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Reinforcement Learning for Autonomous Driving
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Abstract—Event-triggered model predictive control (eMPC) is
a popular optimal control method with an aim to alleviate the
computation and/or communication burden of MPC. However,
it generally requires a priori knowledge of the closed-loop sys-
tem behavior along with the communication characteristics for
designing the event-trigger policy. This paper attempts to solve
this challenge by proposing an efficient eMPC framework and
demonstrates successful implementation of this framework on the
autonomous vehicle path following. First of all, a model-free rein-
forcement learning (RL) agent is used to learn the optimal event-
trigger policy without the need for a complete dynamical system
and communication knowledge in this framework. Furthermore,
techniques including prioritized experience replay (PER) buffer
and long short-term memory (LSTM) are employed to foster ex-
ploration and improve training efficiency. In this paper, we use the
proposed framework with three deep RL algorithms, i.e., Double
Q-learning (DDQN), Proximal Policy Optimization (PPO), and Soft
Actor-Critic (SAC), to solve this problem. Results show that all
three deep RL-based eMPC (deep-RL-eMPC) can achieve better
evaluation performance than the conventional threshold-based and
previous linear Q-based approach in the autonomous path follow-
ing. In particular, PPO-eMPC with LSTM and DDQN-eMPC with
PER and LSTM obtain a superior balance between the closed-loop
control performance and event-trigger frequency.

Index Terms—Autonomous vehicles, double Q-learning
(DDQN), event-triggered model predictive control (eMPC), proxi-
mal policy optimization (PPO), reinforcement learning (RL), soft
actor-critic (SAC).

I. INTRODUCTION

A
UTONOMOUS vehicles have attracted researchers’ at-

tention dramatically in recent years due to the advanced

technology in automation, high-speed communication network
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and new energy [1], [2]. Path planning and path following are two

major tasks for the behaviour control of autonomous vehicles [3],

[4], [5], [6], [7]. Path planning is executed to plan the path

considering safety constraints, and a controller is then used to

follow this path accurately by considering the current states

and providing suitable control. Path planning has been well

explored by many researchers [8], [9], [10], [11]. However, path

following still remains a problem due to the high dynamic, lim-

ited computation and communication of autonomous vehicles.

The path following controller are expected to provide accurate

control inputs in real-time with constrained computation and

communication. Path following control can be implemented

using different controllers, e.g., proportional-integral-derivative

(PID) control, state feedback controllers, model predictive con-

trol (MPC), and so on [12], [13], [14], [15], [16], [17], [18].

MPC is capable of handling multi-input multi-output (MIMO)

systems with various constraints, making it specially suitable for

real-world autonomous vehicle path following problem. Despite

the advances of MPC over the years [19], [20], [21], [22], [23],

[24], solving the constrained optimal control problem requires

high computational power, which is further increased as the

system dimension and prediction horizon increase. This has

hindered its application to autonomous vehicles’ path following

that require a short sampling time but have limited computation

power.

To reduce computational burden, event-triggered MPC

(eMPC) has emerged as a promising paradigm where MPC

algorithm is solved – instead of at each time instant as in the

traditional MPC implementation – only when triggered by a

predefined trigger condition [25], [26], [27], [28], [29], [30],

[31], [32], [33], [34]. In such framework, a triggering event can

be defined based on either the deviation of the system states [25],

[26], [27] or the cost function value [28], [29]. By solving

the optimization problem only when necessary, eMPC can

significantly reduce online computations. However, the trigger

mechanism design, concerning when to trigger the optimization

so as to preserve system performance while keeping the number

of triggers low, still remains a challenge [35].

The most common event-trigger policy is the threshold-based

event-trigger policy, where an event is triggered if the predicted

state trajectory and real-time feedback diverge beyond a certain

threshold [25], [26], [27]. Besides the threshold based on policy,

other researchers also investigate the triggering policy consid-

ering specific requirement of the system [36], [37], [38], [39],

[40]. In [36], event-triggered real-time scheduling of stabilizing
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control is proposed. This approach aims to reduce the com-

putational load and communication bandwidth requirements of

the control system while maintaining stability and performance.

In [37], researchers investigate event-triggered based-network

fault detection problems for nonlinear networked control system.

However, the performance index design of all these algorithms

is usually based on the knowledge of the closed-loop system

behavior which is not always available, especially for complex

systems. To address this limitation, researchers begin to explore

other methods to trigger the event with different application

background. In [38], a recurrent neural network is used to build

the building dynamics and a cost estimation is used for event trig-

ger. Machine-learning-based event-triggered model predictive

control (ETMPC) system is developed to optimize both building

energy efficiency and thermal comfort. The system is evaluated

through simulations by applying it to air-conditioning control for

performance assessment. In [41], a dynamic threshold param-

eters is used to determine when to trigger the information ex-

change and control update. It aims to improve cooperative cruise

control for multiple high-speed trains with random switching

topologies. However, triggering condition design is still a hard

problem, especially when the system or environment is very

complex which often affects the performance of the algorithm.

In recent years, the deep learning technique has been applied

to finding the better event-triggered strategy. Our prior work [42]

investigates the use of model free RL techniques, a simple

linear Q-learning approach, to synthesize a triggering policy

with the aim of achieving the optimal balance between control

performance and computational efficiency. However, this linear

Q-learning has a hard time capturing the nonlinear event-trigger

policy, leading to unnecessarily high event frequency. Therefore,

in this paper, we propose to use deep RL to learn the event-trigger

policy which makes the proposed framework achieve better

trade-offs between system performance and computation cost.

At the same time, a new multiple-input model is used in this

paper to make simulation environment can be applied to more

scenarios.

Note that the use of deep reinforcement learning in event-

triggered control has been reported in the literature. See for ex-

ample [43]. The problem considered in this paper is substantially

different from that of [43]. Specifically, in [43], when an event

is not triggered, the zero-order-hold is applied to control input,

i.e., the control input is invariant in between two events, while

in the proposed RL-based event-triggered MPC framework, the

control input can be varying in between two events, making

is a harder learning problem for RL. This paper addresses

the autonomous driving path following problem using a novel

control framework. First, it extends the previous work [42] with

an improved vehicle model, thereby removing the limitation of

using only the front steering angle as driving control. Second,

we develop a model-free deep-RL-eMPC framework that uses

deep RL to learn the event-trigger condition in the path tracking

problem of autonomous driving, so that no prior knowledge

of the closed-loop system is needed, which is essential for a

dynamic and complex system. Both off-policy and on-policy RL

methods are tested. Meanwhile, techniques including prioritized

experience replay (PER) buffer and long-short term memory

(LSTM) are exploited to significantly improve the training effi-

ciency and control performance. Third, comparative validation

of various DRL methods for event-triggered control in path

following is conducted using a nonlinear autonomous vehicle

model. Simulation results show that our approach clearly out-

performs the previous linear Q-learning based approach in [42].

The remainder of the paper is organized as follows. Section II

formulates the autonomous vehicle path following problem.

Section III presents the framework of eMPC with triggering

policy obtained from RL. The experiment setup and results of

the proposed deep-RL-eMPC method in the autonomous vehicle

path following problem are presented in Section IV. Finally,

conclusion remarks are provided in Section V.

II. PROBLEM FORMULATION

This paper aims to improve autonomous vehicles path follow-

ing control by proposing a systematic, algorithmic framework

where eMPC can be used without having the prior knowledge of

the closed-loop system behavior. Our goal is to use an RL agent

to learn the optimal event-trigger policy automatically.

A. Task Description: Autonomous Vehicle Dynamics and Path

Following Problem

In order to demonstrate the proposed deep RL-eMPC and its

improving techniques, a path following task is chosen. For a

single track vehicle model, the equations for vehicle center of

gravity (CG) and wheel dynamics are given by

l̇x = vx cosψ − vy sinψ, (1a)

v̇x = vyr +
2

m

∑

i=f,r

Fx,i − g sinσg −
1

m
Fa, (1b)

l̇y = vx sinψ + vy cosψ, (1c)

v̇y = −vxr +
2

m

∑

i=f,r

Fy,i, (1d)

ψ̇ = r, (1e)

ṙ =
1

I
(2Lx,fFy,f − 2Lx,rFy,r) , (1f)

where lx and ly are the longitudinal and lateral position of

the center of gravity of vehicle, respectively; ψ is the vehicle

rotational angle along the longitudinal axis in the global inertial

frame; and vx, vy, and r are, respectively, the vehicle longitudi-

nal velocity, lateral velocity, and yaw rate in the vehicle frame.

Fa is the aerodynamic drag force [44] and Fx and Fy are tire

forces. m is the vehicle mass, I is the vehicle rotational inertia

on yaw dimension, Lxf and Lxr are the distance from CG to the

middle of front and rear axle, respectively.

The tire force Fx,i and Fy,i in (1b), (1d) in vehicle frame can

be modeled by

Fx,i = F̄x,i cosβi − F̄y,i sinβi (2a)

Fy,i = F̄x,i sinβi + F̄y,i cosβi, (2b)
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where βi is the wheel-road-angle for the wheel i, i = {f, r}
represents the front or rear wheel, F̄x,i and F̄y,i are the tire force

in wheel frame which can be obtained as

F̄x,i =
Ti

2R
, (3a)

F̄y,i = CiµiFz,iαi, (3b)

where Ti is the propulsion/braking torque along the axle, R

is the effective tire radius, Ci is the tire corner stiffness and

µi characterize the road surface, αi is the slip angle. We refer

readers to [27] for a detailed computation of the slip angle αi.

The normal force Fz,i in (1f) can be modeled by static load

transfer,

Fz,i =
Lx,img

2(Lx,f + Lx,r)
. (4)

In this paper, we consider a problem of autonomous vehicle

following a sinusoidal trajectory using the proposed deep-RL-

eMPC method [27], [45], the following path is given by

ly = g(lx) = 4 sin

(

2π

100
lx

)

. (5)

B. Optimal Control Problem and its Goal

Consider a discrete-time system with the following dynamics

xt+1 = f(xt, ut), (6)

wherext ∈ R
n is the system state at discrete time t andut ∈ R

m

is the control input. Given a prediction horizon p, MPC aims to

find the optimal control sequence Ut and optimal state sequence

Xt by solving the following optimal control problem:

min
Xt,Ut

Jmpc =

p
∑

k=0

�(xt+k, ut+k) (7a)

s.t. xt = x̂t (7b)

xt+k = f(xt+k−1, ut+k−1), 1 ≤ k ≤ p (7c)

xmin ≤ xt+k ≤ xmax, 1 ≤ k ≤ p (7d)

umin ≤ ut+k ≤ umax, 0 ≤ k ≤ p− 1 (7e)

∆min ≤ ut+k − ut+k−1 ≤ ∆max,

0 ≤ k ≤ p− 1, (7f)

WhereUt andXt are defined asUt = {ut, ut+1, . . . , ut+p−1}
and Xt = {xt+1, xt+2, . . . , xt+p}, �(xt+k, ut+k) is the stage

cost function, x̂t denotes the real state or current state estimation,

and ut+k denotes the control action at time step t+ k. For

conventional time-triggered MPC, the above optimal control

problem is solved for every sampling time t, and only the

first element ut of Ut is applied to the system as the control

command, while all the remaining elements ut+1, . . . , ut+p−1

are abandoned.

Let t and tp represent the current time step and the last

event time, respectively, and there thus exists a k ∈ N such that

t = tp + kdt where dt is the sampling time of the discrete sys-

tem. Let at denotes the triggering command in event-triggered

Fig. 1. Scheme of event-triggered model predictive control (eMPC).

MPC at time step t. Then whenat = 1, the above optimal control

problem is solved and the first element of the optimal control

sequence Ut computed at current time step t will be used as

control command. When at = 0, the optimal control sequence

Utp computed at last event when the time instance equals to tp
will be shifted to determine the control command [27]. Then the

control input u can be compactly represented as:

ut =

{

Ut(1), if at = 1,
Utp(k + 1), if at = 0.

(8)

To implement (8) for eMPC, a buffer can be used to store the

optimal control sequence Utp computed at last event at time tp.

At each time step, the event-trigger policy block generates at
based on current feedback from the plant. In eMPC, only when

at = 1, a new control sequence Ut is computed by solving (7),

whose first element is implemented by actuator as u, while the

entire sequence is saved into buffer. If at = 0, indicating the

absence of an event, the control sequence currently stored in

the buffer will be shifted based on the time elapsed since last

event to determine the current control input u. This process is

depicted in Fig. 1.

In general, the event at can be generated by certain event-

trigger policy π, denoted as,

at ∼ πθ(Xtp , x̂t), (9)

where Xtp is the optimal state sequence computed at last event

when atp = 1 and x̂t is the real state (or current state estimate

if not directly measured), θ are parameters characterizing the

policy. It is worth noting that, for nonlinear constrained MPC,

the design of event-trigger policy π is challenging and requires

extensive calibration and prior knowledge of the closed-loop

system behavior. Therefore, the design of event-trigger policy

and its calibrations are usually problem specific and non-trivial.

To address this limitation, the objective of this paper is to learn

the optimal event-trigger policy π using model-free deep RL

techniques.

If we discretize (1) to obtain a discrete-time model in the form

of (6), with x = [lx, vx, ly, vy, ψ, r] and u = [Tf , βf ] where Tf

is the axle driving torque and βf is the front steering angle. The

stage cost of (7a) is defined as

�(x, u) =

∣

∣

∣

∣

∣

∣

∣

∣

x(3)− 4 sin

(

2π

100
x(1)

)∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+ ||u− ur||2Qu
,

(10)
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Fig. 2. Scheme of RL based event-triggered MPC.

where the first nonlinear term penalizes the path tracking error

and the second term penalizes large control efforts. Here the

norm is defined as ||x||2Q = xTQx. More specifically, the MPC

cost function Jmpc in (7a) in this case can be equivalently

represented as:

Jmpc(Xt, Ut) =

p
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

xt+k(3)− 4 sin

(

2π

100
xt+k(1)

)∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+

p−1
∑

k=0

(

||ut+k − ur
t+k||

2
Qu

)

, (11)

where Ut and Xt are defined as Ut = {ut, ut+1, . . . , ut+p−1}
and Xt = {xt+1, xt+2, . . . , xt+p}, and the terms independent

of Xt and Ut are ignored.

III. EVENT-TRIGGERED MPC WITH DEEP RL-BASED POLICY

LEARNING

In this section, we present our proposed deep RL-based policy

learning eMPC, or deep-RL-eMPC.

A. Deep-RL-eMPC Framework

The process of our deep-RL-eMPC framework is shown in

Fig. 2. The RL agent learns the event-trigger policy parameter θ

by continuously interacting with the environment. Specifically,

at each time step, the agent sends an action a to the environment.

The environment then implements the eMPC following (8), sim-

ulates the dynamic system following (6), and emits an immediate

reward following the designed reward function. The agent then

observes the reward signals, update θ, and transitions to next

state.

For an eMPC problem, the discrete action space for RL agent

is defined asA = {0, 1}, where the event will be triggered when

a = 1 and will not be triggered when a = 0. As the feedback

from the environment, the immediate reward function is defined

as

rt � −�(x̂t, ut)dt− ρcat, (12)

where the first term �(x̂t, ut)dtmeasures the closed-loop system

performance and the second term ρcat measures the cost of

triggering events. Note that �(x̂t, ut) is the stage cost and is

computed using the the real state (or current state estimate if

not directly measured) x̂t and real-time control (8). Further-

more, ρc is a hyper-parameter used to balance between control

performance index and triggering frequency. One can fine tune

this hyperparameter ρc to make a tradeoff between control

performance and computational cost.

The complete deep-RL-eMPC algorithm is shown in

Algorithm 1. In this algorithm,M is the total number of training

epochs,T is the length of each episode representing total training

time in each epoch, γ is the discount factor in the reward

function, dt is the discrete time step, and N is the size of

sampled experiences at each time (batch size). The output of

Algorithm 1 is the system parameters θ. The RL agent interacts

with the environment for M number of epochs (Lines 2–24).

After initialization, Lines 5 shows how to choose action. Lines

7–12 implement the event-triggered MPC to compute the control

command u, which is used to simulate the dynamical system

(6) (Line 13). After that, the environment emits next state st+1

and immediate reward rt Line 16), which is observed by RL

agent (Line 18). The latest experience tuple (st, at, rt, st+1)
is then added into an experience buffer D (Line 19). The RL

parameters θ is updated using a batch of N experiences sampled

from the experience buffer D (Line 20). RL agent then moves

to next state Line 21). After each epoch, RL agent is reset for

the next epoch (Line 3). Lines 7-16 are part of the environment,

whose computation is unknown to the RL agents. Note that the

agent only observes the environment outputs, i.e., next state and

reward.

B. Deep RL Algorithms and Improving Technique

The framework shown in Fig. 2 and Algorithm 1 is a general

frame which can accommodate different RL algorithm. In this

paper, we investigate three different RL agents, including Dou-

ble Q-learning (DDQN) [46] and Proximal Policy Optimization

(PPO) [47], Soft Actor-Critic (SAC) [48], and show the proposed

framework is also suitable for other RL algorithms.

In this subsection, we first briefly describe these three deep

RL algorithms. Then two improving technique for Rl agent

including PER and LSTM are presented.

1) Double Q-Learning: Deep Q network is a type of Q-

learning which uses neural network as a policy. To address the

issues of overestimation of Q values in deep Q network [49],

Double Q-learning (DDQN) explicitly separates action selec-

tion from action evaluation which allows each step to use a

different function approximator and shows a better overall ap-

proximation of the action-value function [46]. DDQN improves

deep Q network by replacing the target yDQN by yDDQN =
rt + γQθ′(st+1, argmaxa Qθ(st+1, a)), resulting in the Dou-

ble Q-learning loss:

LDDQN (θ) = ED[y
DDQN −Qθ(st, at)]

2. (13)

2) PPO: PPO, an on-policy policy gradient RL algorithm,

replaces the KL-divergence used in TRPO [50] with a clipped

surrogate objective function (14), which is proved to be better

suited for the TRPO and easy to implement.

LCLIP
PPO (θ) = Et[min (rtAt, clip(rt, 1− ε, 1 + ε)At)]. (14)
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Algorithm 1: RL-based Event-Triggered MPC.

3) Soft Actor-Critic: SAC achieves the state-of-the-art per-

formance across a wide range of continuous-action control

problems and updates the stochastic actor-critic policy in an off-

policy way. SAC takes a good exploration-exploitation trade-off

via entropy regularization.

In this paper, we adopt SAC and PPO to the discrete action

space setting following the discrete categorical distribution de-

sign in [51]. For details, refer to DDQN [46], PPO [47] and

SAC [48].

The training performance of the proposed deep-RL-eMPC

framework depends on the quality of the selected experience

sample, so how to choose them is critical when using off-policy

RL algorithms. The experience replay buffer utilizes a fixed-size

buffer that holds the most recent transitions collected by the

policy [52], [53]. In RL, the weights updating and optimization

of neural networks are based on the experience replay. The

experience replay in the original DDQN uniformly samples

the stored experience to train the network weights. However,

the importance of experiences are different. Some experiences

are more valuable than others in the long run and important

experience should be considered more frequently. To address

this problem, the prioritized experience replay has been pro-

posed [54] to prioritize more frequent replay transitions leading

to high expected learning progress, as measured by the magni-

tude of their TD error. Specifically, the probability of sampling

transition i is defined as follows:

P (i) =
pαi

∑

k p
α
k

, (15)

where α ∈ [0, 1] controls how much prioritization is applied;

when α = 0, the experience will be sampled uniformly. Here

pi > 0 represents the priority of transition i, which is initialized

as 1 and updated based on the TD-error δi during the transition.

More specifically, to alleviate the bias of the gradient mag-

nitudes introduced by the priority replay, importance-sampling

(IS) is introduced in [54] as:

wi =

(

1

N

1

P (i)

)β

. (16)

where β is the hyperparameter annealing the amount of

importance-sampling correction over time. N is size of the

experience buffer. The weight wi is then used in the Q-learning

updates by replacing the TD-error δi as wiδi. In practice, we

can apply the PER by replacing line 24 in Algorithm 1 with the

designed PER scheme.

To encode the historical information in the network, a straight-

forward way is to feed all historical states to the RL agent, but it

increases the state dimension significantly and may distract the

attention of the RL agent from recent input states. To address this

challenge, recurrent neural network (RNN) has been developed,

which is a class of artificial neural networks that can encode and

learn temporal information. Traditional RNN does not have the

ability for long term memory and suffers from vanishing gradient

problem. Long short-term memory (LSTM) [55], a type of RNN

architecture, solves this issue by using feedback connections

and thus suitable for long-time series data. In this paper, we

will explore the use of LSTM as the last hidden layer to extract

representations from different state types and encode the history

information.

IV. AUTONOMOUS VEHICLE PATH FOLLOWING USING

DEEP-RL-EMPC

In this section we apply the proposed deep-RL-eMPC to

a nonlinear autonomous vehicle path tracking problem. The

prediction horizon of MPC is set to p = 5 with upper and lower

bounds for all control inputs. Since autonomous vehicle requires

short control sampling time but has limited onboard computation

power, this nonlinear path tracking problem is a good example

to demonstrate the proposed deep-RL-eMPC.

A. RL Structure and Settings

In this paper, we encode the input state with a one fully con-

nected (FC) layer with 128 neurons, followed by two 128-neuron

FC layers. In the LSTM design, we replace the last FC layer with

a 128-unit LSTM layer. The last layer outputs two Q values

corresponding to two actions, i.e., trigger and not trigger. The

target network in DDQN are updated every N0 = 1000 steps.

The state of the environment is defined to be s = (x̂, x̄), where

x̂ as mentioned above is the state estimate of the dynamical

system and x̄ is the MPC prediction made at last event. The

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore.  Restrictions apply. 



464 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

TABLE I
EVALUATION RETURN R, TRIGGERING FREQUENCY AF, AND MPC COST Empc USING DIFFERENT RL AGENTS IN DEEP-RL-EMPC

reward function follows (12), with �(x̂t, ut) defined as follows:

�(x̂t, ut) =

∣

∣

∣

∣

∣

∣

∣

∣

x̂t(3)− 4 sin

(

2π

100
x̂t(1)

)
∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+ ||ut − ur
t ||

2
Qu

,

(17)

where x̂t is the real state (or current state estimate if not directly

measured) and ut is the real-time applied control computed by

(8). Then the return for one episode in the RL algorithm is as

follows:

R =

Te
∑

t=1

rt =

Te
∑

t=1

(−�(x̂t, ut)dt− ρcat) , (18)

whereR is the episodic return of RL algorithms,Te is the number

of steps for the episode, ρc is a hyper- parameter proposed to

balance control performance and event trigger frequency. To

evaluate performance of different RL algorithms in our deep-

RL-eMPC frame, we adopt the following two evaluation metrics:

total MPC cost Empc and event triggering frequency Af , which

are defined as follows:

Empc =

Te
∑

t=1

(�(x̂t, ut)dt) (19)

Af =

∑Te

t=1
at

Te

, (20)

We train the off-policy RL algorithms over 50,000 steps, which

is around 500 episodes, each with a length of T = 20 s and a

sampling time of dt = 200 ms, i.e., episode horizon is Te = 100
time steps. On-policy algorithms, e.g., PPO, often require longer

training time but with improved stability [51], thus we train

them for 1000 episodes for better convergence. For MDP, we

set the discount factor γ = 0.99 and batch size N = 64. The

learning rate and replay buffer size are set as η = 1e− 4 and

5,000, respectively. Also, ε-greedy is adopted in DDQN with ε

linearly decaying from 1.0 to 0.01 during the first 5000 steps of

training.

B. Simulation Results and Analysis

Numerical simulation results on the evaluation returns for

ρc = 0, 0.001, 0.01 with the threshold-based benchmark and

different variants of RL algorithms are summarized in Table I.

The simple linear Q-learning method (least-square temporal

difference Q-learning, LSTDQ) [42] is also shown here as a

benchmark. To measure the computation burden required by

different RL algorithms and MPC, we run the simulation 10000

times and use the average time as the time cost. The results show

that the average time cost of MPC is about 0.1 s while the average

time cost of RL algorithms considered in this paper is about

10−6 s. In other words, each MPC computation requires 105

times more computation than evaluating RL policies, and hence

the time cost spent on the decision making of RL algorithms is

negligible. So overall speaking, fewer MPC queries will provide

less computation burden.

The threshold-based event-trigger policy [27] depends on

a manually-tuned threshold to determine when the event is

triggered. However, this method is very sensitive to the tracking

error and is susceptible to over-triggering problems when the

error is large. This causes the return of the threshold-based

method around 1.6 for all three different ρc, much worse than

the RL-based methods as shown in Table I.

Comparing LSTDQ, SAC, DDQN, and PPO, experimental

results clearly show that deep-RL-eMPC frameworks achieve

better evaluation return than the the conventional threshold-

based approach and previous LSTDQ for all three different ρc. It

is also shown that PPO presents the best result under ρc = 0 and

ρc = 0.001, while DDQN performs better when ρc = 0.01 in

terms of evaluation return, partly due to the low overestimation.

To show the flexibility of the proposed framework, PER buffer

and LSTM are employed to foster the exploration and efficiency

of the training of DDQN and PPO. PPO is an on policy RL

method and PER cannot be applied to this method, so only

PPO+LSTM is tested. Specifically, DDQN+LSTM+PER and

PPO+LSTM are implemented and compared. The experimental

results show that LSTM and PER significantly increase the eval-

uation return of the system, outperforming the baseline methods.

SAC performs well when ρc = 0, while it fails in the more

challenging cases when ρc = 0.001 or 0.01. The intrinsic reason

for the poor performance of SAC deserves to be investigated in

the future work.

Recall that the hyperparameter ρc can be used to balance

control performance and triggering frequency. When ρc = 0,

RL triggers MPC at nearly every time step and achieves the

smallest tracking error. As the value of ρc increases, the rewards

function (12) penalizes more on triggering MPC, resulting in

less frequent events and higher MPC costs Jmpc. The bigger the

ρc is, the larger penalty the system will give for triggering the

events. From Table I, we can see when ρc is larger, the system
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Fig. 3. Simulation results of deep-RL-eMPC for the reward function with ρc = 0. The comparison of the tracking error using three different RL algorithm in
deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

Fig. 4. Simulation results of deep-RL-eMPC for the reward function with ρc = 0.001. The comparison of the tracking error using three different RL algorithm
in deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

tends to give smaller returns because of the larger punishment

of triggering the events.

Fig. 3, Fig. 4 and Fig. 5 shows the path following error and

event triggering command at when using three different RL

algorithm (LSTDQ, DDQN+LSTM+PER, PPO+LSTM) in the

deep-RL-MPC framework when using different ρc in reward

equation (18). The first row shows the comparison of the tracking

error using three different RL algorithm in deep-RL-eMPC. The

corresponding triggering commands at during the process is

showed in second row when using LSTDQ, is showed in third

row when using DDQN+LSTM+PER and is showed in fourth

row when using PPO+LSTM. The best results from deep-RL-

eMPC when ρc = 0 and ρc = 0.001 are from PPO+LSTM and

when ρc = 0.01 is from DDQN+LSTM+PER. In LSTDQ, when

ρc = 0, Empc = 0.062 and the triggering frequency is 0.902.

When ρc = 0.001, Empc = 0.157 and the triggering frequency

is 0.931. When ρc = 0.01, Empc = 0.66 and the triggering fre-

quency is 0.559. In PPO+LSTM, when ρc = 0, Empc = 0.055
and the triggering frequency is 0.99. In this situation, there is

no penalty on triggering MPC, and the RL agent triggers MPC

for nearly every sampling time, and the path tracking error is

the smallest. It results in a triggering frequency of 5 Hz as the
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Fig. 5. Simulation results of deep-RL-eMPC for the reward function with ρc = 0.01. The comparison of the tracking error using three different RL algorithm
in deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

sampling time is dt = 0.2 s. When ρc = 0.001, Empc = 0.059
and the triggering frequency is 0.594. In this situation, the RL

agent tends to trigger an event when the tracking error is large,

and keeps silent when the error is going to be around 0. When

ρc = 0.01, DDQN+LSTM+PER achieves the best performance

with Empc = 0.171 and the triggering frequency is 0.255. In

this situation, the event-trigger pattern is similar to that of

ρc = 0.001, but with a lower triggering frequency. It is worth

noting that, for each case, DDQN+LSTM+PER triggers MPC

less frequently (resulting in less MPC computation) while in-

curring smaller MPC cost (resulting in better control perfor-

mance). We can then conclude that DDQN+LSTM+PER and

PPO+LSTM outperforms the previous LSTDQ method as pre-

sented in [42].

C. Additional Remarks

It is worth noting that the simulation environment used in this

paper is based on a nonlinear autonomous vehicle model with

simultaneous control of both longitudinal and lateral dynamics.

While such a simulation environment is complex enough for

proof-of-concept demonstration, future improvement can be

made by using more sophisticated tool, such as CARLA [56]

or SUMO [57]. Moreover, future improvement can be made

by incorporating random noise to differentiate the training and

validation environments.

V. CONCLUSION

This paper investigats a path following problem for au-

tonomous driving. We present a novel eMPC framework with

the triggering policy obtained from deep reinforcement learning

to solve the problem. A reward function is proposed to bal-

ance control performance and event trigger frequency through

a hyper-parameter ρc. In comparison to existing eMPC, the

proposed algorithm does not require any knowledge of the

closed-loop dynamics (i.e., model-free) and delivers superior

performance. We also demonstrate that incorporating techniques

such as priority experience replay and long-short term memory

can significantly enhance the performance. The learnt deep RL-

based triggering policy effectively reduces the computational

burden while achieving satisfactory control performance. In

future work, we will explore the time-varying computational

budgets and costs within this deep-RL-eMPC framework for

autonomous driving path following. Additionally, we will in-

vestigate a more complex simulation environment and some

professional simulation software like CARLA. Furthermore,

we will examine the stability and convergence of the proposed

deep-RL-eMPC framework in hardware experiments.
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