
Copiloting the Copilots: Fusing Large Language Models with
Completion Engines for Automated Program Repair

Yuxiang Wei
University of Illinois

Urbana-Champaign, USA
ywei40@illinois.edu

Chunqiu Steven Xia
University of Illinois

Urbana-Champaign, USA
chunqiu2@illinois.edu

Lingming Zhang
University of Illinois

Urbana-Champaign, USA
lingming@illinois.edu

ABSTRACT

During Automated Program Repair (APR), it can be challenging

to synthesize correct patches for real-world systems in general-

purpose programming languages. Recent Large Language Models

(LLMs) have been shown to be helpful łcopilotsž in assisting de-

velopers with various coding tasks, and have also been directly

applied for patch synthesis. However, most LLMs treat programs as

sequences of tokens, meaning that they are ignorant of the underly-

ing semantics constraints of the target programming language. This

results in plenty of statically invalid generated patches, impeding

the practicality of the technique. Therefore, we propose Repilot, a

general code generation framework to further copilot the AI łcopi-

lotsž (i.e., LLMs) by synthesizing more valid patches during the

repair process. Our key insight is that many LLMs produce outputs

autoregressively (i.e., token by token), resembling human writing

programs, which can be significantly boosted and guided through a

Completion Engine. Repilot synergistically synthesizes a candidate

patch through the interaction between an LLM and a Completion

Engine, which 1) prunes away infeasible tokens suggested by the

LLM and 2) proactively completes the token based on the sugges-

tions provided by the Completion Engine. Our evaluation on a

subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that

Repilot outperforms state-of-the-art techniques by fixing 27% and

47% more bugs, respectively. Moreover, Repilot produces more valid

and correct patches than the base LLMwith the same budget. While

we focus on leveraging Repilot for APR in this work, the overall

approach is also generalizable to other code generation tasks.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Automatic programming.

KEYWORDS

Program Repair, Large Language Model, Completion Engine

ACM Reference Format:

Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting

the Copilots: Fusing Large Language Models with Completion Engines for

Automated Program Repair. In Proceedings of the 31st ACM Joint European

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ESEC/FSE ’23, December 3ś9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3616271

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’23), December 3ś9, 2023, San Francisco, CA, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616271

1 INTRODUCTION

Automated Program Repair (APR) seeks to reduce the manual bug-

fixing effort of developers by automatically synthesizing patches

given the original buggy code [20]. State-of-the-art traditional

APR tools are mainly based on handcrafted repair templates to

match the buggy code patterns and apply the corresponding code

changes [21, 41]. Although outperforming other traditional tech-

niques [37, 43, 47], such tools can only fix the bug types within the

preset templates and cannot generalize to new bug types. With the

development of Deep Learning (DL) techniques, researchers build

learning-based APR [29, 72, 74] tools based on Neural Machine

Translation (NMT) [57] architecture. They train NMT models to

translate buggy code into correct code by learning from pairs of

buggy and fixed code scraped from open-source commits. However,

as discussed in prior work [67], the training sets of these tools can

be limited in size and also contain irrelevant or noisy commits.

More recently, researchers have leveraged the growth in the field

of NLP to directly use Large Language Models (LLMs) [10, 17] for

APR [31, 66, 67]. LLMs not only achieve impressive performance on

many NLP tasks [7], but are also shown to be reliable łcopilotsž1 in

assisting developers with various coding tasks [4, 40]. The reason

is that modern LLMs often include large amounts of available open-

source code repositories as part of their training dataset. Recogniz-

ing the power of LLMs, researchers have recently applied LLMs for

APR: instead of translating buggy code into correct code, LLMs are

directly used to synthesize the correct patch from the surrounding

context. AlphaRepair [67] reformulates the APR problem as a cloze

(or infilling) task [2, 19]: it first replaces the buggy code snippets

with masked tokens and then uses CodeBERT [17] to fill correct

code in given the surrounding context. Other studies on LLMs for

APR have applied even larger LLMs with different repair settings

(including generating complete patch functions) [33, 53, 66].

While prior LLM for APR techniques achieve state-of-the-art

bug-fixing performance, they use LLMs in a black-box manner,

where the underlying LLM generate programs according to the to-

ken distribution without any structural or semantic understanding

of the code. To highlight the limitations with current LLMs for APR

tools, In Figure 1 we show 3 scenarios where LLM can generate

incorrect patches. 1 Generating infeasible tokens. In Figure 1.1,

the LLM has a high probability (>90%) of generating String to com-

plete the asString method. However asString is not a valid field

access for the object t and is also not part of the scope of the current

1One popular AI pair programmer tool (based on Codex [10]) is named Copilot [22].

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

2.0 single-line bugs fixed respectively with 30 more combined

fixes across both datasets compared to the previous best baseline.

Our further evaluation shows that Repilot consistently improves

the validity and correctness of the generated patches with a

limited overhead (7% for CodeT5 and negligible for InCoder).

2 BACKGROUND AND RELATED WORK

2.1 Large Language Models for Code

Recent advances in Natural Language Processing (NLP) have em-

powered the idea of using Large Language Models (LLMs) that are

pre-trained on enormous corpora of natural language and code for

various code-related tasks [4, 5, 10, 38, 70]. LLMs are based on the

transformer architecture [59] that can be categorized into encoder-

only, decoder-only and encoder-decoder. Encoder-only models

use only the encoder component by training using Masked Lan-

guage Modeling (MLM) [15] objective where a small percentage

(e.g., 15%) of the tokens are masked on. The goal of MLM is to re-

cover these masked tokens given the surrounding context. Encoder-

only models such as CodeBERT [17] and GraphCodeBERT [23] are

designed to provide a representation of the input code to be used for

downstream tasks such as code classification [71]. Decoder-only

models, on the other hand, aim to autoregressively generate to-

kens based on all previously generated tokens. CodeGEN [50, 51],

Codex [10] and PolyCoder [70] are examples of decoder-only LLMs

where they can be used for code autocompletion tasks. Different

from encoder- and decoder-only LLMs, encoder-decoder models

(e.g., CodeT5 [60, 61] and PLBART [3]) combine both encoder and

decoder together and jointly train both components together. A

commonly used pre-training objective for encoder-decoder models

is Masked Span Prediction (MSP) where random spans (multiple

consecutive tokens) are replaced with single masked tokens and the

models learn to fill in the masked span with the correct sequence of

tokens. Furthermore, decoder-only models like InCoder [19] can

also do infilling through the causal language modeling [2] objective.

Instead of using the decoder to predict the next token in the origi-

nal training data, similar to MSP, InCoder also replaces random

spans with masked span tokens. During training, InCoder learns

to autoregressively recover the original spans. With this training

strategy, InCoder can perform infilling with bidirectional context

similar to encoder-decoder models, enabling cloze-style repair.

2.2 Code Completion

Code completion is one of the most frequently used features in

Integrated Development Environments (IDEs). It substantially al-

leviates the complexity of software development by interactively

suggesting program constructs after the user’s caret position while

programmers are typing, including identifier names and library

APIs. Code completion is now an indispensable infrastructure of

the most widely-used programming languages and can be easily

integrated into most modern text editors thanks to the presence

of the Language Server Protocol [48], which standardizes the com-

munication between tools and language services. Traditionally, a

semantics-based Completion Engine is implemented on top of a se-

ries of complex incremental syntactic and semantic analyses of

the target programming language, since it needs to understand

partially written programs and provide real-time feedback. The

Completion Engine has full access to a project repository and its de-

pendencies and can produce suggestions according to its semantic

understanding. Recent advances in LLMs demonstrate the capa-

bility of generating long and complicated completions. However,

they may produce unreasonable programs due to the limitation in

the code context size and the loss of program analysis by simply

treating programs as token sequences. In this paper, we use the

term Completion Engine to refer to the semantics-based one. We

formally define the expected properties of a Completion Engine in

our framework in Definition 3.4.

2.3 Automated Program Repair

Automated Program Repair (APR) aims to generate patches given

the buggy code location and the bug-exposing tests. Traditionally,

APR approach can be categorized as constraint-based [13, 35, 43, 47],

heuristic-based [36, 37, 63] and template-based [21, 25, 34, 41, 42,

46]. Among these classic techniques, template-based tools have

been shown to achieve the highest number of bug fixes by using

handcrafted repair templates to target specific bug patterns [21].

However, these handcrafted patterns cannot cover all types of bugs

that exist and as such, template-based tools cannot fix bugs outside

of their pre-determined templates.

To address the issue faced by template-based APR tools, re-

searchers resort to Neural Machine Translation (NMT) [57] to de-

velop NMT-based APR tools [11, 29, 39, 44, 72, 74]. NMT-based APR

tools train an NMT model to translate the input buggy code into

the correct code through bug-fixing datasets containing pairs of

buggy and fixed code. However, these bug-fixing datasets may con-

tain only a small number/types of bug fixes, especially compared

to a large amount of available open-source code snippets, due to

the difficulty in obtaining bug-fixing commits [67]. Additionally,

the datasets can fail to filter out unrelated commits [30] such as

refactoring, which adds noise to the training datasets. Due to this

reliance on training using bug-fixing datasets, these NMT-based

tools also cannot generalize to bug types not seen during training.

Recently, researchers begin to directly apply LLMs for APR [66].

AlphaRepair [67] is the first to directly use LLMs for cloze-style

(or infilling-style) APR: it masks out the buggy code snippet and

then uses CodeBERT [17] to directly fill in the correct code given

the surrounding context. While AlphaRepair demonstrates the po-

tential to use encoder-only models for cloze-style APR, other stud-

ies [33, 53, 66] have looked into applying all three types of LLM ar-

chitecture. FitRepair [64] further improves AlphaRepair via domain-

specific fine-tuning and prompting strategies leveraging the plastic

surgery hypothesis [6]. Even more recently, researchers have ap-

plied dialogue-based models for APR [8, 56, 68, 69]. For example,

ChatRepair [69] proposes a fully automated conversational APR

approach by learning from prior patching attempts, including both

patch code and test failure information.

Compared to traditional and NMT-based APR techniques, LLM-

based techniques are able to achieve new state-of-the-art bug-fixing

results [66, 67]. While the performance is impressive, one particular

limitation of these techniques is the lack of guidance in patch gen-

eration. Prior work mainly treats the LLM as a black box and only

queries the model via beam search [67] or sampling [33, 53, 66]. This

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

checks if any of the tokens in the Trie is a prefix of next-token right

after Line 3 in Algorithm 2. If it is the case, Repilot directly skips to

the next iteration, avoiding further analysis.

4.4 Active Completion

Not only is a Completion Engine able to determine the feasibility of

a possible next token suggested by themodel, as shown in ğ4.2, but it

can also proactively suggest a potential continuation of the current

program without querying the model, just like how developers

benefit from autocompletion.

Algorithm 3 describes active completion in detail. The function

ActivelyComplete takes three inputs: the Completion Engine CE,

the current program prog, and the current caret position caret, and

outputs a sequence of tokens completion-toks as the continuation of

prog at caret. Initially, Repilot gets the completion result according

to Equation (3.5), given prog and caret (Line 2), and checks if it is

unknown (Line 3). If it is the case (completions = unknown), the

result is set to an empty string, meaning no extra completions are

produced (Line 4). Otherwise, Repilot calculates the common prefix

of all the completions (Line 6). Note that the type of the resultant

variable completion is a sequence of characters in the Programming

Language alphabet, different from the language model’s Σlm, so

Repilot further aligns the completion to fit the model’s vocabulary

(Line 7). Finally, the result is returned at Line 8.

Algorithm 3 Active Completion

Inputs: Completion Engine CE, Program prog, and Caret Position caret.

Output: The actively completed tokens completion-toks.

1: func ActivelyComplete(CE, prog, caret)→ Σ
∗
lm :

2: completions : P(Σ∗pl) ∪ {unknown} := CE.complete (prog, caret)

3: if completions = unknown then

4: completion-toks := 𝜀

5: else

6: completion: Σ∗pl := CommonPrefix(completions)

7: completion-toks : Σ∗lm := AlignTokens(Σlm, completion)

8: return completion-toks

4.5 Soundness of Repilot

In this section, we show the theoretical guarantee of each algorithm

discussed above under the condition that the Completion Engine is

strict (Definition 3.4).

Lemma 4.1 (Soundness of Pruning). The tokens pruned away

in Algorithm 2 (GuidedPrune) result in infeasbile programs.

Discussion. From Equation (3.7) in Definition 3.4, we can de-

duce that a program is infeasible at some caret position if the Com-

pletion Engine does not return unknown but the set of completions

is empty, i.e.,

|completions | = 0 → (prog, caret) ⊭ Φ

if completions ≠ unknown
(4.7)

The pruning at Algorithm 2 happens at Lines 8 to 9, which is exactly

what is described above. As a result, we can conclude that the

program with next-token appended is infeasible, and hence it is safe

for Repilot to abandon the token. □

Lemma 4.2 (Soundness of Memorization). The memorization

discussed in ğ4.3 does not affect GuidedPrune’s behavior.

Discussion. The theorem holds because all the memorization

techniques mentioned in ğ4.3 do not change the semantics of Guid-

edPrune but only speed up the process. □

Lemma 4.3 (Soundness of Active Completion). If a program

is feasible at some caret position, the new program produced by Algo-

rithm 3 (ActivelyComplete) is feasible at its new caret position.

Discussion. Based on Equation (3.7) from Definition 3.4, any

continuations not matching the set of completions would bring

about an infeasible program. In the case where these completions

have a shared common prefix, any continuations not starting with

this common prefix would be invalid. Therefore, completing the

original program with the common prefix (Line 6 in Algorithm 3)

is the only way to yield a new feasible program. □

On the basis of Lemmas 4.1 to 4.3, we can easily prove that

Repilot’s overall algorithm is sound.

Theorem 4.4 (Overall Soundness). Algorithm 1 (Repair) does

not miss any feasible programs in the language model’s search space.

When will Repilot fail? Although the theorems are about the

soundness of Repilot, i.e., it prunes the search space correctly, it does

not provides any guarantee that Repilot produces a valid patch every

time. Therefore, Repilot’s expected behavior is to be able to obtain

valid patches more efficiently, rather than being entirely error-free

during the generation.

5 EXPERIMENTAL SETUP

In this paper, we study the following research questions to evaluate

Repilot.

• RQ1: How does Repilot’s bug fixing capability compare with

state-of-the-art APR techniques (ğ6.1)?

• RQ2: How effective is Repilot in improving the compilation rate

of patch generation (ğ6.2)?

• RQ3: Are all components of Repilot making positive contribu-

tions to its effectiveness (ğ6.3)?

• RQ4: Can Repilot generalize to different subjects of bugs and

models (ğ6.4)?

We first compare the repair performance of Repilot, instantiated

with CodeT5, against state-of-the-art APR tools across both tradi-

tional, NMT-based, and LLM-based tools on the Defects4J datasets

in RQ1. In RQ2, we then closely evaluate the improvement in compi-

lation rate Ð percentage of compilable patches generated to demon-

strate that Repilot is not only effective in bug repair but can gener-

ate a higher number of compilable patches compared with existing

tools. Furthermore, we perform a detailed ablation study in RQ3

to evaluate the contribution of different components of Repilot.

Finally, in RQ4, we extend our evaluation of Repilot beyond its use

with CodeT5 in the previous RQs. We go a step further by imple-

menting Repilot with InCoder and assessing the performance of

Repilot using both CodeT5 and InCoder on single-hunk bugs from

both Defects4J 1.2 and 2.0 to demonstrate the generalizability of

Repilot across different LLMs and bug subjects.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang

Table 3: Component contribution of Repilot

Variant Generation

Time

%Compilable

Patches

%Plausible

Patches

#Plausible

Fixes

#Correct

Fixes

Repilot∅ 0.232s 43.2% 3.95% 56 37

Repilotp 0.294s 60.7% 5.02% 62 41

Repilotmp 0.255s 58.7% 4.82% 60 40

Repilot 0.248s 63.4% 5.21% 63 42

cost of training a new model. Additionally, Repilot uses the active

completion ability of Completion Engine to directly generate these

rare identifiers to further boost the compilation rate. As such, Repi-

lot is able to achieve the highest percentage of compilable patches

across all four different settings.

6.3 RQ3: Ablation Study

To study the contribution of each component of Repilot to its overall

effectiveness, we conduct an ablation study that aims at justifying

the following hypothesis:

• Algorithm 2 (GuidedPrune) helps LLM to achieve valid (compi-

lable) patches more efficiently on a pruned search space.

• Memorization (ğ4.3) reduces the frequency of querying the Com-

pletion Engine, thus speeding up patch synthesis.

• Active completion provides further guidance of synthesis that

and helps Repilot efficiently achieve more valid patches.

• The plausible rate of patches becomes higher along with the

compilation rate.

To give grounds for these hypotheses, we set up the following

four variants:

• Repilot∅ uses only the base LLM (CodeT5) for patch synthesis.

• Repilotp applies pruning defined in Algorithm 2.

• Repilotmp leverages memorization (ğ4.3) on top of pruning.

• Repilot employs active completion for further guidance.

and evaluate them by comparing them against their efficiency in

generating compilable, plausible patches, and correct patches.

Table 3 shows the generation time (in seconds per patch), the

contribution in terms of the percentage of compilable and plausi-

ble patches among all uniquely generated patches, the number of

plausible fixes, and the number of correct fixes for each of the four

variants on Defects4J 1.2 single-hunk bugs. We first observe that

just using the base LLM for APR (Repilot∅), we achieve the lowest

compilation rate at 43.2%. By adding the pruning provided by the

Completion Engine, we can significantly improve the compilation

rate to 60.7%, the number of plausible fixes from 56 to 62, and the

number of correct fixes from 37 to 41. Additional improvement is

made by adding the active completion technique to achieve the

full Repilot with the highest compilation rate at 63.4%, plausible

percentage 5.21%, the most number of plausible fixes at 63, and the

most correct fixes at 42.

Looking at the patch generation time, starting from Repilot∅,

adding pruning via Completion Engine incurs an over 25% overhead.

However, this can be significantly reduced by using memorization

(Repilotp) to achieve around 10% overhead by avoiding querying

the Completion Engine once we know an identifier is invalid. Fur-

thermore, active completion can further reduce the overhead to

7% since instead of having to sample the LLM for each step in the

generation, we can actively complete an identifier.

As a result, all the components contribute to the overall effective-

ness of Repilot. Repilot can consistently increase the compilation

and plausible rate, as well as produce more plausible/correct fixes

while incurring minimal overhead compared with directly using

LLMs for patch synthesis.

6.4 RQ4: Generalizability

To demonstrate the generalizability of Repilot across different sub-

jects of bugs and models, on the one hand, we further evaluate

Repilot with CodeT5 on all single-hunk bugs of Defects4J 2.0. On

the other hand, we additionally instantiate and evaluate Repilot

with a larger InCoder-6.7Bmodel. Identical to RQ3, we also conduct

500 samples in RQ4 due to the high cost of APR.

Table 4 shows the comparison between the baseline Repilot∅
and our full Repilot approach across different subjects of bugs and

models. We consider the same set of Defects4J 1.2 single-hunk bugs

as in RQ3 and an extra set of Defects4J 2.0 single-hunk bugs.

Upon investigation, we can see that Repilot with CodeT5 sur-

passes the baseline on Defects4J 1.2 as illustrated in RQ3. Further-

more, on Defects4J 2.0, it can also achieve 18.1 percentage points

(pp) more compilable and 3.0 pp more plausible patches, as well as 6

more plausible fixes and 4 more correct fixes, with a 7.4% overhead.

Meanwhile, when Repilot is instantiated with InCoder, it still

produces more compilable and plausible patches, as well as more

plausible and correct fixes on both Defects4J 1.2 and Defects4J 2.0

over the baseline InCoder. It eventually gives 6 more correct fixes

on Defects4J 1.2 and 1 more on Defects4J 2.0.

One major difference comparing Repilot with InCoder and

CodeT5 is that when Repilot is equipped with InCoder, a much

larger model than CodeT5, it incurs negligible overhead. This is

because compared to the high cost of autoregressive sampling using

larger models, the extra cost from querying the Completion Engine

is much smaller and thus trivializes the overhead of Repilot when

applied on larger models. Also, the larger InCoder model, whether

or not it is applied with Repilot, can consistently fix more bugs

across both Defects4J 1.2 and 2.0 than CodeT5, further confirming

prior finding that larger LLMs often perform better for APR [66].

Overall, the experimental results indicate that Repilot can gener-

alize to different sets of bugs (both single-hunk bugs in Defects4J

1.2 and 2.0) as well as larger LLMs (InCoder)

7 LIMITATIONS

First, to bring out Repilot’s full potential, it is important that the

Completion Engine can provide useful guidance while remaining

strict (Definition 3.4). However, it is generally more difficult to

balance the usefulness and strictness of a Completion Engine in

many dynamically typed programming languages, such as Python,

compared with Java studied in this paper, which is a statically typed

programming language. Meanwhile, there is a growing trend of

dynamically typed languages adopting support for type hints [12,

49, 54]. Considering this, we believe that Repilot can still provide

significant advantages in such environments.

Another limitation of Repilot lies in the evaluation. On the one

hand, while it is true that an increase in the compilation rate of

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 4: Generalizability of Repilot across both subjects of bugs and models

Variant Model Subject of Bugs Generation Time %Compilable Patches %Plausible Patches #Plausible Fixes #Correct Fixes

Repilot∅ CodeT5-large Defects4J 1.2 0.232s 43.2% 3.95% 56 37

Repilot CodeT5-large Defects4J 1.2 0.248s 63.4% 5.21% 63 42

Repilot∅ CodeT5-large Defects4J 2.0 0.230s 46.7% 9.02% 59 41

Repilot CodeT5-large Defects4J 2.0 0.247s 64.8% 12.02% 65 45

Repilot∅ InCoder-6.7B Defects4J 1.2 1.70s 32.4% 3.85% 70 48

Repilot InCoder-6.7B Defects4J 1.2 1.70s 47.2% 4.96% 78 54

Repilot∅ InCoder-6.7B Defects4J 2.0 1.67s 34.6% 5.06% 67 45

Repilot InCoder-6.7B Defects4J 2.0 1.69s 48.0% 6.87% 68 46

Repilot can lead to the discovery of more plausible and correct fixes,

it is important to note that a significantly higher compilation rate

does not necessarily translate to a proportionally large increase

in plausible and correct fixes. On the other hand, Repilot is only

evaluated with CodeT5 for RQ1 and RQ2 with a 5000 sampling

budget. CodeT5 is a rather łsmallž LLM compared to those LLMs

with billions of parameters. Although we further include InCoder-

6.7B as a multi-billion-parameter LLM in RQ4, due to time cost, we

only sample 500 times per bug, which may be insufficient to reflect

the distribution of the generated patches. Overall, the scope of our

evaluation considering two LLMs (CodeT5 and InCoder) and one

programming language (Java) is still narrow given that Repilot is

a general framework that can be instantiated with any pair of an

LLM and a Completion Engine for some programming language.

Finally, despite the examples we show in the paper, our eval-

uation lacks strong empirical evidence to support the claim that

LLMs have difficulty in generating rare tokens and how Repilot

solves the problem. Besides, our evaluation limits the application

of Repilot to patch synthesis, even though we claim that Repilot

can be applied to other code generation tasks. In the future, we will

apply and evaluate Repilot on more diverse code generation tasks.

8 THREATS TO VALIDITY

Internal. We share the same main internal threat to validity with

prior APR tools where we have to manually examine each plausible

patch to determine patch correctness. We address this by carefully

analyzing each patch to determine if it is semantically equivalent

to the reference developer patch. Furthermore, we have released

our full set of correct patches for public evaluation [62].

Our use of the CodeT5model poses another internal threat where

the open-source training dataset of GitHub projects [27] may over-

lap with our evaluation of Defects4J. We follow prior work [66, 67]

and address this by computing the correct bug fixes of Repilot from

Defects4J that is part of the CodeT5 training data. In total, 7 out

of 66 and 6 out of 50 overlap with training data on Defects4J 1.2

and 2.0 respectively. For comparison fairness, if we were to exclude

these 7 and 6 bugs and compare them with the previous baseline

tools on the remaining bugs, we are still able to achieve the highest

bug fixes at 59 and 44 (best baseline at 45 and 29). The same threat

applies to the use of InCoder, but since its detailed training data is

not revealed, we are unable to explicitly address this problem. To

mitigate the problem, we only evaluate InCoder in RQ4, where all

the variants face the same potential leakage.

Moreover, our modified implementation of the completion en-

gine requires manual inspection to guarantee soundness property.

In practice, this is a significant trust base that may introduce false

positives during pruning. However, our theorem still provides a

partial guarantee and is able to explain unsoundness. At the same

time, our evaluation result justifies our claims and demonstrates

the practicality of Repilot.

Finally, in our evaluation, we follow the convention used in prior

work to directly report the bug fix results without reproducing them,

which poses a threat to the reliability of the results. Meanwhile,

we only run each of our experiments once, which could introduce

extra statistical biases.

External. The main external threat to validity comes from our

evaluation dataset where the performance of Repilot may not gen-

eralize to other datasets. To address this, we compare Repilot against

state-of-the-art baselines on both Defects4J 1.2 and 2.0 to show that

the performance is sustained across both versions. To address this

further, we plan to evaluate Repilot on additional APR datasets also

across different programming languages.

9 CONCLUSION

We propose Repilot Ð the first APR approach to combining the

direct usage of LLMs (e.g., CodeT5 and InCoder) with on-the-fly

guidance provided by Completion Engines. During autoregressive

token generation, Repilot queries the Completion Engine not only

to prune invalid tokens but also to proactively complete the currently

generated partial program, thereby reducing the search space of the

LLM. Our evaluation on a subset of the widely-studied Defects4J 1.2

and 2.0 datasets shows Repilot is able to achieve the state-of-the-art

results. Furthermore, Repilot, through the usage of Completion

Engine, is able to generate more valid and compilable patches than

prior tools with minimal overhead compared with directly using

LLMs for APR.

DATA AVAILABILITY

We have open-sourced Repilot, which can be accessed on GitHub

at https://github.com/ise-uiuc/Repilot. Additionally, an immutable

artifact for Repilot is publicly available on Zenodo [62].

ACKNOWLEDGMENTS

We thank all the reviewers for their insightful comments. We also

thank Yifeng Ding for his helpful discussion on this work. This

work was partially supported by NSF grants CCF-2131943 and

CCF-2141474, as well as Kwai Inc.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang

REFERENCES
[1] 2023. Eclipse JDT LS. https://projects.eclipse.org/projects/eclipse.jdt.ls.
[2] Armen Aghajanyan, Bernie Huang, Candace Ross, Vladimir Karpukhin, Hu Xu,

Naman Goyal, Dmytro Okhonko, Mandar Joshi, Gargi Ghosh, Mike Lewis, and
Luke Zettlemoyer. 2022. CM3: A Causal MaskedMultimodal Model of the Internet.
CoRR abs/2201.07520 (2022). arXiv:2201.07520 https://arxiv.org/abs/2201.07520

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

[4] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR
abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

[5] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang. 7, OOPSLA1, Article 78 (apr 2023), 27 pages. https://doi.org/10.
1145/3586030

[6] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark Harman, and Federica Sarro.
2014. The Plastic Surgery Hypothesis. In Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (Hong Kong,
China) (FSE 2014). Association for Computing Machinery, New York, NY, USA,
306ś317. https://doi.org/10.1145/2635868.2635898

[7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[8] Jialun Cao, Meiziniu Li, Ming Wen, and Shing-Chi Cheung. 2023. A study on
Prompt Design, Advantages and Limitations of ChatGPT for Deep Learning
Program Repair. CoRR abs/2304.08191 (2023). https://doi.org/10.48550/ARXIV.
2304.08191 arXiv:2304.08191

[9] Liushan Chen, Yu Pei, and Carlo A. Furia. 2017. Contract-based program repair
without the contracts. In 2017 32nd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). 637ś647. https://doi.org/10.1109/ASE.2017.
8115674

[10] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[11] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2021. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. IEEE Transactions on Software Engi-
neering 47, 9 (2021), 1943ś1959. https://doi.org/10.1109/TSE.2019.2940179

[12] Clojure 2023. Typed Clojure: An Optional Type System for Clojure. https:
//typedclojure.org.

[13] Favio DeMarco, Jifeng Xuan, Daniel Le Berre, and Martin Monperrus. 2014. Auto-
matic Repair of Buggy If Conditions and Missing Preconditions with SMT. In Pro-
ceedings of the 6th InternationalWorkshop on Constraints in Software Testing, Verifi-
cation, and Analysis (Hyderabad, India) (CSTVA 2014). Association for Computing
Machinery, New York, NY, USA, 30ś39. https://doi.org/10.1145/2593735.2593740

[14] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
423ś435. https://doi.org/10.1145/3597926.3598067

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,
4171ś4186. https://doi.org/10.18653/v1/N19-1423

[16] Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan,
Nihal Jain, Murali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia,
Dan Roth, and Bing Xiang. 2023. CrossCodeEval: A Diverse and Multilingual

Benchmark for Cross-File Code Completion. arXiv:2310.11248 [cs.LG]
[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A Pre-Trained Model for Programming and Natural Languages. CoRR
abs/2002.08155. arXiv:2002.08155 https://arxiv.org/abs/2002.08155

[18] Eclipse Foundation and Yuxiang Wei. 2023. UniverseFly/eclipse.jdt.ls: Modified
Eclipse JDT LS 1.0.3. https://doi.org/10.5281/zenodo.8278193

[19] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Scott Yih, Luke Zettlemoyer, and Mike Lewis. 2023. InCoder: A
Generative Model for Code Infilling and Synthesis. In The Eleventh International
Conference on Learning Representations. https://openreview.net/forum?id=hQwb-
lbM6EL

[20] Luca Gazzola, Daniela Micucci, and Leonardo Mariani. 2019. Automatic Software
Repair: A Survey. IEEE Transactions on Software Engineering 45, 1 (2019), 34ś67.
https://doi.org/10.1109/TSE.2017.2755013

[21] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Beijing, China) (IS-
STA 2019). Association for Computing Machinery, New York, NY, USA, 19ś30.
https://doi.org/10.1145/3293882.3330559

[22] GithubCopilot 2023. GitHub Copilot: Your AI pair programmer. https://github.
com/features/copilot.

[23] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie LIU, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang,
and Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations
with Data Flow. In International Conference on Learning Representations. https:
//openreview.net/forum?id=jLoC4ez43PZ

[24] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In International Conference on Learning
Representations. https://openreview.net/forum?id=rygGQyrFvH

[25] Jinru Hua, Mengshi Zhang, KaiyuanWang, and Sarfraz Khurshid. 2018. SketchFix:
A Tool for Automated Program Repair Approach Using Lazy Candidate Gener-
ation. In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(Lake Buena Vista, FL, USA) (ESEC/FSE 2018). Association for Computing Ma-
chinery, New York, NY, USA, 888ś891. https://doi.org/10.1145/3236024.3264600

[26] HuggingFace 2023. Hugging Face. https://huggingface.co.
[27] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.org/abs/
1909.09436

[28] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. 2018.
Shaping Program Repair Space with Existing Patches and Similar Code. In ISSTA
2018 (Amsterdam, Netherlands). Association for Computing Machinery, New
York, NY, USA, 298ś309. https://doi.org/10.1145/3213846.3213871

[29] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural
Machine Translation for Automatic Program Repair. In Proceedings of the 43rd
International Conference on Software Engineering (Madrid, Spain) (ICSE ’21). IEEE
Press, 1161ś1173. https://doi.org/10.1109/ICSE43902.2021.00107

[30] Yanjie Jiang, Hui Liu, Nan Niu, Lu Zhang, and Yamin Hu. 2021. Extracting Concise
Bug-Fixing Patches from Human-Written Patches in Version Control Systems. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 686ś698. https://doi.org/10.1109/ICSE43902.2021.
00069

[31] Harshit Joshi, José Cambronero, Sumit Gulwani, Vu Le, Ivan Radicek, and Gust
Verbruggen. 2023. Repair Is Nearly Generation: Multilingual Program Repair with
LLMs. AAAI. https://www.microsoft.com/en-us/research/publication/repair-is-
nearly-generation-multilingual-program-repair-with-llms/

[32] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 437ś440. https://doi.org/10.1145/2610384.2628055

[33] Sophia D Kolak, Ruben Martins, Claire Le Goues, and Vincent Josua Hellendoorn.
2022. Patch Generation with Language Models: Feasibility and Scaling Behavior.
In Deep Learning for Code Workshop. https://openreview.net/forum?id=rHlzJh_
b1-5

[34] Anil Koyuncu, Kui Liu, Tegawendé F. Bissyandé, Dongsun Kim, Jacques Klein,
Martin Monperrus, and Yves Le Traon. 2020. FixMiner: Mining Relevant Fix
Patterns for Automated Program Repair. Empirical Softw. Engg. 25, 3 (may 2020),
1980ś2024. https://doi.org/10.1007/s10664-019-09780-z

[35] Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Programming
by Examples. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). Association for
Computing Machinery, New York, NY, USA, 593ś604. https://doi.org/10.1145/
3106237.3106309

Copiloting the Copilots: Fusing Large Language Models with Completion Engines for Automated Program Repair ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[36] Xuan Bach D. Le, David Lo, and Claire Le Goues. 2016. History Driven Program
Repair. In SANER (2016), Vol. 1. 213ś224. https://doi.org/10.1109/SANER.2016.76

[37] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54ś72. https://doi.org/10.1109/TSE.2011.104

[38] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi
Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas
Hubert, Peter Choy, Cyprien deMasson d’Autume, Igor Babuschkin, XinyunChen,
Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey Cherepanov, James Molloy,
Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de Freitas,
Koray Kavukcuoglu, and Oriol Vinyals. 2022. Competition-level code generation
with AlphaCode. Science 378, 6624 (2022), 1092ś1097. https://doi.org/10.1126/
science.abq1158 arXiv:https://www.science.org/doi/pdf/10.1126/science.abq1158

[39] Yi Li, Shaohua Wang, and Tien N. Nguyen. 2020. DLFix: Context-Based Code
Transformation Learning for Automated Program Repair. In Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South
Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA,
602ś614. https://doi.org/10.1145/3377811.3380345

[40] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is
Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. arXiv:2305.01210 [cs.SE]

[41] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F. Bissyandé. 2019. TBar:
Revisiting Template-Based Automated Program Repair. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA,
31ś42. https://doi.org/10.1145/3293882.3330577

[42] Kui Liu, Jingtang Zhang, Li Li, Anil Koyuncu, Dongsun Kim, Chunpeng Ge, Zhe
Liu, Jacques Klein, and Tegawendé F. Bissyandé. 2023. Reliable Fix Patterns
Inferred from Static Checkers for Automated Program Repair. ACM Trans. Softw.
Eng. Methodol. 32, 4, Article 96 (may 2023), 38 pages. https://doi.org/10.1145/
3579637

[43] Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Syn-
thesis. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Ma-
chinery, New York, NY, USA, 166ś178. https://doi.org/10.1145/2786805.2786811

[44] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan. 2020. CoCoNuT: Combining Context-Aware Neural Translation Models
Using Ensemble for Program Repair. In Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Virtual Event, USA)
(ISSTA 2020). Association for ComputingMachinery, New York, NY, USA, 101ś114.
https://doi.org/10.1145/3395363.3397369

[45] Matias Martinez, Thomas Durieux, Romain Sommerard, Jifeng Xuan, and Martin
Monperrus. 2017. Automatic Repair of Real Bugs in Java: A Large-Scale Experi-
ment on the Defects4j Dataset. Empirical Softw. Engg. 22, 4 (aug 2017), 1936ś1964.
https://doi.org/10.1007/s10664-016-9470-4

[46] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Repair
Library for Java (Demo). In Proceedings of the 25th International Symposium
on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA 2016). As-
sociation for Computing Machinery, New York, NY, USA, 441ś444. https:
//doi.org/10.1145/2931037.2948705

[47] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable
Multiline Program Patch Synthesis via Symbolic Analysis. In Proceedings of the
38th International Conference on Software Engineering (Austin, Texas) (ICSE ’16).
Association for Computing Machinery, New York, NY, USA, 691ś701. https:
//doi.org/10.1145/2884781.2884807

[48] Microsoft 2023. Language Server Protocol. https://microsoft.github.io/language-
server-protocol.

[49] Microsoft 2023. TypeScript. https://www.typescriptlang.org.
[50] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo

Zhou. 2023. CodeGen2: Lessons for Training LLMs on Programming and Natural
Languages. arXiv:2305.02309 [cs.LG]

[51] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2022. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. arXiv:2203.13474.

[52] Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher
Meek, and Sumit Gulwani. 2022. Synchromesh: Reliable Code Generation from
Pre-trained Language Models. In International Conference on Learning Represen-
tations. https://openreview.net/forum?id=KmtVD97J43e

[53] Julian Aron Prenner, Hlib Babii, and Romain Robbes. 2022. Can OpenAI’s Codex
Fix Bugs? An Evaluation on QuixBugs. In APR ’22 (Pittsburgh, Pennsylvania).
Association for Computing Machinery, New York, NY, USA, 69ś75. https://doi.
org/10.1145/3524459.3527351

[54] Python 2023. Type Hints in Python. https://peps.python.org/pep-0484/.
[55] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural Machine

Translation of Rare Words with Subword Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin, Germany, 1715ś1725. https:
//doi.org/10.18653/v1/P16-1162

[56] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023.
An Analysis of the Automatic Bug Fixing Performance of ChatGPT.
arXiv:2301.08653 [cs.SE]

[57] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to Sequence
Learning with Neural Networks. In Advances in Neural Information Processing
Systems, Z. Ghahramani, M.Welling, C. Cortes, N. Lawrence, and K.Q.Weinberger
(Eds.), Vol. 27. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf

[58] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng.
Methodol. 28, 4, Article 19 (sep 2019), 29 pages. https://doi.org/10.1145/3340544

[59] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You
Need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000ś6010.

[60] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi D. Q. Bui, Junnan Li, and
Steven C. H. Hoi. 2023. CodeT5+: Open Code Large Language Models for Code
Understanding and Generation. arXiv:2305.07922 [cs.CL]

[61] Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. 2021. CodeT5:
Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Un-
derstanding and Generation. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 8696ś8708. https:
//doi.org/10.18653/v1/2021.emnlp-main.685

[62] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. ESEC/FSE’23 Arti-
fact for "Copiloting the Copilots: Fusing Large LanguageModels with Completion
Engines for Automated Program Repair". https://doi.org/10.5281/zenodo.8281250

[63] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothenburg,
Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY, USA,
1ś11. https://doi.org/10.1145/3180155.3180233

[64] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. Revisiting the
Plastic Surgery Hypothesis via Large Language Models. arXiv:2303.10494 [cs.SE]

[65] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and
Lingming Zhang. 2023. Universal Fuzzing via Large Language Models.
arXiv:2308.04748 [cs.SE]

[66] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-Trained Language Models. In Proceedings
of the 45th International Conference on Software Engineering (Melbourne, Victoria,
Australia) (ICSE ’23). IEEE Press, 1482ś1494. https://doi.org/10.1109/ICSE48619.
2023.00129

[67] Chunqiu Steven Xia and Lingming Zhang. 2022. Less Training, More Repairing
Please: Revisiting Automated Program Repair via Zero-Shot Learning. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (Singapore, Singapore)
(ESEC/FSE 2022). Association for Computing Machinery, New York, NY, USA,
959ś971. https://doi.org/10.1145/3540250.3549101

[68] Chunqiu Steven Xia and Lingming Zhang. 2023. Conversational Automated
Program Repair. CoRR abs/2301.13246 (2023). https://doi.org/10.48550/ARXIV.
2301.13246 arXiv:2301.13246

[69] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going:
Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv:2304.00385 [cs.SE]

[70] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022.
A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (San
Diego, CA, USA) (MAPS 2022). Association for Computing Machinery, New York,
NY, USA, 1ś10. https://doi.org/10.1145/3520312.3534862

[71] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2019. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. Curran Associates Inc., Red Hook, NY, USA.

[72] He Ye, Matias Martinez, and Martin Monperrus. 2022. Neural Program Re-
pair with Execution-Based Backpropagation. In Proceedings of the 44th Inter-
national Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1506ś1518.
https://doi.org/10.1145/3510003.3510222

[73] Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao,
Jian-Guang Lou, and Weizhu Chen. 2023. RepoCoder: Repository-Level Code
Completion Through Iterative Retrieval and Generation. arXiv:2303.12570 [cs.CL]

[74] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In ESEC/FSE 2021 (Athens, Greece). Association for Computing Machinery, New
York, NY, USA, 341ś353. https://doi.org/10.1145/3468264.3468544

Received 2023-02-02; accepted 2023-07-27

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Large Language Models for Code
	2.2 Code Completion
	2.3 Automated Program Repair

	3 Preliminaries
	3.1 Languages with Static Checking
	3.2 Abstraction of Completion Engines
	3.3 Abstraction of LLMs

	4 Approach
	4.1 Overview
	4.2 Completion-Guided Search Space Pruning
	4.3 Memorization for Faster Search
	4.4 Active Completion
	4.5 Soundness of Repilot

	5 Experimental Setup
	5.1 Implementation
	5.2 Subject Programs
	5.3 Compared Techniques
	5.4 Evaluation Metrics

	6 Result Analysis
	6.1 RQ1: Comparison with Existing Tools
	6.2 RQ2: Compilation Rate Analysis
	6.3 RQ3: Ablation Study
	6.4 RQ4: Generalizability

	7 Limitations
	8 Threats to Validity
	9 Conclusion
	References

