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The proposed multiple scaled contaminated asymmetric Laplace (MSCAL) distribution is an 
extension of the multivariate asymmetric Laplace distribution to allow for a different excess 
kurtosis on each dimension and for more flexible shapes of the hyper-contours. These peculiarities 
are obtained by working on the principal component (PC) space. The structure of the MSCAL 
distribution has the further advantage of allowing for automatic PC-wise outlier detection – i.e., 
detection of outliers separately on each PC – when convenient constraints on the parameters are 
imposed. The MSCAL is fitted using a Monte Carlo expectation-maximization (MCEM) algorithm 
that uses a Monte Carlo method to estimate the orthogonal matrix of eigenvectors. A simulation 
study is used to assess the proposed MCEM in terms of computational efficiency and parameter 
recovery. In a real data application, the MSCAL is fitted to a real data set containing the 
anthropometric measurements of monozygotic/dizygotic twins. Both a skewed bivariate subset 
of the full data, perturbed by some outlying points, and the full data are considered.

1. Introduction

There are different ways to generalize the multivariate normal (MN) distribution (with mean vector ! and covariance matrix !) to 
account for skewness and leptokurtosis. One approach is through the multivariate normal variance-mean mixture (Barndorff-Nielsen 
et al., 1982); it is a finite/continuous mixture of MN distributions where ! and ! are weighted by a positive mixing random variable 
! , whose probability density/mass function depends on one or more parameters governing the leptokurtosis of the unconditional 
mixture. A member of this family of distributions is the multivariate asymmetric Laplace (MAL; Kotz et al., 2001) distribution; 
the peculiar peak and heavier than normal tails make it well suited in several disciplines, see Part III (Applications) in Kotz et 
al. (2001) for some examples. However, some empirical studies show that the MAL distribution is not appropriate because of two 
deficiencies: (a) the levels of excess kurtosis on each variate are limited; (b) the shape of the hyper-contours may be restrictive in 
some circumstances.

To handle deficiency (a), Morris et al. (2019) introduced a multivariate contaminated asymmetric Laplace (MCAL) distribution. 
This is a simple theoretical model that has two additional parameters compared to the MAL distribution. More specifically, it is a 
two-component MAL mixture in which one of the components represents the observations that most likely belong to a baseline, or 
reference, MAL distribution. The other component, typically with a smaller prior probability, the same mode/peak, and an inflated 
covariance matrix, represents the observations farther from the bulk of the data. Following Aitkin and Wilson (1980) and Davies 
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and Gather (1993), one can also refer to the observations that belong to the reference MAL distribution as “good” and those that 
belong to the inflated MAL distribution as “bad” or outlying, herein we use bad and outlying interchangeably. Therefore, the MCAL 
distribution also allows for the automatic detection of global outlying points via a simple and natural procedure based on maximum 
a posteriori probabilities. Unfortunately, in contrast with deficiency (b), the shape of the hyper-contours of the MCAL distribution is 
the same as those of the reference MAL distribution. Further, the parameters of the MCAL that model the proportion of good points 
and degree of contamination are the same across every dimension of the data. This is restrictive because it implies that all dimensions 
have the same amount of leptokurtosis.

To handle deficiency (b), Franczak et al. (2015) developed a multiple scaled asymmetric Laplace (MSAL) distribution. Generally 
speaking, multiple scaling was proposed by Forbes and Wraith (2014) to generalize the multivariate normal variance-mean mixture 
to allow for a different amount of excess kurtosis on each principal component (PC) – and, as a by-product, on each dimension 
– and alternative shapes for the hyper-contours (Punzo and Bagnato, 2022a). Wraith and Forbes (2015) extend this concept to 
include a multivariate generalized hyperbolic distribution. A multiple scaled distribution can be considered an extension of the 
multivariate normal variance-mean mixture based on two key elements: 1. the decomposition of the scale matrix ! by eigenvalues 
and eigenvectors matrices, " and #, respectively; 2. the use of the mixing random variable ! separately for each dimension of the 
space spanned by the columns of # (Punzo and Bagnato, 2022a), i.e., separately for each PC. When applied to the MAL distribution, 
this approach leads to a multivariate peaked, asymmetric, and heavy-tailed distribution, with hypercube contours. Hence, the MSAL 
distribution can solve deficiency (b), but it does not consider deficiency (a).

Under the same trajectory of research, we propose to merge the models proposed in Franczak et al. (2015) and Morris et al. 
(2019). The result is the multiple scaled contaminated asymmetric Laplace (MSCAL) distribution, a multivariate peaked, asymmetric, 
and heavy-tailed distribution having marginal contaminated asymmetric Laplace distributions on each PC. The MSCAL distribution 
offers a remedy to deficiencies (a) and (b), in addition to having other benefits. Concerning deficiency (a), the excess kurtosis is free 
to vary on each PC and, as a by-product, on each dimension. Concerning deficiency (b), the hyper-contours have more flexible shapes 
because the MSCAL distribution estimates the number of good observations and the degree of contamination for each PC. As such, 
the proposed model accounts for different tail behaviors in each PC. In addition, the implicit procedure to detect outliers now works 
separately for each PC, such that a point may be detected as bad for some PCs only (see Punzo and Tortora, 2021, for examples).

The article is organized as follows. Section 2 contains the required background materials. The main contribution of this paper, 
i.e. the MSCAL distribution, is in Section 3. In Section 4, a parameter estimation scheme is developed. Section 5 discusses several 
other important considerations related to the implementation of the proposed model. In Sections 6 and 7 we conduct a simulation 
study and present a sensitivity analysis using real data, respectively. Finally, a discussion and suggestions for future work are provided 
in Section 8.

2. Required background

In this section, we present the key results used to develop the MSCAL distribution. Specifically, in Section 2.1 we review some 
properties of Laplace-based distributions and in Section 2.2 we discuss the MSAL distribution.

2.1. Laplace-based distributions

In this paper, we define $ ∼ AL" (!,",!) to be a random vector following a MAL distribution with location parameter ! ∈ ℝ, 
skewness parameter " ∈ℝ, and " × " non-negative definite matrix !. It follows from Kotz et al. (2001) that the density of $ can be 
expressed as

#MAL(% ∣ !,",!) =
2exp{(% − !)′!−1"}

(2$)"∕2|!|1∕2
(
(% − !)′!−1 (% − !)

2 + "′!−1"

)%∕2
&% (') , (1)

where % = (2 − ")∕2, ' =
√

(2 + "′!−1") (% − !)′ !−1 (% − !), &%(⋅) is the modified Bessel function of the third kind with index %, 
and all other terms are as previously defined (cf. Franczak et al., 2014). The random vector $ ∼ AL" (!,",!) can be written using 
the following mixture representation

$ = !+! " +
√
! &, (2)

where ! follows an exponential distribution with rate 1, i.e., ! ∼ Exp(1), and & follows a MN distribution with mean vector ' and 
covariance matrix !, i.e., & ∼N" (',!). It follows from (2) that $ belongs to the class of multivariate normal variance-mean mixtures 
(cf. Barndorff-Nielsen et al., 1982) and that the expected value and covariance of $ are given by, respectively,

" [$] = !+ " and Cov ($) = !+ ""′. (3)
If " = 1, then the characteristic function of $ corresponds to a univariate asymmetric Laplace distribution, i.e., ( ∼ AL1 (),*,+), 
where % = 1∕2 and the Bessel function can be written as &1∕2 (') =

√
$
2' exp{−'}. As a result, the density of ( ∼ AL1 (),*,+) can be 

expressed as

#AL (, ∣ ),*,+) = 1
-
exp

{
− |,− )|

+2
[
- − * sign(,− ))

]}
, (4)
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where - =
√
*2 + 2+2 and all other terms are as previously defined (see Kotz et al., 2001, for details).

2.2. A multiple scaled asymmetric Laplace distribution

As $ ∼ AL" (!,",!) belongs to the class of multivariate normal variance-mean mixtures, the density of $ can also be expressed 
as

#MAL(% ∣ !,",!) =
∞

∫
0

#MN (% ∣ !+.",.!)/(.)0., (5)

where #MN (% ∣ ! +.",.!) is the multivariate Gaussian density with mean !+." and covariance matrix .! and /(.) = exp{−.}.
If we let

! = #()"#′, (6)
and

/*
(
.1,… ,."

)
=

"∏
ℎ=1

/
(
.ℎ

)
,

then we can define the joint pdf of the multiple scaled asymmetric Laplace (MSAL) distribution as

#MSAL(% ∣ !,",#,#) =
∞

∫
0

…
∞

∫
0

#MN
(
% ∣ !+()",#()"#′)/*

(
.1,… ,."

)
0.1…0.", (7)

where # is a matrix of eigenvectors, " is a diagonal matrix of eigenvalues with elements +1, … , +", and () is a diagonal matrix 
with elements .1, … , .". Since the exponential random variables are independent, we can also express the density of the MSAL 
distribution as

#MSAL (% ∣ !,",#,#) =
"∏

ℎ=1

∞

∫
0

#N
([
#′%

]
ℎ ∣

[
#′!

]
ℎ +

[
#′()"

]
ℎ ,.ℎ+ℎ

)
exp{−.ℎ}0.ℎ

=
"∏

2=1
#AL

([
#′%

]
ℎ ∣

[
#′!

]
ℎ ,

[
#′"

]
ℎ ,+ℎ

)
, (8)

where [+]ℎ is the ℎth element of the vector + and all model parameters are as previously defined.

3. The proposed model

The idea of contaminating multivariate distributions dates back at least as far as Tukey (1960) who introduced a multivariate 
contaminated normal distribution. This is a two-component normal mixture in which one of the components typically represents 
the good observations with probability 3 and the other component represents the bad observations with probability 1 − 3. Both 
components share the same mean, but the component representing the bad observations has an inflated variance with respect to 
the contamination parameter 4 > 1 (Aitkin and Wilson, 1980). Formally, we can write the density of the multivariate contaminated 
normal distribution as

#MCN (% ∣ !,!,3,4) = 3#MN (% ∣ !,!) + (1− 3)#MN (% ∣ !,4!) , (9)
where all terms are as previously defined.

Replacing the multivariate normal density functions in (9) can extend the contaminated framework to include other distributions. 
For example, Morris et al. (2019) developed an MCAL distribution, and Melnykov et al. (2021) proposed a multivariate contaminated 
normal mixture model that utilizes a transformation of the observed data; other examples are given by Mazza and Punzo (2019), 
Tomarchio and Punzo (2020), and Punzo and Bagnato (2021a), just to cite a few. We can easily develop a contaminated mixture 
of MSAL distributions by replacing the multivariate normal density functions in (9) with the density given in (8). However, as 
mentioned in Section 1, this model will not address deficiency (a). So, we consider a model that allows for the proportion of good 
points and degree of contamination to be modeled separately in each PC of the data. Formally, we write the density of the proposed 
MSCAL distribution as

#MSCAL (% ∣ !,",#,#,$,%) =
"∏

ℎ=1

[
3ℎ#AL

([
#′%

]
ℎ ∣

[
#′!

]
ℎ ,

[
#′"

]
ℎ ,+ℎ

)

+ (1− 3ℎ)#AL
([
#′%

]
ℎ ∣

[
#′!

]
ℎ ,

√
4ℎ

[
#′"

]
ℎ ,4ℎ+ℎ

)]
, (10)
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where 3ℎ ∈ (0, 1) and 4ℎ > 1 give, respectively, the proportion of good points and the degree of contamination in each PC, ! and 
" are, respectively, the location and skewness parameters for the observed data, and all other terms and model parameters are as 
previously defined.

Fig. 1 displays contour plots obtained from the MCAL distribution (column 1), the MSAL distribution (column 2), and the MSCAL 
distribution (column 3). In every plot, the contours are centered at the origin. In column 1, 3 = 0.75 and 4 = 5. In column 3, 
$ = (0.75, 0.75)′ and % = (5, 10)′. In row 1, " = (0, 0)′ and vec (!) = (1, 0, 0, 1)′. In row 2, " = (1, 1)′ and vec (!) = (1, 0, 0, 1)′. In row 3, 
" = (1, 1)′ and vec (!) = (1, 0.5, 0.5, 1)′. Fig. 1 shows the effects that skewness and correlation have on the contours of the considered 
distributions. In columns 1 and 2, the contours take on the expected shapes following the discussions given in Morris et al. (2019)
and Franczak et al. (2015). The most polarizing difference between the images in columns 1 and 2 is the rigid hypercube shapes of 
the MSAL distribution compared to the more “traditional” elliptical shape of the MCAL distribution. Comparing columns 2 and 3, we 
can see how the contours of the MSCAL distribution adapt to the influence of bad observations, becoming less rigid than the MSAL 
contours shown in column 2.

4. Parameter estimation

The expectation-maximization (EM) algorithm (Dempster et al., 1977; McLachlan and Peel, 1998) is an iterative procedure that is 
commonly used to find maximum likelihood (ML) estimates in the presence of missing or incomplete data. The EM algorithm iterates 
between two steps: an E-step, where the expected value of the complete-data log-likelihood is computed, and an M-step, where the 
expected complete-data log-likelihood is maximized with respect to the model parameters. If one or more updates on either the E-step 
or M-step are analytically intractable, a Monte Carlo method can be used. The corresponding algorithm is called a Monte Carlo EM 
(MCEM). Commonly, MCEM refers to the use of a Monte Carlo method in the E-step; however, the Monte Carlo method can also be 
used in the M-step (see Section 6.2.1, p. 220–221, of McLachlan and Krishnan, 2007, for details). For the MSCAL we use an MCEM 
with a Monte Carlo method on the M-step since a closed-form estimate for # does not exist (see Section 4.3).

For the proposed model, we introduce a multi-dimensional indicator variable,

56ℎ =
{

1 if %6 is good with respect to the ℎth PC
0 if %6 is bad with respect to the ℎth PC,

for 6 = 1, … , 7 and ℎ = 1, … , ". It follows that the complete-data for the proposed MSCAL is comprised of the observed %6, … , %7 and 
the missing ,1, … , ,7, where ,6 =

(
561,… ,56"

). So, we can write the complete-data likelihood as

8 (!,",#,",$,% ∣ %1,… ,%7
)
=

7∏
6=1

"∏
ℎ=1

[
3ℎ#N

([
#′%6

]
ℎ ∣

[
#′!

]
ℎ +

[
#′()"

]
ℎ ,.6ℎ+ℎ

)
exp{−.6ℎ}

]96ℎ

×
7∏
6=1

"∏
ℎ=1

[
(1− 3ℎ)#N

([
#′%6

]
ℎ ∣

[
#′!

]
ℎ +

√
4ℎ

[
#′()"

]
ℎ ,.6ℎ4ℎ+ℎ

)
exp{−.6ℎ}

]1−96ℎ , (11)

where all terms and model parameters are as previously defined.
For the proposed MSCAL we have two sources of missing data: the 56ℎ and the latent !6ℎ, for 6 = 1, … , 7 and ℎ = 1, … , ". 

From (11), we can write the complete-data log-likelihood of the MSCAL as

"8 (!,",#,",$,%) = "81 ($) + "82 (!,",#,",%) , (12)
where

"81 ($) =
7∑
6=1

"∑
ℎ=1

[
96ℎ log3ℎ + (1− 96ℎ) log(1− 3ℎ)

] (13)

and

"82 (!,",#,",%) =
7∑
6=1

"∑
ℎ=1

96ℎ log#N
(
:6ℎ ∣ )∗

ℎ +.6ℎ*∗ℎ,.6ℎ+ℎ
)
+

7∑
6=1

"∑
ℎ=1

(1− 96ℎ) log#N
(
:6ℎ ∣ )∗

ℎ +.6ℎ
√
4ℎ*∗ℎ,.6ℎ4ℎ+ℎ

)
, (14)

where :6ℎ =
[
#′%6

]
ℎ is the ℎth element of the principal component transformation of %6, )∗

ℎ =
[
#′!

]
ℎ and *∗ℎ =

[
#′"

]
ℎ represent, 

respectively, the location and skewness parameters for the ℎth PC, and all other terms are as previously defined.

4.1. E-step

Recall that the latent !6ℎ, for 6 = 1, … , 7 and ℎ = 1, … , ", are exponential random variables with rate 1. Following Franczak et 
al. (2014), Franczak et al. (2015) and Morris et al. (2019), we can show that !6ℎ ∣ :62 , 96ℎ = 1 ∼ GIG(

;ℎ,<6ℎ,0.5
), !6ℎ ∣ :62 , 96ℎ =

0 ∼ GIG(
;ℎ,<=

6ℎ,0.5
), and !6ℎ ∣ %6, 96ℎ = 0 ∼ GIG(

;ℎ,<=
6ℎ, (2− ")∕2

), i.e., that each of these conditional random variables follow a 
generalized inverse Gaussian (GIG) distribution (Good, 1953). Given this result, we utilize the expected values of the GIG distribution 
laid down by Jørgensen (1982) to derive a portion of the expected values needed on the E-step of the proposed MCEM algorithm. 
In Appendix A, we give the density function and pertinent expected values of the GIG distribution.
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Fig. 1. Examples of contour plots from the MCAL distribution (column 1), the MSAL distribution (column 2), and the MSCAL distribution (column 3) for varying 
parameter sets.
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Formally, on the E-step of the proposed parameter estimation scheme, we have the following expected values:

?̈5 6ℎ ∶= "[96ℎ ∣ %6] =
3̇ℎ#AL

(
:̇6ℎ ∣ )̇∗

ℎ, *̇
∗
ℎ, +̇ℎ

)

3̇ℎ#AL
(
:̇6ℎ ∣ )̇∗

ℎ, *̇
∗
ℎ, +̇ℎ

)
+ (1− 3̇ℎ)#AL

(
:̇6ℎ ∣ )̇∗

ℎ,
√
4̇ℎ*̇∗ℎ, 4̇ℎ+̇ℎ

) , (15)

?̈16ℎ ∶= "
[
.6ℎ ∣ :6ℎ,96ℎ = 1

]
=

√
<̇6ℎ&1.5

(√
;̇ℎ<̇6ℎ

)

√
;̇ℎ&0.5

(√
;̇ℎ<̇6ℎ

) , (16)

?̈26ℎ ∶= "
[
.−1

6ℎ ∣ :6ℎ,96ℎ = 1
]
=

√
;̇ℎ&1.5

(√
;̇ℎ<̇6ℎ

)

√
<̇6ℎ&0.5

(√
;̇ℎ<̇6ℎ

) − 1
<̇6ℎ

, (17)

?̈=
16ℎ ∶= "

[
.6ℎ ∣ :6ℎ,96ℎ = 0

]
=

√
<̇=
6ℎ&1.5

(√
;̇ℎ<̇=

6ℎ

)

√
;̇ℎ&0.5

(√
;̇ℎ<̇=

6ℎ

) , and (18)

?̈=
26ℎ ∶= "

[
.−1

6ℎ ∣ :6ℎ,96ℎ = 0
]
=

√
;̇ℎ&1.5

(√
;̇ℎ<̇=

6ℎ

)

√
<̇=
6ℎ&0.5

(√
;̇ℎ<̇=

6ℎ

) − 1
<̇=
6ℎ
, (19)

where ;̇ℎ = 2 +
(
*̇∗ℎ

)2 +̇−1
ℎ , <̇6ℎ =

(
:̇6ℎ − )̇∗

ℎ
)2 +̇−1

ℎ , <̇=
6ℎ =

(
:̇6ℎ − )̇∗

ℎ
)2 (4̇ℎ+̇ℎ

)−1, one dot represents an update at the previous iteration, 
and two dots represent an update on the current iteration.

4.2. M-step

On the M-step of this MCEM algorithm, we have the following updates:

3̈ℎ =
7∑
6=1

Ä6ℎ, (20)

)̈∗
ℎ =

B̈
∑7

6=1 :̇6ℎ
(
=̈6ℎ +

0̈6ℎ
4̇ℎ

)
− C̈

∑7
6=1 :̇6ℎ

(
Ä6ℎ +

8̈6ℎ√
4̇ℎ

)

B̈D̈ − C̈2
, (21)

*̈∗ℎ =
D̈
∑7

6=1 :̇6ℎ
(
Ä6ℎ +

8̈6ℎ√
4̇ℎ

)
− C̈

∑7
6=1 :̇6ℎ

(
=̈6ℎ +

0̈6ℎ
4̇ℎ

)

B̈D̈ − C̈2
, and (22)

+̈ℎ =
1
7

7∑
6=1

[(
=̈6ℎ +

0̈6ℎ
4̈ℎ

)(
:̇6ℎ − )̈∗

ℎ
)2 − 2

(
Ä6ℎ +

8̈6ℎ√
4̈ℎ

)
(
:̇6ℎ − )̈∗

ℎ
)
*̈∗ℎ +

(
*̈∗ℎ

)2 B̈
]
, (23)

where Ä6ℎ = ?̈5 6ℎ, =̈6ℎ = Ä6ℎ?̈26ℎ, 8̈6ℎ = (1 −?̈5 6ℎ), 0̈6ℎ = 8̈6ℎ?̈=
26ℎ, #̈6ℎ = Ä6ℎ?̈16ℎ, ℎ̈6ℎ = 8̈6ℎ?̈=

16ℎ, B̈ =
7∑
6=1

(
#̈6ℎ + ℎ̈6ℎ

), D̈ =
7∑
6=1

(
=̈6ℎ +

0̈6ℎ
4̇ℎ

)
, 

and C̈ =
7∑
6=1

(
Ä6ℎ +

8̈6ℎ√
4̇ℎ

)
.

To update 4ℎ, we solve the equation
7∑
6=1

4ℎ8̈6ℎΦ̈ℎ +
√
4ℎ8̈6ℎ(:̇6ℎ − )̈∗

ℎ)*̈
∗
ℎ − 0̈6ℎ(:̇6ℎ − )̈∗

ℎ)
2 = 0.

Setting Ä∗ =
7∑
6=1

8̈6ℎΦ̈ℎ, =̈∗ =
7∑
6=1

8̈6ℎ(:̇6ℎ − )̈∗
ℎ)*̈

∗
ℎ, and 8̈∗ = − 

7∑
6=1

0̈6ℎ(:̇6ℎ − )̈∗
ℎ)

2, gives

4̈ℎ =
⎛
⎜
⎜
⎜⎝

−=̈∗ ±
√(

=̈∗
)2 − 4Ä∗8̈∗

2Ä∗

⎞
⎟
⎟
⎟⎠

2

. (24)

Since (24) returns two solutions, we take the one greater than one.
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4.3. Estimation of the orthogonal matrix

A closed-form estimate for # cannot be found either directly or through the EM algorithm. Therefore, we propose a two-step 
Monte Carlo optimization procedure that can be schematized as follows.

1. Compute the eigen-decomposition of the sample covariance matrix - and retain the resulting eigenvector matrix, say #-.
2. Map #- to a (" × ") unit lower triangular matrix, say ., having " ("− 1)∕2 unconstrained real-valued entries, via the PLR 

decomposition proposed by Bagnato and Punzo (2021).
3. At the first step of the procedure, for E = 1, … , F:

(a) generate a new .-matrix, say .̇E, by adding a uniform random number in (−0.1,0.1) to each element under the main 
diagonal of .;

(b) obtain the corresponding orthogonal matrix #̇E via the PLR back-decomposition of .̇E;
(c) run the EM algorithm with # fixed to #̇E and retain the observed data log-likelihood value at convergence, say "̇E.

4. Compute the maximum among the "̇1, … , "̇F values and retain the corresponding #̇E and .̇E matrices, say #̇ and .̇, respectively.
5. At the second, finer, step of the procedure, for G = 1, … , H :

(a) generate a new .-matrix, say .̈G, by adding a uniform random number in (−0.02,0.02) to each element under the main 
diagonal of .̇;

(b) obtain the corresponding orthogonal matrix #̈G via the PLR back-decomposition of .̈G;
(c) run the EM algorithm with # fixed to #̈G and retain the observed data log-likelihood value at convergence, say "̈G.

6. Compute the maximum among the "̈1, … , "̈H values and consider the corresponding #̈G as the ML estimate of #.

4.4. Computational details

The proposed MCEM algorithm is implemented in R (R Core Team, 2018). In all considered applications, ! is initialized at the 
mean of the observed data, " is set to /, and in every PC, 3ℎ = 0.9, 4ℎ = 2, and +ℎ = 1, for ℎ = 1, … , ". In the two-step Monte Carlo 
optimization procedure discussed in Section 4.3, we fix F = 100 and H = 40. The MCEM algorithm is then run, starting with an 
E-step. The algorithm is iterated until convergence, or for a maximum of 100 iterations. Convergence is measured using a stopping 
criterion based on Aitken’s acceleration (Aitken, 1926) with a tolerance of 0.1 (see McNicholas et al., 2010, for details).

Following the proposal in Punzo and Bagnato (2021b), in the data analyses discussed in Sections 6 and 7, three approaches to 
compute the ML estimates were considered. For each data set, a direct approach with the Nelder-Mead algorithm, a direct approach 
with the BFGS algorithm, and the MCEM algorithm discussed above were used to estimate the parameters. In the end, the solution 
providing the best-observed data log-likelihood value was retained. In Punzo and Bagnato (2021b), this approach has been shown to 
provide a higher likelihood value than when any one of the three methods is used alone, i.e. the highest log-likelihood value is not 
always obtained with the same method.

The direct approaches were implemented via the general-purpose optimizer optim() for R (R Core Team, 2018), included in 
the stats package.

5. Other important aspects

5.1. Identifiability

An important point in dealing with the proposed MSCAL model is establishing its identifiability. Without identifiability, the 
parameters might not be estimated and interpreted, and, more generally, the inference might be meaningless (Wang et al., 2014). 
Following the arguments below, we show that the model proposed in (10) is identifiable.

Tortora et al. (2019) prove that the identifiability of a multiple scaled distribution is ensured if the " univariate distributions on 
the PCs are identifiable. On the generic ℎth PC of model (10), for ℎ = 1, … , ", we have the (univariate) CAL distribution with pdf

#CAL
(
I|)∗

ℎ,*
∗
ℎ,+ℎ,3ℎ,4ℎ

)
= 3ℎ#AL

(
I|)∗

ℎ,*
∗
ℎ,+ℎ

)
+
(
1− 3ℎ

)
#AL

(
I|)∗

ℎ,
√
4ℎ*∗ℎ,4ℎ+ℎ

)
, (25)

which is a mixture of two (univariate) AL distributions that only differ in terms of asymmetry (by √4ℎ) and scale (by 4ℎ) parameters 
(cf. Punzo and Bagnato, 2021a, 2022b). Now, the AL distribution is a special case of the generalized hyperbolic (GH) distribution (see 
Section 2.2 of Browne and McNicholas, 2015). Browne and McNicholas (2015) proved, in the multivariate context, the identifiability 
(up to label switching) for finite mixtures of GH distributions. Therefore, it follows that the MSCAL distribution is identifiable (up to 
label switching).

As for the label-switching issue, it is overcome by using the constraint 4ℎ > 1, ℎ = 1, … , ", as explained below. Suppose we relax 
this assumption on 4ℎ so that 4ℎ > 0, for ℎ = 1, … , ". Under this assumption, model (25) is nonidentifiable due to label-switching 
because, if )̃∗

ℎ = )∗
ℎ, *̃∗ℎ =

√
4ℎ*∗ℎ, +̃ℎ = 4ℎ+ℎ, 3̃ℎ = 1 − 3ℎ, and 4̃ℎ = 1∕4ℎ, then #CAL

(
I|)∗

ℎ,*
∗
ℎ,+ℎ,3ℎ,4ℎ

)
= #CAL

(
I|)̃∗

ℎ, *̃
∗
ℎ, +̃ℎ, 3̃ℎ, 4̃ℎ

). 
This tricky label-switching case, which is the only one possible, can be avoided by adding at least one of the following constraints:
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Table 1
Values of ", $, and % used in the eight different scenarios considered 
in this simulation study.

" $ %

Scenario Dim. 1 Dim. 2 PC 1 PC 2 PC 1 PC 2
S1 −2 2 0.9 0.9 3 3
S2 −2 2 0.9 0.9 6 10
S3 −2 2 0.7 0.9 3 3
S4 −2 2 0.7 0.9 6 10
S5 −2 6 0.9 0.9 3 3
S6 −2 6 0.9 0.9 6 10
S7 −2 6 0.7 0.9 3 3
S8 −2 6 0.7 0.9 6 10

1. 3ℎ > 0.5 (as 3ℎ = 1 − 3̃ℎ, it follows that 3̃ℎ < 0.5 and we obtain a contradiction);
2. 4ℎ > 1 (as 4ℎ = 1∕4̃ℎ, it follows that 4̃ℎ ∈ (0, 1) and we obtain a contradiction).

Note that adding both constraints (as we do in Section 5.3) is not necessary but it has an interpretative advantage from a robust 
statistics perspective. The simultaneous use of both constraints (3ℎ > 0.5 and 4ℎ > 1) allows us to label the observations as either 
‘good’ or ‘bad’ and it forces the number of bad observations to be less than the good ones, while having a larger variability, allowing 
the user to perform directional outlier detection. Nevertheless, considering both constraints simultaneously would introduce an extra 
restriction on the parameter space, reducing the number of members/models of the MSCAL family. This is the reason why, in defining 
our model, we only use the constraint 4ℎ > 1, ℎ = 1, … , ".

To complete the discussion on identifiability, it is important to realize that the two (trivial but important) conditions 4 ≠ 1 and 
3ℎ > 0 also prevent overfitting (a potential problem for identifiability first noted by Crawford, 1994). Indeed, identifiability problems 
may occur due to empty AL components (i.e., when either 3ℎ = 0 or 3ℎ = 1), where their parameters cannot be uniquely determined 
and due to components with equal component parameter vectors (i.e., when either 4ℎ = 1) where different values for 3ℎ are possible 
(see Frühwirth-Schnatter, 2006, Chapter 1.3, for details).

5.2. Existence of a global maximum

The traditional EM algorithm monotonically increases the observed data (log-)likelihood function and returns the ML parameter 
estimates. However, a well-known issue in mixture models is the potential nonexistence of the global maximizer for ML estimates. 
With unrestricted covariance matrices, mixtures of normal distributions do not have a global maximizer (Melnykov, 2013). Since the 
AL itself is an infinite mixture of normal distributions, we expect to inherit the same issue.

In our MCEM algorithm, for every MC estimate of #, we run the EM algorithm to estimate all the other parameters until conver-
gence is reached. Therefore, the monotonicity is maintained within each EM step of the MCEM algorithm but not between the MC 
and EM steps. Anyway, it is important to point out that, in some cases, the MCEM algorithm gets closer to a maximizer with high 
probability (Booth and Hobert, 1999).

5.3. Automatic directional detection of outliers

At convergence, adding suitable constraints (cf. Section 5.1), the MSCAL model can be used for directional outlier detection on 
the PC space. Following Punzo and Tortora (2021), we additionally require that at least half of the observations are good points on 
the ℎth PC, i.e., 3ℎ > 0.5. Under this additional constraint, (1 − 3ℎ) and 4ℎ represent the proportion of outlying observations and 
degree of contamination, respectively, and ?5 6ℎ gives the a posteriori probability that the observation %6 is good with respect to the 
ℎth PC. Therefore, we label %6 in the ℎth PC, what we refer to as I6ℎ, as good if ?5 6ℎ > 0.5, for 6 = 1, … , 7 and ℎ = 1, … , ".

6. Simulation study

We use a simulation study to measure the computational time required to run the proposed MCEM algorithm and to evaluate 
parameter recovery. In total, we consider eight different parameter sets to generate the data, herein referred to as scenarios (see Ta-
ble 1). For all scenarios, ! = (0, 0)′ and vec(!) = (4, −0.8, −0.8, 1)′. The parameters ", $, and % were allowed to take on one of two 
possible sets of values. Specifically, " was either (−2, 2)′ or (−2, 6)′, $ was either (0.9, 0.9)′ or (0.7, 0.9)′, and % was either (3, 3)′
or (6, 10)′. For each scenario, we simulated 100 data sets of size 7 = 500, 100 data sets of size 7 = 1000, and 100 data sets of size 
7 = 2000. On each data set, the parameters are estimated using the approach described in Section 4.4. The MCEM algorithm is run 
until convergence with a tolerance of 0.1 or for a maximum of 100 iterations. The MCEM reached convergence before 100 iterations 
in 94% of the cases.

Table 2 shows the average computational time (in seconds) of the MCEM algorithm for each scenario and considered sample size. 
The overall average time is 317 seconds. As the value of 7 increases the average elapsed time also increases. For 7 = 500 the overall 
average is 148 seconds, for 7 = 1000 and 7 = 2000 the overall averages are 273 and 529 seconds, respectively.
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Table 2
Average computational time to run the MCEM 
algorithm per scenario and values of 7.
Scenario 500 1000 2000

S1 126.55 245.03 503.79
S2 126.34 249.14 508.72
S3 122.43 242.58 502.74
S4 127.83 237.03 500.68
S5 164.64 311.10 559.54
S6 177.97 311.09 557.75
S7 174.36 297.66 551.86
S8 168.71 296.36 549.12

Table 3
For each scenario, the bias and variance of the estimates of )2 and *2 in each dimension 2 of the observed space and of 3ℎ and 
4ℎ for the ℎth PC, 2, ℎ = 1, 2.

Bias [!̂∗] Var [!̂∗] Bias ["̂∗] Var ["̂∗]

7 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

S1 Dim. 1 -0.00 0.01 -0.01 0.01 0.00 0.01 0.11 0.07 0.10 0.10 0.07 0.05
Dim. 2 0.00 -0.00 -0.00 0.00 0.00 0.00 -0.08 -0.05 -0.09 0.05 0.03 0.02

S2 Dim. 1 0.00 0.00 0.00 0.00 0.02 0.00 0.15 0.07 0.03 0.12 0.07 0.03
Dim. 2 0.00 0.00 0.00 0.00 0.00 0.00 -0.08 -0.02 -0.02 0.04 0.02 0.01

S3 Dim. 1 0.01 -0.02 -0.01 0.00 0.01 0.02 -0.04 -0.04 -0.08 0.16 0.09 0.07
Dim. 2 -0.00 0.00 0.02 0.00 0.00 0.01 -0.08 -0.03 -0.06 0.04 0.03 0.02

S4 Dim. 1 -0.02 -0.00 -0.00 0.01 0.00 0.01 0.03 0.05 -0.01 0.16 0.09 0.07
Dim. 2 0.00 -0.00 0.00 0.00 0.00 0.00 -0.04 -0.05 -0.01 0.02 0.02 0.01

S5 Dim. 1 0.00 0.01 0.01 0.01 0.02 0.01 0.06 0.05 0.05 0.22 0.14 0.07
Dim. 2 -0.00 0.00 0.01 0.00 0.01 0.01 -0.12 -0.21 -0.16 0.39 0.35 0.18

S6 Dim. 1 0.00 0.01 0.01 0.00 0.01 0.02 0.17 0.11 0.05 0.22 0.12 0.06
Dim. 2 -0.00 -0.00 -0.00 0.00 0.00 0.00 -0.17 -0.07 -0.03 0.37 0.18 0.07

S7 Dim. 1 0.00 -0.00 -0.01 0.02 0.00 0.01 -0.13 -0.04 -0.09 0.38 0.22 0.16
Dim. 2 0.00 0.00 0.01 0.00 0.00 0.00 -0.11 -0.12 -0.06 0.38 0.32 0.17

S8 Dim. 1 -0.00 -0.01 -0.00 0.01 0.02 0.00 -0.08 -0.07 -0.00 0.29 0.21 0.10
Dim. 2 -0.00 -0.01 0.00 0.00 0.01 0.00 -0.18 -0.11 -0.02 0.43 0.14 0.09

Bias [$̂] Var [$̂] Bias [%̂] Var [%̂]
7 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

S1 PC 1 -0.11 -0.09 -0.14 0.05 0.04 0.04 -1.16 -1.07 -1.10 0.82 1.07 0.50
PC 2 -0.06 -0.08 -0.12 0.04 0.04 0.04 -1.01 -0.91 -1.03 1.31 2.80 0.58

S2 PC 1 -0.13 -0.06 -0.04 0.04 0.02 0.01 -3.45 -3.32 -3.47 0.95 1.18 0.34
PC 2 -0.06 -0.02 -0.02 0.02 0.01 0.00 -6.70 -6.73 -6.81 0.84 0.49 0.27

S3 PC 1 0.03 0.01 0.03 0.04 0.03 0.03 -0.80 -1.14 -1.04 0.91 0.21 0.24
PC 2 -0.10 -0.09 -0.14 0.04 0.04 0.04 -1.20 -1.08 -1.04 0.70 0.88 0.59

S4 PC 1 -0.02 -0.02 0.00 0.02 0.02 0.01 -3.30 -3.43 -3.49 0.33 0.13 0.05
PC 2 -0.03 -0.03 -0.02 0.01 0.01 0.00 -6.55 -6.68 -6.78 1.23 0.81 0.32

S5 PC 1 -0.06 -0.07 -0.10 0.04 0.03 0.03 -1.21 -1.14 -1.19 1.58 0.69 0.50
PC 2 -0.03 -0.09 -0.08 0.03 0.04 0.03 -1.04 -1.02 -0.99 1.51 0.99 1.71

S6 PC 1 -0.10 -0.07 -0.04 0.03 0.02 0.01 -3.31 -3.36 -3.48 1.33 1.29 0.41
PC 2 -0.04 -0.01 -0.01 0.01 0.00 0.00 -6.70 -6.55 -6.81 1.14 0.83 0.24

S7 PC 1 0.03 -0.01 0.04 0.04 0.04 0.03 -0.99 -1.14 -1.02 3.06 0.31 0.21
PC 2 -0.05 -0.07 -0.07 0.03 0.04 0.03 -1.27 -1.18 -1.08 1.11 1.06 0.66

S8 PC 1 0.01 0.02 0.00 0.02 0.02 0.01 -3.31 -3.27 -3.48 0.38 3.48 0.07
PC 2 -0.05 -0.03 -0.01 0.02 0.01 0.00 -6.67 -6.87 -6.80 1.41 0.47 0.20

Table 3 gives bias and variance of the estimates of !, ", %, and $. For !, the bias and variance of each unique element are 
given in Table B.11 of Appendix B. The parameters !, ", !, and $ have small biases and variances that do not seem to change in 
the different scenarios, the variances slightly reduce as 7 increases. The parameter % shows the highest bias (in absolute value) and 
variance, as expected. The parameters % and $ are the most difficult to estimate. Like the degrees of freedom in the L distribution 
(Thompson et al., 2020), or the parameters impacting the tails of a heavy-tailed distribution in general (Punzo and Bagnato, 2021b), 
% and $ need more data to have good convergence properties for the estimator. This is, even more, emphasized when the percentage 
of bad points is small and the tailedness parameter values are high. Looking at the simulation results, the bias increases significantly 
in S2, S4, S6, and S8, where % = (6, 10)′. The values of % are extremely difficult to estimate because only a small percentage of data 
points belong to the bad component. On PC2, 32 = 0.9 for all the scenarios, on PC1, 31 = 0.9 in S2 and S6, and 31 = 0.7 in S4 and S8. 
The results suggest that the percentage of outlying points affects the variance of %̂ since the values of Var [%̂] are smaller for S4 and 
S8 than they are for S2 and S6.
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Table 4
ML-estimates for a subset of the parameters for the MSCAL distribu-
tion when fitted to the entire f.twins data set.

STA1 HIP1 CHE1 STA2 HIP2 CHE2
!̂ 158.79 29.10 75.20 160.13 28.91 75.23
"̂ -8.28 -1.85 -1.90 -9.15 -1.71 -2.09

PC1 PC2 PC3 PC4 PC5 PC6
$̂ 0.99 1.00 1.00 1.00 1.00 1.00
%̂ 1.04 1.00 1.00 1.00 1.00 1.00

7. Analysis on anthropometric measurements of female twins

In this Section, we illustrate the proposed model using real data. Information about the data set is given in Section 7.1. In 
Section 7.2, we focus on two variables for the sake of illustration and graphical representation. In Section 7.2.1, we compare the 
ability of several well-established parametric models to reproduce the joint distribution of the two variables. Finally, in Section 7.2.2, 
we investigate how the MSAL distribution – the reference model for the good data behind our approach – reacts to the inclusion of 
ad-hoc located outliers and how these points are instead handled by the proposed MSCAL distribution.

7.1. The data

We consider the f.twins data set accompanying the Flury package (Flury, 1997) for R available at https://CRAN .R -project .org /
package =Flury. The data set contains " = 6 anthropometric measurements for 7 = 79 pairs of monozygotic/dizygotic female twins 
measured in the 1950s at the University of Hamburg, Germany. The available measurements are the stature of the first twin (STA1), 
the hip circumference of the first twin (HIP1), the chest circumference of the first twin (CHE1), and the same measurements for the 
second twin, namely STA2, HIP2, and CHE2. The variables are expressed in centimeters. For further details on these data, see Flury 
(2013).

We fitted the MSCAL to the f.twins data set. Table 4 gives the corresponding parameter estimates. The estimate of !̂ is reported 
in Appendix C, Table C.12.

The parameters estimates for ! and " are measured in the observed data space, while $̂ and ̂% are measured in the PC space. All 
the dimensions are negatively skewed, with the statures having the highest values of skewness. The hip circumferences are the least 
skewed for both twins. The values of !̂ do not seem to differ among twins. The values of ̂% and $̂ indicate that the are no outliers in 
the data set.

7.2. Stature and chest circumference of the second twin

In this section, we focus on " = 2 of the available measurements, STA2 and CHE2. The scatter plot of the data is displayed in 
Fig. 2.

The scatter plot in Fig. 2 looks negatively skewed in both dimensions and this is corroborated by the Mardia test of symmetry 
("-value = 0.002), as implemented by the mvn() function of the MVN package (Korkmaz et al., 2019). A visual inspection of Fig. 2
does not give any evidence of outlying points.

7.2.1. Model comparison
The first aim of the analysis is to evaluate the best parametric model for the bivariate distribution of the data. Table 5 presents 

the model comparison. The first column provides the thirty models we consider. The first group of sixteen models includes the mul-
tivariate generalized hyperbolic (MGH) distribution (see, e.g., McNeil et al., 2005) and all of its special or limiting cases. For a useful 
hierarchical representation of the taxonomy among these models, see Bagnato et al. (2023). This group contains both elliptical-
symmetric (the first nine models) and asymmetric models. Then we have: 1) four other elliptical-symmetric models, the multivariate 
tail-inflated normal (MTIN; Punzo and Bagnato, 2021b), multivariate shifted-exponential normal (MSEN; Punzo and Bagnato, 2020), 
multivariate leptokurtic normal (MLN; Bagnato et al., 2017), and multivariate contaminated normal (MCN; Punzo and McNicholas, 
2016); 2) four other well-known asymmetric models, the multivariate skew-normal, multivariate skew-L, multivariate skew contam-
inated normal, as formulated by Cabral et al. (2012), and the multivariate contaminated asymmetric Laplace (MCAL; Morris et al., 
2019); and 3) six multiple scaled distributions, the multiple scaled shifted-exponential normal (MSSEN; Punzo and Bagnato, 2022a)), 
multiple scaled L (MSL; Forbes and Wraith, 2014), and multiple scaled contaminated normal (MSCN; Punzo and Tortora, 2021) 
multiple scaled asymmetric Laplace (MSAL; Franczak et al., 2015), multiple scaled contaminated asymmetric Laplace (MSCAL), and 
multiple scaled GH (MSGH; Wraith and Forbes, 2015; Tortora et al., 2019).

While the differences between some of the reported AIC values are small and may not represent a significant difference, Table 5
shows that the best model is the MSAL, with the proposed MSCAL being ranked tenth. Generally speaking, the models allowing for 
skewness behave better, and this corroborates the results from the Mardia test given at the end of Section 7.2. Another interesting 
result is that there are only two multiple scaled distributions in the first ten positions (the MSAL and MSCAL). When compared to 

https://CRAN.R-project.org/package=Flury
https://CRAN.R-project.org/package=Flury
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Fig. 2. Scatter plot of stature and chest circumference of the second twin from the f.twins data.

the other multiple scaled models, this implies that the peculiar peak of the Laplace distribution is useful when trying to model the 
joint distribution of the considered data set.

For the sake of coherence, we estimate the parameters of all the models by the ML approach. We use the fit.ghypmv() func-
tion of the ghyp package (Weibel et al., 2022) to fit all the members of the MGH-family. We adopt the WML.MLN() function from 
the code available at http://docenti .unict .it /punzo /Rcode .htm to fit the MLN, the mtin.ML.ECME() function of the mtin pack-
age (available at http://docenti .unict .it /punzo /Rpackages .htm) to fit the MTIN, the msen.ML.EM() function of the msen package 
(always available at http://docenti .unict .it /punzo /Rpackages .htm) to fit the MSEN, and the CNmixt() function of the Contaminat-
edMixt package (Punzo et al., 2018a,b) to fit the MCN. To fit the models proposed by Cabral et al. (2012), we use smsn.mmix()
function of the mixsmsn package (Weibel et al., 2022). As for the multiple scaled models, we use the function msdist.ML.EM()
available at http://docenti .unict .it /punzo /Rcode .htm to fit MSSEN model, the mst() and mscn() functions of the MSclust package 
to fit the MSL and MSCN (Tortora et al., 2023), and the MSGHD() function of the MixGHD package (Tortora et al., 2022, 2021) to fit 
the MSGH. The MSAL, MCAL, and MSCAL models are fitted using R code that we wrote for this project. The code to fit the proposed 
MSCAL distribution is available at https://github .com /cristinatortora /MSCAL.

In Table 5 we report the number of parameters and the maximum log-likelihood value for each model. Since the considered models 
have a different number of parameters, we compare their goodness-of-fit using the Akaike information criterion (AIC; Akaike, 1974) 
that, in our formulation, needs to be maximized and multiplied by -1 in accordance with the returned log-likelihood value. Under 
certain assumptions, the AIC has been shown to be appropriate for detecting the best approximating model (Punzo and Bagnato, 
2021b). Therefore, we use the AIC because the true underlying model is unknown and it is highly unlikely that it is exactly one of 
the considered models.

The ML estimates for the MSAL model selected by the AIC are

!̂ =
(
161.609
76.811

)
, "̂ =

(
155.109 0.000
0.000 15.668

)
, #̂ =

(
−0.898 −0.441
−0.441 0.898

)
, and "̂ =

(
−10.620
−3.667

)
. (26)

Notably, the returned estimates for " in (26), show that skewness is negative in both dimensions (stature and chest circumference). 
Fig. 3 displays a scatterplot with isodensities from the MSAL superimposed.

The isodensities appear to be coherent with the scatter’s shape. The MSAL model will be used as the benchmark (or “reference”) 
to judge the results of the sensitivity analysis in Section 7.2.2.

Finally, it is important to note that, the ML-estimates !̂, "̂, #̂, and "̂ for the MSCAL model are practically the same as those given 
in (26); however, for this model, we also have the additional estimates

$̂ ≈
(
1
1

)
and %̂ ≈

(
1
1

)
. (27)

Notably, the estimates given in (27) indicate there are no outlying points or contamination. Therefore, we can conclude that the 
results in Table 5 suggest that a distribution with more flexible tail behavior in each principal component is needed for the considered 
data set.

http://docenti.unict.it/punzo/Rcode.htm
http://docenti.unict.it/punzo/Rpackages.htm
http://docenti.unict.it/punzo/Rpackages.htm
http://docenti.unict.it/punzo/Rcode.htm
https://github.com/cristinatortora/MSCAL
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Table 5
For the f.twins data, a comparison of thirty models in terms of number of parameters (#par), log-
likelihood value (Log-Lik), and AIC. The ranking based on the AIC is given in the final column.
Model # par. Log-Lik. AIC Ranking
Normal 5 -542.982 -1095.964 12
Cauchy 5 -554.261 -1118.522 30
Laplace 5 -551.239 -1112.477 28
L 6 -542.981 -1097.962 18
Hyperbolic Univariate Marginals 6 -542.992 -1097.985 21
Symmetric Variance Gamma 6 -542.992 -1097.984 19
Symmetric Hyperbolic 6 -542.992 -1097.985 21
Symmetric Normal Inverse Gaussian 6 -542.992 -1097.985 21
Symmetric Generalized Hyperbolic 7 -542.992 -1099.984 25
Asymmetric Cauchy 7 -550.881 -1115.761 29
Asymmetric Laplace 7 -541.774 -1097.547 14
Asymmetric L 8 -538.755 -1093.510 9
Normal Inverse Gaussian 8 -538.387 -1092.773 8
Variance Gamma 8 -536.940 -1089.879 4
Hyperbolic 8 -538.263 -1092.526 7
Generalized Hyperbolic 9 -536.940 -1091.879 6

Tail-Inflated Normal 6 -542.976 -1097.952 16
Shifted-Exponential Normal 6 -542.976 -1097.952 16
Leptokurtic Normal 6 -542.976 -1097.952 16
Contaminated Normal 7 -542.976 -1099.952 24
Skew-normal 7 -536.615 -1087.230 2
Skew-L 8 -536.426 -1088.852 3
Contaminated asymmetric Laplace 9 -541.818 -1101.636 27
Skew Contaminated Normal 9 -536.573 -1091.146 5

Multiple scaled Shifted-Exponential Normal 7 -541.522 -1097.044 13
Multiple scaled L 7 -542.424 -1098.847 23
Multiple scaled Contaminated Normal 9 -541.415 -1100.829 26
Multiple scaled Asymmetric Laplace 7 -536.397 -1086.793 1
Multiple scaled Contaminated Asymmetric Laplace 11 -536.396 -1094.792 10
Multiple scaled Generalized Hyperbolic 11 -536.821 -1095.643 11

Fig. 3. Scatter plot of stature and chest circumference of the second twin from the f.twins data with superimposed isodensities from the AIC-selected MSAL model.
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Table 6
Coordinates of the artificially added outliers for the sensi-
tivity analysis.
Outliers Stature (cm) Chest circumference (cm)
P1 130 140
P2 120 160
P3 270 130
P4 200 180

Fig. 4. Scatter plot of stature and chest circumference of the second twin, from the f.twins data, including artificially outlying points labeled with an initial “P”.

Table 7
Comparison between MSAL and MSCAL distributions on each perturbed version of the
f.twins data set. Considered scenarios are listed in the first column. The comparison 
is in terms of log-likelihood, AIC, and "-values from the LR test of MSALity.

Log-Lik AIC LR test
Scenario MSAL MSCAL MSAL MSCAL "-value
P1 -556.803 -550.742 -1127.606 -1123.484 0.195
P2 -560.889 -550.690 -1135.779 -1123.379 0.037
P1+P2 -576.865 -563.215 -1167.730 -1148.429 0.008
P3 -557.566 -550.574 -1129.133 -1123.149 0.136
P1+P2+P3 -618.967 -577.430 -1251.934 -1176.859 0.000
P4 -570.678 -559.237 -1155.355 -1140.475 0.022
P1+P2+P3+P4 -623.231 -597.059 -1260.461 -1216.118 0.000

7.2.2. Sensitivity analysis
The second aim of the first analysis is to investigate how the MSAL and MSCAL distributions react to the inclusion of ad-hoc

located outliers. These points, whose coordinates are given in Table 6, are labeled with an initial “P” and are displayed in Fig. 4. 
The points are purposefully placed in such a way that either one or two of the PCs from the MSAL distribution will be impacted; refer 
to #̂ in (26). Furthermore, it is important to note that using less extreme points would not show the benefits of the MSCAL model as 
clearly. In detail, P1 and P2 are roughly in the direction of the second PC, P3 is roughly in the direction of the first PC, while P4 is 
in between. By considering one or more of these points, we define seven “perturbed” versions of the original data.

For each perturbed data set, we fit the MSAL and MSCAL distributions. Table 7 presents the model comparison. The first column 
provides the considered scenarios; for example, the scenario identified by P1+P2+P3 refers to the perturbed data set which includes 
the points P1, P2, and P3. As in Section 7.2.1, we compare the models using the log-likelihood and AIC values. In addition, we 
also report the results from a likelihood-ratio (LR) test to compare the MSAL distribution (null model) with the MSCAL distribution 
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Table 8
ML-estimates for the parameters of the MSAL distribution when fitted to each perturbed version of 
the considered subset of variables from f.twins data set. The eigenvectors matrix # is expressed 
as a rotation matrix of angle N.
Scenario N̂ )̂1 )̂2 Ô1 Ô2 *̂1 *̂2

P1 0.423 162.412 74.096 154.453 12.864 -11.778 -0.170
P2 0.462 162.387 75.150 153.196 16.728 -11.702 -0.899
P1+P2 0.400 162.361 73.392 154.973 14.431 -12.021 1.647
P3 0.456 158.049 75.060 303.842 15.287 -5.544 -1.196
P1+P2+P3 0.329 167.003 71.160 288.538 0.004 -13.334 5.844
P4 0.467 161.072 74.660 264.555 16.128 -10.475 -0.701
P1+P2+P3+P4 0.414 159.203 71.961 349.142 15.734 -6.832 4.969

Table 9
ML-estimates for the parameters for the MSCAL distribution when fitted to each perturbed version of the considered subset of variables from
f.twins data set. The eigenvectors matrix # is expressed as a rotation matrix of angle N.
Scenario N̂ )̂1 )̂2 Ô1 Ô2 *̂1 *̂2 3̂1 3̂2 4̂1 4̂2

P1 0.468 161.486 77.312 150.477 15.900 -10.467 -4.117 1.000 0.984 1.000 16.284
P2 0.459 161.393 76.789 153.738 15.630 -10.257 -3.549 1.000 0.985 1.000 21.660
P1+P2 0.454 161.425 76.601 150.780 15.277 -10.203 -3.293 1.000 0.969 1.000 18.222
P3 0.456 161.400 76.686 159.409 15.264 -10.108 -3.417 0.985 1.000 19.756 1.000
P1+P2+P3 0.456 161.382 76.681 152.418 15.093 -9.837 -3.230 0.985 0.969 20.008 18.710
P4 0.454 161.625 76.695 157.501 15.473 -10.311 -3.360 0.982 0.984 11.819 16.550
P1+P2+P3+P4 0.456 161.310 76.639 154.626 14.847 -9.605 -3.091 0.968 0.954 15.459 18.571

(alternative model). Hereafter, we will refer to this test as the “LR test of MSALity”. The "-values from this test are reported in the 
last column of Table 7. Regardless of the considered scenario, the AIC always selects the MSCAL model. The "-values from the LR 
test provide additional insights. First, all of the "-values, apart from the ones on the P1 scenario (0.195) and P3 scenario (0.136), are 
lower than the commonly used 5% significance level, leading us to conclude that the MSCAL model is required for the corresponding 
data set; moreover, the "-values decrease as the contamination increases, where the term “contamination” describes the number of 
outliers and/or the distance of the added points from the bulk of the data. For example, if we consider the first two scenarios, labeled 
as P1 and P2, we note that, the further the added outlier in the direction of the second PC, the lower the "-value. In addition, when 
these points are considered together in the scenario P1+P2, the "-value is very low.

Tables 8 and 9 give the parameter estimates for the MSAL and MSCAL distributions, respectively, for each scenario. To simplify 
the interpretation and presentation of the estimates, in analogy with Greselin et al. (2011), Greselin and Punzo (2013), Bagnato et 
al. (2014), and Punzo et al. (2016), we see the eigenvectors matrix # as a rotation matrix of angle N, with N ∈ (−$∕2,$∕2), and we 
report the estimate of this parameter in the corresponding tables.

As a benchmark, the value of N̂ related to #̂ in (26) is 0.457. Regardless of the considered scenario, the estimates of the common 
parameters N̂, )̂1, )̂2, Ô1, Ô2, *̂1, and *̂2, are less affected by the presence of the outliers for the MSCAL distribution. Moreover, the 
estimate for the additional parameters of the MSCAL distribution, i.e., the proportion of good points and the degree of contamination 
in each PC, are as expected when assessing the location of the outliers in Fig. 4. For example, in the first three scenarios, where 
the outlying points are only in the direction of the second PC, no contamination is detected in the first PC (3̂1 ≈ 4̂1 ≈ 1); instead, on 
the second PC, the proportion of good points decreases as the number of added outliers increases and the degree of contamination 
increases in line with the magnitude of the outlier(s). In the fourth scenario involving P3, we observe a similar result, but in the 
direction of the first PC rather than the second. In all the remaining scenarios, the contamination parameters “activate” for both the 
PCs because there is at least one outlier on each of them. In other words, P1 and P2 activate 3̂2 and 4̂2 only, P3 has an impact on 
3̂1 and 4̂1 only, while P4 has an impact on all of these contamination parameters. For completeness, Figs. 5 and 6 show the contour 
plots for each scenario from the fitted MSAL and MSCAL distributions, respectively.

We also superimpose the PC-axes from #̂. As we can see, the presence of outliers affects the fitting of the MSAL distribution if 
we compare the results with those in Fig. 3. However, the PC-wise tails of the MSCAL distribution can adapt to the presence of the 
outlying points, and the fit of the model is not compromised by their presence. This result is also observed by evaluating the stability 
of the PC-axes.

Table 10 gives the a posteriori probability that an observation is labelled as good (denoted as 9̂6ℎ, for ℎ = 1, 2) in each PC for each 
of the considered scenarios. Regardless of the considered scenario, the probability P1 and P2 are labeled good in the second PC is 
effectively zero, the probability P3 is labeled as good in the first PC is effectively zero, while the probability P4 is labeled as good 
is effectively zero on both the PCs. It is interesting to note how these are the only points that are detected as PC-wise outliers; this 
means that we have a perfect (null) PC-wise false positive rate as well as a perfect (unitary) PC-wise true positive rate.
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Fig. 5. Scatter plot of stature and chest circumference of the second twin from the f.twins data under the different scenarios of the sensitivity analysis. Contours 
and PC-axes from the fitted MSAL distribution are also superimposed.

8. Conclusions

This paper introduces a multiple scaled contaminated asymmetric Laplace (MSCAL) distribution for outlier detection. Compared 
to a multiple scaled asymmetric Laplace (MSAL) distribution, the levels of excess kurtosis on each variate are free to vary and it 
emits hyper-contours with less restrictive shapes. The MSCAL distribution is fitted using an MCEM algorithm that considers a two-



Computational Statistics and Data Analysis 192 (2024) 107909

16

C. Tortora, B.C. Franczak, L. Bagnato et al.

Fig. 6. Scatter plot of stature and chest circumference of the second twin from the f.twins data under the different scenarios of the sensitivity analysis. Contours 
and PC-axes from the fitted MSCAL distribution are also superimposed.

step Monte Carlo optimization procedure to estimate the matrix of eigenvectors, #. A simulation study was used to evaluate the 
proposed MCEM algorithm in terms of parameter recovery and demonstrated the efficiency of this algorithm, in terms of elapsed run 
time. An analysis on the f.twins data showed how a multiple scaled asymmetric Laplace (MSAL) distribution can be a good fit for 
real data even when compared to other flexible distributions. However, a sensitivity analysis demonstrated the need for an MSCAL 
when outliers are included in the data.
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Table 10
A posteriori probability to be good (denoted as ̂96ℎ , 2 = 1, 2) 
for each added point in each scenario, and separately for 
each PC.
Scenario Point (6) 9̂61 (PC1) 9̂62 (PC2)
P1 P1 1.00000 0.00000
P2 P2 1.00000 0.00000
P1+P2 P1 1.00000 0.00001

P2 1.00000 0.00000
P3 P3 0.00000 1.00000
P1+P2+P3 P1 0.99922 0.00000

P2 0.99922 0.00000
P3 0.00000 0.99828

P4 P4 0.00030 0.00000
P1+P2+P3+P4 P1 0.99785 0.00000

P2 0.99783 0.00000
P3 0.00000 0.99742
P4 0.00020 0.00000

In terms of future work, the MSCAL can be extended to include a complete finite mixture modeling framework that can account 
for data composed of multiple sub-populations and PC-wise bad points simultaneously. Other variants of the proposed model that 
allow for combinations of either global or PC-wise outlier detection and either global or PC-wise parameterization of skewness can be 
considered. Moreover, alternative parameter estimation schemes for updating the matrix # should be explored. Finally, the proposed 
method could be extended to accommodate data sets with values missing at random (Tong and Tortora, 2022, 2023).
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Appendix A. The generalized inverse Gaussian distribution

The generalized inverse Gaussian (GIG) distribution has been utilized and studied on several occasions (see Barndorff-Nielsen, 
1977, 1978; Blæsild, 1978; Halgreen, 1979; Jørgensen, 1982 for examples). Let P ∼ GIG (; ,<, %) mean that P follows a GIG distri-
bution with parameters ; , < ∈ℝ+ and % ∈ℝ. The density of P can be written as

#GIG(Q ∣ ; ,<, %) =
(;∕<)%∕2Q%−1

2&%(
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;<)
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2

}
, (A.1)

for Q > 0, where &%(⋅) is the modified Bessel function of the third kind with index %. From Jørgensen (1982), we utilize the expected 
values of P and 1∕P in the E-step of the parameter estimation scheme proposed in Section 4. Formally, the expected values of 
interest can be written as
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respectively, where F% (⋅) ∶=&%+1 (⋅)∕&% (⋅) and all other terms as previously defined.
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Appendix B. Simulation study results

Table B.11 gives the bias and variance of the estimates of ! for the simulation study in Section 6.
Table B.11
For each scenario, the bias and variance of the estimates of Σ2ℎ for 2, ℎ = 1, 2.

Bias Variance
Scenario 7 500 1000 2000 500 1000 2000

S1
Σ11 0.38 0.29 0.33 0.86 0.55 0.52
Σ22 0.06 0.04 0.08 0.05 0.02 0.02
Σ12 -0.08 -0.06 -0.07 0.06 0.04 0.03

S2
Σ11 0.49 0.24 0.15 0.93 0.68 0.30
Σ22 0.08 0.02 0.03 0.03 0.02 0.01
Σ12 -0.10 -0.06 -0.03 0.06 0.04 0.02

S3
Σ11 -0.18 -0.14 -0.14 1.66 0.96 0.74
Σ22 0.06 0.02 0.06 0.05 0.02 0.02
Σ12 0.07 0.04 0.05 0.11 0.06 0.05

S4
Σ11 0.13 0.08 -0.06 1.57 0.99 0.69
Σ22 0.03 0.03 0.03 0.04 0.02 0.01
Σ12 -0.02 -0.01 0.03 0.11 0.07 0.04

S5
Σ11 0.12 0.27 0.20 1.40 0.71 0.38
Σ22 0.08 0.11 0.08 0.22 0.07 0.04
Σ12 -0.04 -0.04 -0.03 0.08 0.05 0.02

S6
Σ11 0.38 0.24 0.16 0.99 0.64 0.33
Σ22 0.14 0.09 0.02 0.23 0.06 0.03
Σ12 -0.06 -0.04 -0.04 0.08 0.05 0.02

S7
Σ11 -0.47 -0.06 -0.28 2.08 1.27 1.82
Σ22 -0.06 0.08 -0.02 0.20 0.08 0.26
Σ12 0.12 0.04 0.05 0.16 0.08 0.06

S8
Σ11 -0.02 -0.30 -0.02 1.36 2.07 0.68
Σ22 0.13 0.02 -0.01 0.14 0.12 0.07
Σ12 0.04 0.09 0.00 0.10 0.13 0.05

Appendix C. Female twins data

Table C.12
Estimates of ! obtained using the MSCAL algorithm on the female twins data.

STA1 HIP1 CHE1 STA2 HIP2 CHE2
STA1 149.26 38.25 69.31 150.41 34.71 63.28
HIP1 38.25 13.85 22.19 39.00 12.13 19.34
CHE1 69.31 22.19 50.53 69.54 19.42 40.42
STA2 150.41 39.00 69.54 168.94 38.61 70.26
HIP2 34.71 12.13 19.42 38.61 13.22 21.61
CHE2 63.28 19.34 40.42 70.26 21.61 46.57
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