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Abstract—Automated Program Repair (APR) aspires to auto-
matically generate patches for an input buggy program. Tradi-
tional APR tools typically focus on specific bug types and fixes
through the use of templates, heuristics, and formal specifications.
However, these techniques are limited in terms of the bug types
and patch variety they can produce. As such, researchers have
designed various learning-based APR tools with recent work
focused on directly using Large Language Models (LLMs) for
APR. While LLM-based APR tools are able to achieve state-of-
the-art performance on many repair datasets, the LLMs used
for direct repair are not fully aware of the project-specific
information such as unique variable or method names.

The plastic surgery hypothesis is a well-known insight for APR,
which states that the code ingredients to fix the bug usually
already exist within the same project. Traditional APR tools
have largely leveraged the plastic surgery hypothesis by designing
manual or heuristic-based approaches to exploit such existing
code ingredients. However, as recent APR research starts focusing
on LLM-based approaches, the plastic surgery hypothesis has
been largely ignored. In this paper, we ask the following question:
How useful is the plastic surgery hypothesis in the era of LLMs?
Interestingly, LLM-based APR presents a unique opportunity
to fully automate the plastic surgery hypothesis via fine-tuning
(training on the buggy project) and prompting (directly providing
valuable code ingredients as hints to the LLM). To this end, we
propose FitRepair, which combines the direct usage of LLMs
with two domain-specific fine-tuning strategies and one prompt-
ing strategy (via information retrieval and static analysis) for
more powerful APR. While traditional APR techniques require
intensive manual efforts in both generating patches based on
the plastic surgery hypothesis and guaranteeing patch validity,
our approach is fully automated and general. Moreover, while
it is very challenging to manually design heuristics/patterns for
effectively leveraging the hypothesis, due to the power of LLMs in
code vectorization/understanding, even partial/imprecise project-
specific information can still guide LLMs in generating correct
patches! Our experiments on the widely studied Defects4j 1.2
and 2.0 datasets show that FitRepair fixes 89 and 44 bugs
(substantially outperforming baseline techniques by 15 and 8),
respectively, demonstrating a promising future of the plastic
surgery hypothesis in the era of LLMs.

I. INTRODUCTION

The increasing complexity of source code poses a key
challenge to the reliability of large-scale software systems.
Software bugs in these systems can lead to safety issues [1]
for users around the world as well as cause non-negligible
financial losses [2]. As such, developers have to spend a
large amount of effort on bug fixing. Consequently, Automated
Program Repair (APR), designed to automatically generate
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patches to fix software bugs, has attracted wide attention from
both academia and industry [3], [4], [5], [6], [7].

To achieve APR, one popular approach is known as
Generate-and-Validate (G&V) [8], [9], [6], [10], [4], [11], [12],
[13], [14], [15], [16], which is typically based on the following
pipeline: First, fault localization techniques [17], [18], [19],
[20] are applied to determine the suspicious locations in
programs where bugs are likely to exist. Then, the locations
are used by the APR tools to generate a list of patches that
replace buggy lines with correct lines. Afterward, each patch is
validated against the test suite to identify any plausible patches
(i.e., passing all tests in the test suite). Finally, to determine
the correct patches, developers examine the plausible patches
to see if any of them can correctly fix the bug.

Traditional APR tools can mainly be categorized into
heuristic-based [4], [10], [11], constraint-based [21], [22],
[23], [5] and template-based [9], [12], [13], [15], [16]. Among
these traditional tools, template-based APR [9], [15] have been
able to achieve state-of-the-art results. Template-based APR
tools typically leverage pre-defined templates (e.g., adding
a nullness check) for bug fixing. However, since these fix
templates are typically handcrafted, the number and types of
bugs they are able to fix can be limited.

To address the limitations of traditional APR, researchers
have proposed various learning-based APR tools [24], [25],
[26], [27], [28], [29], [30], [31] based on the Neural Machine
Translation (NMT) architecture [32] where the input is the
buggy code snippets and the goal is to translate the buggy code
snippets into a fixed version. To accomplish this, learning-
based APR tools require supervised training datasets with
pairs of both buggy and fixed code snippets in order to learn
how to perform this translation step. These training data are
usually obtained by mining historical bug fixes using heuris-
tics/keywords [33], which can be imprecise for identifying
bug-fixing commits; even the actual bug-fixing commits can
include irrelevant code changes, leading to further pollution in
the dataset [34]. Moreover, it can be hard for such APR tools
to generalize and fix bug types unseen during training.

To better leverage recent advances in Large Language
Models (LLMs), researchers [34], [35], [36], [37] have directly
applied LLMs to generate patches without bug-fixing datasets.
These LLM-based APR tools work by either infill the correct
code given its surrounding context [34], [35], [38] or directly



generating a complete code function [37], [35]. By directly
using LLMs that are pre-trained on billions of open-source
code snippets, LLM-based APR tools have been shown to
achieve state-of-the-art performance on program repair [34].

Traditional APR tools have long used the insight of the
plastic surgery hypothesis [39] where it states that the code
ingredients to fix a bug already exist within the same project.
Traditional APR tools have manually designed pattern- [9],
[40] or heuristic-based [41], [4] approaches to finding and
using such relevant code ingredients to generate fixes for
bugs. However, the plastic surgery hypothesis has been largely
ignored in LLM-based APR. In fact, LLM provides a unique
opportunity to fully automate the plastic surgery hypothesis
idea via fine-tuning (learning project-specific information via
model updates from the buggy project) and prompting (directly
providing relevant code ingredients to the model), and make
it directly applicable to different languages (since the LLMs
are typically multi-lingual). Moreover, despite the intensive
manual efforts involved, traditional APR tools still cannot
fully leverage project-specific information due to large search
space for leveraging/composing existing code ingredients. In
contrast, the project-specific information can be effectively
leveraged by LLMs due to their power in code understand-
ing/vectorization, e.g., even partial/imprecise information may
still guide LLMs in correct patch generation! To this end, we
ask the question: How useful is the plastic surgery hypothesis
in the era of LLMs?

Our Work. We present FitRepair — a LLM-based approach
that automatically utilizes the plastic surgery hypothesis by
systematically combining multiple fine-tuning and prompting
strategies for APR. FitRepair fine-tunes LLMs using two novel
domain-specific training strategies: Knowledge-Intensified
fine-tuning — we fine-tune using the original buggy project by
aggressively masking out a high percentage of tokens, which
allows LLM to learn project-specific code tokens and pro-
gramming styles; and Repair-Oriented fine-tuning — which
only masks out a single continuous code sequence per training
sample, allowing the model to get used to the final cloze-style
APR task of predicting a single continuous code sequence.
Furthermore, we directly leverage the ability for LLMs to
understand natural language instructions and introduce a novel
prompting strategy, Relevant-Identifier prompting, which
uses information retrieval and static analysis to obtain a list
of relevant identifiers for the buggy lines. While such relevant
identifiers are critical for fixing some difficult bugs, they may
not be seen by the LLM during inference due to limited context
window size. Through the use of prompting, we directly tell
the model to use these extracted identifiers (relevant code
ingredients) to generate the correct code.

While our insight of leveraging the plastic surgery hypothe-
sis for LLM-based APR is generalizable across different types
of LLMs, to implement FitRepair, we choose a recent LLM,
CodeT5 [42], which is pre-trained on millions of open-source
code snippets. CodeT5 is an encoder-decoder model trained
using Masked Span Prediction (MSP) objective where a per-
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centage of tokens are masked out and each continuous masked

token sequence is referred to as a masked span. To perform

repair, we combine all four model variants (including the
base model, both fine-tuned models and the base model with
prompting). In summary, we make the following contributions:

o Dimension. This paper is the first to revisit the important
plastic surgery hypothesis in the era of LLMs. It opens
up a new dimension for LLM-based APR to incorporate
previously neglected information from the buggy project
itself to boost performance. Our fine-tuning and prompting
strategies are crucial for boosting up LLMs for fixing the
project under test, and could even enable APR for languages
rarely seen or totally unseen during LLM pretraining.

« Implementation. We implement FitRepair based on the
recent CodeTS model. We augment the model using two
novel fine-tuning strategies: Knowledge-Intensified fine-
tuning and Repair-Oriented fine-tuning, along with a novel
prompting strategy based on information retrieval and static
analysis: Relevant-Identifier prompting. We combine the
patches generated by all four models together and perform
patch ranking to speed up APR.

o Evaluation Study. We conduct an extensive evaluation
against state-of-the-art APR tools. On the widely studied
Defects4j 1.2 and 2.0 datasets [43], FitRepair is able to
achieve the new state-of-the-art results of 89 and 44 correct
bug fixes (15 and 8 more than best baseline) respectively.
Furthermore, we perform a broad ablation study to jus-
tify our design. FitRepair demonstrates for the first time
that the plastic surgery hypothesis can substantially boost
LLM-based APR, while being fully automated and general.
Moreover, even partial/imprecise code ingredients may still
effectively guide LLMs for APR!

II. BACKGROUND
A. Large Language Model

Large Language Models (LLMs) trained on large amounts
of text combined with code snippets from a broad range of
open-source repositories have shown impressive progress in
various code-related tasks [44], [45], [46]. On top of that,
LLMs can be fine-tuned (updatingLLM parameters by further
training on the downstream tasks [47]) to target a specific task
such as software testing [48], defect prediction [49] or code
clone detection [50]. Different from fine-tuning, prompting is
a way to directly use LLMs on downstream tasks without
further training. Prompting involves providing a natural lan-
guage description of the task and optionally including a few
demonstrations of the task to the LLMs before the actual input.
Researchers have successfully applied prompting to tasks like
code completion [51] and code summarization [52].



LLMs are based on the popular Transformer architec-
ture [53], which combines an encoder with a decoder to
perform text generation. The encoder first takes in the input to
the model and then produces an encoded representation. The
decoder uses this encoded vector to autoregressively generate
the next token based on all previously generated tokens. Using
this paradigm, researchers build larger and larger models
(as large as 540B in the number of model parameters [54])
and demonstrated impressive results on code-related tasks,
especially on program synthesis [44], [55], [56], [57], [58].

LLMs can be classified into three groups based on their
model architecture and pre-training objective: Decoder-only
(Left-to-Right Language Models), Encoder-only (Masked
Language Models), and Encoder-decoder models. Figure 1
shows an overview of the three different LLM architectures.
Decoder-only models perform left-to-right generation by pro-
ducing the probability of a token given all previous tokens.
One of the most well-known LLMs, GPT [59], [60], is based
on this architecture. During training, decoder-only models
aim to predict the next token given all previous context.
Examples of decoder-only models for code are CodeGPT [61],
CodeParrot [62], and Codex [44]. These models can be directly
used for program generation given previous code contexts.
Encoder-only models, on the other hand, only use the encoder
component to provide an encoded representation of the input.
Models such as BERT [47] are trained using the Masked
Language Model (MLM) objective, where a small percentage
(e.g., 15%) of the training tokens are masked out and the
model aims to recover these masked tokens using the bi-
directional context. CodeBERT [63], GraphCodeBERT [64],
and CuBERT [65] are examples of encoder-only models where
it can provide a representation of the input code to be used for
downstream tasks such as code clone detection [50]. Encoder-
decoder models (T5 [66], BART [67]) use both components of
the transformer and are typically trained using Masked Span
Prediction (MSP) objective. Different from MLM, instead of
masking out individual tokens, MSP replaces a sequence of
tokens with a single span mask. The goal of the training is to
recover the original sequence using both the context before and
after the span mask token. CodeT5 [42] and PLBART [68] are
examples of encoder-decoder models and due to the MSP pre-
training objective, they can be directly used to fill in arbitrary
code snippets given the bi-directional code context.

B. Automated Program Repair

Automated Program Repair (APR) works by automatically
generating patches when given the buggy project and potential
fault locations. Traditional APR tools can be categorized into
constraint-based [21], [22], [23], [5], heuristic-based [4], [10],
[11], and template-based [9], [12], [13], [15], [16] tools.
Among those, template-based APR has been regarded as the
state-of-the-art in achieving the best repair performance [9],
[15]. Template-based APR works by using pre-defined tem-
plates (handcrafted by human experts) which target specific
patterns in source code. Each template will have an associated
fix that modifies the found patterns in the source code to fix

specific types of bugs. However, template-based APR tools
cannot fix bugs that do not fall under the pre-defined templates.
As a result, template-based tools lack the ability to generalize
to unseen bug types.

In recent years, researchers have begun to focus on learning-
based APR approaches such as TENURE [31], Tare [30],
SelfAPR [69], RewardRepair [29], Recoder [28], CURE [26],
and CoCoNuT [27] based on the Neural Machine Transla-
tion (NMT) [32] architecture. The goal of these tools is to
learn a transformation using DL models that turns buggy
code snippets into patched ones. To facilitate this, these
tools require further training on specific bug-fixing datasets
containing pairs of buggy and fixed code snippets. However,
as discussed in prior work [34], these bug-fixing datasets are
usually scraped from open-source bug-fixing commits using
handwritten heuristics such as keyword searching [28], [27],
[33], [70], which can include irrelevant code commits; even the
correctly identified bug-fixing commits may contain various
irrelevant code changes (such as refactoring or new feature
implementation), introducing various noises in the datasets.
Also, to avoid including bug-fixing commits with irrelevant
code changes, existing learning-based APR techniques will
limit the commits to ones with few lines of changes [26], [28],
[27], further limiting the amount of training data. Moreover,
NMT-based APR may still not generalize to specific code or
bug types unseen inside of the (limited) bug-fixing datasets.

Recognizing these limitations in NMT-based APR, re-
searchers have proposed LLM-based APR tools which do not
require bug-fixing datasets by directly using LLMs for APR.
AlphaRepair [34] reformulated the APR problem as a cloze (or
infilling) task to directly leverage LLMs in a zero-shot manner
to fill in the code given the context before and after the buggy
line, and demonstrated that LLMs can directly outperform all
prior APR techniques. Other studies [35], [36], [37], [38] also
used different LLMs (including Decoder-only and Encoder-
decoder models) to not only perform cloze-style APR but
also repair scenarios where a complete fixed function is gen-
erated. Contrasting with NMT-based APR tools, LLM-based
APR leverages the pre-training objectives of LLMs which
can directly learn the relationship between correct code and
its context without relying on historical bug-fixing commits.
As a result, LLM-based APR tools have shown to achieve
state-of-the-art performance on repair tasks across multiple
programming languages [35]. Even more recently, there has
been concurrent work on leveraging the popular dialogue-
based LLMs (e.g., ChatGPT [71]), which are fine-tuned using
reinforcement learning from human feedback (RLHF) [72], to
build advanced APR tools [73], [74], [75]. Such APR tools
can directly take in test execution feedback to not only learn
from the immediate feedback/hint (i.e., single-turn) [74] but
also leverage the full conversational history to make use of
multiple previous feedback (i.e., multi-turn) to generate a new
patch [73], [75]. Orthogonally, in this work, we present the
first work to further advance state-of-the-art LLM-based APR
with the insight of the plastic surgery hypothesis.
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II1. APPROACH

Cloze Input

In this section, we describe our approach to incorporate the
plastic surgery hypothesis for LLM-based APR. While our
overall idea is general for LLM-based APR approaches, we
mainly focus on cloze-style APR [34] since it has been demon-
strated to be the state-of-the-art for LLM-based APR [35].
Figure 2 shows the overview of cloze-style APR where we
aim to directly generate the correct code in place given the
original context, where the model has to “fill in the blanks” of
the missing code line/hunk (represented by <SPAN>) given the
buggy context. However, prior cloze-style APR tools largely
ignore the rich project- and bug-specific information that has
been demonstrated by the plastic surgery hypothesis [39] to be
critical in helping to fix the bug. LLM presents an opportunity
to automatically leverage the idea of the plastic surgery
hypothesis via its powerful ability to both directly learn from
the buggy project (fine-tuning) and use relevant code context
clues (prompting) to generate correct fixes. In this work, we
explore using LLMs to automatically capture project-specific
information via both fine-tuning and prompting.

We propose a novel approach — FitRepair to combine the di-
rect usage of LLM in cloze-style APR with knowledge gained
from the plastic surgery hypothesis. FitRepair first trains
two separate models with two novel fine-tuning strategies: 1)
Knowledge-Intensified fine-tuning — we use the source files
of the original buggy project to construct a similar dataset
to pre-training by aggressively masking out large portions
(50%) of the code tokens, which allows LLM to learn project-
specific code tokens and programming styles; and 2) Repair-
Oriented fine-tuning — we fine-tune another model using
the original buggy project to construct a more repair-oriented
dataset by masking out only a single continuous code sequence
per training sample, which makes the fine-tuned model
become more prepared for the repair task where only a single
continuous code sequence needs to be generated. Additionally,
we propose a novel prompting strategy, 3) Relevant-Identifier
prompting, by obtaining a list of relevant/rare identifiers that
are not seen by the model in its immediate context using
information retrieval and static analysis.

While our approach can be extended to different LLMs, in
this paper, we use CodeT5 [42], an encoder-decoder LLM for
code trained using Masked Span Prediction (MSP) objective.
MSP replaces continuous tokens with a single masked span
token (<SPAN>) and the pre-training task is to recover masked-
out code sequences given the surrounding context. Given a
sequence of tokens X = {x1,...,z,}, random sequences of
tokens are replaced with a masked span token to produce
Xmasked = {x1,...,<SPAN> z,}. Let M = {mq,...,my}
be the tokens masked out, M., = {mi,ma,...,my_1} be
token sequence predicted so far where g < k, P be the
predictor (model) which outputs the probability of a token.

The MSP loss function can be described as: Lysp =

_% f:l lOg (P (mi | Xmasked ]\/j<l)

We follow previous work [34] and use repair templates to
generate mask lines where we replace the entire or parts of
the buggy line with a single masked span token. We then use
CodeT5 to generate the correct code to replace the masked
span and create a patch for the bug. Figure 3 shows the
overview of our approach:

e @ (Section III-A): We use Knowledge-Intensified fine-
tuning to build a training dataset by extracting functions
from the buggy project. We fine-tune the original CodeT5
model by first using a high masking rate to aggressively
learn project-specific tokens.

e @ (Section III-B): We use Repair-Oriented fine-tuning
strategy to fine-tune another model by constructing another
training dataset from the buggy project where only a single
or partial code line is masked out based on the repair
templates. We train the model until convergence and obtain
the Repair-Oriented fine-tuning model.

¢« @ (Section III-C): We use Relevant-Identifier prompting
strategy to extract relevant identifiers via information re-
trieval and static analysis. We then create individual prompts
with instructions for the model to use the extracted identi-
fiers during patch generation.

e @ (Section III-D): We perform cloze-style APR by using
the repair templates from previous work [34] and generate
patches by separately using the 4 models (original CodeTS5,
Knowledge-Intensified fine-tuning model, Repair-Oriented
fine-tuning model, and original CodeT5 with prompting).
Each patch generated is then validated against the test suite
to find the list of plausible patches.

A. Knowledge-Intensified Fine-tuning

To facilitate the learning of project-specific information,
we use Knowledge-Intensified fine-tuning by constructing a
training dataset using the buggy project itself. Figure 4
shows the Knowledge-Intensified fine-tuning process. We
first extract the source code functions from the project code
base where the bug is from and apply MSP objective —
masking out multiple spans of code tokens, used to pre-
train the original CodeT5 model. Traditionally, MSP objective
will mask out only a small portion of the original code
tokens (e.g., 15% [42]). However, in this step, we employ
a much higher masking rate (50%) which means the model
is tasked with recovering more masked-out code tokens with
less context. This approach is motivated by a recent study [76]
on LLMs for natural languages where better representation
and downstream performance can be achieved by increasing
the pre-training masking rate of MLM and MSP objectives.
The study found that higher masking rates make the learning
tasks more challenging and can force the model to learn more
aggressively, which helps improve the performance of LLMs
on various downstream tasks. In this paper, we leverage this
idea of more aggressive training to force the model to learn
more project-specific knowledge by trying to recover more
code tokens given limited context.
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However, one limitation with fine-tuning the model on the
buggy project itself is the relatively small number of training
samples (e.g., thousands of functions) especially compared
with the large amount of open-source pre-training data used
in CodeT5 (millions of functions). As a result, we reapply the
MSP objective across iterations to augment the fine-tuning
dataset with more training samples. Following the example
in Figure 4, we start by creating one set of training data
by masking out 50% of the training tokens to create masked
spans. In the next iteration, we reapply this masking strategy to
create a new set of training data by randomly choosing another
50% to mask out again. In this process, we essentially create
new training data for each subsequent iteration. While the
number of tokens masked out is the same, the specific masked
locations can be different which provides further augmentation
on the training dataset allowing the model to learn more
project-specific tokens.

During the fine-tuning process when using Knowledge-
Intensified fine-tuning, FitRepair is able to learn project-
specific knowledge such as commonly used methods or vari-
ables that are specifically defined in the current project. These
pieces of project-specific knowledge are especially important
for repair as many bugs can be fixed by applying code snippets
found in other parts of the source file or project, according to
the plastic surgery hypothesis [39]. Due to the limited context
window size (e.g., 512 tokens for CodeT5), CodeT5 cannot
encode all of the surrounding contexts during inferencing,
which leads to the base CodeT5 model missing variable names
and method calls used in other parts of the context that are
actually necessary to be used as part of the patch. Knowledge-
Intensified fine-tuning can partially alleviate this by learning
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Fig. 5: Repair-Oriented fine-tuning overview
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these missing variable names and method calls as part of
the fine-tuning such that when used for cloze-style APR,
the fine-tuned model can predict these useful tokens with a
higher probability compared to the model without fine-tuning.
While Knowledge-Intensified fine-tuning can help with better
learning of project-specific details, we next introduce Repair-
Oriented fine-tuning which produces another model that aims
to optimize for the repair task.

B. Repair-Oriented Fine-tuning

In the previous step, we use Knowledge-Intensified fine-
tuning to generate more code that uses project-specific vari-
ables, method calls, and structures. Cloze-style APR frames
the problem of patch generation by asking the LLM to fill in
the correct code given the buggy context. This is achieved by
exploiting the similarity between the pre-training objective and
final inference setup to generate patches. Furthermore, cloze-
style APR is not limited to only generating a complete line but
additionally using repair templates (e.g. replaces only method
call name) which keeps part of the buggy line to generate
partial lines [34]. However, both the Knowledge-Intensified
fine-tuning CodeT5 and the original CodeT5 suffer from the
same limitation: the training process is not designed for repair.
Both the original pre-training and Knowledge-Intensified fine-
tuning use MSP which masks out multiple disjointed code
token spans. The goal of the model during training is to recover
the original tokens for all the masked spans. However, for
cloze-style APR, only a single code line or a part of the code
line is usually masked out and the model only has to predict
the correct code for that single span.

To address such limitations, we use Repair-Oriented fine-
tuning which fine-tunes with a training setup that is similar to



the repair inference task. Figure 5 shows the detailed Repair-
Oriented fine-tuning process. We again first use the original
buggy project as the source of our training data by extracting
source code functions. We pick a single code line in each
training sample to mask out with a single span token. One
can think of this chosen code line as the buggy line in the
final repair scenario. To model the impact of eventually using
template-based repair inputs, we randomly select a repair
template that can be applied on this line to mask out only a
part of the line. These repair templates are taken directly from
previous cloze-style APR work [34] and can be categorized
into 3 different types of repair templates: 1) Complete mask
— replace the entire buggy line with a single span token or
add the span token to before/after the buggy line, 2) Partial
mask — keep some original buggy line tokens at the end or
beginning of the line and replace the rest with a span token,
and 3) Template mask — target specific code line types by
replacing the method call, method parameters, and Boolean
expression or operator with a span token. In this fine-tuning
process, our training samples are closely similar in their setup
compared with the cloze-style APR task that we want the
model to perform. Using Repair-Oriented fine-tuning, we can
produce a fine-tuned model which aims to follow closely with
the final repair task.

C. Relevant-Identifier Prompting

Two previous fine-tuning strategies aim to fine-tune the
model towards generating more project-specific tokens and
get used to repair-oriented inputs by using the original buggy
project as the fine-tuning dataset. However, this means that
the two fine-tuned models have been geared toward the entire
buggy project rather than the specific bug within the project.
For specific bugs, the relevant code ingredients may be drasti-
cally different depending on the bug file, location, and type of
buggy line. These ingredients can be possibly far away from
buggy locations, making it hard for them to be included in
the input context due to the limited context window size of
LLMs (e.g. the context window size of CodeT5 is 512 tokens).

We use Relevant-Identifier prompting on the base CodeT5
model to directly prompt the model with relevant code ingredi-
ents. Algorithm 1 illustrates our prompting strategy. Given the
buggy line information, we first extract the file containing the
bug and separate it into individual code lines (Line 1). Prior
work has found that a significant percentage of the correct
code to fix the bug can be found within the same file [39].
We then use Levenshtein Distance Ratio [77] (other string
comparison methods [78], [79], [80] provide similar results)
to measure the similarity between each line compared with the
buggy line (Line 4). The hypothesis is that useful identifiers
can be obtained from lines that are very similar to the buggy
line [81]. We rank each code line based on its string similarity
score from high to low to get a ranked list of code lines (Line
5). Since we want to provide the model with identifiers to help
generate the correct fix, we extract identifiers from each line
(Line 7). We perform further filtering by first removing any
common/simple identifiers (e.g., length and node) (Line 8)

Algorithm 1 Relevant-Identifier Prompting Strategy

Inputs: Buggy project, file and line: Proj, File, buggy_line
QOutput: Relevant-Identifier: prompts
1: lines := EXTRACTLINES(F'ile)
2: similarities, identifiers :== [],[]
3: for line in lines do
4 stmilarities.append(LEVENSHTEINRATIO(buggy_line,
line))
: lines_ranked := RANKLINES(lines, similarities)
: for line in lines_ranked do
line_identifiers := EXTRACTIDS(line)
identi fiers.extend(SIMPLEFILTER(line_identi fiers))
9: accessibles := FINDACCESSIDS(Proj, File, buggy_line)
10: relevants := identifiers N accessibles
11: type_infos := FINDTYPEINFO(Proj, relevants)

12: prompts := BUILDPROMPTS(relevants, type_in fos)

AN

and then using static analysis (Line 9) to remove any identifiers
that are inaccessible within the buggy method (Line 10). Next,
we extract the useful type information for each identifier and
if it is a method invocation or a variable (Line 11). Finally,
we obtain a ranked list of complex identifiers that come from
similar lines within the same file.

We then generate the prompts to instruct the model to use
these extracted identifiers to generate patches (Line 12). LLMs
are able to understand natural language instructions to perform
specific tasks. In Relevant-Identifier prompting, we construct a
prompt in the form of /x use {} in the next line x/
where we replace {} with an identifier with type information
(e.g., (Plot) getParent ()). This prompt is then appended
before the masked span token during inference that allows
the model to directly use this identifier information provided
in its generation. Since we have a ranked list of identifiers,
we generate multiple unique prompts, each including one
of the highest-ranked identifiers. By directly providing these
extracted bug-specific identifiers in prompts, the model can use
these identifiers which previously are outside of its immediate
context to generate the correct fix.

D. Patch Generation, Ranking, and Validation

We directly use the base CodeT5 model (with and without
prompting) and the two fine-tuned models generated from
previous steps for patch generation. To generate patches to
replace the buggy lines, we apply repair template inputs from
previous work [34] and ask each model to fill in the masked-
out span token with generated correct code. Following prior
work [37], [35], [36], we sample each model in parallel to
generate its own set of patches. In total, for each bug, we
generate four lists of potential patches using the four models.

The rankings of patches are computed based on the outputs
of each model. We follow the same process as previous
work [34] and compute the likelihood score. For each can-
didate patch, we want to provide a likelihood score that can
accurately reveal the extent to which CodeT5 will generate this
patch. Let T' = {t1,t2,...,t,} be the list of tokens generated
for a patch and C(t;) be the probability of generating token
t; according to CodeT5, then the likelihood score is defined
as: score(T) = 13" log (C(t;)).

n



We compute this likelihood score for all the patches gen-
erated across all the templates and re-rank patches from the
highest score to the lowest score. We then validate each
candidate patch in accordance with the ranking results. Since
each model (two fine-tuned models, base CodeT5 with and
without prompting) generates its own separate list of patches,
we use a round-robin schedule to validate one patch from
each model before rotating. Note, we can also perform the
patch validation in parallel. As such, we can reduce the patch
validation time by stopping after any one of the models found
a correct patch according to manual inspection by developers.

IV. EXPERIMENTAL DESIGN
A. Research Questions

In this paper, we study the following research questions:

« RQ1: How does FitRepair compare against the state-of-the-
art APR tools?
« RQ2: What is the impact of different configurations of

FitRepair?

« RQ3: How does FitRepair generalize in fixing additional
bugs from different projects?

We first demonstrate the repair effectiveness of FitRepair
against state-of-the-art APR tools on the popular Defects4j
1.2 [43] dataset. We study not only the number of bugs
fixed in total but also the number of unique bugs fixed
compared with previous techniques. Furthermore, we analyze
the improvement in patch ranking — to validate correct patches
faster when using FitRepair. Next, we conduct an extensive
ablation study on the different configurations of both our two
fine-tuning strategies and one prompting strategy. Due to the
time cost to train multiple models, for the ablation study, we
focus on the Closure project in Defects4j which is the largest
in both the number of bugs and source code size. Following
prior work [34], [35], we evaluate against the state-of-the-art
APR tools on the Defects4j 2.0 [43] dataset to illustrate that
FitRepair is not simply overfitting to the 1.2 version.

B. Implementation

FitRepair is implemented in Python using the PyTorch [82]
implementation of the CodeT5 model from Hugging Face [83].
Our fine-tuning method is based on the pre-trained CodeT5-
large (770M) checkpoint. We use JavaParser [84] to perform
static analysis of filtering inaccessible identifiers in scope. For
both Knowledge-Intensified fine-tuning and Repair-Oriented
fine-tuning, we repeat the fine-tuning process for 10 iterations
by default to augment our fine-tuning dataset. We fine-tune
the CodeT5 model on an NVIDIA RTX A6000 with 48GB
memory using FP16. We use the following set of hyper-
parameters to train models: 32 batch size and le-4 learning
rate with 15K training steps. We use Adam optimizer [85] to
update the parameters and use a linear learning rate scheduler
with 10% warmup proportion. For both fine-tuning strategies,
we extract the oldest version of the buggy project for training
and use the fine-tuned models to generate patches for all
bugs in that project. For Relevant-Identifier prompting, we
use the top 5 most relevant identifiers. For repair, we sample

each model 5000 times and validate the top 1000 unique
patches produced by each model (at most 4000 patches in
total per bug) which is comparable to other baselines. To
generate more unique patches for each sample, we use nucleus
sampling with top p of 1 and temperature of 1. We validate
the patches on a workstation using AMD Ryzen Threadripper
PRO 3975WX CPU with 32-Cores and 256 GB RAM, running
Ubuntu 20.04.5 LTS. Similar to prior work [34], [26], [24], we
use an end-to-end time limit of 5 hours to fix one bug. Note
that we sum up the time spent on each of our four processes
as FitRepair time cost for fair comparison.

C. Subject Systems

We use the widely studied benchmark of Defects4j [43] —
a collection of open-source bugs found across 15 different
projects to evaluate FitRepair. We follow prior work and
separate the dataset into Defects4j 1.2 and 2.0. Defects4j 1.2
contains 391 bugs across 6 different projects and Defects4;]
2.0 contains 438 bugs across 9 additional projects. While
evaluating FitRepair on all 391 bugs in Defects4j 1.2, we
follow prior work [34] and choose only the 82 single-line bugs
in Defects4j 2.0 for evaluation (since existing learning-based
APR mainly target single-line fixes).

D. Compared Techniques

We compare FitRepair against 20 different APR tools
including both state-of-the-art learning-based and traditional
APR tools. We choose 8 recent learning-based APR tools:
AlphaRepair [34], SelfAPR [69], RewardRepair [29], Re-
coder [28], CURE [26], CoCoNuT [27], DLFix [24] and
SequenceR [25]. AlphaRepair is a recently proposed and
state-of-the-art cloze-style APR tool that directly uses an
LLM (CodeBERT). Additionally, we also compare against 12
representative traditional APR tools: TBar [15], PraPR [9],
AVATAR [16], SimFix [41], FixMiner [14], CapGen [11],
JAID [86], SketchFix [12], NOPOL [23], jGenProg [87],
jMutRepair [13], and jKali [13]. Finally, since FitRepair
proposes to combine the base CodeT5 (with and without
prompting) with the two fine-tuned models, we also compare
against a baseline where we run the base CodeT5 four times
with four random different seeds. This is a fair and necessary
baseline to compare against as CodeTS5 can produce different
sampling outputs depending on the random seed and a devel-
oper who wishes to use our approach of combining the four
models together may also allocate the same GPU resource to
run CodeT5 four times as well. We refer to this baseline in
our evaluation as CodeT5x4.

We evaluate against these baselines on perfect fault local-
ization setting, where the ground-truth location of each bug
is provided to the repair tool by comparing the reference
developer patch with the buggy code. This is the preferred
evaluation setting [27], [26], [28], [7] as it eliminates any
result differences caused by using different fault localization
techniques [17]. We use the standard metrics for APR com-
parison of plausible patches — pass the entire test suite and
correct patches — semantically equivalent to the reference
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if (objectType != null) {
boolean isOverride = t.inGlobalScope() &&
/* use (Node) getJSDocInfo() in the next line */
+ boolean isOverride = parent.getJdSDocInfo() != null &&
parent.getType() == Token.ASSIGN &&
Bug: Closure-77 a)
MockHandlerInterface<T> oldMockHandler = getMockHandler(mock);
- MethodInterceptorFilter newFilter = new MethodInterceptor...
/* use (MockUtil) getMockHandler() in the next line */
+ MockHandler<T> newMockHandler = new MockHandler<T>(oldMockHandler);
+ MethodInterceptorFilter newFilter = newMethodInterceptorFilter(
+ newMockHandler.getMockSettings());
((Factory) mock).setCallback(®, newFilter);
Bug: Mockito-27 b)

Fig. 7: Relevant-Identifier prompting unique patches

developer fix. Following all prior APR work, correct patches
are determined by manually inspecting each plausible patch.
Also, following common practice in APR, we directly report
the number of correct and plausible bug fix results from
previous studies [34], [9], [15], [28], [29].

V. RESULT ANALYSIS
A. RQI: Comparison with State-of-the-art

1) Bugs fixed: We first compare FitRepair against both
traditional and learning-based APR tools on Defects4j 1.2.
Table I shows the number of bugs that can be fixed with
correct patches by FitRepair and the top baseline tools. In
addition to FitRepair, we also include the result of running the
base CodeT5 separately four times using four different seeds
(Column CodeT5 x4). Compared with CodeT5 x4, we observe
that our fine-tuned models and prompting strategy is able to
provide additional fixes, boosting the number of correct bug
fixes from 80 to 89. In total, FitRepair is able to achieve 89
correct bug fixes on Defectsdj 1.2 with 15 more fixes than the
current state-of-the-art APR tool. Figure 6a shows the number
of unique bug fixes (that only one technique can exclusively fix
while others cannot) generated by FitRepair compared with the
top performing APR baselines and all other tools (Other). We
observe that even compared with all previous APR approaches,
FitRepair is able to provide 16 additional unique fixes that no
other APR tools have been able to fix so far on Defectsdj 1.2.

To illustrate the ability of FitRepair, we show an example
fix on a bug (Closure-71) in Figure 7a which cannot be
fixed by any previous tools. The fix is to invoke the method
of getJSDocInfo () which is not only an uncommon method
name but also is not used in the surrounding context. How-
ever, this method has been used within the same file as the
buggy code where another function initializes a variable called
overridingInfo also using getJSDocInfo (). Relevant-
Identifier prompting is able to recognize the similarity between
the buggy variable name (isOverride) and this line to extract

int p = NodeUtil.precedence(type);
Context rhsContext = Context.OTHER;

+ Context rhsContext = getContextForNoInOperator(context);
addExpr(first, p + 1, context);

Bug: Closure-123

Fig. 8: Knowledge-Intensified fine-tuning unique patch

the relevant identifier of getJSDocInfo () and provide the
prompt to tell the model to directly use this identifier to
generate the correct patch. This example showcases the plastic
surgery hypothesis where patches can often be constructed
via reusing code snippets/ingredients from other parts of the
project. FitRepair directly leverages this hypothesis by extract-
ing the relevant identifiers from similar code lines within the
current file and providing it via natural language prompting to
generate the correct fix.

Another interesting example bug (Mockito-27) fixed
by FitRepair that cannot be fixed by previous tools
is in Figure 7b. This bug is fixed by calling the
MethodInterceptorFilter constructor with a previous set-
ting obtained using getMockSetting (). We observe that
while the Relevant-Identifier prompting did not get the exact
identifier of getMockSetting, it was able to gather a closely
related identifier of getMockHandler. Due to their power in
code understanding, LLMs do not have to always generate a
patch containing the exact identifier in the prompt and can
often just use it as hints or partial code for generation. This
example further highlights the unique effect the plastic surgery
hypothesis have on LLM-based APR where the extracted code
ingredients do not have to be exactly correct and can serve as
guidance for the model to generate the correct patch.

2) Individual strategy effect: Figure 6b shows the unique
bugs fixed by each of the individual strategies in FitRepair. We
observe that our three strategies are all able to contribute to
providing unique fixes compared with the base CodeT5 model
(4 from Knowledge-Intensified fine-tuning, 2 from Repair-
Oriented fine-tuning and 6 from Relevant-Identifier prompting)
and boost the overall FitRepair to achieve 89 correct patches.
Interestingly, each single strategy is already a strong APR
tool, e.g., the Relevant-Identifier prompting strategy can fix
79 bugs by itself, already outperforming all existing tools.
This demonstrates the ability of our three strategies to pro-
vide additional fixes that directly applying the base CodeT5
cannot provide. Moreover, the base CodeT5 model without
any changes also produced 2 unique fixes, demonstrating the
usefulness of applying the base model to cover the bugs that
may only require general-purpose correct code knowledge.

Since Section V-Al has shown unique fixes obtained
by Relevant-Identifier prompting, we now present an ex-
ample bug fixed by Repair-Oriented fine-tuning. Figure 8
shows a correct fix example that base CodeT5 model
cannot fix on Closure-123. For this bug, the correct
fix is to initialize the variable rhsContext by calling
a function getContextForNoInOperator (). What makes
this bug difficult to fix for previous APR tools is that
getContextForNoInOperator is a very hard sequence to
generate. First, it is not a commonly used function name such
as getContext. Second, there are no code snippets using



TABLE I: Evaluation results of correct fixes on Defectsdj 1.2

Project FitRepair CodeT5x4 | AlphaRepair SelffAPR RewardRepair Recoder TBar CURE CoCoNuT PraPR DLFix

Chart 8 8 9 7 5 10 11 10 7 7 5

Closure 29 23 23 19 15 21 16 14 9 12 11

Lang 19 18 13 10 7 11 13 9 7 6 8

Math 24 23 21 22 19 18 22 19 16 10 13

Mockito 6 5 5 3 3 2 3 4 4 3 1

Time 3 3 3 3 1 3 3 1 1 3 2

Total 89 80 74 64 50 65 68 57 44 41 40

TABLE II: Average correct patch rank on Defects4j 1.2 1) Impacts of Knowledge-Intensified fine-tuning: The goal

Project Chart Closure Lang Math Mockito Time | Average sooe : _ : 5 : . : _
CodeTS5a 3 =10 03693 1058 757 €IS of training us1ng.Know1e(.1ge Intensified fine-tuning is to incor
FitRepair 20 414 356 448 378 271 363 porate more project-specific knowledge to CodeT5. There are
Improvement 41% 19% 56% 35% 64% 66% 41%

this function in the immediate context. As such, previous
techniques may fail to generate this patch as it requires specific
knowledge about the buggy project in order to come up with
this function name. However, this function is used multiple
times within the buggy project (in other functions and files).
FitRepair leverages this by using Knowledge-Intensified fine-
tuning strategy to fine-tune a model to predict masked-out to-
kens within the buggy project. During Knowledge-Intensified
fine-tuning, the model can learn the usage of this specific
function within the buggy project and apply it in this case
to produce the correct patch. This domain-specific knowledge
cannot be learned just from pre-training on a large amount of
open-source code (previous cloze-style APR tools).

3) Patch ranking: We examine the ability of FitRepair to
perform patch ranking in order to prioritize faster validation
for correct patches. Similarly, we compare FitRepair against
the baseline of running base CodeT5 four times with different
seeds. Table II shows the average rank of the correct patch
for the Defects4j 1.2 projects on the same set of bugs both
FitRepair and CodeT5x4 can fix. We observe that in all six
projects, FitRepair provides a better rank on average for the
correct patches. On average, using FitRepair, we can achieve a
41% reduction in the ranking of correct patches. FitRepair can
learn/use project-specific information to rank correct patches
higher since the correct patches often use project-specific
identifiers which are less prioritized by the base CodeT5
model. In this way, FitRepair not only fixes more bugs, but can
also find the correct fixes faster and reduce the computation
cost needed for patch validation.

B. RQ2: Detailed Ablation Study

TABLE III: Repetition for Knowledge-Intensified

Strategy #Corr. / #Plaus.  #Corr./#Plaus. Comp. #Unique comp.
(All) (New) Error pct per bug

Repetitive (default) 15730 2/3 82% 138

Non-Repetitive 14 /25 172 79 % 104

TABLE IV: Masking rates of Knowledge-Intensified

#Corr. / #Plaus.  #Corr./#Plaus. Comp. #Unique comp.
Mask Rate (All) (New) Error pct per bug
10% 16 /23 2/2 83% 79
20% 14 /27 2/4 88% 75
30% 14 /30 2/4 87% 92
40% 15/29 2/4 85% 102
50% (default) 15/30 2/3 82% 138
60% 13726 1/4 87% 106
70% 12721 1/2 88% 81
80% 97117 2/2 86% 88
90% 7113 2/3 93% 47

two hyper-parameters of Knowledge-Intensified fine-tuning,
including mask rate and repetition iterations. Our default
setting is to use a 50% mask rate and 10 repetition times.
We conduct an ablation experiment to study the impacts of
these two hyper-parameters on the number of correct/plausible
patches generated, the number of unique bugs fixed (via
correct/plausible patches) when compared to the base CodeT5
model, the compilation error rate, and the number of unique
compilable patches generated per bug.

We first examine the impact of repeating the masking
multiple times during training to generate additional training
samples. Table III shows the results on the Closure bugs with
10 repetition iterations — generating 10 training sets (Row
Repetitive) and no repetition iterations — generating only 1
training set (Row Non-Repetitive). We observe that the number
of total correct and plausible patches produced by the repetitive
training approach is higher. Additionally, when we generate
new masked training samples during each iteration, the model
produced is able to generate two unique bug fixes compared
with the base CodeT5 model. Similar results can be found
when we look at the compilation error rate together with the
number of unique compilable patches generated. We see that
while the non-repetitive approach has a lower compilation
error rate, the number of compilable patches generated is much
less. By repeating the masking multiple times during training,
we are able to fine-tune the model to learn more project-
specific information to produce compilable patches and to fix
more unique bugs.

Next, we study the impacts of different mask rates. In this
experiment, we use the default of 10 repetition iterations by
generating 10 unique training samples during fine-tuning and
examine how different mask rates can have on performance.
Due to the extremely large search space (considering unlimited
choices of mask rates), we choose mask rates from 10% to
90% with an interval of 10%. Table IV shows our experimental
results on the bugs in the Closure project. First, we observe
that an extremely high mask rate (70, 80, 90%) performs
poorly in terms of the number of bugs fixed and compilation
rate. While a high mask rate may force the model to learn more
project-specific tokens during training, each training sample
will have a majority of its tokens masked out. Compared with
the final repair task of generating a single or partial line, the
extremely high mask rate makes the resulting model ill-suited
for repair. We observe that the default setting of 50% mask
rate strikes a good balance between achieving the high total



number of bugs fixed, more unique bugs fixed compared to

TABLE VI: Configurations of Relevant-Identifier

base CodeT5, and a relatively low compilation error rate. By g“t{‘ﬁgl;"aﬁ"“ #Corr. é s#ll)l;‘;“' (All) #C"”'/#glj“;s' (New)
using a balanced mask rate of 50%, the Knowledge-Intensified e
. . Top-1 24 137 171
fine-tuning model is able to best complement the base CodeT5 Top-10 23 /38 1/1
in generating more unique bug fixes. Top-20 23 /37 171
. . . . Full project 23 /36 171
TABLE V: Masking strategies of Repair-Oriented No type 24 /37 2/2
Strategy AST masking  Single-line masking  Tem masking Together 24 /40 1/1
#Corr. / #PTaus. (AID 13/725 10721 12723 . ] . .
#Corr. / #Plaus. (New) 071 1/1 1/2 the highest ranking. On the flip side, considering a larger
532}2;152‘;’;5?;& bug o o T amount of identifiers per bug (top-10, top-20) is also not

2) Impacts of Repair-Oriented fine-tuning: In addition to
looking at the impact of different configurations when using
Knowledge-Intensified fine-tuning, we study the different ways
we can apply Repair-Oriented fine-tuning. Specifically, we
design two additional strategies that can be used during
training to produce masked training samples. Table V shows
the result of our default “Template masking”, “AST masking”,
and “Single-line masking” on bugs in the Closure project.
Recall that our default setting applies repair templates that
we use for cloze-style APR directly on the training data to
produce masked lines. AST masking will parse the selected
line into an AST and randomly choose a subtree to mask out.
On the other hand, single-line masking will simply mask out
one entire line in a training sample. We observe that single-line
masking performed the worst in terms of the number of correct
and plausible patches. This is due to the fact that during repair,
we use repair templates that not just regenerate complete
lines but also mask out part of the lines. The model just
has to regenerate the partial code within the line. Single-line
masking is only trained on generating the complete line and
thus does not perform well when used with repair templates.
Additionally, when compared with AST masking, template
masking is able to fix more unique bugs compared with the
base CodeT5 since it directly leverages the inference repair
templates to create training samples. While AST masking
makes use of the structure information, it does not fully
emulate the inference setting of cloze-style APR. Furthermore,
the two baselines both resulted in a lot of patches with high
compilation error rates compared with our proposed template
masking strategy. Template masking is able to directly learn
the types of repair templates that the final repair task will
use as input for the model, resulting in fewer compilation
failures. By using template masking for Repair-Oriented fine-
tuning, we can train a model that is optimized for the repair
task in order to generate more bug fixes to compliment the
base CodeT5 model, which shows that fine-tuning model
with training strategies that assemble the underlying repair
techniques is able to further boost its bug-fixing performance.

3) Impacts of Relevant-Identifier prompting: We examine
the different parameters of our Relevant-Identifier prompting
strategy. Table VI shows the results of our default (Row
Default) approach and other configurations on Closure. We
first look at the effect of varying the top NN identifiers and
observe that when only considering the top-1 identifier for
each bug we do not generate more correct fixes since it is
unlikely that the relevant identifier to fix the bug always has

desirable since we limit the model to sample only 5000
times per bug, and generating more prompts will decrease
the number of samples per each prompt. Next, we look at
the scope of the project where we find relevant tokens. Our
default setting considers only the current file of the bug and
we compare this to when we consider the full project (i.e.,
changing Line 1 of Algorithm 1 to consider all files within the
project). We observe that the number of correct and plausible
fixes decreases which reflects a similar finding from prior
work [39] where a significant amount of correct fixing ingredi-
ents (relevant identifiers) can already be found within the same
file. Furthermore, by considering the entire project, we could
introduce more noise where potentially irrelevant identifiers
could be highly ranked. Following, we compare the effect of
having type information of the identifier in the prompt. We
observe that our default setting (with type) is able to generate
more correct fixes compared to without types, indicating the
usefulness of such information in helping the model generate
the correct usage of the identifier in the patch. Finally, we
examine our default prompting method of only providing one
relevant identifier at a time. We compare this against another
approach to include all the top 5 relevant tokens in the same
prompt. We see that separating each relevant identifier to its
own prompt provides us with more fixes as including all
identifiers together can potentially confuse the model.

4) Overhead of FitRepair: As FitRepair proposes to fine-
tune two separate models along with prompting via infor-
mation retrieval and static analysis, we investigate the extra
overhead of using FitRepair compared to just using the base
CodeT5. Recall that FitRepair only fine-tunes on the oldest
version of the project for Defects4j 1.2 (one-time cost) and
uses the trained models to generate patches for all bugs within
that project. We find that on average, for each bug in Closure,
FitRepair adds 14.3 minutes (6.6 for each fine-tuning strategy
and 1.0 for prompting strategy compared with directly using
the base CodeT5 model. This shows that overall, FitRepair
adds a minimal amount of overhead (still within the 5-hour
limit including overhead). For practical use, the fine-tuning
steps can be done ahead of the actual repair task (e.g., period-
ically during nights or weekends), incurring no additional time
cost compared to previous LLM-based APR tools. Developers
can then apply the fine-tuned models together with the base
model whenever a bug is detected.

C. RQ3: Generalizability of FitRepair

We further evaluate the generalizability of FitRepair on an
additional repair dataset of Defects4j 2.0 containing new bugs



TABLE VII: Evaluation on Defectsdj 2.0

FitRepair CodeT5x4  AlphaR SelfAPR  RewardRepair  Recoder
44 42 36 31 25 11
result.append(‘'K");
} else if (contains(value, index + 1, 4, "IER")) {
+ } else if (contains(value, index + 1, 3, "IER")) {
result.append('3');
Bug: Codec-3

Fig. 9: Repair-Oriented fine-tuning unique patch

and projects. Table VII shows the number of correct bug fixes
on single-line bugs in Defects4j 2.0. We observe that FitRepair
is able to achieve the state-of-the-art with the highest number
of correctly fixed bugs of 44 (8 more than the best-performing
baseline). Unlike other NMT-based or traditional template-
based APR tools, FitRepair does not suffer from the dataset
overfitting issue of only performing well on the base Defects4;
1.2 dataset. In fact, the relative improvement in the total num-
ber of bugs fixed is higher on Defects4j 2.0 (22.2% increase)
compared to 1.2 (20.3% increase). Furthermore, comparing
against the baseline (Column CodeT5 x4), FitRepair is able
to improve the number of total bug fixes from 42 to 44 and
produce 3 unique bug fixes.

Figure 9 shows a bug (Codec-3) fixed by FitRepair but
cannot be fixed by any other studied APR tool. The root cause
of this bug is an off-by-one error. While this bug looks very
simple to fix, one reason previous learning-based APR was not
able to provide a correct fix could be the unconventional values
of “4” and “3”. During the training, NMT-based APR can learn
from bug-fixing datasets where it is common to use swap a “0”
to a “1” and vice-versa to fix a bug. However, changing a “4”
to a “3” can be uncommon in the bug-fixing dataset. Cloze-
style APR tool that directly leverages LLMs can also have a
hard time on this bug since the change is very small even if a
direct repair template can be applied. Since this change is very
small, the LLM should not add any additional code other than
changing “4” to “3”. However, during training one single mask
span usually represents multiple different tokens, which may
cause the base CodeT5 model to generate more tokens than
needed. Using FitRepair and specifically the Repair-Oriented
fine-tuning strategy, the fine-tuned CodeT5 can learn such
short code generation that usually stems from repair templates
such as argument replacement. As such, FitRepair is able to
generate this simple patch to fix the underlying bug.

VI. THREATS TO VALIDITY

Internal. Our manual examination in determining the correct
patches from plausible patches is one internal threat to va-
lidity. Following common APR practice, the first two authors
perform a careful analysis of each plausible patch along with
multiple discussions to determine the correctness of a patch.
We also released the full set of correct patches produced by
our approach for public evaluation [88].

Another internal threat to validity comes from using the
CodeT5 model which is trained on open-source GitHub code
snippets [89]. This means the training data could overlap with
our evaluation repair dataset of Defects4j. To address this, we
follow prior work [34] and compute the number of patched

functions by FitRepair that also exist in the pre-training
dataset. In total, out of the 89 bugs fixed on Defects4j 1.2,
13 of these fixes are part of the original pre-training dataset
of CodeT5. This shows that the majority of the correct fixes
(76/89 = 85%) do not contain any reference developer patch
in the training data. Furthermore, for a fair comparison, if we
exclude the 13 bugs whose patched functions overlap with
the CodeT5 pre-training dataset following prior work [34],
we are still able to achieve state-of-the-art performance on
Defects4j 1.2 with 76 total fixes compared to 67 from the
best-performing baseline on the remaining bugs. This shows
that FitRepair is not simply performing well on the datasets
due to the developer reference patches that the model saw
during pre-training. Similarly, on Defects4j 2.0, we found that
6 fixed bugs have their reference patch function within the
training dataset. Applying the same removal comparison, we
still achieve the state-of-the-art result of 38 compared to the
best-performing baseline of 30 on Defects4j 2.0. Additionally,
we also demonstrate that regardless of the overlap between the
training and evaluation datasets, by combining project-specific
fine-tuning and prompting strategies, we can further improve
the performance of the base LLM. Future work to completely
address this threat would need to retrain the CodeT5 model
from scratch after removing the overlapping functions.

External. The major external threat to validity comes from our
evaluation dataset. In this work, we focus mainly on single-
hunk/line repair assuming perfect fault localization, which may
not be a practical scenario for APR in practice [90], [91],
[92]. We plan to address this by evaluating FitRepair on non-
perfect fault localization scenario in the future. Furthermore,
the performance achieved by FitRepair may not generalize
well to other datasets. To address this, we use two different
versions of Defects4j, namely 1.2 and 2.0, and demonstrated
that FitRepair is able to achieve state-of-the-art results on both
datasets. In the future, we plan to perform more evaluations on
other repair datasets across multiple programming languages.

VII. CONCLUSION

In this paper, we have proposed FitRepair, the first fully au-
tomated approach to incorporating domain-specific knowledge
with the insights of the plastic surgery hypothesis for boosting
the performance of LLMs for APR. FitRepair opens up a
new dimension for LLM-based APR by using both fine-tuning
and prompting to combine the power of LLM with project-
specific information. Our evaluation results on the popular
Defects4j 1.2 and 2.0 datasets show that FitRepair is able to
achieve the new state-of-the-art results in fixing 89 and 44
bugs, respectively. Different from prior APR work on plastic
surgery hypothesis, FitRepair is fully automated, effective,
and general. Moreover, even partial/imprecise information may
still effectively guide LLMs for APR!
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