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Abstract—Automated Program Repair (APR) aspires to auto-
matically generate patches for an input buggy program. Tradi-
tional APR tools typically focus on specific bug types and fixes
through the use of templates, heuristics, and formal specifications.
However, these techniques are limited in terms of the bug types
and patch variety they can produce. As such, researchers have
designed various learning-based APR tools with recent work
focused on directly using Large Language Models (LLMs) for
APR. While LLM-based APR tools are able to achieve state-of-
the-art performance on many repair datasets, the LLMs used
for direct repair are not fully aware of the project-specific
information such as unique variable or method names.

The plastic surgery hypothesis is a well-known insight for APR,
which states that the code ingredients to fix the bug usually
already exist within the same project. Traditional APR tools
have largely leveraged the plastic surgery hypothesis by designing
manual or heuristic-based approaches to exploit such existing
code ingredients. However, as recent APR research starts focusing
on LLM-based approaches, the plastic surgery hypothesis has
been largely ignored. In this paper, we ask the following question:
How useful is the plastic surgery hypothesis in the era of LLMs?
Interestingly, LLM-based APR presents a unique opportunity
to fully automate the plastic surgery hypothesis via fine-tuning
(training on the buggy project) and prompting (directly providing
valuable code ingredients as hints to the LLM). To this end, we
propose FitRepair, which combines the direct usage of LLMs
with two domain-specific fine-tuning strategies and one prompt-
ing strategy (via information retrieval and static analysis) for
more powerful APR. While traditional APR techniques require
intensive manual efforts in both generating patches based on
the plastic surgery hypothesis and guaranteeing patch validity,
our approach is fully automated and general. Moreover, while
it is very challenging to manually design heuristics/patterns for
effectively leveraging the hypothesis, due to the power of LLMs in
code vectorization/understanding, even partial/imprecise project-
specific information can still guide LLMs in generating correct
patches! Our experiments on the widely studied Defects4j 1.2
and 2.0 datasets show that FitRepair fixes 89 and 44 bugs
(substantially outperforming baseline techniques by 15 and 8),
respectively, demonstrating a promising future of the plastic
surgery hypothesis in the era of LLMs.

I. INTRODUCTION

The increasing complexity of source code poses a key

challenge to the reliability of large-scale software systems.

Software bugs in these systems can lead to safety issues [1]

for users around the world as well as cause non-negligible

financial losses [2]. As such, developers have to spend a

large amount of effort on bug fixing. Consequently, Automated

Program Repair (APR), designed to automatically generate

patches to fix software bugs, has attracted wide attention from

both academia and industry [3], [4], [5], [6], [7].

To achieve APR, one popular approach is known as

Generate-and-Validate (G&V) [8], [9], [6], [10], [4], [11], [12],

[13], [14], [15], [16], which is typically based on the following

pipeline: First, fault localization techniques [17], [18], [19],

[20] are applied to determine the suspicious locations in

programs where bugs are likely to exist. Then, the locations

are used by the APR tools to generate a list of patches that

replace buggy lines with correct lines. Afterward, each patch is

validated against the test suite to identify any plausible patches

(i.e., passing all tests in the test suite). Finally, to determine

the correct patches, developers examine the plausible patches

to see if any of them can correctly fix the bug.

Traditional APR tools can mainly be categorized into

heuristic-based [4], [10], [11], constraint-based [21], [22],

[23], [5] and template-based [9], [12], [13], [15], [16]. Among

these traditional tools, template-based APR [9], [15] have been

able to achieve state-of-the-art results. Template-based APR

tools typically leverage pre-defined templates (e.g., adding

a nullness check) for bug fixing. However, since these fix

templates are typically handcrafted, the number and types of

bugs they are able to fix can be limited.

To address the limitations of traditional APR, researchers

have proposed various learning-based APR tools [24], [25],

[26], [27], [28], [29], [30], [31] based on the Neural Machine

Translation (NMT) architecture [32] where the input is the

buggy code snippets and the goal is to translate the buggy code

snippets into a fixed version. To accomplish this, learning-

based APR tools require supervised training datasets with

pairs of both buggy and fixed code snippets in order to learn

how to perform this translation step. These training data are

usually obtained by mining historical bug fixes using heuris-

tics/keywords [33], which can be imprecise for identifying

bug-fixing commits; even the actual bug-fixing commits can

include irrelevant code changes, leading to further pollution in

the dataset [34]. Moreover, it can be hard for such APR tools

to generalize and fix bug types unseen during training.

To better leverage recent advances in Large Language

Models (LLMs), researchers [34], [35], [36], [37] have directly

applied LLMs to generate patches without bug-fixing datasets.

These LLM-based APR tools work by either infill the correct

code given its surrounding context [34], [35], [38] or directly





LLMs are based on the popular Transformer architec-

ture [53], which combines an encoder with a decoder to

perform text generation. The encoder first takes in the input to

the model and then produces an encoded representation. The

decoder uses this encoded vector to autoregressively generate

the next token based on all previously generated tokens. Using

this paradigm, researchers build larger and larger models

(as large as 540B in the number of model parameters [54])

and demonstrated impressive results on code-related tasks,

especially on program synthesis [44], [55], [56], [57], [58].

LLMs can be classified into three groups based on their

model architecture and pre-training objective: Decoder-only

(Left-to-Right Language Models), Encoder-only (Masked

Language Models), and Encoder-decoder models. Figure 1

shows an overview of the three different LLM architectures.

Decoder-only models perform left-to-right generation by pro-

ducing the probability of a token given all previous tokens.

One of the most well-known LLMs, GPT [59], [60], is based

on this architecture. During training, decoder-only models

aim to predict the next token given all previous context.

Examples of decoder-only models for code are CodeGPT [61],

CodeParrot [62], and Codex [44]. These models can be directly

used for program generation given previous code contexts.

Encoder-only models, on the other hand, only use the encoder

component to provide an encoded representation of the input.

Models such as BERT [47] are trained using the Masked

Language Model (MLM) objective, where a small percentage

(e.g., 15%) of the training tokens are masked out and the

model aims to recover these masked tokens using the bi-

directional context. CodeBERT [63], GraphCodeBERT [64],

and CuBERT [65] are examples of encoder-only models where

it can provide a representation of the input code to be used for

downstream tasks such as code clone detection [50]. Encoder-

decoder models (T5 [66], BART [67]) use both components of

the transformer and are typically trained using Masked Span

Prediction (MSP) objective. Different from MLM, instead of

masking out individual tokens, MSP replaces a sequence of

tokens with a single span mask. The goal of the training is to

recover the original sequence using both the context before and

after the span mask token. CodeT5 [42] and PLBART [68] are

examples of encoder-decoder models and due to the MSP pre-

training objective, they can be directly used to fill in arbitrary

code snippets given the bi-directional code context.

B. Automated Program Repair

Automated Program Repair (APR) works by automatically

generating patches when given the buggy project and potential

fault locations. Traditional APR tools can be categorized into

constraint-based [21], [22], [23], [5], heuristic-based [4], [10],

[11], and template-based [9], [12], [13], [15], [16] tools.

Among those, template-based APR has been regarded as the

state-of-the-art in achieving the best repair performance [9],

[15]. Template-based APR works by using pre-defined tem-

plates (handcrafted by human experts) which target specific

patterns in source code. Each template will have an associated

fix that modifies the found patterns in the source code to fix

specific types of bugs. However, template-based APR tools

cannot fix bugs that do not fall under the pre-defined templates.

As a result, template-based tools lack the ability to generalize

to unseen bug types.

In recent years, researchers have begun to focus on learning-

based APR approaches such as TENURE [31], Tare [30],

SelfAPR [69], RewardRepair [29], Recoder [28], CURE [26],

and CoCoNuT [27] based on the Neural Machine Transla-

tion (NMT) [32] architecture. The goal of these tools is to

learn a transformation using DL models that turns buggy

code snippets into patched ones. To facilitate this, these

tools require further training on specific bug-fixing datasets

containing pairs of buggy and fixed code snippets. However,

as discussed in prior work [34], these bug-fixing datasets are

usually scraped from open-source bug-fixing commits using

handwritten heuristics such as keyword searching [28], [27],

[33], [70], which can include irrelevant code commits; even the

correctly identified bug-fixing commits may contain various

irrelevant code changes (such as refactoring or new feature

implementation), introducing various noises in the datasets.

Also, to avoid including bug-fixing commits with irrelevant

code changes, existing learning-based APR techniques will

limit the commits to ones with few lines of changes [26], [28],

[27], further limiting the amount of training data. Moreover,

NMT-based APR may still not generalize to specific code or

bug types unseen inside of the (limited) bug-fixing datasets.

Recognizing these limitations in NMT-based APR, re-

searchers have proposed LLM-based APR tools which do not

require bug-fixing datasets by directly using LLMs for APR.

AlphaRepair [34] reformulated the APR problem as a cloze (or

infilling) task to directly leverage LLMs in a zero-shot manner

to fill in the code given the context before and after the buggy

line, and demonstrated that LLMs can directly outperform all

prior APR techniques. Other studies [35], [36], [37], [38] also

used different LLMs (including Decoder-only and Encoder-

decoder models) to not only perform cloze-style APR but

also repair scenarios where a complete fixed function is gen-

erated. Contrasting with NMT-based APR tools, LLM-based

APR leverages the pre-training objectives of LLMs which

can directly learn the relationship between correct code and

its context without relying on historical bug-fixing commits.

As a result, LLM-based APR tools have shown to achieve

state-of-the-art performance on repair tasks across multiple

programming languages [35]. Even more recently, there has

been concurrent work on leveraging the popular dialogue-

based LLMs (e.g., ChatGPT [71]), which are fine-tuned using

reinforcement learning from human feedback (RLHF) [72], to

build advanced APR tools [73], [74], [75]. Such APR tools

can directly take in test execution feedback to not only learn

from the immediate feedback/hint (i.e., single-turn) [74] but

also leverage the full conversational history to make use of

multiple previous feedback (i.e., multi-turn) to generate a new

patch [73], [75]. Orthogonally, in this work, we present the

first work to further advance state-of-the-art LLM-based APR

with the insight of the plastic surgery hypothesis.







the repair inference task. Figure 5 shows the detailed Repair-

Oriented fine-tuning process. We again first use the original

buggy project as the source of our training data by extracting

source code functions. We pick a single code line in each

training sample to mask out with a single span token. One

can think of this chosen code line as the buggy line in the

final repair scenario. To model the impact of eventually using

template-based repair inputs, we randomly select a repair

template that can be applied on this line to mask out only a

part of the line. These repair templates are taken directly from

previous cloze-style APR work [34] and can be categorized

into 3 different types of repair templates: 1) Complete mask

– replace the entire buggy line with a single span token or

add the span token to before/after the buggy line, 2) Partial

mask – keep some original buggy line tokens at the end or

beginning of the line and replace the rest with a span token,

and 3) Template mask – target specific code line types by

replacing the method call, method parameters, and Boolean

expression or operator with a span token. In this fine-tuning

process, our training samples are closely similar in their setup

compared with the cloze-style APR task that we want the

model to perform. Using Repair-Oriented fine-tuning, we can

produce a fine-tuned model which aims to follow closely with

the final repair task.

C. Relevant-Identifier Prompting

Two previous fine-tuning strategies aim to fine-tune the

model towards generating more project-specific tokens and

get used to repair-oriented inputs by using the original buggy

project as the fine-tuning dataset. However, this means that

the two fine-tuned models have been geared toward the entire

buggy project rather than the specific bug within the project.

For specific bugs, the relevant code ingredients may be drasti-

cally different depending on the bug file, location, and type of

buggy line. These ingredients can be possibly far away from

buggy locations, making it hard for them to be included in

the input context due to the limited context window size of

LLMs (e.g. the context window size of CodeT5 is 512 tokens).

We use Relevant-Identifier prompting on the base CodeT5

model to directly prompt the model with relevant code ingredi-

ents. Algorithm 1 illustrates our prompting strategy. Given the

buggy line information, we first extract the file containing the

bug and separate it into individual code lines (Line 1). Prior

work has found that a significant percentage of the correct

code to fix the bug can be found within the same file [39].

We then use Levenshtein Distance Ratio [77] (other string

comparison methods [78], [79], [80] provide similar results)

to measure the similarity between each line compared with the

buggy line (Line 4). The hypothesis is that useful identifiers

can be obtained from lines that are very similar to the buggy

line [81]. We rank each code line based on its string similarity

score from high to low to get a ranked list of code lines (Line

5). Since we want to provide the model with identifiers to help

generate the correct fix, we extract identifiers from each line

(Line 7). We perform further filtering by first removing any

common/simple identifiers (e.g., length and node) (Line 8)

Algorithm 1 Relevant-Identifier Prompting Strategy

Inputs: Buggy project, file and line: Proj, File, buggy line
Output: Relevant-Identifier: prompts

1: lines := EXTRACTLINES(File)
2: similarities, identifiers := [ ], [ ]
3: for line in lines do
4: similarities.append(LEVENSHTEINRATIO(buggy line,

line))
5: lines ranked := RANKLINES(lines, similarities)
6: for line in lines ranked do
7: line identifiers := EXTRACTIDS(line)
8: identifiers.extend(SIMPLEFILTER(line identifiers))
9: accessibles := FINDACCESSIDS(Proj, File, buggy line)

10: relevants := identifiers ∩ accessibles
11: type infos := FINDTYPEINFO(Proj, relevants)

12: prompts := BUILDPROMPTS(relevants, type infos)

and then using static analysis (Line 9) to remove any identifiers

that are inaccessible within the buggy method (Line 10). Next,

we extract the useful type information for each identifier and

if it is a method invocation or a variable (Line 11). Finally,

we obtain a ranked list of complex identifiers that come from

similar lines within the same file.

We then generate the prompts to instruct the model to use

these extracted identifiers to generate patches (Line 12). LLMs

are able to understand natural language instructions to perform

specific tasks. In Relevant-Identifier prompting, we construct a

prompt in the form of /* use {} in the next line */

where we replace {} with an identifier with type information

(e.g., (Plot) getParent()). This prompt is then appended

before the masked span token during inference that allows

the model to directly use this identifier information provided

in its generation. Since we have a ranked list of identifiers,

we generate multiple unique prompts, each including one

of the highest-ranked identifiers. By directly providing these

extracted bug-specific identifiers in prompts, the model can use

these identifiers which previously are outside of its immediate

context to generate the correct fix.

D. Patch Generation, Ranking, and Validation

We directly use the base CodeT5 model (with and without

prompting) and the two fine-tuned models generated from

previous steps for patch generation. To generate patches to

replace the buggy lines, we apply repair template inputs from

previous work [34] and ask each model to fill in the masked-

out span token with generated correct code. Following prior

work [37], [35], [36], we sample each model in parallel to

generate its own set of patches. In total, for each bug, we

generate four lists of potential patches using the four models.

The rankings of patches are computed based on the outputs

of each model. We follow the same process as previous

work [34] and compute the likelihood score. For each can-

didate patch, we want to provide a likelihood score that can

accurately reveal the extent to which CodeT5 will generate this

patch. Let T = {t1, t2, ..., tn} be the list of tokens generated

for a patch and C(ti) be the probability of generating token

ti according to CodeT5, then the likelihood score is defined

as: score(T ) = 1

n

∑
n

i=1
log (C(ti)).



We compute this likelihood score for all the patches gen-

erated across all the templates and re-rank patches from the

highest score to the lowest score. We then validate each

candidate patch in accordance with the ranking results. Since

each model (two fine-tuned models, base CodeT5 with and

without prompting) generates its own separate list of patches,

we use a round-robin schedule to validate one patch from

each model before rotating. Note, we can also perform the

patch validation in parallel. As such, we can reduce the patch

validation time by stopping after any one of the models found

a correct patch according to manual inspection by developers.

IV. EXPERIMENTAL DESIGN

A. Research Questions

In this paper, we study the following research questions:

• RQ1: How does FitRepair compare against the state-of-the-

art APR tools?

• RQ2: What is the impact of different configurations of

FitRepair?

• RQ3: How does FitRepair generalize in fixing additional

bugs from different projects?

We first demonstrate the repair effectiveness of FitRepair

against state-of-the-art APR tools on the popular Defects4j

1.2 [43] dataset. We study not only the number of bugs

fixed in total but also the number of unique bugs fixed

compared with previous techniques. Furthermore, we analyze

the improvement in patch ranking – to validate correct patches

faster when using FitRepair. Next, we conduct an extensive

ablation study on the different configurations of both our two

fine-tuning strategies and one prompting strategy. Due to the

time cost to train multiple models, for the ablation study, we

focus on the Closure project in Defects4j which is the largest

in both the number of bugs and source code size. Following

prior work [34], [35], we evaluate against the state-of-the-art

APR tools on the Defects4j 2.0 [43] dataset to illustrate that

FitRepair is not simply overfitting to the 1.2 version.

B. Implementation

FitRepair is implemented in Python using the PyTorch [82]

implementation of the CodeT5 model from Hugging Face [83].

Our fine-tuning method is based on the pre-trained CodeT5-

large (770M) checkpoint. We use JavaParser [84] to perform

static analysis of filtering inaccessible identifiers in scope. For

both Knowledge-Intensified fine-tuning and Repair-Oriented

fine-tuning, we repeat the fine-tuning process for 10 iterations

by default to augment our fine-tuning dataset. We fine-tune

the CodeT5 model on an NVIDIA RTX A6000 with 48GB

memory using FP16. We use the following set of hyper-

parameters to train models: 32 batch size and 1e-4 learning

rate with 15K training steps. We use Adam optimizer [85] to

update the parameters and use a linear learning rate scheduler

with 10% warmup proportion. For both fine-tuning strategies,

we extract the oldest version of the buggy project for training

and use the fine-tuned models to generate patches for all

bugs in that project. For Relevant-Identifier prompting, we

use the top 5 most relevant identifiers. For repair, we sample

each model 5000 times and validate the top 1000 unique

patches produced by each model (at most 4000 patches in

total per bug) which is comparable to other baselines. To

generate more unique patches for each sample, we use nucleus

sampling with top p of 1 and temperature of 1. We validate

the patches on a workstation using AMD Ryzen Threadripper

PRO 3975WX CPU with 32-Cores and 256 GB RAM, running

Ubuntu 20.04.5 LTS. Similar to prior work [34], [26], [24], we

use an end-to-end time limit of 5 hours to fix one bug. Note

that we sum up the time spent on each of our four processes

as FitRepair time cost for fair comparison.

C. Subject Systems

We use the widely studied benchmark of Defects4j [43] –

a collection of open-source bugs found across 15 different

projects to evaluate FitRepair. We follow prior work and

separate the dataset into Defects4j 1.2 and 2.0. Defects4j 1.2

contains 391 bugs across 6 different projects and Defects4j

2.0 contains 438 bugs across 9 additional projects. While

evaluating FitRepair on all 391 bugs in Defects4j 1.2, we

follow prior work [34] and choose only the 82 single-line bugs

in Defects4j 2.0 for evaluation (since existing learning-based

APR mainly target single-line fixes).

D. Compared Techniques

We compare FitRepair against 20 different APR tools

including both state-of-the-art learning-based and traditional

APR tools. We choose 8 recent learning-based APR tools:

AlphaRepair [34], SelfAPR [69], RewardRepair [29], Re-

coder [28], CURE [26], CoCoNuT [27], DLFix [24] and

SequenceR [25]. AlphaRepair is a recently proposed and

state-of-the-art cloze-style APR tool that directly uses an

LLM (CodeBERT). Additionally, we also compare against 12

representative traditional APR tools: TBar [15], PraPR [9],

AVATAR [16], SimFix [41], FixMiner [14], CapGen [11],

JAID [86], SketchFix [12], NOPOL [23], jGenProg [87],

jMutRepair [13], and jKali [13]. Finally, since FitRepair

proposes to combine the base CodeT5 (with and without

prompting) with the two fine-tuned models, we also compare

against a baseline where we run the base CodeT5 four times

with four random different seeds. This is a fair and necessary

baseline to compare against as CodeT5 can produce different

sampling outputs depending on the random seed and a devel-

oper who wishes to use our approach of combining the four

models together may also allocate the same GPU resource to

run CodeT5 four times as well. We refer to this baseline in

our evaluation as CodeT5×4.

We evaluate against these baselines on perfect fault local-

ization setting, where the ground-truth location of each bug

is provided to the repair tool by comparing the reference

developer patch with the buggy code. This is the preferred

evaluation setting [27], [26], [28], [7] as it eliminates any

result differences caused by using different fault localization

techniques [17]. We use the standard metrics for APR com-

parison of plausible patches – pass the entire test suite and

correct patches – semantically equivalent to the reference





TABLE I: Evaluation results of correct fixes on Defects4j 1.2

Project FitRepair CodeT5×4 AlphaRepair SelfAPR RewardRepair Recoder TBar CURE CoCoNuT PraPR DLFix

Chart 8 8 9 7 5 10 11 10 7 7 5
Closure 29 23 23 19 15 21 16 14 9 12 11
Lang 19 18 13 10 7 11 13 9 7 6 8
Math 24 23 21 22 19 18 22 19 16 10 13
Mockito 6 5 5 3 3 2 3 4 4 3 1
Time 3 3 3 3 1 3 3 1 1 3 2
Total 89 80 74 64 50 65 68 57 44 41 40

TABLE II: Average correct patch rank on Defects4j 1.2
Project Chart Closure Lang Math Mockito Time Average

CodeT5×4 34 510 803 693 1058 787 618
FitRepair 20 414 356 448 378 271 363
Improvement 41% 19% 56% 35% 64% 66% 41%

this function in the immediate context. As such, previous

techniques may fail to generate this patch as it requires specific

knowledge about the buggy project in order to come up with

this function name. However, this function is used multiple

times within the buggy project (in other functions and files).

FitRepair leverages this by using Knowledge-Intensified fine-

tuning strategy to fine-tune a model to predict masked-out to-

kens within the buggy project. During Knowledge-Intensified

fine-tuning, the model can learn the usage of this specific

function within the buggy project and apply it in this case

to produce the correct patch. This domain-specific knowledge

cannot be learned just from pre-training on a large amount of

open-source code (previous cloze-style APR tools).

3) Patch ranking: We examine the ability of FitRepair to

perform patch ranking in order to prioritize faster validation

for correct patches. Similarly, we compare FitRepair against

the baseline of running base CodeT5 four times with different

seeds. Table II shows the average rank of the correct patch

for the Defects4j 1.2 projects on the same set of bugs both

FitRepair and CodeT5×4 can fix. We observe that in all six

projects, FitRepair provides a better rank on average for the

correct patches. On average, using FitRepair, we can achieve a

41% reduction in the ranking of correct patches. FitRepair can

learn/use project-specific information to rank correct patches

higher since the correct patches often use project-specific

identifiers which are less prioritized by the base CodeT5

model. In this way, FitRepair not only fixes more bugs, but can

also find the correct fixes faster and reduce the computation

cost needed for patch validation.

B. RQ2: Detailed Ablation Study

TABLE III: Repetition for Knowledge-Intensified

Strategy
#Corr. / #Plaus.

(All)
#Corr./#Plaus.

(New)
Comp.

Error pct
#Unique comp.

per bug

Repetitive (default) 15 / 30 2 / 3 82% 138
Non-Repetitive 14 / 25 1 / 2 79% 104

TABLE IV: Masking rates of Knowledge-Intensified

Mask Rate
#Corr. / #Plaus.

(All)
#Corr./#Plaus.

(New)
Comp.

Error pct
#Unique comp.

per bug

10% 16 / 23 2 / 2 83% 79
20% 14 / 27 2 / 4 88% 75
30% 14 / 30 2 / 4 87% 92
40% 15 / 29 2 / 4 85% 102
50% (default) 15 / 30 2 / 3 82% 138
60% 13 / 26 1 / 4 87% 106
70% 12 / 21 1 / 2 88% 81
80% 9 / 17 2 / 2 86% 88
90% 7 / 13 2 / 3 93% 47

1) Impacts of Knowledge-Intensified fine-tuning: The goal

of training using Knowledge-Intensified fine-tuning is to incor-

porate more project-specific knowledge to CodeT5. There are

two hyper-parameters of Knowledge-Intensified fine-tuning,

including mask rate and repetition iterations. Our default

setting is to use a 50% mask rate and 10 repetition times.

We conduct an ablation experiment to study the impacts of

these two hyper-parameters on the number of correct/plausible

patches generated, the number of unique bugs fixed (via

correct/plausible patches) when compared to the base CodeT5

model, the compilation error rate, and the number of unique

compilable patches generated per bug.

We first examine the impact of repeating the masking

multiple times during training to generate additional training

samples. Table III shows the results on the Closure bugs with

10 repetition iterations – generating 10 training sets (Row

Repetitive) and no repetition iterations – generating only 1

training set (Row Non-Repetitive). We observe that the number

of total correct and plausible patches produced by the repetitive

training approach is higher. Additionally, when we generate

new masked training samples during each iteration, the model

produced is able to generate two unique bug fixes compared

with the base CodeT5 model. Similar results can be found

when we look at the compilation error rate together with the

number of unique compilable patches generated. We see that

while the non-repetitive approach has a lower compilation

error rate, the number of compilable patches generated is much

less. By repeating the masking multiple times during training,

we are able to fine-tune the model to learn more project-

specific information to produce compilable patches and to fix

more unique bugs.

Next, we study the impacts of different mask rates. In this

experiment, we use the default of 10 repetition iterations by

generating 10 unique training samples during fine-tuning and

examine how different mask rates can have on performance.

Due to the extremely large search space (considering unlimited

choices of mask rates), we choose mask rates from 10% to

90% with an interval of 10%. Table IV shows our experimental

results on the bugs in the Closure project. First, we observe

that an extremely high mask rate (70, 80, 90%) performs

poorly in terms of the number of bugs fixed and compilation

rate. While a high mask rate may force the model to learn more

project-specific tokens during training, each training sample

will have a majority of its tokens masked out. Compared with

the final repair task of generating a single or partial line, the

extremely high mask rate makes the resulting model ill-suited

for repair. We observe that the default setting of 50% mask

rate strikes a good balance between achieving the high total



number of bugs fixed, more unique bugs fixed compared to

base CodeT5, and a relatively low compilation error rate. By

using a balanced mask rate of 50%, the Knowledge-Intensified

fine-tuning model is able to best complement the base CodeT5

in generating more unique bug fixes.

TABLE V: Masking strategies of Repair-Oriented
Strategy AST masking Single-line masking Template masking

#Corr. / #Plaus. (All) 13 / 25 10 / 21 12 / 23
#Corr. / #Plaus. (New) 0 / 1 1 / 1 1 / 2
Comp. Error pct 88% 86% 76%
#Unique comp. per bug 101 129 139

2) Impacts of Repair-Oriented fine-tuning: In addition to

looking at the impact of different configurations when using

Knowledge-Intensified fine-tuning, we study the different ways

we can apply Repair-Oriented fine-tuning. Specifically, we

design two additional strategies that can be used during

training to produce masked training samples. Table V shows

the result of our default “Template masking”, “AST masking”,

and “Single-line masking” on bugs in the Closure project.

Recall that our default setting applies repair templates that

we use for cloze-style APR directly on the training data to

produce masked lines. AST masking will parse the selected

line into an AST and randomly choose a subtree to mask out.

On the other hand, single-line masking will simply mask out

one entire line in a training sample. We observe that single-line

masking performed the worst in terms of the number of correct

and plausible patches. This is due to the fact that during repair,

we use repair templates that not just regenerate complete

lines but also mask out part of the lines. The model just

has to regenerate the partial code within the line. Single-line

masking is only trained on generating the complete line and

thus does not perform well when used with repair templates.

Additionally, when compared with AST masking, template

masking is able to fix more unique bugs compared with the

base CodeT5 since it directly leverages the inference repair

templates to create training samples. While AST masking

makes use of the structure information, it does not fully

emulate the inference setting of cloze-style APR. Furthermore,

the two baselines both resulted in a lot of patches with high

compilation error rates compared with our proposed template

masking strategy. Template masking is able to directly learn

the types of repair templates that the final repair task will

use as input for the model, resulting in fewer compilation

failures. By using template masking for Repair-Oriented fine-

tuning, we can train a model that is optimized for the repair

task in order to generate more bug fixes to compliment the

base CodeT5 model, which shows that fine-tuning model

with training strategies that assemble the underlying repair

techniques is able to further boost its bug-fixing performance.
3) Impacts of Relevant-Identifier prompting: We examine

the different parameters of our Relevant-Identifier prompting

strategy. Table VI shows the results of our default (Row

Default) approach and other configurations on Closure. We

first look at the effect of varying the top N identifiers and

observe that when only considering the top-1 identifier for

each bug we do not generate more correct fixes since it is

unlikely that the relevant identifier to fix the bug always has

TABLE VI: Configurations of Relevant-Identifier

Configuration #Corr. / #Plaus. (All) #Corr./#Plaus. (New)

Default 25 / 39 3 / 3

Top-1 24 / 37 1 / 1
Top-10 23 / 38 1 / 1
Top-20 23 / 37 1 / 1
Full project 23 / 36 1 / 1
No type 24 / 37 2 / 2
Together 24 / 40 1 / 1

the highest ranking. On the flip side, considering a larger

amount of identifiers per bug (top-10, top-20) is also not

desirable since we limit the model to sample only 5000

times per bug, and generating more prompts will decrease

the number of samples per each prompt. Next, we look at

the scope of the project where we find relevant tokens. Our

default setting considers only the current file of the bug and

we compare this to when we consider the full project (i.e.,

changing Line 1 of Algorithm 1 to consider all files within the

project). We observe that the number of correct and plausible

fixes decreases which reflects a similar finding from prior

work [39] where a significant amount of correct fixing ingredi-

ents (relevant identifiers) can already be found within the same

file. Furthermore, by considering the entire project, we could

introduce more noise where potentially irrelevant identifiers

could be highly ranked. Following, we compare the effect of

having type information of the identifier in the prompt. We

observe that our default setting (with type) is able to generate

more correct fixes compared to without types, indicating the

usefulness of such information in helping the model generate

the correct usage of the identifier in the patch. Finally, we

examine our default prompting method of only providing one

relevant identifier at a time. We compare this against another

approach to include all the top 5 relevant tokens in the same

prompt. We see that separating each relevant identifier to its

own prompt provides us with more fixes as including all

identifiers together can potentially confuse the model.
4) Overhead of FitRepair: As FitRepair proposes to fine-

tune two separate models along with prompting via infor-

mation retrieval and static analysis, we investigate the extra

overhead of using FitRepair compared to just using the base

CodeT5. Recall that FitRepair only fine-tunes on the oldest

version of the project for Defects4j 1.2 (one-time cost) and

uses the trained models to generate patches for all bugs within

that project. We find that on average, for each bug in Closure,

FitRepair adds 14.3 minutes (6.6 for each fine-tuning strategy

and 1.0 for prompting strategy compared with directly using

the base CodeT5 model. This shows that overall, FitRepair

adds a minimal amount of overhead (still within the 5-hour

limit including overhead). For practical use, the fine-tuning

steps can be done ahead of the actual repair task (e.g., period-

ically during nights or weekends), incurring no additional time

cost compared to previous LLM-based APR tools. Developers

can then apply the fine-tuned models together with the base

model whenever a bug is detected.

C. RQ3: Generalizability of FitRepair

We further evaluate the generalizability of FitRepair on an

additional repair dataset of Defects4j 2.0 containing new bugs
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