
IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024 459

Event-Triggered Model Predictive Control With Deep

Reinforcement Learning for Autonomous Driving
Fengying Dang , Dong Chen , Member, IEEE, Jun Chen , Senior Member, IEEE,

and Zhaojian Li , Senior Member, IEEE

Abstract—Event-triggered model predictive control (eMPC) is
a popular optimal control method with an aim to alleviate the
computation and/or communication burden of MPC. However,
it generally requires a priori knowledge of the closed-loop sys-
tem behavior along with the communication characteristics for
designing the event-trigger policy. This paper attempts to solve
this challenge by proposing an efficient eMPC framework and
demonstrates successful implementation of this framework on the
autonomous vehicle path following. First of all, a model-free rein-
forcement learning (RL) agent is used to learn the optimal event-
trigger policy without the need for a complete dynamical system
and communication knowledge in this framework. Furthermore,
techniques including prioritized experience replay (PER) buffer
and long short-term memory (LSTM) are employed to foster ex-
ploration and improve training efficiency. In this paper, we use the
proposed framework with three deep RL algorithms, i.e., Double
Q-learning (DDQN), Proximal Policy Optimization (PPO), and Soft
Actor-Critic (SAC), to solve this problem. Results show that all
three deep RL-based eMPC (deep-RL-eMPC) can achieve better
evaluation performance than the conventional threshold-based and
previous linear Q-based approach in the autonomous path follow-
ing. In particular, PPO-eMPC with LSTM and DDQN-eMPC with
PER and LSTM obtain a superior balance between the closed-loop
control performance and event-trigger frequency.

Index Terms—Autonomous vehicles, double Q-learning
(DDQN), event-triggered model predictive control (eMPC), proxi-
mal policy optimization (PPO), reinforcement learning (RL), soft
actor-critic (SAC).

I. INTRODUCTION

A
UTONOMOUS vehicles have attracted researchers’ at-

tention dramatically in recent years due to the advanced

technology in automation, high-speed communication network

Manuscript received 9 October 2023; accepted 31 October 2023. Date of
publication 3 November 2023; date of current version 23 February 2024. This
work was supported in part by the National Science Foundation under Grants
2045436 and 2237317. (Corresponding authors: Jun Chen; Zhaojian Li.)

Fengying Dang is with the University of Michigan Transportation Research
Institute, Ann Arbor, MI 48109 USA (e-mail: fdang2@gmu.edu).

Dong Chen is with the Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, MI 48824 USA (e-mail: chendon9@
msu.edu).

Jun Chen is with the Department of Electrical and Computer Engineering,
Oakland University, Rochester, MI 48309 USA (e-mail: junchen@oakland.edu).

Zhaojian Li is with the Department of Mechanical Engineering, Michigan
State University, East Lansing, MI 48824 USA (e-mail: lizhaoj1@egr.msu.edu).

The associated code is open-sourced and available at: https://github.com/
DangFengying/RL-based-event-triggered-MPC.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIV.2023.3329785.

Digital Object Identifier 10.1109/TIV.2023.3329785

and new energy [1], [2]. Path planning and path following are two

major tasks for the behaviour control of autonomous vehicles [3],

[4], [5], [6], [7]. Path planning is executed to plan the path

considering safety constraints, and a controller is then used to

follow this path accurately by considering the current states

and providing suitable control. Path planning has been well

explored by many researchers [8], [9], [10], [11]. However, path

following still remains a problem due to the high dynamic, lim-

ited computation and communication of autonomous vehicles.

The path following controller are expected to provide accurate

control inputs in real-time with constrained computation and

communication. Path following control can be implemented

using different controllers, e.g., proportional-integral-derivative

(PID) control, state feedback controllers, model predictive con-

trol (MPC), and so on [12], [13], [14], [15], [16], [17], [18].

MPC is capable of handling multi-input multi-output (MIMO)

systems with various constraints, making it specially suitable for

real-world autonomous vehicle path following problem. Despite

the advances of MPC over the years [19], [20], [21], [22], [23],

[24], solving the constrained optimal control problem requires

high computational power, which is further increased as the

system dimension and prediction horizon increase. This has

hindered its application to autonomous vehicles’ path following

that require a short sampling time but have limited computation

power.

To reduce computational burden, event-triggered MPC

(eMPC) has emerged as a promising paradigm where MPC

algorithm is solved – instead of at each time instant as in the

traditional MPC implementation – only when triggered by a

predefined trigger condition [25], [26], [27], [28], [29], [30],

[31], [32], [33], [34]. In such framework, a triggering event can

be defined based on either the deviation of the system states [25],

[26], [27] or the cost function value [28], [29]. By solving

the optimization problem only when necessary, eMPC can

significantly reduce online computations. However, the trigger

mechanism design, concerning when to trigger the optimization

so as to preserve system performance while keeping the number

of triggers low, still remains a challenge [35].

The most common event-trigger policy is the threshold-based

event-trigger policy, where an event is triggered if the predicted

state trajectory and real-time feedback diverge beyond a certain

threshold [25], [26], [27]. Besides the threshold based on policy,

other researchers also investigate the triggering policy consid-

ering specific requirement of the system [36], [37], [38], [39],

[40]. In [36], event-triggered real-time scheduling of stabilizing

2379-8858 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

460 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

control is proposed. This approach aims to reduce the com-

putational load and communication bandwidth requirements of

the control system while maintaining stability and performance.

In [37], researchers investigate event-triggered based-network

fault detection problems for nonlinear networked control system.

However, the performance index design of all these algorithms

is usually based on the knowledge of the closed-loop system

behavior which is not always available, especially for complex

systems. To address this limitation, researchers begin to explore

other methods to trigger the event with different application

background. In [38], a recurrent neural network is used to build

the building dynamics and a cost estimation is used for event trig-

ger. Machine-learning-based event-triggered model predictive

control (ETMPC) system is developed to optimize both building

energy efficiency and thermal comfort. The system is evaluated

through simulations by applying it to air-conditioning control for

performance assessment. In [41], a dynamic threshold param-

eters is used to determine when to trigger the information ex-

change and control update. It aims to improve cooperative cruise

control for multiple high-speed trains with random switching

topologies. However, triggering condition design is still a hard

problem, especially when the system or environment is very

complex which often affects the performance of the algorithm.

In recent years, the deep learning technique has been applied

to finding the better event-triggered strategy. Our prior work [42]

investigates the use of model free RL techniques, a simple

linear Q-learning approach, to synthesize a triggering policy

with the aim of achieving the optimal balance between control

performance and computational efficiency. However, this linear

Q-learning has a hard time capturing the nonlinear event-trigger

policy, leading to unnecessarily high event frequency. Therefore,

in this paper, we propose to use deep RL to learn the event-trigger

policy which makes the proposed framework achieve better

trade-offs between system performance and computation cost.

At the same time, a new multiple-input model is used in this

paper to make simulation environment can be applied to more

scenarios.

Note that the use of deep reinforcement learning in event-

triggered control has been reported in the literature. See for ex-

ample [43]. The problem considered in this paper is substantially

different from that of [43]. Specifically, in [43], when an event

is not triggered, the zero-order-hold is applied to control input,

i.e., the control input is invariant in between two events, while

in the proposed RL-based event-triggered MPC framework, the

control input can be varying in between two events, making

is a harder learning problem for RL. This paper addresses

the autonomous driving path following problem using a novel

control framework. First, it extends the previous work [42] with

an improved vehicle model, thereby removing the limitation of

using only the front steering angle as driving control. Second,

we develop a model-free deep-RL-eMPC framework that uses

deep RL to learn the event-trigger condition in the path tracking

problem of autonomous driving, so that no prior knowledge

of the closed-loop system is needed, which is essential for a

dynamic and complex system. Both off-policy and on-policy RL

methods are tested. Meanwhile, techniques including prioritized

experience replay (PER) buffer and long-short term memory

(LSTM) are exploited to significantly improve the training effi-

ciency and control performance. Third, comparative validation

of various DRL methods for event-triggered control in path

following is conducted using a nonlinear autonomous vehicle

model. Simulation results show that our approach clearly out-

performs the previous linear Q-learning based approach in [42].

The remainder of the paper is organized as follows. Section II

formulates the autonomous vehicle path following problem.

Section III presents the framework of eMPC with triggering

policy obtained from RL. The experiment setup and results of

the proposed deep-RL-eMPC method in the autonomous vehicle

path following problem are presented in Section IV. Finally,

conclusion remarks are provided in Section V.

II. PROBLEM FORMULATION

This paper aims to improve autonomous vehicles path follow-

ing control by proposing a systematic, algorithmic framework

where eMPC can be used without having the prior knowledge of

the closed-loop system behavior. Our goal is to use an RL agent

to learn the optimal event-trigger policy automatically.

A. Task Description: Autonomous Vehicle Dynamics and Path

Following Problem

In order to demonstrate the proposed deep RL-eMPC and its

improving techniques, a path following task is chosen. For a

single track vehicle model, the equations for vehicle center of

gravity (CG) and wheel dynamics are given by

l̇x = vx cosψ − vy sinψ, (1a)

v̇x = vyr +
2

m

∑

i=f,r

Fx,i − g sinσg −
1

m
Fa, (1b)

l̇y = vx sinψ + vy cosψ, (1c)

v̇y = −vxr +
2

m

∑

i=f,r

Fy,i, (1d)

ψ̇ = r, (1e)

ṙ =
1

I
(2Lx,fFy,f − 2Lx,rFy,r) , (1f)

where lx and ly are the longitudinal and lateral position of

the center of gravity of vehicle, respectively; ψ is the vehicle

rotational angle along the longitudinal axis in the global inertial

frame; and vx, vy, and r are, respectively, the vehicle longitudi-

nal velocity, lateral velocity, and yaw rate in the vehicle frame.

Fa is the aerodynamic drag force [44] and Fx and Fy are tire

forces. m is the vehicle mass, I is the vehicle rotational inertia

on yaw dimension, Lxf and Lxr are the distance from CG to the

middle of front and rear axle, respectively.

The tire force Fx,i and Fy,i in (1b), (1d) in vehicle frame can

be modeled by

Fx,i = F̄x,i cosβi − F̄y,i sinβi (2a)

Fy,i = F̄x,i sinβi + F̄y,i cosβi, (2b)

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

DANG et al.: EVENT-TRIGGERED MODEL PREDICTIVE CONTROL WITH DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING 461

where βi is the wheel-road-angle for the wheel i, i = {f, r}
represents the front or rear wheel, F̄x,i and F̄y,i are the tire force

in wheel frame which can be obtained as

F̄x,i =
Ti

2R
, (3a)

F̄y,i = CiµiFz,iαi, (3b)

where Ti is the propulsion/braking torque along the axle, R

is the effective tire radius, Ci is the tire corner stiffness and

µi characterize the road surface, αi is the slip angle. We refer

readers to [27] for a detailed computation of the slip angle αi.

The normal force Fz,i in (1f) can be modeled by static load

transfer,

Fz,i =
Lx,img

2(Lx,f + Lx,r)
. (4)

In this paper, we consider a problem of autonomous vehicle

following a sinusoidal trajectory using the proposed deep-RL-

eMPC method [27], [45], the following path is given by

ly = g(lx) = 4 sin

(

2π

100
lx

)

. (5)

B. Optimal Control Problem and its Goal

Consider a discrete-time system with the following dynamics

xt+1 = f(xt, ut), (6)

wherext ∈ R
n is the system state at discrete time t andut ∈ R

m

is the control input. Given a prediction horizon p, MPC aims to

find the optimal control sequence Ut and optimal state sequence

Xt by solving the following optimal control problem:

min
Xt,Ut

Jmpc =

p
∑

k=0

�(xt+k, ut+k) (7a)

s.t. xt = x̂t (7b)

xt+k = f(xt+k−1, ut+k−1), 1 ≤ k ≤ p (7c)

xmin ≤ xt+k ≤ xmax, 1 ≤ k ≤ p (7d)

umin ≤ ut+k ≤ umax, 0 ≤ k ≤ p− 1 (7e)

∆min ≤ ut+k − ut+k−1 ≤ ∆max,

0 ≤ k ≤ p− 1, (7f)

WhereUt andXt are defined asUt = {ut, ut+1, . . . , ut+p−1}
and Xt = {xt+1, xt+2, . . . , xt+p}, �(xt+k, ut+k) is the stage

cost function, x̂t denotes the real state or current state estimation,

and ut+k denotes the control action at time step t+ k. For

conventional time-triggered MPC, the above optimal control

problem is solved for every sampling time t, and only the

first element ut of Ut is applied to the system as the control

command, while all the remaining elements ut+1, . . . , ut+p−1

are abandoned.

Let t and tp represent the current time step and the last

event time, respectively, and there thus exists a k ∈ N such that

t = tp + kdt where dt is the sampling time of the discrete sys-

tem. Let at denotes the triggering command in event-triggered

Fig. 1. Scheme of event-triggered model predictive control (eMPC).

MPC at time step t. Then whenat = 1, the above optimal control

problem is solved and the first element of the optimal control

sequence Ut computed at current time step t will be used as

control command. When at = 0, the optimal control sequence

Utp computed at last event when the time instance equals to tp
will be shifted to determine the control command [27]. Then the

control input u can be compactly represented as:

ut =

{

Ut(1), if at = 1,
Utp(k + 1), if at = 0.

(8)

To implement (8) for eMPC, a buffer can be used to store the

optimal control sequence Utp computed at last event at time tp.

At each time step, the event-trigger policy block generates at
based on current feedback from the plant. In eMPC, only when

at = 1, a new control sequence Ut is computed by solving (7),

whose first element is implemented by actuator as u, while the

entire sequence is saved into buffer. If at = 0, indicating the

absence of an event, the control sequence currently stored in

the buffer will be shifted based on the time elapsed since last

event to determine the current control input u. This process is

depicted in Fig. 1.

In general, the event at can be generated by certain event-

trigger policy π, denoted as,

at ∼ πθ(Xtp , x̂t), (9)

where Xtp is the optimal state sequence computed at last event

when atp = 1 and x̂t is the real state (or current state estimate

if not directly measured), θ are parameters characterizing the

policy. It is worth noting that, for nonlinear constrained MPC,

the design of event-trigger policy π is challenging and requires

extensive calibration and prior knowledge of the closed-loop

system behavior. Therefore, the design of event-trigger policy

and its calibrations are usually problem specific and non-trivial.

To address this limitation, the objective of this paper is to learn

the optimal event-trigger policy π using model-free deep RL

techniques.

If we discretize (1) to obtain a discrete-time model in the form

of (6), with x = [lx, vx, ly, vy, ψ, r] and u = [Tf , βf] where Tf

is the axle driving torque and βf is the front steering angle. The

stage cost of (7a) is defined as

�(x, u) =

∣

∣

∣

∣

∣

∣

∣

∣

x(3)− 4 sin

(

2π

100
x(1)

)∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+ ||u− ur||2Qu
,

(10)

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

462 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Fig. 2. Scheme of RL based event-triggered MPC.

where the first nonlinear term penalizes the path tracking error

and the second term penalizes large control efforts. Here the

norm is defined as ||x||2Q = xTQx. More specifically, the MPC

cost function Jmpc in (7a) in this case can be equivalently

represented as:

Jmpc(Xt, Ut) =

p
∑

k=1

∣

∣

∣

∣

∣

∣

∣

∣

xt+k(3)− 4 sin

(

2π

100
xt+k(1)

)∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+

p−1
∑

k=0

(

||ut+k − ur
t+k||

2
Qu

)

, (11)

where Ut and Xt are defined as Ut = {ut, ut+1, . . . , ut+p−1}
and Xt = {xt+1, xt+2, . . . , xt+p}, and the terms independent

of Xt and Ut are ignored.

III. EVENT-TRIGGERED MPC WITH DEEP RL-BASED POLICY

LEARNING

In this section, we present our proposed deep RL-based policy

learning eMPC, or deep-RL-eMPC.

A. Deep-RL-eMPC Framework

The process of our deep-RL-eMPC framework is shown in

Fig. 2. The RL agent learns the event-trigger policy parameter θ

by continuously interacting with the environment. Specifically,

at each time step, the agent sends an action a to the environment.

The environment then implements the eMPC following (8), sim-

ulates the dynamic system following (6), and emits an immediate

reward following the designed reward function. The agent then

observes the reward signals, update θ, and transitions to next

state.

For an eMPC problem, the discrete action space for RL agent

is defined asA = {0, 1}, where the event will be triggered when

a = 1 and will not be triggered when a = 0. As the feedback

from the environment, the immediate reward function is defined

as

rt � −�(x̂t, ut)dt− ρcat, (12)

where the first term �(x̂t, ut)dtmeasures the closed-loop system

performance and the second term ρcat measures the cost of

triggering events. Note that �(x̂t, ut) is the stage cost and is

computed using the the real state (or current state estimate if

not directly measured) x̂t and real-time control (8). Further-

more, ρc is a hyper-parameter used to balance between control

performance index and triggering frequency. One can fine tune

this hyperparameter ρc to make a tradeoff between control

performance and computational cost.

The complete deep-RL-eMPC algorithm is shown in

Algorithm 1. In this algorithm,M is the total number of training

epochs,T is the length of each episode representing total training

time in each epoch, γ is the discount factor in the reward

function, dt is the discrete time step, and N is the size of

sampled experiences at each time (batch size). The output of

Algorithm 1 is the system parameters θ. The RL agent interacts

with the environment for M number of epochs (Lines 2–24).

After initialization, Lines 5 shows how to choose action. Lines

7–12 implement the event-triggered MPC to compute the control

command u, which is used to simulate the dynamical system

(6) (Line 13). After that, the environment emits next state st+1

and immediate reward rt Line 16), which is observed by RL

agent (Line 18). The latest experience tuple (st, at, rt, st+1)
is then added into an experience buffer D (Line 19). The RL

parameters θ is updated using a batch of N experiences sampled

from the experience buffer D (Line 20). RL agent then moves

to next state Line 21). After each epoch, RL agent is reset for

the next epoch (Line 3). Lines 7-16 are part of the environment,

whose computation is unknown to the RL agents. Note that the

agent only observes the environment outputs, i.e., next state and

reward.

B. Deep RL Algorithms and Improving Technique

The framework shown in Fig. 2 and Algorithm 1 is a general

frame which can accommodate different RL algorithm. In this

paper, we investigate three different RL agents, including Dou-

ble Q-learning (DDQN) [46] and Proximal Policy Optimization

(PPO) [47], Soft Actor-Critic (SAC) [48], and show the proposed

framework is also suitable for other RL algorithms.

In this subsection, we first briefly describe these three deep

RL algorithms. Then two improving technique for Rl agent

including PER and LSTM are presented.

1) Double Q-Learning: Deep Q network is a type of Q-

learning which uses neural network as a policy. To address the

issues of overestimation of Q values in deep Q network [49],

Double Q-learning (DDQN) explicitly separates action selec-

tion from action evaluation which allows each step to use a

different function approximator and shows a better overall ap-

proximation of the action-value function [46]. DDQN improves

deep Q network by replacing the target yDQN by yDDQN =
rt + γQθ′(st+1, argmaxa Qθ(st+1, a)), resulting in the Dou-

ble Q-learning loss:

LDDQN (θ) = ED[y
DDQN −Qθ(st, at)]

2. (13)

2) PPO: PPO, an on-policy policy gradient RL algorithm,

replaces the KL-divergence used in TRPO [50] with a clipped

surrogate objective function (14), which is proved to be better

suited for the TRPO and easy to implement.

LCLIP
PPO (θ) = Et[min (rtAt, clip(rt, 1− ε, 1 + ε)At)]. (14)

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

DANG et al.: EVENT-TRIGGERED MODEL PREDICTIVE CONTROL WITH DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING 463

Algorithm 1: RL-based Event-Triggered MPC.

3) Soft Actor-Critic: SAC achieves the state-of-the-art per-

formance across a wide range of continuous-action control

problems and updates the stochastic actor-critic policy in an off-

policy way. SAC takes a good exploration-exploitation trade-off

via entropy regularization.

In this paper, we adopt SAC and PPO to the discrete action

space setting following the discrete categorical distribution de-

sign in [51]. For details, refer to DDQN [46], PPO [47] and

SAC [48].

The training performance of the proposed deep-RL-eMPC

framework depends on the quality of the selected experience

sample, so how to choose them is critical when using off-policy

RL algorithms. The experience replay buffer utilizes a fixed-size

buffer that holds the most recent transitions collected by the

policy [52], [53]. In RL, the weights updating and optimization

of neural networks are based on the experience replay. The

experience replay in the original DDQN uniformly samples

the stored experience to train the network weights. However,

the importance of experiences are different. Some experiences

are more valuable than others in the long run and important

experience should be considered more frequently. To address

this problem, the prioritized experience replay has been pro-

posed [54] to prioritize more frequent replay transitions leading

to high expected learning progress, as measured by the magni-

tude of their TD error. Specifically, the probability of sampling

transition i is defined as follows:

P (i) =
pαi

∑

k p
α
k

, (15)

where α ∈ [0, 1] controls how much prioritization is applied;

when α = 0, the experience will be sampled uniformly. Here

pi > 0 represents the priority of transition i, which is initialized

as 1 and updated based on the TD-error δi during the transition.

More specifically, to alleviate the bias of the gradient mag-

nitudes introduced by the priority replay, importance-sampling

(IS) is introduced in [54] as:

wi =

(

1

N

1

P (i)

)β

. (16)

where β is the hyperparameter annealing the amount of

importance-sampling correction over time. N is size of the

experience buffer. The weight wi is then used in the Q-learning

updates by replacing the TD-error δi as wiδi. In practice, we

can apply the PER by replacing line 24 in Algorithm 1 with the

designed PER scheme.

To encode the historical information in the network, a straight-

forward way is to feed all historical states to the RL agent, but it

increases the state dimension significantly and may distract the

attention of the RL agent from recent input states. To address this

challenge, recurrent neural network (RNN) has been developed,

which is a class of artificial neural networks that can encode and

learn temporal information. Traditional RNN does not have the

ability for long term memory and suffers from vanishing gradient

problem. Long short-term memory (LSTM) [55], a type of RNN

architecture, solves this issue by using feedback connections

and thus suitable for long-time series data. In this paper, we

will explore the use of LSTM as the last hidden layer to extract

representations from different state types and encode the history

information.

IV. AUTONOMOUS VEHICLE PATH FOLLOWING USING

DEEP-RL-EMPC

In this section we apply the proposed deep-RL-eMPC to

a nonlinear autonomous vehicle path tracking problem. The

prediction horizon of MPC is set to p = 5 with upper and lower

bounds for all control inputs. Since autonomous vehicle requires

short control sampling time but has limited onboard computation

power, this nonlinear path tracking problem is a good example

to demonstrate the proposed deep-RL-eMPC.

A. RL Structure and Settings

In this paper, we encode the input state with a one fully con-

nected (FC) layer with 128 neurons, followed by two 128-neuron

FC layers. In the LSTM design, we replace the last FC layer with

a 128-unit LSTM layer. The last layer outputs two Q values

corresponding to two actions, i.e., trigger and not trigger. The

target network in DDQN are updated every N0 = 1000 steps.

The state of the environment is defined to be s = (x̂, x̄), where

x̂ as mentioned above is the state estimate of the dynamical

system and x̄ is the MPC prediction made at last event. The

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

464 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

TABLE I
EVALUATION RETURN R, TRIGGERING FREQUENCY AF, AND MPC COST Empc USING DIFFERENT RL AGENTS IN DEEP-RL-EMPC

reward function follows (12), with �(x̂t, ut) defined as follows:

�(x̂t, ut) =

∣

∣

∣

∣

∣

∣

∣

∣

x̂t(3)− 4 sin

(

2π

100
x̂t(1)

)
∣

∣

∣

∣

∣

∣

∣

∣

2

Qt

+ ||ut − ur
t ||

2
Qu

,

(17)

where x̂t is the real state (or current state estimate if not directly

measured) and ut is the real-time applied control computed by

(8). Then the return for one episode in the RL algorithm is as

follows:

R =

Te
∑

t=1

rt =

Te
∑

t=1

(−�(x̂t, ut)dt− ρcat) , (18)

whereR is the episodic return of RL algorithms,Te is the number

of steps for the episode, ρc is a hyper- parameter proposed to

balance control performance and event trigger frequency. To

evaluate performance of different RL algorithms in our deep-

RL-eMPC frame, we adopt the following two evaluation metrics:

total MPC cost Empc and event triggering frequency Af , which

are defined as follows:

Empc =

Te
∑

t=1

(�(x̂t, ut)dt) (19)

Af =

∑Te

t=1
at

Te

, (20)

We train the off-policy RL algorithms over 50,000 steps, which

is around 500 episodes, each with a length of T = 20 s and a

sampling time of dt = 200 ms, i.e., episode horizon is Te = 100
time steps. On-policy algorithms, e.g., PPO, often require longer

training time but with improved stability [51], thus we train

them for 1000 episodes for better convergence. For MDP, we

set the discount factor γ = 0.99 and batch size N = 64. The

learning rate and replay buffer size are set as η = 1e− 4 and

5,000, respectively. Also, ε-greedy is adopted in DDQN with ε

linearly decaying from 1.0 to 0.01 during the first 5000 steps of

training.

B. Simulation Results and Analysis

Numerical simulation results on the evaluation returns for

ρc = 0, 0.001, 0.01 with the threshold-based benchmark and

different variants of RL algorithms are summarized in Table I.

The simple linear Q-learning method (least-square temporal

difference Q-learning, LSTDQ) [42] is also shown here as a

benchmark. To measure the computation burden required by

different RL algorithms and MPC, we run the simulation 10000

times and use the average time as the time cost. The results show

that the average time cost of MPC is about 0.1 s while the average

time cost of RL algorithms considered in this paper is about

10−6 s. In other words, each MPC computation requires 105

times more computation than evaluating RL policies, and hence

the time cost spent on the decision making of RL algorithms is

negligible. So overall speaking, fewer MPC queries will provide

less computation burden.

The threshold-based event-trigger policy [27] depends on

a manually-tuned threshold to determine when the event is

triggered. However, this method is very sensitive to the tracking

error and is susceptible to over-triggering problems when the

error is large. This causes the return of the threshold-based

method around 1.6 for all three different ρc, much worse than

the RL-based methods as shown in Table I.

Comparing LSTDQ, SAC, DDQN, and PPO, experimental

results clearly show that deep-RL-eMPC frameworks achieve

better evaluation return than the the conventional threshold-

based approach and previous LSTDQ for all three different ρc. It

is also shown that PPO presents the best result under ρc = 0 and

ρc = 0.001, while DDQN performs better when ρc = 0.01 in

terms of evaluation return, partly due to the low overestimation.

To show the flexibility of the proposed framework, PER buffer

and LSTM are employed to foster the exploration and efficiency

of the training of DDQN and PPO. PPO is an on policy RL

method and PER cannot be applied to this method, so only

PPO+LSTM is tested. Specifically, DDQN+LSTM+PER and

PPO+LSTM are implemented and compared. The experimental

results show that LSTM and PER significantly increase the eval-

uation return of the system, outperforming the baseline methods.

SAC performs well when ρc = 0, while it fails in the more

challenging cases when ρc = 0.001 or 0.01. The intrinsic reason

for the poor performance of SAC deserves to be investigated in

the future work.

Recall that the hyperparameter ρc can be used to balance

control performance and triggering frequency. When ρc = 0,

RL triggers MPC at nearly every time step and achieves the

smallest tracking error. As the value of ρc increases, the rewards

function (12) penalizes more on triggering MPC, resulting in

less frequent events and higher MPC costs Jmpc. The bigger the

ρc is, the larger penalty the system will give for triggering the

events. From Table I, we can see when ρc is larger, the system

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

DANG et al.: EVENT-TRIGGERED MODEL PREDICTIVE CONTROL WITH DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING 465

Fig. 3. Simulation results of deep-RL-eMPC for the reward function with ρc = 0. The comparison of the tracking error using three different RL algorithm in
deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

Fig. 4. Simulation results of deep-RL-eMPC for the reward function with ρc = 0.001. The comparison of the tracking error using three different RL algorithm
in deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

tends to give smaller returns because of the larger punishment

of triggering the events.

Fig. 3, Fig. 4 and Fig. 5 shows the path following error and

event triggering command at when using three different RL

algorithm (LSTDQ, DDQN+LSTM+PER, PPO+LSTM) in the

deep-RL-MPC framework when using different ρc in reward

equation (18). The first row shows the comparison of the tracking

error using three different RL algorithm in deep-RL-eMPC. The

corresponding triggering commands at during the process is

showed in second row when using LSTDQ, is showed in third

row when using DDQN+LSTM+PER and is showed in fourth

row when using PPO+LSTM. The best results from deep-RL-

eMPC when ρc = 0 and ρc = 0.001 are from PPO+LSTM and

when ρc = 0.01 is from DDQN+LSTM+PER. In LSTDQ, when

ρc = 0, Empc = 0.062 and the triggering frequency is 0.902.

When ρc = 0.001, Empc = 0.157 and the triggering frequency

is 0.931. When ρc = 0.01, Empc = 0.66 and the triggering fre-

quency is 0.559. In PPO+LSTM, when ρc = 0, Empc = 0.055
and the triggering frequency is 0.99. In this situation, there is

no penalty on triggering MPC, and the RL agent triggers MPC

for nearly every sampling time, and the path tracking error is

the smallest. It results in a triggering frequency of 5 Hz as the

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

466 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Fig. 5. Simulation results of deep-RL-eMPC for the reward function with ρc = 0.01. The comparison of the tracking error using three different RL algorithm
in deep-RL-eMPC (first row). The corresponding triggering commands at during the process when using LSTDQ (second row), DDQN+LSTM+PER (third row)
and PPO+LSTM (fourth row).

sampling time is dt = 0.2 s. When ρc = 0.001, Empc = 0.059
and the triggering frequency is 0.594. In this situation, the RL

agent tends to trigger an event when the tracking error is large,

and keeps silent when the error is going to be around 0. When

ρc = 0.01, DDQN+LSTM+PER achieves the best performance

with Empc = 0.171 and the triggering frequency is 0.255. In

this situation, the event-trigger pattern is similar to that of

ρc = 0.001, but with a lower triggering frequency. It is worth

noting that, for each case, DDQN+LSTM+PER triggers MPC

less frequently (resulting in less MPC computation) while in-

curring smaller MPC cost (resulting in better control perfor-

mance). We can then conclude that DDQN+LSTM+PER and

PPO+LSTM outperforms the previous LSTDQ method as pre-

sented in [42].

C. Additional Remarks

It is worth noting that the simulation environment used in this

paper is based on a nonlinear autonomous vehicle model with

simultaneous control of both longitudinal and lateral dynamics.

While such a simulation environment is complex enough for

proof-of-concept demonstration, future improvement can be

made by using more sophisticated tool, such as CARLA [56]

or SUMO [57]. Moreover, future improvement can be made

by incorporating random noise to differentiate the training and

validation environments.

V. CONCLUSION

This paper investigats a path following problem for au-

tonomous driving. We present a novel eMPC framework with

the triggering policy obtained from deep reinforcement learning

to solve the problem. A reward function is proposed to bal-

ance control performance and event trigger frequency through

a hyper-parameter ρc. In comparison to existing eMPC, the

proposed algorithm does not require any knowledge of the

closed-loop dynamics (i.e., model-free) and delivers superior

performance. We also demonstrate that incorporating techniques

such as priority experience replay and long-short term memory

can significantly enhance the performance. The learnt deep RL-

based triggering policy effectively reduces the computational

burden while achieving satisfactory control performance. In

future work, we will explore the time-varying computational

budgets and costs within this deep-RL-eMPC framework for

autonomous driving path following. Additionally, we will in-

vestigate a more complex simulation environment and some

professional simulation software like CARLA. Furthermore,

we will examine the stability and convergence of the proposed

deep-RL-eMPC framework in hardware experiments.

REFERENCES

[1] F.-Y. Wang et al., “Verification and validation of intelligent vehicles:
Objectives and efforts from China,” IEEE Trans. Intell. Veh., vol. 7, no. 2,
pp. 164–169, Jun. 2022.

[2] J. Lu, L. Han, Q. Wei, X. Wang, X. Dai, and F.-Y. Wang, “Event-triggered
deep reinforcement learning using parallel control: A case study in au-
tonomous driving,” IEEE Trans. Intell. Veh., vol. 8, no. 4, pp. 2821–2831,
Apr. 2023.

[3] B. B. K. Ayawli, R. Chellali, A. Y. Appiah, and F. Kyeremeh, “An overview
of nature-inspired, conventional, and hybrid methods of autonomous ve-
hicle path planning,” J. Adv. Transp., vol. 2018, 2018, Art. no. 8269698.

[4] A. Muraleedharan, H. Okuda, and T. Suzuki, “Real-time implementation
of randomized model predictive control for autonomous driving,” IEEE

Trans. Intell. Veh., vol. 7, no. 1, pp. 11–20, Mar. 2022.
[5] L. Yang, C. Lu, G. Xiong, Y. Xing, and J. Gong, “A hybrid motion planning

framework for autonomous driving in mixed traffic flow,” Green Energy

Intell. Transp., vol. 1, no. 3, 2022, Art. no. 100022.
[6] S. Feng, Z. Song, Z. Li, Y. Zhang, and L. Li, “Robust platoon control in

mixed traffic flow based on tube model predictive control,” IEEE Trans.

Intell. Veh., vol. 6, no. 4, pp. 711–722, Dec. 2021.
[7] S. Teng et al., “Motion planning for autonomous driving: The State of

the Art and future perspectives,” IEEE Trans. Intell. Veh., vol. 8, no. 6,
pp. 3692–3711, Jun. 2023.

[8] T. Qie, W. Wang, C. Yang, Y. Li, W. Liu, and C. Xiang, “A path planning
algorithm for autonomous flying vehicles in cross-country environments
with a novel TF-RRT* method,” Green Energy Intell. Transp., vol. 1, no. 3,
2022, Art. no. 100026.

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

DANG et al.: EVENT-TRIGGERED MODEL PREDICTIVE CONTROL WITH DEEP REINFORCEMENT LEARNING FOR AUTONOMOUS DRIVING 467

[9] F. Poinsignon, L. Chen, S. Jiang, K. Gao, H. Badia, and E. Jenelius, “Au-
tonomous vehicle fleets for public transport: Scenarios and comparisons,”
Green Energy Intell. Transp., vol. 1, no. 3, 2022, Art. no. 100019.

[10] C. Hu, L. Zhao, and G. Qu, “Event-triggered model predictive adap-
tive dynamic programming for road intersection path planning of un-
manned ground vehicle,” IEEE Trans. Veh. Technol., vol. 70, no. 11,
pp. 11228–11243, Nov. 2021.

[11] Z. Zhou, J. Chen, M. Tao, P. Zhang, and M. Xu, “Experimental validation
of event-triggered model predictive control for autonomous vehicle path
tracking,” in Proc. IEEE Int. Conf. Electro Inf. Technol., 2023, pp. 35–40.

[12] P. F. Lima, M. Nilsson, M. Trincavelli, J. Mårtensson, and B. Wahlberg,
“Spatial model predictive control for smooth and accurate steering of an
autonomous truck,” IEEE Trans. Intell. Veh., vol. 2, no. 4, pp. 238–250,
Dec. 2017.

[13] S. Mata, A. Zubizarreta, and C. Pinto, “Robust tube-based model predictive
control for lateral path tracking,” IEEE Trans. Intell. Veh., vol. 4, no. 4,
pp. 569–577, Dec. 2019.

[14] Y. Lin, J. McPhee, and N. L. Azad, “Comparison of deep reinforcement
learning and model predictive control for adaptive cruise control,” IEEE

Trans. Intell. Veh., vol. 6, no. 2, pp. 221–231, Jun. 2021.
[15] Z. Zuo et al., “MPC-based cooperative control strategy of path planning

and trajectory tracking for intelligent vehicles,” IEEE Trans. Intell. Veh.,
vol. 6, no. 3, pp. 513–522, Sep. 2021.

[16] Z. Zhou, F. Zhu, D. Xu, B. Chen, S. Guo, and Y. Dai, “Event-triggered
multi-lane fusion control for 2-D vehicle platoon systems with distance
constraints,” IEEE Trans. Intell. Veh., vol. 8, no. 2, pp. 1498–1511,
Feb. 2023.

[17] I. Ahmad, X. Ge, and Q.-L. Han, “Communication-constrained active sus-
pension control for networked in-wheel motor-driven electric vehicles with
dynamic dampers,” IEEE Trans. Intell. Veh., vol. 7, no. 3, pp. 590–602,
Sep. 2022.

[18] S. Wen, G. Guo, B. Chen, and X. Gao, “Cooperative adaptive cruise control
of vehicles using a resource-efficient communication mechanism,” IEEE

Trans. Intell. Veh., vol. 4, no. 1, pp. 127–140, Mar. 2019.
[19] M. Mammarella, T. Alamo, F. Dabbene, and M. Lorenzen, “Computation-

ally efficient stochastic MPC: A probabilistic scaling approach,” in Proc.

IEEE Conf. Control Technol. Appl., 2020, pp. 25–30.
[20] C. Liu, C. Li, and W. Li, “Computationally efficient MPC for path fol-

lowing of underactuated marine vessels using projection neural network,”
Neural Comput. Appl., vol. 32, no. 11, pp. 7455–7464, 2020.

[21] Y. Ding, L. Wang, Y. Li, and D. Li, “Model predictive control and
its application in agriculture: A review,” Comput. Electron. Agriculture,
vol. 151, pp. 104–117, 2018.

[22] C. Li et al., “A review on the application of the MPC technology in wind
power control of wind farms,” J. Energy Power Technol., vol. 3, no. 3,
pp. 1–22, 2021.

[23] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad,
“Model predictive control (MPC) for enhancing building and HVAC
system energy efficiency: Problem formulation, applications and opportu-
nities,” Energies, vol. 11, no. 3, 2018, Art. no. 631.

[24] K. Zheng, D. Shi, Y. Shi, and J. Wang, “Non-parametric event-triggered
learning with applications to adaptive model predictive control,” IEEE

Trans. Autom. Control, vol. 68, no. 6, pp. 3469–3484, Jun. 2023.
[25] F. D. Brunner, W. Heemels, and F. Allgöwer, “Robust event-triggered

MPC with guaranteed asymptotic bound and average sampling rate,” IEEE

Trans. Autom. Control, vol. 62, no. 11, pp. 5694–5709, Nov. 2017.
[26] H. Li and Y. Shi, “Event-triggered robust model predictive control

of continuous-time nonlinear systems,” Automatica, vol. 50, no. 5,
pp. 1507–1513, 2014.

[27] J. Chen and Z. Yi, “Comparison of event-triggered model predictive
control for autonomous vehicle path tracking,” in Proc. IEEE Conf. Control

Technol. Appl., 2021, pp. 808–813.
[28] N. He and D. Shi, “Event-based robust sampled-data model predictive

control: A non-monotonic Lyapunov function approach,” IEEE Trans.

Circuits Syst. I: Reg. Papers, vol. 62, no. 10, pp. 2555–2564, Oct. 2015.
[29] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Novel event-

triggered strategies for model predictive controllers,” in Proc. IEEE 50th

Conf. Decis. Control Eur. Control Conf., 2011, pp. 3392–3397.
[30] Z. Zhou, C. Rother, and J. Chen, “Event-triggered model predictive control

for autonomous vehicle path tracking: Validation using CARLA simula-
tor,” IEEE Trans. Intell. Veh., vol. 8, no. 6, pp. 3547–3555, Jun. 2023.

[31] R. Wan, S. Li, and Y. Zheng, “Model predictive control of nonlinear system
with event-triggered parametric identification,” in Proc. Chin. Automat.

Congr., 2020, pp. 5773–5777.

[32] E. Kang, H. Qiao, Z. Chen, and J. Gao, “Tracking of uncertain robotic ma-
nipulators using event-triggered model predictive control with learning ter-
minal cost,” IEEE Trans. Automat. Sci. Eng., vol. 19, no. 4, pp. 2801–2815,
Oct. 2022.

[33] P. K. Wong and D. Ao, “A novel event-triggered torque vector-
ing control for improving lateral stability and communication re-
source consumption of electric vehicles,” IEEE Trans. Intell. Veh.,
doi: 10.1109/TIV.2023.3284220.

[34] J. Lu, Q. Wei, T. Zhou, Z. Wang, and F.-Y. Wang, “Event-triggered
near-optimal control for unknown discrete-time nonlinear systems using
parallel control,” IEEE Trans. Cybern., vol. 53, no. 3, pp. 1890–1904,
Mar. 2023.

[35] L. Sedghi, Z. Ijaz, M. Noor-A-Rahim, K. Witheephanich, and D. Pesch,
“Machine learning in event-triggered control: Recent advances and open
issues,” IEEE Access, vol. 10, pp. 74671–74690, 2022.

[36] P. Tabuada, “Event-triggered real-time scheduling of stabilizing con-
trol tasks,” IEEE Trans. Autom. control, vol. 52, no. 9, pp. 1680–1685,
Sep. 2007.

[37] X. Su, F. Xia, L. Wu, and C. P. Chen, “Event-triggered fault detector and
controller coordinated design of fuzzy systems,” IEEE Trans. Fuzzy Syst.,
vol. 26, no. 4, pp. 2004–2016, Aug. 2018.

[38] S. Yang, W. Chen, and M. P. Wan, “A machine-learning-based event-
triggered model predictive control for building energy management,”
Building Environ., vol. 233, 2023, Art. no. 110101.

[39] J. Yoo, E. Nekouei, and K. H. Johansson, “Event-based observer and MPC
with disturbance attenuation using ERM learning,” in Proc. IEEE Eur.

Control Conf., 2018, pp. 1894–1899.
[40] J. Yoo and K. H. Johansson, “Event-triggered model predictive control

with a statistical learning,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 51,
no. 4, pp. 2571–2581, Apr. 2021.

[41] H. Zhao, X. Dai, Q. Zhang, and J. Ding, “Robust event-triggered
model predictive control for multiple high-speed trains with switching
topologies,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 4700–4710,
May 2020.

[42] J. Chen, X. Meng, and Z. Li, “Reinforcement learning-based event-
triggered model predictive control for autonomous vehicle path following,”
in Proc. IEEE Amer. Control Conf., 2022, pp. 3342–3347.

[43] D. Baumann, J.-J. Zhu, G. Martius, and S. Trimpe, “Deep reinforcement
learning for event-triggered control,” in Proc. IEEE Conf. Decis. Control,
2018, pp. 943–950.

[44] R. Rajamani, Vehicle Dynamics and Control. Berlin, Germany: Springer,
2011.

[45] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in Proc.

IEEE Intell. Veh. Symp., 2015, pp. 1094–1099.
[46] V. Mnih et al., “Human-level control through deep reinforcement learning,”

Nature, vol. 518, no. 7540, pp. 529–533, 2015.
[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” 2017, arXiv:1707.06347.
[48] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1861–1870.

[49] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602.

[50] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[51] P. Christodoulou, “Soft actor-critic for discrete action settings,” 2019,
arXiv:1910.07207.

[52] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Mach. Learn., vol. 8, no. 3, pp. 293–321,
1992.

[53] W. Fedus et al., “Revisiting fundamentals of experience replay,” in Proc.

Int. Conf. Mach. Learn., 2020, pp. 3061–3071.
[54] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience

replay,” 2015, arXiv:1511.05952.
[55] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[56] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA:

An open urban driving simulator,” in Proc. 1st Annu. Conf. Robot Learn.,
2017, pp. 1–16.

[57] P. A. Lopez et al., “Microscopic traffic simulation using sumo,” in Proc.

IEEE 21st Int. Conf. Intell. Transp. Syst., 2018, pp. 2575–2582.

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

468 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 9, NO. 1, JANUARY 2024

Fengying Dang received the B.S. degree in detec-
tion, gudiance and control from Northwestern Poly-
technical University, Xi’an, China, and the Ph.D.
degree in electrical and computer engineering from
George Mason University, Fairfax, VA, USA. She
is currently a Postdoctoral Research Associate with
the University of Michigan Transportation Research
Institute, Ann Arbor, MI, USA. Her research interests
include robotics and control, sensing and perception,
data-driven modeling, and learning-based control.

Dong Chen (Member, IEEE) received the B.E. de-
gree from the University of Electronic Science and
Technology of China, Sichuan, China, in 2017. He is
currently working toward the Ph.D. degree with the
Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, MI, USA.
His primary research interests include reinforcement
learning and multi-agent systems.

Jun Chen (Senior Member, IEEE) received the bach-
elor’s degree in automation from Zhejiang University,
Hangzhou, China, in 2009, and the Ph.D. degree in
electrical engineering from Iowa State University,
Ames IA, USA, in 2014. He is currently an Assistant
Professor with the ECE Department, Oakland Univer-
sity, Rochester, MI, USA. His research interests in-
clude artificial intelligence and optimal control, with
applications in intelligent vehicles and energy sys-
tems. Dr. Chen is the recipient of the NSF CAREER
Award, Best Paper Award from IEEE TRANSACTIONS

ON AUTOMATION SCIENCE AND ENGINEERING, Best Paper Award from IEEE IN-
TERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY, Faculty
Recognition Award for Research from Oakland University, Publication Achieve-
ment Award from Idaho National Laboratory, Research Excellence Award from
Iowa State University, and Outstanding Student Award from Zhejiang University.
He is currently a Member of SAE.

Zhaojian Li (Senior Member, IEEE) received the
M.S. and Ph.D. degrees in aerospace engineering
(flight dynamics and control) from the University of
Michigan, Ann Arbor, MI, USA, in 2013 and 2015, re-
spectively. He is currently an Assistant Professor with
the Department of Mechanical Engineering, Michi-
gan State University, East Lansing, MI, USA. As an
undergraduate, he studied with the Nanjing Univer-
sity of Aeronautics and Astronautics, Department of
Civil Aviation, Nanjing, China. He was an Algorithm
Engineer with General Motors from January 2016 to

July 2017. He is the author of more than 20 top journal articles and several
patents. His research interests include learning-based control, nonlinear and
complex systems, and robotics and automated vehicles. He is currently an Asso-
ciate Editor for the Journal of Evolving Systems, American Control Conference,
and ASME Dynamics and Control Conference. He was the recipient of the NSF
CAREER Award.

Authorized licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 03:49:42 UTC from IEEE Xplore. Restrictions apply.

