com-
parisons, particularly for comparing, exploring, and analyzing
time series data [8], [9], [24]-[27]. Furthermore, they facilitate
data parameterization [28], [29].

Researchers have examined various tasks with small mul-
tiples, including topology-based, adjacency, and connectivity
tasks [11]; trend comparison [8], [10]; maximum, slope, and
discrimination commonly used for temporal visualizations [9];
and visual exploration such as identify, correlate, compare, and
cluster tasks [12]. These tasks often involve questions with
correct answers, allowing for accuracy assessment.

A study examining the effectiveness of trend animation
in simulated presentation and analysis scenarios found that
small multiples result in more accurate visualization analysis
than trend animation [8]. Additionally, studies have found that

small multiples lead to expedited task completion (although
results can be task dependent), fewer errors, and improved
accuracy when contrasted with trend animation [10], [11],
[30]. Scholars recommend maintaining the same encoding
across frames [31]-[33] and chart type arrangements [34].
Another study addressed small multiples’ success with bar and
line encodings across resolutions and numbers of displays [35].

Finally, previous research explored different quantities of
frames. For instance, in the study comparing trend animation,
a static image, and small multiples, researchers performed tests
with small (i.e., 18) and large (i.e., 80) quantities of frames,
finding that participants made fewer errors with the smaller
dataset [8]. Across the spectrum of studies, frame quantities
tested have included 2 [27], [34], 4 [9], 12 [36], 16 [10], with
some studies capping the number at 25 [12], 48 [37], or even
1,178 frames [4]. However, questions remain regarding the
performance of different task types over different quantities of
frames, especially within the framework of cognitive capacity.

B. Cognitive Effort vs. Visual Search Theories

To investigate the relationship between the number of
frames and task performance in small multiples, we conducted
a series of studies designed to test two competing cognitive
theories. These theories make distinct predictions about how
accuracy varies with different frame quantities.

The first theory pertains to cognitive capacity limits [38]. It
suggests that for tasks where users need to retain information
mentally, there is a threshold beyond which they cannot or
will not hold more information [39]. Previous research in
cognitive science has shown that performance declines once
users reach their capacity limit [40]. If the cognitive capacity
limit theory describes performance with small multiples, there
should be a point at which performance dramatically declines
for tasks requiring users to store data points in their minds
and compare across frames. This pattern would resemble an
inverse sigmoidal curve as seen in past work (e.g., [40],
[41]). Understanding the specific number of frames at which
performance deteriorates would be crucial for designers to
know and account for in their designs.

Another viable theory suggests that working with small
multiples does not rely heavily on cognitive capacity. Instead,
users might rely on their visual system for pattern recognition
and identification of specific data points. Visual search tasks
use cognitive effort, but the effort does not increase drastically
with larger search arrays [14]. Based on the visual search
theory, we would expect a linear decline in performance as the
number of frames increases [14], [42]. Such a decline could
imply that the main challenge of adding more frames is that
it becomes more time-consuming and requires greater effort
for users to identify the interesting frames. Determining which
theory better describes performance will help designers create
visual supports that cognitively assist their users.

III. METHODS AND AIMS
A. Experiments

In this research, Experiment 1 assessed the impact of
increasing frame quantity in full-scale small multiples on
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6 Frames 70 Frames

Fig. 3: Example stimuli used in the Compare tasks where two
frames are highlighted in blue.

participants’ accuracy. Experiment 2 introduced controlled
conditions for frame scale and time constraints. Finally, we
conducted a supplemental eye-tracking study to examine par-
ticipants’ visual search patterns.

Experiment 1: In this experiment, we evaluated how an
increase in small multiple frames impacted the accuracy of
participants’ responses. We created a set of small multiples
with full-scale frames that varied in frame quantity (see
Figure 1). Scale refers to the size of the frames, and full-scale
means that the frames were scaled to fill the screen.

Experiment 2: For the second experiment, we added two
conditions to control the frames’ scale and the time taken to
complete the tasks. We created a set of fixed-scale stimuli for
which all frame sizes remained equally sized regardless of
frame quantity (Figure 4 shows examples). We also controlled
for the time taken to complete each task. We presumed that
with larger frame quantities, participants would take longer to
complete the tasks, which would interact with accuracy. We
included a condition in which participants had unlimited time
and one where they had 40 seconds to complete each task. We
chose 40 seconds by testing the study with our five research
assistants and averaging their times.

Follow-up eye-tracking: Finally, we conducted an ex-
ploratory eye-tracking study to examine how different tasks
and frame sizes impacted participants’ visual search strategies.

B. Tasks, Design, and Procedures

To complete the tasks, the participants were asked to assume
the role of an energy grid operator, and their job was to mon-
itor the energy output. We used Brehmer and Munzner’s [43]
multilevel task typology to guide the selection of the following
seven tasks under the Identify, Compare, and Summarize
query phases.

- Identify 1: Click on one graph with the highest peak power.
- Identify 2: Click on one graph with both the biggest change
and the highest average power.

- Identify 3: Click on all graph(s) where the blue line goes
above the dashed gray line.

- Compare 1: Of these two graphs highlighted in blue, click
on one graph with the highest peak power.

- Compare 2: Of these two graphs highlighted in blue, click
on one graph with both the biggest change and the highest
average power.

- Summarize 1: Is the general trend in the graphs going up
or down?

- Summarize 2: What is the average power across all plots?
The Identify and Compare tasks required participants to
click on the frame/s. The Summarize 1 task was a multiple-
choice question, and Summarize 2 was an open-ended question
for which the participants gave numerical answers. Each task
had a correct answer, detailed in Section IV. The accuracy
of participants’ responses was evaluated using the correct
answers, but they did not receive performance feedback.

We designed each task to examine different aspects of
the two competing theories we were interested in testing in
this work. We will describe our detailed predictions in the
following section (III-C).

C. Hypothesis

To test the competing theories, we developed a series of
tasks aimed at probing aspects of each theory. We designed the
Identify 1 and 3 tasks to rely primarily on visual search, where
participants could scan the full display and find the frame with
the highest power or those that crossed a threshold.

For the Identify 2 task, participants had to hold two pieces
of information in their minds (the biggest change and the
highest average power) and update them as they compared
the frames. Holding several pieces of information in the mind
requires mental storage and, therefore, non-negligible amounts
of cognitive capacity. Similarly, both Summarize tasks re-
quired participants to mentally average the data across all
the frames. We expected this activity to be highly cognitively
demanding and to become more demanding with more frames.
We also did not want to test conditions that confirmed only
our predictions. Therefore, we designed the Compare tasks not
to require any serious visual search or cognitive demands as
a control.

We designed the tasks to explore aspects of the various
theories, but we did not know which theory was correct.
Therefore, we preregistered hypotheses more generally about
overall accuracy across the tasks on the Open Science Frame-
work (OSF), which were:

o H1A: For the Identify and Summarize tasks, we hypoth-
esized that accuracy would worsen with increased frame
quantity.

o H2A: For the Compare tasks, we hypothesized that there
would be no change in performance accuracy as frame
quantity increased because participants were comparing
two frames.

We conducted Experiment 2 to control for some possible
confounds in Experiment 1. In particular, as the number of
frames increased, the size of the frames became smaller. It was
unclear from the findings of the first experiment if our results
were due to the increasing frame quantity or the decreasing
resolutions of each frame. The other possible confound in
Experiment 1 was that participants could take longer to scan
the small multiples with larger frame quantities. To control
for both, we ran Experiment 2, in which we compared small
multiples with fixed-sized frames to frames scaled to fill the
screen. We also included a condition in which participants
had unlimited time or time constraints. For the tasks that we
designed to rely on visual search and cognitive capacity, we
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hypothesized that introducing time constraints would magnify
the effects in those conditions by not allowing participants to
improve their accuracy by simply taking longer. We preregis-
tered the following hypotheses regarding time pressure.

o HIB: For the Identify and Summarize tasks, we hypoth-
esized that there would be differences in performance
accuracy between participants with or without time con-
straints.

o H2B: For Compare tasks, we hypothesized that there
would be no difference in performance accuracy between
participants with or without time constraints.

Design. Experiment 1 used a 7 (Identify 1, Identify 2, Identify
3, Compare 1, Compare 2, Summarize 1, and Summarize 2
tasks) x 18 (2 to 70 frames, incremented by four) x 20
(randomly generated seeds) mixed study design. The tasks
were between-subjects, and we randomly assigned participants
to one of the task groups. Frame quantities (see Figure 1)
and randomly generated seeds were within subjects. Frame
quantities were blocked, so participants completed the 20 trials
for each frame quantity together. We randomized the order in
which they completed the blocks. We also presented the 20
trials within each block in a randomized order, which used a
different seed to generate different plots of the same frame
quantity. Each participant completed a total of 360 trials.

Experiment 1 was intentionally long and served the purpose
of creating a normed dataset for determining accuracy across
various stimuli, a common practice in psychological sciences
(e.g., [44]). This practice informed our selection of represen-
tative stimuli for Experiment 2, ensuring that outliers due to
data generation aspects were avoided.

Experiment 2 was also a mixed 4 (full-scale unlimited
time, full-scale time-constrained, fixed-scale unlimited time,
and fixed-scale time-constrained) x 7 (Identify 1, Identify
2, Identify 3, Compare 1, Compare 2, Summarize 1, and
Summarize 2 tasks) x 5 (2, 6, 10, 30, and 70 frames) design.
The scale and time constraints were between-subjects, and we
randomly assigned participants to one of four between-subjects
groups. Tasks and frame quantities were within subjects. Tasks
were blocked, so participants completed the five trials for
each task together. We randomized the order in which they
completed the blocks. We presented participants with the five
trials of varying frame quantities within each block in a
randomized order, totaling 35 trials. We selected a subset of
the frame quantities to be tested with the seven tasks because
the results of Experiment 1 revealed a linear trend in accuracy.
We, therefore, needed up to only five frame quantities to show
the trend again. Additionally, we aimed to mitigate participant
fatigue, which was a concern in the lengthy Experiment 1.
Experiment 2 was preregistered on OSF (link).

In the exploratory eye-tracking study, participants completed
nine trials using a small subset of the stimuli from the prior
experiments. The participants completed each of the seven
tasks once using a 70-frame stimulus. These trials assessed
how the participants’ patterns of eye movements changed for
the different tasks, using the maximum set size to elucidate
the differences between tasks. The other two trials used
full-scale and fixed-scale versions of a six-frame stimulus,
which participants used to complete the Identify 3 task. The

Full-scale Fixed-scale

6
Frames

70
Frames

Fig. 4: Tllustration of the scale condition in Experiment 2 for
the small multiples with six (top) and 70 (bottom) frames. On
the left is the full scale, and on the right is the fixed scale
example.

Identify 3 task was selected because Experiment 2 showed that
changing the frame size had a significant impact on accuracy
for this task. We used the six-frame stimuli because they
had enough frames to require visual search and also had a
substantial size difference between the fixed- and full-size
frames. The nine trials were presented in a different random
order for each participant.

Procedures: The first two experiments were conducted
using the online survey software Qualtrics [45]. Participants
provided IRB-informed consent and were required to have
a screen size of at least 9.4 x 6.6 inches. They received
instructions about how to zoom their browser window to
100% and had to confirm that they completed the steps. Next,
participants received instructions about the experiment context,
how to read the visualizations, and how to do the tasks. Then,
they practiced clicking on a frame, including instructions on
deselecting it if they wanted to change their answer (full
instructions on OSF). Following the instructions, participants
completed a prescreening attention check, and only those
who passed proceeded to the study. Demographic data were
collected at the end of the experiments.

Participants in Experiment 2 with time constraints were
given 40 seconds per question, and a practice question was
included to ensure readiness. After the time limit, the screen
auto-progressed with different messages based on the partici-
pants’ performance. If they answered the questions in time,
they were allowed to progress. If they did not answer the
question in time, the system warned them and prompted them
to click the next button when they were prepared.

During the eye-tracking study, participants completed nine
trials while their eye movements were tracked with a Tobii
Spectrum eye tracker recording at 1200 Hz. They were seated
with their eyes approximately 60 cm from the computer
monitor but could move their heads freely. The stimuli were
presented on a monitor with 1920 x 1080 resolution and were
26.5 cm by 19.5 cm on the screen or approximately 25 by
18.5 degrees of visual angle. The individual frames subtended
approximately 2.4 degrees of visual angle for the fixed-scale
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stimuli and 7.6 degrees of visual angle for the full-scale
stimuli. Prior to the task, the eye tracker underwent a nine-
point calibration process. At the start of each trial, participants
received task instructions on the screen and initiated the task
by clicking the mouse. Next, a fixation cross was presented
in the center of the screen for one second, followed by the
stimulus, which remained on the screen until the participant
finished the task for that trial.

D. Stimuli

For Experiment 1, we generated small multiple line charts
with full-scale frames. These stimuli consisted of 18 frame
quantities ranging from 2 to 70, shown in Figure 1, with
each quantity having 20 versions. The small multiples depicted
energy output, with wattage on the y-axis and time (one year
per frame) on the x-axis across different regions (each frame
represented one region). We simulated 20 datasets for each
frame quantity using R [46] by generating time series data,
allowing the trend lines’ slope, variance, and intercept to vary.
The datasets included columns for time, power, and names. We
repeated the date sequence for the required quantity of frames
and used random numbers (seeded) from a normal distribution
to generate power values for each frame. We then combined
the columns to create 20 datasets per frame quantity and stored
them in a list (stimuli available on OSF).

The frame array and line charts for each small multiple were
generated using the facet wrap function within the ggplor2
package [47] in R. Additionally, we incorporated a dashed
gray line into each frame, indicating a fictional critical energy
threshold. We included the threshold lines primarily for our
Identify 3 task, in which participants were asked to identify
the frames in which the blue line exceeded the dashed gray
line. We determined the threshold line value in a manner that
guaranteed only two frames in each small multiple surpassed
the threshold. Further, for Compare tasks, we highlighted the
frames we wanted the participants to compare (see Figure 3).
We independently selected the highlighted frames’ locations
for each quantity to ensure randomness. However, we main-
tained the distance between frames, ensuring that participants
never had to compare widely spaced frames. The distance
between the highlighted frames was determined based on the
two-frame small multiple and consistently applied to all other
small multiples. For each small multiple, the same two frames
were highlighted for all participants.

In Experiment 2, we tested five quantities of the small
multiples from Experiment 1 (2, 6, 10, 30, and 70) because
the results of the first experiment revealed a linear relationship
between accuracy and frame number. We selected 2, 6, and 10
as the first three intervals, 30 as the midpoint, and 70 as the last
point. We tested both their full- and fixed-scale versions (also
created in R) using the same data (see examples in Figure 4).

The follow-up eye-tracking study used one 70-frame stim-
ulus from Experiment 1 and the fixed- and full-size versions
of a six-frame stimulus from Experiment 2.

E. Participants

We conducted Experiments 1 and 2 online and recruited
participants from Prolific [48] who were paid California min-

imum wage ($15 per hour). Experiment 1 took approximately
1.5 hours to complete, and Experiment 2 took approximately
15 minutes. All participants were prescreened to be at least
18 years old, residing in the United States, and limited to
participation in only one of the two online experiments.

A total of 141 participants completed Experiment 1. There
were 20 participants in each task condition, with the exception
of the Summarize 1 task, which had 21 participants. This
sample size was adequate due to the large number of trials
(360 trials) in Experiment 1 [49], [50]. There were 70
male, 65 female, and 4 nonbinary/third gender participants.
One participant did not indicate their gender. The mean
age of participants was 33.48 (SD = 11.72). There were
360 participants in Experiment 2, with 90 in each of the
four between-subject conditions. We determined the required
sample size (90 participants per group) based on an anticipated
effect size calculated from prior work (f? = .09) using the
pwr [51] package in R [46]. The participant breakdown was
as follows: 171 male, 174 female, 10 nonbinary/third gender,
and 2 preferred not to indicate their gender. The mean age of
participants was 25.64 (SD = 15.4).

The eye-tracking experiment was collected in person at
Sandia National Laboratories. The five participants (two male
and three female) were Sandia employees who were com-
pensated for their time at their normal hourly rate. It took
the participants approximately 8 minutes to complete the eye-
tracking study, including the calibration phase.

IV. RESULTS

We analyzed the participants’ accuracy for each task via
multilevel logistic and linear regression models using R [46]
with the fidyverse [52] and fitted mixed-effects models with the
Ime4 [53] packages. We generated the visualizations using the
ggplot2 [47] and ggdist [54] packages. In six of the tasks, we
implemented binomial logistic regressions to model accuracy
with coded levels of 0 = incorrect and 1 = correct. Participants
responded to the seventh (i.e., Summarize 2) task with an
open-ended question, and we modeled the continuous absolute
error with a linear regression equation. The data and analysis
are in the supplemental materials (OSF link).

Calculations were made to determine the correct responses
for each task. For Identify 1, correct responses were the frame
with the highest value. Identify 2’s correct responses were
selected by multiplying the average power value by the range
of power values for each frame and determining the largest
number. The coded correct responses for Identify 3 were all
the frames for which the power value was larger than the
horizontal line value. False positives (i.e., selecting an extra
frame) and False negatives (i.e., failing to select a frame) both
resulted in an incorrect response. For Summarize 1, if the
starting power value was smaller than the ending power value,
then the response up was coded as correct and vice versa. The
Summarize 2 task required participants to respond with a
value they believed to be the average power across all frames.
This value was compared to the true value to determine the
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Fig. 5: Experiment 1 results showing the impact of frame quantity on accuracy for Identify, Compare, and Summarize tasks.
Identify 1 and 2 (blue solid lines) are plotted in the same panel as Compare 1 and 2 (orange dashed lines) for direct comparisons.

absolute error, which was then scaled as a proportion of the
possible values based on the range of power values displayed.

Absolute Error
Maximum Power Value

Accuracy =1 —

Of the 7,200 trials, two were not recorded by the Qualtrics
online survey software [45]. Four of the 7,198 total responses
were removed as they were above the maximum possible
power value, resulting in 7,194 total observations.

A. Experiment 1

Experiment 1 examined the relationship between accuracy
and frame quantity per task. We predicted that an increase in
frame quantity would lead to a decrease in accuracy for the
Identify and Summarize tasks (H1A) but not for the Compare
tasks (H1B). To test H1A, we conducted six multilevel logistic
regressions. We used frame quantity (2-70 incremented by
four) as a predictor for accuracy (the outcome variable) in the
Identify and Summarize 1 tasks, with random intercepts for the
seeds (20 repeated trials of small multiples) and participants
(also 20). Accuracy was modeled using this equation:

logit(p) = BO + 61 : Frame_Quantity + bTrial + bParticipant

where logit(p) represents the log-odds of the probability (p)
of the binary outcome between O and 1. [y is the intercept
coefficient, 5 -Frame_Quantity is the slope of frame quantity
that is the main predictor, and brya and bpagicipant are the
random intercepts associated with the grouping variables Trial
and Participant, respectively. We performed a similar analysis
for Summarize 2 by fitting a linear model to the data to predict
the continuous untransformed error. Significance was deter-
mined if the p-value (p) was below 0.05 and the confidence
intervals (CI) did not include 0 [50]. For the Identify and
Summarize tasks (shown in Figure 5 with blue solid regression
lines), the frame quantity significantly reduced accuracy
and increased error in each task (H1A confirmed). The
model output is shown in Table L.

TABLE I: Model output for the impact of frame quantity on
accuracy in Experiment 1 (left), sorted based on the size of
the slope. The right shows p-values for the direct comparisons
between tasks. *** is p< .001, ** is p< .005, and * is p< .05.
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To test HI1B, we conducted the same analysis on the Com-
pare tasks and found that frame quantity also significantly
predicted accuracy in Compare 1 and 2 (H1B uncon-
firmed). It was surprising that accuracy still decreased when
the two relevant frames were highlighted for the participants.
Although this decline was significant for the Compare tasks,
it was less pronounced than in the Identify tasks, which asked
the same question but required participants to assess all the
frames instead of focusing on two. We plotted the Compare
tasks (orange) with the corresponding Identify tasks (blue) in
Figure 5 (panels 1 and 2). As conveyed by the differences
between the slopes, highlighting the relevant frames reduced
the impact of frame quantity, but did not eliminate it.

Follow-up analysis: Identify vs. Compare. We conducted
a follow-up analysis to compare the effect of frame quantity
in Identify 1 to Compare 1 and Identify 2 to Compare 2. The
goal was to determine if there was a significant difference
between the slopes of the Identify and Compare tasks. We
used the same modeling procedures as previously described
but with accuracy predicted by task (Identify vs. Compare),
frame quantity, and an interaction between the two. In both
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models (Identify 1 vs. Compare 1, and Identify 2 vs. Compare
2), the results revealed significant interactions between task
and frame quantity, suggesting that the effect of frame quantity
is significantly different for the two tasks. For the model
comparing Identify 1 to Compare 1 the slope of Identify 1
(b = -.026) was significantly steeper than Compare 1 (b = -
.015) (b = .01, z(14,396) = 3.9, p < .001, CI[.005, .017]). A
significant interaction also indicated that Identify 2 (b = -.01)
had a meaningfully steeper slope than Compare 2 (b = -.005)
(b = .005, z(14,396) = 3.08, p = .002, CI[.002, .009]). These
findings are annotated in Figure 5. Although H1B was not
strictly confirmed, highlighting the frames can meaningfully
improve accuracy in the tasks we tested.

Follow-up analysis: task comparison. We used the same
multilevel logistic regression equation described above, with
accuracy predicted by an interaction between frame quantity
and task, while changing the referent task in the model to
compute comparisons between all tasks (see Table I). We did
not include Summarize 2 in this analysis because we did not
feel that multiple-choice responses could fairly be compared
to a continuous measure of accuracy. Our analysis revealed
that the impact of frame quantity was significantly larger for
Identify 1 (slope: -2.6% per 4 frames) than the five other tasks.
These comparisons suggest that participants’ ability to find the
frame with the highest power (Identify 1) was the most difficult
task for larger frame quantities in small multiple line charts
in the context of the stimuli and tasks tested in this study.

Follow-up analysis: strategies for Identify 2 and Com-
pare 2. In our analysis, we observed that Identify 2 and Com-
pare 2 (second panel of Figure 5) had the highest variability.
These tasks required participants to select a frame with both
the greatest change and the highest average power. Surpris-
ingly, even in the case of Compare 2, with two highlighted
frames, accuracy was low (M = 67%, SD = 47%). This low
accuracy might be attributed to participants not performing
both parts of the tasks concurrently. They instead picked the
frame with either the greatest change or the highest average
power. In our original analysis, the correct frame had the
highest mean x range value. Here, we separately identified the
frame with the highest average wattage and the frame with the
widest range to evaluate if the participants performed only one
part of the task. Figure 6 illustrates the variations in accuracy
calculations. For Identify 2 (top row of Figure 6), there is no
clear indication that participants exclusively picked the frame
with the greatest range or the highest mean. However, for
Compare 2 (second row), it does appear that participants more
commonly selected the frame with the highest mean.

Discussion: The primary finding from Experiment 1 was
that small multiples with more frames were more challenging
to use for all tasks we tested. The consistently significant
effect of frame quantity was surprising for the Compare tasks.
However, the results revealed that the effect of frame quantity
was significantly smaller for them than for the corresponding
Identify tasks. A limitation of Experiment 1 is that a confound
between frame quantity and the size of the frames could impact
these findings. In the stimuli for Experiment 1, we allowed
the small multiples to fill up the screen, resulting in large
sizes when fewer frames were presented and small sizes with
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Fig. 6: Accuracy results in Experiment 1 for Identify 2
(top row) and Compare 2 (bottom row) tasks using various
accuracy calculations. Columns represent different accuracy
calculations: mean x range, the highest mean value, and the
largest range (from left to right, respectively).

increased frames (see Figure 4). Another consideration with
larger frame quantities is that participants might take longer
searching through all the frames. To control for frame size and
time to complete the tasks, we conducted Experiment 2.

B. Experiment 2

The goal of Experiment 2 was to determine the effects of
scale and time to complete the tasks. We hypothesized that
time constraints would impact accuracy in the Identify and
Summarize tasks (H1B) but not the Compare tasks (H2B).
To test these hypotheses, we conducted multilevel model
analyses in which accuracy was predicted by frame quantity
(2, 6, 10, 30, vs. 70 frames), time constraints (unlimited time
vs. 40 seconds), and frame scale (full-scale vs. fixed-scale),
with random slopes for each participant. In these models, the
untimed and fixed-scale conditions were the referents.

This analysis revealed that time constraints significantly
reduced accuracy for Identify 1 (b = -0.56, z(1,824) =
-3, p = .003, CI[-.19, -92]) and Identify 3 (b = -1.37,
7(1,824) = -5.6, p < .001, CI[-.89, -1.85]). The meaningful
differences in accuracy for Identify 1 and 3 are annotated in
Figure 7. Although this finding supports H2B (no impact of
time constraints for Compare tasks), it does not fully support
HI1B, which predicted time constraints to affect all Identify
and Summarize tasks. This finding does, however, support
the theory that the limiting factor of small multiples with
larger frame quantities is the more extensive visual search
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Experiment 2: Time Limit by Task

Timed had significantly lower
accuracy than untimed

timed _A untimed

Identify 1
0 A 2 3 4 5 .6 7 .8 9 1
Identify 2 timed A untimed
0 A 2 3 4 5 .6 7 .8 .9 1
Timed had significantly Iower—[—|
accuracy than untimed . ‘
Identify 3 timed == untimed
0 A 2 3 A4 5 .6 7 .8 9 1
Compare 1 timed -‘ untimed
0 A 2 3 4 5 .6 7 .8 9 1
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0 A 2 3 4 5 .6 7 .8 9 1
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Fig. 7: Experiment 2 accuracy results for the timed condition in
lavender and the untimed condition in green. Time constraints
significantly reduced the accuracy of Identify 1 and 3 tasks.

they require rather than cognitive capacity limitations. The two
tasks impacted by time constraints possibly involved a serial
search process, in which participants scanned each frame to
identify the highest point (Identify 1) or when data exceeded
a threshold (Identify 3). Time constraints would hinder a
thorough search and reduce accuracy in such cases. In contrast,
Summarize tasks likely relied on ensemble processing, in
which the visual system extracts the overall essence without
an exhaustive search [55]. To explore participants’ search
strategies, we conducted an eye-tracking study to analyze gaze
patterns for each task.

The other main finding is annotated in Figure 8 where for
Identify 3, the fixed-scale graphs (M = 80.7%, SD = 39.5%)
had significantly lower accuracy than the full-scale graphs
(M = 88.1%, SD = 32.4%) (b = .83, z(1,824) = 3.6, p = .0003,
CI[.38, 1.29)).

Discussion: In Experiment 2, we found that a time con-
straint of 40 seconds significantly reduced participants’ ac-
curacy of responses for the Identify 1 and 3 tasks. These
two tasks likely required a serial search, driving the accuracy
reduction. We further found that making all small multiple
frames the same size regardless of the number of frames
significantly reduced participants’ accuracy of responses for
the Identify 3 task. With smaller-sized frames, the resolution
is reduced, making it challenging to detect when the blue line
crosses the dotted threshold (shown in Figure 9). Interestingly,
we did not find a significant impact of frame size for the other
tasks. Despite this, we assume that the reduced resolution

Experiment 2: Scale by Task

Identify 1 fixed-scale A tui-scale
0 A 2 3 4 5 6 7 8 9 1
Identify 2 full-scale A fixed-scale
0 A 2 3 4 5 6 7 8 9 1
Fixed-scale had significantly
lower accuracy than full-scale
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0 A 2 3 A4 .5 6 7 .8 9 1
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Fig. 8: Experiment 2 accuracy results for the fixed-scale
condition in purple and the full-scale condition in gray. The
fixed-scale graphs had significantly lower accuracy than the
full-scale graphs for Identify 3.

s

Fig. 9: Illustration of the different scales of frames.

of small frames will affect any task that requires fine-grain
discrimination of visual features, as in Identify 3. Further,
there is certainly a point at which the frame would be too
small for any task, but we did not attempt to find the minimum
frame size in this work. To dig deeper into these findings, we
conducted a follow-up eye-tracking study.

C. Eye-Tracking: Visual Analysis

Fixations were calculated using the Tobii I-VT fixation
filter [56] (for plots of the fixations, see Figure 10). We
conducted a visual analysis of the eye-tracking heatmaps
and found that, for the Identify tasks, participants visually
scanned across the entire array. Participants completed the
most thorough visual search for the Identify 3 (mean number
of fixations = 75.8) and Summarize 2 tasks (mean number of
fixations = 116.4) (see Table II). The Compare 1 and 2 tasks
did not involve a thorough visual search (16.2 and 33.2 mean
fixations, respectively), likely driving the reduced impact of
increasing frame quantities on accuracy.

Participants generally oriented their foveae in the middle of
the array in the Summarize 1 task. This gaze pattern could be
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Fig. 10: Heat maps showing the combined fixation locations
for all participants (left column) and gaze plots showing eye
movement patterns from one representative participant (right
column) for all seven tasks.

indicative of ensemble processing, in which the visual system
computes summary statistics’ gist from a set (for reviews, see
Whitney et al. [55] and Szafir et al. [57]). Our accuracy results
revealed a small overall impact of frame quantity during the
Summarize 1 task (slope = -.007), which was significantly
smaller than the effects observed in Identify 1, 3, and Compare

TABLE 1II: Eye-tracking gaze fixation counts and standard
deviations. The table includes all nine trials from the eye-
tracking study. The Experiment 1 tasks used a 70-frame
stimulus and the Experiment 2 tasks used a 6-frame stimulus.

Exp 1 Tasks Average # Total # of Average # of
of Fixations Frames Fixations to
Fixated the Y-Axis
Identify 1 59.0 (39.16) 30.2 (17.21) 0.8 (1.30)
Identify 2 75.8 (27.52) 33.0 (8.43) 0.2 (0.45)
Identify 3 51.0 (17.18) 33.4 (8.73) 0.2 (0.45)
Compare 1 16.2 (5.31) 5.0 (1.58) 1.4 (1.52)
Compare 2 33.2 (23.21) 10.6 (12.58) 0.6 (0.89)
Summarize 1 54.2 (32.34) 32.0 (15.13) 1.0 2.24)
Summarize 2 116.4 (32.35)  47.6 (11.91)  11.6 (8.65)
Exp 2 Tasks
Identify 3, full-scale 25.8 (8.67) 5.8 (0.45) 0.2 (0.45)
Identify 3, fixed-scale  23.6 (4.67) 5.6 (0.89) 0.8 (1.79)

Fig. 11: Heat maps showing the combined fixation locations
for all participants (left column) and gaze plots showing eye
movement patterns from one representative participant (right
column) for the full-scale and fixed-scale versions of the
Identify 3 task.

1 tasks. Lastly, Summarize 2 showed higher fixation counts
on both the frames and the y-axis, reflecting additional mental
calculations and more use of the y-axis.

Impact of frame size on fixations: When the small
multiples had only six frames, the participants typically fixated
on all frames regardless of their size (see Figure 11). On
average, they had a higher number of fixations for the full-
scale than for the fixed-scale frames in the Identify 3 task
(see Table II). The larger frames required a higher number of
fixations because the features of interest (like the area around
the threshold line) were also larger, and participants’ fixations
were concentrated in those areas. The larger size of the relevant
features also can explain why accuracy was higher for the full-
scale small multiples in the Identify 3 task, as it was easier
for the participants to see the details.

Discussion: The purpose of the eye-tracking analysis was
to investigate the variations in individuals’ eye movements

Authorized licensed use limited to: Northeastern University. Downloaded on May 02,2024 at 00:19:22 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2024.3372620

across different tasks. It is important to note that the study’s
small sample size does not allow for broad generalizations
to the general population. However, when considering how
individuals’ visual search patterns change for each task, we
see some preliminary patterns that may contextualize the
behavioral findings in Experiments 1 and 2. For the small
multiples with 70 frames, the participants often scanned across
the full array, which is consistent with the visual search theory.
The eye movement patterns for the Compare tasks showed that
highlighting effectively focused the participants’ attention on
specific plots [58]. Regarding frame size, when the frames
were larger, the participants fixated more on the parts of the
frame that were important for the task, such as the area above
the threshold line. On the full-scale small multiples, these
essential features were larger and easier to see than in the
fixed-scale small multiples. Although the findings of the eye-
tracking inquiry are consistent with the behavioral findings,
more work is needed to determine if they can be generalized
to a more representative population.

V. GENERAL DISCUSSION

This study examined the effect of varying frame quantities
in small multiple line charts on participants’ performance in
seven visualization tasks. We also explored the impact of scale,
time, accuracy, and participant strategies. A key discovery was
that as the number of frames in small multiples increased,
accuracy declined in a linear fashion (Experiment 1 results).
The decline in accuracy was not fully explained by a reduction
in resolution in smaller frame sizes or differences in task com-
pletion times (Experiment 2 results). Such a linear decrease in
accuracy points more toward a visual search challenge [14]
rather than a cognitive limitation, which would have been
revealed by an inverse sigmoid function of performance [40].
We found further support for the visual search theory by
demonstrating that we can diminish the impacts of large frame
quantities by highlighting specific frames, eliminating the need
for a full array search. Additional corroboration for this theory
is demonstrated in the eye-tracking analysis that shows viewers
scanning large portions of the array, except when two frames
were highlighted (Compare 1 and 2). This finding reinforces
the effectiveness of small multiples, showing that there was not
a threshold at which the number of frames exceeded users’
cognitive capacity in our test context. Our results suggest
that the main limitation of small multiples is not cognitive
but practical, in which an excess of frames on a constrained
display might render individual frames unreadable or require
a great deal of visual searching.

The observed decrease in accuracy with increased frame
quantity in small multiples carries significant implications for
user support. Our findings point to extensive visual searching
as the primary factor contributing to reduced accuracy. To
mitigate this issue, modifications to the user interface can be
considered. For instance, the interface could allow users to
select specific frames, with the display subsequently updating
to showcase only those chosen frames. Techniques such as
zooming, panning, filtering, and interactive piling [59] offer
ways for users to selectively explore specific frames [18].

10

Designers can leverage the insights from this study to de-
termine the desired accuracy level and adjust the number
of frames their system allows users to selectively display to
achieve the desired accuracy. In this manner, this research can
help optimize existing interaction methods to better align with
human capabilities.

Experiment 2 demonstrated that the fixed-scale frames
yielded poorer performance compared to the full-scale frames
for the Identify 3 task, for which participants were required to
pinpoint graphs in which the blue line surpassed the dashed
gray line. The decline in accuracy with the smaller frames
for this specific task is logical; as the frame size decreases,
users’ ability to discern instances in which the blue line barely
exceeds the threshold becomes challenging. Intriguingly, we
did not observe significant performance differences with the
smaller frames for the other tasks. We theorize that this
might be because the other tasks did not hinge as much on
discerning fine details but rather on recognizing the overall
trend of the line. It is crucial to note that our study did not
encompass a broad spectrum of graph types, marks, or tasks.
It is conceivable that specific designs are harder to interpret
at reduced sizes, and numerous other tasks may also prove
challenging when presented within smaller frames.

Experiment 2 also showed that time constraints reduced
the accuracy of Identify 1 and 3 tasks. Identify 3 required
participants to click on all graph(s) where the blue line
exceeded the dashed gray line, the only task allowing for more
than one frame selection. Identify 3 was also the only task
for which participants did not know the correct number of
frames. We ensured that there were only two correct frames,
but participants were unaware of this. Even if the participants
guessed that there were two correct frames, this task would be
highly impacted by time pressure. Further, fixed-scale frames
made it more challenging to discriminate small gaps between
the threshold and power lines (shown in Figure 9). The eye-
tracking data contextualized these results, indicating that when
the frames were larger in the Identify 3 task, the participants
fixated more on the relevant parts of the frames.

Limitations and Future Directions: An unexplained find-
ing is that accuracy was significantly impacted by frame
quantity for the Compare tasks. Work in cognitive psychology
indicates that visual identification tasks are harder to complete
when surrounded by distractors [60], [61]. More work is
needed to determine if these findings can generalize to data
visualizations or if there are other factors influencing the
impact of frame quantity on Compare tasks.

Our study focused on line charts across seven specific tasks
and resolutions, but further research is needed to validate
our findings. Our observation of decreasing accuracy with
increasing frame quantities may have broader applicability,
but we acknowledge that our stimuli and tasks may not fully
mirror the challenges faced by analysts, such as energy grid
operators, in real-world settings. We prioritized experimental
control over ecological validity, for example, by maintaining
consistent frame distances in the Compare tasks. In these tasks,
we chose to ensure that the only change in difficulty was from
the number of frames, not the distance between the frames.
However, this control may not represent the real-world use of
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small multiples. Future studies should explore the impact of
more naturalistic displays, tasks, and a wider range of chart
types.

Lastly, we encountered several logistical limitations in on-
line Experiments 1 and 2. Firstly, Experiment 1 was lengthy
without scheduled breaks, potentially leading to participant
fatigue. We performed a follow-up analysis and found no
significant effects for order of stimuli upon accuracy, which
is in the supplemental materials (OSF link), but Experiment 1
was still quite long. Secondly, we were restricted to US partic-
ipants due to our institutional guidelines. Future work should
consider more diverse populations. Of the 500 participants, all
but one met the required screen size criteria. Each participant
self-reported whether they had zoomed their browser window
to 100%. We cannot verify complete adherence to our zooming
guidelines, but we are confident in the participants’ integrity,
especially since only one individual inaccurately reported hav-
ing the correct screen size. Still, future work should consider
in-person studies to ensure consistent browser window settings
among participants. Additionally, conducting in-person studies
with real analysts familiar with small multiples, such as energy
grid operators, could address participant unfamiliarity and
provide more practical insights.

VI. CONCLUSIONS

The popularity of small multiples has led designers to
utilize them in various applications, such as political forecasts
and energy grid control rooms. This study demonstrates the
effectiveness of small multiple line charts with large datasets
for tasks that do not necessitate extensive visual search. On the
other hand, we also present examples of tasks that pose signif-
icant challenges to users with large arrays of small multiples.
Our findings highlight the importance of interaction methods
such as zooming, panning, and filtering that can offload the
need for extensive visual search of small multiples with larger
numbers of frames. Like any visualization, employing small
multiples requires careful design, particularly when dealing
with large datasets, as there is no one-size-fits-all approach.
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