IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

459

Event-Triggered Model Predictive Control With Deep
Reinforcement Learning for Autonomous Driving

Fengying Dang"”, Dong Chen

and Zhaojian Li

Abstract—Event-triggered model predictive control (eMPC) is
a popular optimal control method with an aim to alleviate the
computation and/or communication burden of MPC. However,
it generally requires a priori knowledge of the closed-loop sys-
tem behavior along with the communication characteristics for
designing the event-trigger policy. This paper attempts to solve
this challenge by proposing an efficient eMPC framework and
demonstrates successful implementation of this framework on the
autonomous vehicle path following. First of all, a model-free rein-
forcement learning (RL) agent is used to learn the optimal event-
trigger policy without the need for a complete dynamical system
and communication knowledge in this framework. Furthermore,
techniques including prioritized experience replay (PER) buffer
and long short-term memory (LSTM) are employed to foster ex-
ploration and improve training efficiency. In this paper, we use the
proposed framework with three deep RL algorithms, i.e., Double
Q-learning (DDQN), Proximal Policy Optimization (PPO), and Soft
Actor-Critic (SAC), to solve this problem. Results show that all
three deep RL-based eMPC (deep-RL-eMPC) can achieve better
evaluation performance than the conventional threshold-based and
previous linear Q-based approach in the autonomous path follow-
ing. In particular, PPO-eMPC with LSTM and DDQN-eMPC with
PER and LSTM obtain a superior balance between the closed-loop
control performance and event-trigger frequency.

Index Terms—Autonomous vehicles, double Q-learning
(DDQN), event-triggered model predictive control (eMPC), proxi-
mal policy optimization (PPO), reinforcement learning (RL), soft
actor-critic (SAC).

1. INTRODUCTION

UTONOMOUS vehicles have attracted researchers’ at-
tention dramatically in recent years due to the advanced
technology in automation, high-speed communication network
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and new energy [1], [2]. Path planning and path following are two
major tasks for the behaviour control of autonomous vehicles [3],
[4]1, [5], [6], [7]. Path planning is executed to plan the path
considering safety constraints, and a controller is then used to
follow this path accurately by considering the current states
and providing suitable control. Path planning has been well
explored by many researchers [8], [9], [10], [11]. However, path
following still remains a problem due to the high dynamic, lim-
ited computation and communication of autonomous vehicles.
The path following controller are expected to provide accurate
control inputs in real-time with constrained computation and
communication. Path following control can be implemented
using different controllers, e.g., proportional-integral-derivative
(PID) control, state feedback controllers, model predictive con-
trol (MPC), and so on [12], [13], [14], [15], [16], [17], [18].

MPC is capable of handling multi-input multi-output (MIMO)
systems with various constraints, making it specially suitable for
real-world autonomous vehicle path following problem. Despite
the advances of MPC over the years [19], [20], [21], [22], [23],
[24], solving the constrained optimal control problem requires
high computational power, which is further increased as the
system dimension and prediction horizon increase. This has
hindered its application to autonomous vehicles’ path following
that require a short sampling time but have limited computation
power.

To reduce computational burden, event-triggered MPC
(eMPC) has emerged as a promising paradigm where MPC
algorithm is solved — instead of at each time instant as in the
traditional MPC implementation — only when triggered by a
predefined trigger condition [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34]. In such framework, a triggering event can
be defined based on either the deviation of the system states [25],
[26], [27] or the cost function value [28], [29]. By solving
the optimization problem only when necessary, eMPC can
significantly reduce online computations. However, the trigger
mechanism design, concerning when to trigger the optimization
S0 as to preserve system performance while keeping the number
of triggers low, still remains a challenge [35].

The most common event-trigger policy is the threshold-based
event-trigger policy, where an event is triggered if the predicted
state trajectory and real-time feedback diverge beyond a certain
threshold [25], [26], [27]. Besides the threshold based on policy,
other researchers also investigate the triggering policy consid-
ering specific requirement of the system [36], [37], [38], [39],
[40]. In [36], event-triggered real-time scheduling of stabilizing
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control is proposed. This approach aims to reduce the com-
putational load and communication bandwidth requirements of
the control system while maintaining stability and performance.
In [37], researchers investigate event-triggered based-network
fault detection problems for nonlinear networked control system.
However, the performance index design of all these algorithms
is usually based on the knowledge of the closed-loop system
behavior which is not always available, especially for complex
systems. To address this limitation, researchers begin to explore
other methods to trigger the event with different application
background. In [38], a recurrent neural network is used to build
the building dynamics and a cost estimation is used for event trig-
ger. Machine-learning-based event-triggered model predictive
control (ETMPC) system is developed to optimize both building
energy efficiency and thermal comfort. The system is evaluated
through simulations by applying it to air-conditioning control for
performance assessment. In [41], a dynamic threshold param-
eters is used to determine when to trigger the information ex-
change and control update. It aims to improve cooperative cruise
control for multiple high-speed trains with random switching
topologies. However, triggering condition design is still a hard
problem, especially when the system or environment is very
complex which often affects the performance of the algorithm.

In recent years, the deep learning technique has been applied
to finding the better event-triggered strategy. Our prior work [42]
investigates the use of model free RL techniques, a simple
linear Q-learning approach, to synthesize a triggering policy
with the aim of achieving the optimal balance between control
performance and computational efficiency. However, this linear
Q-learning has a hard time capturing the nonlinear event-trigger
policy, leading to unnecessarily high event frequency. Therefore,
in this paper, we propose to use deep RL to learn the event-trigger
policy which makes the proposed framework achieve better
trade-offs between system performance and computation cost.
At the same time, a new multiple-input model is used in this
paper to make simulation environment can be applied to more
scenarios.

Note that the use of deep reinforcement learning in event-
triggered control has been reported in the literature. See for ex-
ample [43]. The problem considered in this paper is substantially
different from that of [43]. Specifically, in [43], when an event
is not triggered, the zero-order-hold is applied to control input,
i.e., the control input is invariant in between two events, while
in the proposed RL-based event-triggered MPC framework, the
control input can be varying in between two events, making
is a harder learning problem for RL. This paper addresses
the autonomous driving path following problem using a novel
control framework. First, it extends the previous work [42] with
an improved vehicle model, thereby removing the limitation of
using only the front steering angle as driving control. Second,
we develop a model-free deep-RL-eMPC framework that uses
deep RL to learn the event-trigger condition in the path tracking
problem of autonomous driving, so that no prior knowledge
of the closed-loop system is needed, which is essential for a
dynamic and complex system. Both off-policy and on-policy RL
methods are tested. Meanwhile, techniques including prioritized
experience replay (PER) buffer and long-short term memory
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(LSTM) are exploited to significantly improve the training effi-
ciency and control performance. Third, comparative validation
of various DRL methods for event-triggered control in path
following is conducted using a nonlinear autonomous vehicle
model. Simulation results show that our approach clearly out-
performs the previous linear Q-learning based approach in [42].

The remainder of the paper is organized as follows. Section II
formulates the autonomous vehicle path following problem.
Section III presents the framework of eMPC with triggering
policy obtained from RL. The experiment setup and results of
the proposed deep-RL-eMPC method in the autonomous vehicle
path following problem are presented in Section IV. Finally,
conclusion remarks are provided in Section V.

II. PROBLEM FORMULATION

This paper aims to improve autonomous vehicles path follow-
ing control by proposing a systematic, algorithmic framework
where eMPC can be used without having the prior knowledge of
the closed-loop system behavior. Our goal is to use an RL agent
to learn the optimal event-trigger policy automatically.

A. Task Description: Autonomous Vehicle Dynamics and Path
Following Problem

In order to demonstrate the proposed deep RL-eMPC and its
improving techniques, a path following task is chosen. For a
single track vehicle model, the equations for vehicle center of
gravity (CG) and wheel dynamics are given by

ly = vy costY — vy siny, (la)
. 2 . 1
bp =vyr o Y Fai = gsingy = —Fa, - (1b)
i=f,r
l'y = vy sin e + v, cos Y, (1c)
. 2
by ==+ = 3 Py, (1d)
i=f,r
d; =r, (le)
1
r = T (2Lm,fF g~ 2L:v,’rFy,T)7 (1f)

where [, and [, are the longitudinal and lateral position of
the center of gravity of vehicle, respectively; ) is the vehicle
rotational angle along the longitudinal axis in the global inertial
frame; and v, vy, and r are, respectively, the vehicle longitudi-
nal velocity, lateral velocity, and yaw rate in the vehicle frame.
F, is the aerodynamic drag force [44] and F, and F, are tire
forces. m is the vehicle mass, I is the vehicle rotational inertia
on yaw dimension, L,y and L,,. are the distance from CG to the
middle of front and rear axle, respectively.

The tire force I, ; and F, ; in (1b), (1d) in vehicle frame can
be modeled by

F,;=Fy;cosf; — Fy;sinp; (2a)

F, = F,;sinp; + F, ;cos B3, (2b)
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where (3; is the wheel-road-angle for the wheel ¢, i = {f,r}
represents the front or rear wheel, F, ; and F, ; are the tire force
in wheel frame which can be obtained as

- T;
Fo.= SR’ (3a)
Fyi=CipiF, 0, (3b)

where T; is the propulsion/braking torque along the axle, R
is the effective tire radius, C; is the tire corner stiffness and
1; characterize the road surface, o is the slip angle. We refer
readers to [27] for a detailed computation of the slip angle «;.

The normal force I, ; in (1f) can be modeled by static load
transfer,

Lm,img
2(L%f + LI,T) '

In this paper, we consider a problem of autonomous vehicle
following a sinusoidal trajectory using the proposed deep-RL-
eMPC method [27], [45], the following path is given by

2m lx> . (5)

F.i= “)

ly = g(lx) = 4sin <100

B. Optimal Control Problem and its Goal

Consider a discrete-time system with the following dynamics

Ti41 = f($t>ut)> (6)

where z; € R"™ is the system state at discrete time t and u; € R™
is the control input. Given a prediction horizon p, MPC aims to
find the optimal control sequence U; and optimal state sequence
X; by solving the following optimal control problem:

P
)Igtl,l[f]lt Jmpc = kzzof(xwrk,uwk) (7a)
S.t. X = Tt (7b)
Topr = [(Tepn-1,Un-1), 1<k<p (7¢)
Tmin < Tirk < Tmax, 1< k<p (7d)
Umin < Uk < Umax, 0k <p—1 (7e)

Amin < Uk — Utrk-1 < Amax,
0<k<p-1, (7)
Where Uy and X, are defined as Uy = {uy, wi1, ..., Upgp-1}

and Xy = {T+1, Ter2, - -, Tigp )y L(Tisk, wesr) is the stage
cost function, &; denotes the real state or current state estimation,
and wu;y denotes the control action at time step ¢ + k. For
conventional time-triggered MPC, the above optimal control
problem is solved for every sampling time ¢, and only the
first element u; of U; is applied to the system as the control
command, while all the remaining elements w41, . .
are abandoned.

Let ¢ and ¢, represent the current time step and the last
event time, respectively, and there thus exists a £ € N such that
t = t, + kdt where dt is the sampling time of the discrete sys-
tem. Let a; denotes the triggering command in event-triggered

-y Ut4p—1

buffered u plant S event-triggered
actuator MPC
event trigger |
policy g ‘
Ut
Fig. 1. Scheme of event-triggered model predictive control (eMPC).

MPC at time step t. Then when a; = 1, the above optimal control
problem is solved and the first element of the optimal control
sequence U; computed at current time step ¢ will be used as
control command. When a; = 0, the optimal control sequence
Uy, computed at last event when the time instance equals to ¢,
will be shifted to determine the control command [27]. Then the
control input v can be compactly represented as:

_JU(D),
e = {Utp(k+ 1),

if at:L

if a; = 0. ®

To implement (8) for eMPC, a buffer can be used to store the
optimal control sequence Uy, computed at last event at time ¢,,.
At each time step, the event-trigger policy block generates a,
based on current feedback from the plant. In eMPC, only when
a; = 1, a new control sequence U, is computed by solving (7),
whose first element is implemented by actuator as u, while the
entire sequence is saved into buffer. If a; = 0, indicating the
absence of an event, the control sequence currently stored in
the buffer will be shifted based on the time elapsed since last
event to determine the current control input . This process is
depicted in Fig. 1.

In general, the event a; can be generated by certain event-
trigger policy m, denoted as,

Qy NWQ(ti»i't)a )

where X, is the optimal state sequence computed at last event
when a;, = 1 and I is the real state (or current state estimate
if not directly measured), 6 are parameters characterizing the
policy. It is worth noting that, for nonlinear constrained MPC,
the design of event-trigger policy 7 is challenging and requires
extensive calibration and prior knowledge of the closed-loop
system behavior. Therefore, the design of event-trigger policy
and its calibrations are usually problem specific and non-trivial.
To address this limitation, the objective of this paper is to learn
the optimal event-trigger policy 7 using model-free deep RL
techniques.

If we discretize (1) to obtain a discrete-time model in the form
of (6), with = [l,, vz, ly, vy, ¥, r] and u = [T, 5] where Ty
is the axle driving torque and 3 is the front steering angle. The
stage cost of (7a) is defined as

2

+ = w1,
Qi
(10)

Uz, u) =

2(3) — dsin (f&)ﬂg)
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Fig. 2.  Scheme of RL based event-triggered MPC.

where the first nonlinear term penalizes the path tracking error
and the second term penalizes large control efforts. Here the
norm is defined as ||| |2Q = 27 Qx. More specifically, the MPC
cost function Jype in (7a) in this case can be equivalently
represented as:

p

D

k=1

2

Jmpc Xt, Ut $t+k

2m
— 4sin (10()xt+k(1)>

Q1

p—1
) (Juerr —upilld,) . (A1)
k=0

where U; and X, are defined as U, = {uy, wet1, ..., Upsp_1}
and X; = {@;41, %442, ..., Typ}, and the terms independent
of X; and U, are ignored.

III. EVENT-TRIGGERED MPC WITH DEEP RL-BASED POLICY
LEARNING

In this section, we present our proposed deep RL-based policy
learning eMPC, or deep-RL-eMPC.

A. Deep-RL-eMPC Framework

The process of our deep-RL-eMPC framework is shown in
Fig. 2. The RL agent learns the event-trigger policy parameter
by continuously interacting with the environment. Specifically,
at each time step, the agent sends an action a to the environment.
The environment then implements the eMPC following (8), sim-
ulates the dynamic system following (6), and emits an immediate
reward following the designed reward function. The agent then
observes the reward signals, update 6, and transitions to next
state.

For an eMPC problem, the discrete action space for RL agent
is defined as A = {0, 1}, where the event will be triggered when
a =1 and will not be triggered when a = 0. As the feedback
from the environment, the immediate reward function is defined
as

ry & (&g, u)dt — peay, (12)

where the first term £(Z, u; )dt measures the closed-loop system
performance and the second term p.a; measures the cost of
triggering events. Note that ¢(Z;,u;) is the stage cost and is
computed using the the real state (or current state estimate if
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not directly measured) ; and real-time control (8). Further-
more, p. is a hyper-parameter used to balance between control
performance index and triggering frequency. One can fine tune
this hyperparameter p. to make a tradeoff between control
performance and computational cost.

The complete deep-RL-eMPC algorithm is shown in
Algorithm 1. In this algorithm, M is the total number of training
epochs, T'is the length of each episode representing total training
time in each epoch, « is the discount factor in the reward
function, dt is the discrete time step, and IV is the size of
sampled experiences at each time (batch size). The output of
Algorithm 1 is the system parameters 6. The RL agent interacts
with the environment for M number of epochs (Lines 2-24).
After initialization, Lines 5 shows how to choose action. Lines
7-12 implement the event-triggered MPC to compute the control
command wu, which is used to simulate the dynamical system
(6) (Line 13). After that, the environment emits next state sy
and immediate reward 7; Line 16), which is observed by RL
agent (Line 18). The latest experience tuple (s, at, 7, St41)
is then added into an experience buffer D (Line 19). The RL
parameters 6 is updated using a batch of IV experiences sampled
from the experience buffer D (Line 20). RL agent then moves
to next state Line 21). After each epoch, RL agent is reset for
the next epoch (Line 3). Lines 7-16 are part of the environment,
whose computation is unknown to the RL agents. Note that the
agent only observes the environment outputs, i.e., next state and
reward.

B. Deep RL Algorithms and Improving Technique

The framework shown in Fig. 2 and Algorithm 1 is a general
frame which can accommodate different RL algorithm. In this
paper, we investigate three different RL agents, including Dou-
ble Q-learning (DDQN) [46] and Proximal Policy Optimization
(PPO) [47], Soft Actor-Critic (SAC) [48], and show the proposed
framework is also suitable for other RL algorithms.

In this subsection, we first briefly describe these three deep
RL algorithms. Then two improving technique for RI agent
including PER and LSTM are presented.

1) Double Q-Learning: Deep Q network is a type of Q-
learning which uses neural network as a policy. To address the
issues of overestimation of Q values in deep Q network [49],
Double Q-learning (DDQN) explicitly separates action selec-
tion from action evaluation which allows each step to use a
different function approximator and shows a better overall ap-
proximation of the action-value function [46]. DDQN improves
deep Q network by replacing the target yP@N by yPPON —
rt + ¥Qo (8141, arg max, Qo(S¢t+1,a)), resulting in the Dou-
ble Q-learning loss:

Lppon(0) = Ep[y”PoN —

Qo (st at)]2-

2) PPO: PPO, an on-policy policy gradient RL algorithm,
replaces the KL-divergence used in TRPO [50] with a clipped
surrogate objective function (14), which is proved to be better
suited for the TRPO and easy to implement.

13)

LELELP(0) = Ey[min (1, Ay, clip(ry, 1 — e,1 +¢)Ay)]. (14)
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Algorithm 1: RL-based Event-Triggered MPC.
Input: M, T, dt, v, N
Output: ¢

1 Initialize 6, D « (;

2 for j=0to M —1 do

3 Initialize s;, Z, U, k < 0;

4 while ¢t <=T do

5 select action a; ~ 7o(Xy,, Ty)

6 % Simulate Environment,

7 if a; = 1 then

8 k + 0;

9 (Z,U) + Solving optimal control problem (7);
10 else

1 | k+k+1;

12 end

13 u <+ U(k);

14 Zyy1 < Simulate system dynamics (6) using u;
15 St41 ($t+1, Z(k)),

16 re + (12);

17 9% End of Environment Simulation;

18 Observe 7; and s;41;

19 Update D to include (s, at, 7, St4+1);

20 Sample N experiences from D and update 6;
21 St < St415

22 t—t+dt

23 end
24 end

25 Note: D can be either conventional on-policy or
off-policy experience buffer or priority experience
buffer.

3) Soft Actor-Critic: SAC achieves the state-of-the-art per-
formance across a wide range of continuous-action control
problems and updates the stochastic actor-critic policy in an off-
policy way. SAC takes a good exploration-exploitation trade-off
via entropy regularization.

In this paper, we adopt SAC and PPO to the discrete action
space setting following the discrete categorical distribution de-
sign in [51]. For details, refer to DDQN [46], PPO [47] and
SAC [48].

The training performance of the proposed deep-RL-eMPC
framework depends on the quality of the selected experience
sample, so how to choose them is critical when using off-policy
RL algorithms. The experience replay buffer utilizes a fixed-size
buffer that holds the most recent transitions collected by the
policy [52], [53]. In RL, the weights updating and optimization
of neural networks are based on the experience replay. The
experience replay in the original DDQN uniformly samples
the stored experience to train the network weights. However,
the importance of experiences are different. Some experiences
are more valuable than others in the long run and important
experience should be considered more frequently. To address
this problem, the prioritized experience replay has been pro-
posed [54] to prioritize more frequent replay transitions leading
to high expected learning progress, as measured by the magni-
tude of their TD error. Specifically, the probability of sampling

transition ¢ is defined as follows:
. 2%
P(i) = =,
>k Pl
where « € [0, 1] controls how much prioritization is applied;
when o = 0, the experience will be sampled uniformly. Here
p; > 0 represents the priority of transition 7, which is initialized
as 1 and updated based on the TD-error §; during the transition.
More specifically, to alleviate the bias of the gradient mag-
nitudes introduced by the priority replay, importance-sampling
(IS) is introduced in [54] as:

= (hrk)

where [ is the hyperparameter annealing the amount of
importance-sampling correction over time. N is size of the
experience buffer. The weight w; is then used in the Q-learning
updates by replacing the TD-error J; as w;d;. In practice, we
can apply the PER by replacing line 24 in Algorithm 1 with the
designed PER scheme.

To encode the historical information in the network, a straight-
forward way is to feed all historical states to the RL agent, but it
increases the state dimension significantly and may distract the
attention of the RL agent from recent input states. To address this
challenge, recurrent neural network (RNN) has been developed,
which is a class of artificial neural networks that can encode and
learn temporal information. Traditional RNN does not have the
ability for long term memory and suffers from vanishing gradient
problem. Long short-term memory (LSTM) [55], a type of RNN
architecture, solves this issue by using feedback connections
and thus suitable for long-time series data. In this paper, we
will explore the use of LSTM as the last hidden layer to extract
representations from different state types and encode the history
information.

15)

(16)

IV. AUTONOMOUS VEHICLE PATH FOLLOWING USING
DEEP-RL-EMPC

In this section we apply the proposed deep-RL-eMPC to
a nonlinear autonomous vehicle path tracking problem. The
prediction horizon of MPC is set to p = 5 with upper and lower
bounds for all control inputs. Since autonomous vehicle requires
short control sampling time but has limited onboard computation
power, this nonlinear path tracking problem is a good example
to demonstrate the proposed deep-RL-eMPC.

A. RL Structure and Settings

In this paper, we encode the input state with a one fully con-
nected (FC) layer with 128 neurons, followed by two 128-neuron
FC layers. In the LSTM design, we replace the last FC layer with
a 128-unit LSTM layer. The last layer outputs two Q values
corresponding to two actions, i.e., trigger and not trigger. The
target network in DDQN are updated every Ny = 1000 steps.

The state of the environment is defined tobe s = (Z, T ), where
2 as mentioned above is the state estimate of the dynamical
system and z is the MPC prediction made at last event. The
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TABLE I
EVALUATION RETURN R, TRIGGERING FREQUENCY Ag, AND MPC COST )y, USING DIFFERENT RL AGENTS IN DEEP-RL-EMPC

Threshold LSTDQ SAC DDQN DDQN+LSTM+PER PPO PPO+LSTM

pec =0 return 1.606 0.062 0.058 0.056 0.058 0.055 0.055
Af/Empe  0.118/1.606  0.902/0.062  0.99/0.058  0.902/0.056 0.99/0.058 0.99/0.058 0.99/0.055

pe = 0.001  return 1.618 0.157 0.158 0.152 0.137 0.119 0.112
Af/Empe  0.118/1.606  0.931/0.157  0.98/0.058  0.951/0.055 0.794/0.056 0.594/0.059  0.594/0.059

pe = 0.01 return 1.728 0.66 1.015 0.627 0.431 0.634 0.529
Ai/Empe  0.118/1.606  0.559/0.660  0.922/0.075 0.5/0.117 0.255/0.171 0.515/0.114  0.515/0.069

reward function follows (12), with ¢(Z;, u;) defined as follows:
2

+ e —ugllg,,
Q:

a7

where 7 is the real state (or current state estimate if not directly
measured) and w, is the real-time applied control computed by
(8). Then the return for one episode in the RL algorithm is as
follows:

E(ft, Ut) =

#4(3) — 4sin <12(;;;z-t(1))

Te

(&g, ug)dt — peat) , (18)

||
i M%

t:l
where Risthe eplsodlc return of RL algorithms, 7% is the number
of steps for the episode, p. is a hyper- parameter proposed to
balance control performance and event trigger frequency. To
evaluate performance of different RL algorithms in our deep-
RL-eMPC frame, we adopt the following two evaluation metrics:
total MPC cost E,,;,. and event triggering frequency Ay, which
are defined as follows:

Te
Empe = Y (£(4,up)dt) (19)
t=1
Te
Ap = Lt;l @ (20)

We train the off-policy RL algorithms over 50,000 steps, which
is around 500 episodes, each with a length of 7"= 20 s and a
sampling time of dt = 200 ms, i.e., episode horizonis 7, = 100
time steps. On-policy algorithms, e.g., PPO, often require longer
training time but with improved stability [51], thus we train
them for 1000 episodes for better convergence. For MDP, we
set the discount factor v = 0.99 and batch size N = 64. The
learning rate and replay buffer size are set as n = le — 4 and
5,000, respectively. Also, e-greedy is adopted in DDQN with ¢
linearly decaying from 1.0 to 0.01 during the first 5000 steps of
training.

B. Simulation Results and Analysis

Numerical simulation results on the evaluation returns for
pe =0, 0.001, 0.01 with the threshold-based benchmark and
different variants of RL algorithms are summarized in Table I.
The simple linear Q-learning method (least-square temporal
difference Q-learning, LSTDQ) [42] is also shown here as a

benchmark. To measure the computation burden required by
different RL algorithms and MPC, we run the simulation 10000
times and use the average time as the time cost. The results show
that the average time cost of MPC is about 0.1 s while the average
time cost of RL algorithms considered in this paper is about
1079 s. In other words, each MPC computation requires 10°
times more computation than evaluating RL policies, and hence
the time cost spent on the decision making of RL algorithms is
negligible. So overall speaking, fewer MPC queries will provide
less computation burden.

The threshold-based event-trigger policy [27] depends on
a manually-tuned threshold to determine when the event is
triggered. However, this method is very sensitive to the tracking
error and is susceptible to over-triggering problems when the
error is large. This causes the return of the threshold-based
method around 1.6 for all three different p., much worse than
the RL-based methods as shown in Table I.

Comparing LSTDQ, SAC, DDQN, and PPO, experimental
results clearly show that deep-RL-eMPC frameworks achieve
better evaluation return than the the conventional threshold-
based approach and previous LSTDQ for all three different p,.. It
is also shown that PPO presents the best result under p, = 0 and
pe = 0.001, while DDQN performs better when p. = 0.01 in
terms of evaluation return, partly due to the low overestimation.
To show the flexibility of the proposed framework, PER buffer
and LSTM are employed to foster the exploration and efficiency
of the training of DDQN and PPO. PPO is an on policy RL
method and PER cannot be applied to this method, so only
PPO+LSTM is tested. Specifically, DDQN+LSTM+PER and
PPO+LSTM are implemented and compared. The experimental
results show that LSTM and PER significantly increase the eval-
uation return of the system, outperforming the baseline methods.
SAC performs well when p. = 0, while it fails in the more
challenging cases when p. = 0.001 or 0.01. The intrinsic reason
for the poor performance of SAC deserves to be investigated in
the future work.

Recall that the hyperparameter p. can be used to balance
control performance and triggering frequency. When p. = 0,
RL triggers MPC at nearly every time step and achieves the
smallest tracking error. As the value of p. increases, the rewards
function (12) penalizes more on triggering MPC, resulting in
less frequent events and higher MPC costs Jpypc. The bigger the
pc 18, the larger penalty the system will give for triggering the
events. From Table I, we can see when p, is larger, the system

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.



DANG et al.: EVENT-TRIGGERED MODEL PREDICTIVE CONTROL WITH DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING 465

0.4 Pe=0
T | LsTDQ
g S — — DDQN+LSTM+PER| |
[ e PPO+LSTM
GU)) '&
0 ¢
S b f
s Ny
N R I I T T I -
= 74 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
. Triggering command LSTDQ
< 0.5 ﬂ
0
1 00060 oo 06600 0o QDONLLSTMLPER | | 0000 0000 6000
<~ 0.5 |
0 AAAA
PPO+LSTM
1 7 7 i 7 i 7 F 7 7
<~ 0.5 —
0 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
time (s)

Fig. 3.

Simulation results of deep-RL-eMPC for the reward function with p. = 0. The comparison of the tracking error using three different RL algorithm in

deep-RL-eMPC (first row). The corresponding triggering commands a; during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)

and PPO+LSTM (fourth row).
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Fig. 4. Simulation results of deep-RL-eMPC for the reward function with p. = 0.001. The comparison of the tracking error using three different RL algorithm

in deep-RL-eMPC (first row). The corresponding triggering commands a; during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)

and PPO+LSTM (fourth row).

tends to give smaller returns because of the larger punishment
of triggering the events.

Fig. 3, Fig. 4 and Fig. 5 shows the path following error and
event triggering command a; when using three different RL
algorithm (LSTDQ, DDQN+LSTM+PER, PPO+LSTM) in the
deep-RL-MPC framework when using different p. in reward
equation (18). The first row shows the comparison of the tracking
error using three different RL algorithm in deep-RL-eMPC. The
corresponding triggering commands a; during the process is
showed in second row when using LSTDQ), is showed in third
row when using DDQN+LSTM+PER and is showed in fourth

row when using PPO+LSTM. The best results from deep-RL-
eMPC when p. = 0 and p. = 0.001 are from PPO+LSTM and
when p. = 0.01 is from DDQN+LSTM+PER. In LSTDQ, when
pe =0, Eyppe = 0.062 and the triggering frequency is 0.902.
When p, = 0.001, E,,,. = 0.157 and the triggering frequency
is 0.931. When p. = 0.01, E,,;,. = 0.66 and the triggering fre-
quency is 0.559. In PPO+LSTM, when p. = 0, Ep,p. = 0.055
and the triggering frequency is 0.99. In this situation, there is
no penalty on triggering MPC, and the RL agent triggers MPC
for nearly every sampling time, and the path tracking error is
the smallest. It results in a triggering frequency of 5 Hz as the
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Simulation results of deep-RL-eMPC for the reward function with p. = 0.01. The comparison of the tracking error using three different RL algorithm

in deep-RL-eMPC (first row). The corresponding triggering commands a during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)

and PPO+LSTM (fourth row).

sampling time is dt = 0.2 s. When p. = 0.001, E,,,. = 0.059
and the triggering frequency is 0.594. In this situation, the RL
agent tends to trigger an event when the tracking error is large,
and keeps silent when the error is going to be around 0. When
pe = 0.01, DDQN+LSTM+PER achieves the best performance
with F,,,. = 0.171 and the triggering frequency is 0.255. In
this situation, the event-trigger pattern is similar to that of
pe = 0.001, but with a lower triggering frequency. It is worth
noting that, for each case, DDQN+LSTM+PER triggers MPC
less frequently (resulting in less MPC computation) while in-
curring smaller MPC cost (resulting in better control perfor-
mance). We can then conclude that DDQN+LSTM+PER and
PPO+LSTM outperforms the previous LSTDQ method as pre-
sented in [42].

C. Additional Remarks

It is worth noting that the simulation environment used in this
paper is based on a nonlinear autonomous vehicle model with
simultaneous control of both longitudinal and lateral dynamics.
While such a simulation environment is complex enough for
proof-of-concept demonstration, future improvement can be
made by using more sophisticated tool, such as CARLA [56]
or SUMO [57]. Moreover, future improvement can be made
by incorporating random noise to differentiate the training and
validation environments.

V. CONCLUSION

This paper investigats a path following problem for au-
tonomous driving. We present a novel eMPC framework with
the triggering policy obtained from deep reinforcement learning
to solve the problem. A reward function is proposed to bal-
ance control performance and event trigger frequency through
a hyper-parameter p.. In comparison to existing eMPC, the
proposed algorithm does not require any knowledge of the
closed-loop dynamics (i.e., model-free) and delivers superior

performance. We also demonstrate that incorporating techniques
such as priority experience replay and long-short term memory
can significantly enhance the performance. The learnt deep RL-
based triggering policy effectively reduces the computational
burden while achieving satisfactory control performance. In
future work, we will explore the time-varying computational
budgets and costs within this deep-RL-eMPC framework for
autonomous driving path following. Additionally, we will in-
vestigate a more complex simulation environment and some
professional simulation software like CARLA. Furthermore,
we will examine the stability and convergence of the proposed
deep-RL-eMPC framework in hardware experiments.
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