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ABSTRACT

During Automated Program Repair (APR), it can be challenging
to synthesize correct patches for real-world systems in general-
purpose programming languages. Recent Large Language Models
(LLMs) have been shown to be helpful “copilots” in assisting de-
velopers with various coding tasks, and have also been directly
applied for patch synthesis. However, most LLMs treat programs as
sequences of tokens, meaning that they are ignorant of the underly-
ing semantics constraints of the target programming language. This
results in plenty of statically invalid generated patches, impeding
the practicality of the technique. Therefore, we propose Repilot, a
general code generation framework to further copilot the Al “copi-
lots” (i.e., LLMs) by synthesizing more valid patches during the
repair process. Our key insight is that many LLMs produce outputs
autoregressively (i.e., token by token), resembling human writing
programs, which can be significantly boosted and guided through a
Completion Engine. Repilot synergistically synthesizes a candidate
patch through the interaction between an LLM and a Completion
Engine, which 1) prunes away infeasible tokens suggested by the
LLM and 2) proactively completes the token based on the sugges-
tions provided by the Completion Engine. Our evaluation on a
subset of the widely-used Defects4j 1.2 and 2.0 datasets shows that
Repilot outperforms state-of-the-art techniques by fixing 27% and
47% more bugs, respectively. Moreover, Repilot produces more valid
and correct patches than the base LLM with the same budget. While
we focus on leveraging Repilot for APR in this work, the overall
approach is also generalizable to other code generation tasks.
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1 INTRODUCTION

Automated Program Repair (APR) seeks to reduce the manual bug-
fixing effort of developers by automatically synthesizing patches
given the original buggy code [20]. State-of-the-art traditional
APR tools are mainly based on handcrafted repair templates to
match the buggy code patterns and apply the corresponding code
changes [21, 41]. Although outperforming other traditional tech-
niques [37, 43, 47], such tools can only fix the bug types within the
preset templates and cannot generalize to new bug types. With the
development of Deep Learning (DL) techniques, researchers build
learning-based APR [29, 72, 74] tools based on Neural Machine
Translation (NMT) [57] architecture. They train NMT models to
translate buggy code into correct code by learning from pairs of
buggy and fixed code scraped from open-source commits. However,
as discussed in prior work [67], the training sets of these tools can
be limited in size and also contain irrelevant or noisy commits.
More recently, researchers have leveraged the growth in the field
of NLP to directly use Large Language Models (LLMs) [10, 17] for
APR [31, 66, 67]. LLMs not only achieve impressive performance on
many NLP tasks [7], but are also shown to be reliable “copilots”! in
assisting developers with various coding tasks [4, 40]. The reason
is that modern LLMs often include large amounts of available open-
source code repositories as part of their training dataset. Recogniz-
ing the power of LLMs, researchers have recently applied LLMs for
APR: instead of translating buggy code into correct code, LLMs are
directly used to synthesize the correct patch from the surrounding
context. AlphaRepair [67] reformulates the APR problem as a cloze
(or infilling) task [2, 19]: it first replaces the buggy code snippets
with masked tokens and then uses CodeBERT [17] to fill correct
code in given the surrounding context. Other studies on LLMs for
APR have applied even larger LLMs with different repair settings
(including generating complete patch functions) [33, 53, 66].
While prior LLM for APR techniques achieve state-of-the-art
bug-fixing performance, they use LLMs in a black-box manner,
where the underlying LLM generate programs according to the to-
ken distribution without any structural or semantic understanding
of the code. To highlight the limitations with current LLMs for APR
tools, In Figure 1 we show 3 scenarios where LLM can generate
incorrect patches. @) Generating infeasible tokens. In Figure 1.1,
the LLM has a high probability (>90%) of generating String to com-
plete the asString method. However asString is not a valid field
access for the object t and is also not part of the scope of the current

1One popular Al pair programmer tool (based on Codex [10]) is named Copilot [22].



ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Language model
Predictions

String 91% ® asEndTag
asStartTag
Name 3% ® asComment Name 16%

End  0.2% (v | @sDoctype
| asCharacter

Completions

String name = t.as|

O Generating infeasible tokens

LR O asEndTag (v)
String name = t.asEnd|

© Hard to generate rare tokens

Yuxiang Wei, Chungiu Steven Xia, and Lingming Zhang

final EndTag asEndTag() {..}

name 50% Y |name
normalName

toString G%v e .

String name = t.asEndTag().|

© No explicit consideration of types

Figure 1: Limitations of existing LLM-based APR approaches.

buggy method. In this case, the patchs generated using asString
will never be correct as it cannot compile. By directly using the
model probabilities, LLMs are likely to generate many patches us-
ing invalid tokens and decrease the likelihood of generating the
correct patch with End (0.2%). @ Hard to generate rare tokens.
LLMs usually cannot generate a complete identifier name in one
step since it uses subword tokenization [55] to break uncommon
words into smaller subwords. These uncommon words manifest
as rare identifiers in code, where identifier names are CamelCase
or underscore combinations of multiple words (e.g., asEndTag in
Figure 1.2). As such, LLMs need to generate these identifiers step
by step, needing not only multiple iterations but also accurate out-
put in each step. Since prior approaches [33, 66] sample based on
probability, the likelihood of completing a rare token to fix a bug
can be extremely low. €@ No explicit consideration of types. In
addition to potentially generating out-of-scope identifiers, LLMs
do not have access to various type information that gives hints to
the valid identifiers. In Figure 1.3, the return type of asEndTag() is
EndTag, whose definition is not explicitly given to the LLM in its
immediate context. As such, LLMs do not know the correct mem-
ber fields of EndTag and may generate invalid patches containing
identifiers that do not fit the required type. On the contrary, a Com-
pletion Engine has full access to the project and can easily figure
out the return type of asEndTag() through static analysis on the
abstract syntax tree of the program. By treating code as a sequence
of textual tokens, the important type information is not encoded.
To address the aforementioned limitations, we propose Repilot,
a framework to further copilot the Al “copilots” (i.e., LLMs) via
fusing LLMs with Completion Engines to synthesize more valid
patches. Completion Engines [48] can parse incomplete programs
and reason about the semantics in an error-tolerant manner. Our
key insight is to liken LLM autoregressive token generation as a hu-
man developer code writing, where the Completion Engine can provide
real-time updates to check if the human/LLMs written partial code is
valid. Repilot first uses the LLM to provide the probabilities of gen-
erating the next token in the patch and then queries the Completion
Engine to modify the probability list by dynamically zeroing the
probabilities of invalid tokens. We can then sample from the new
probability list to select the next token. Furthermore, recognizing
the ability for Completion Engines to suggest completions, we use
this feature whenever there is only one possible identifier suffix
to complete the context. This not only allows Repilot to generate
patches with valid rare and long identifiers but also reduces the
work of LLMs needed to iteratively generate long identifier names.
For example, Repilot directly prunes the String and Name tokens
in Figure 1.1 as they are infeasible according to the Completion
Engine, but still accepts the correct End token. In Figure 1.2, the

Completion Engine recognizes that asEndTag is the only valid con-
tinuation to the prefix asend, so Repilot directly completes this token
without querying the LLM. To combat the time cost of Completion
Engine, we implement several optimization techniques to minimize
the overhead. Note that the recent SYNCHROMESH work [52] also em-
ploys a Completion Engine for reliable code generation with LLMs.
However, it relies on expert-designed constraints and only targets
domain-specific languages (e.g., SQL). Repilot directly works for
general-purpose programming languages while introducing mini-
mal overhead and can proactively complete the current generation
using the Completion Engine without querying the LLM.

To demonstrate the generalizability of Repilot, we instantiate
Repilot with two LLMs having distinct architectures and sizes:
CodeT5-large [61], an encoder-decoder LLM with 770 million pa-
rameters, and INCODER-6.7B [19], a decoder only LLM with 6.7
billion parameters, both capable of code infilling from prefix and
suffix context. We further implement a Java Completion Engine for
Repilot based on the Eclipse JDT Language Server [1, 18] since it
provides various semantics-based analyses through a consistent
Language Server Protocol [48]. We evaluate Repilot on a subset of
the widely studied Defects4] 1.2 and 2.0 datasets [32] and demon-
strate state-of-the-art results in both the number of correct fixes
and compilation rate — the percentage of the generated patches
that can be successfully compiled. Furthermore, while we evaluated
Repilot for APR in this work, we believe the overall framework can
be easily applied to other code generation tasks, including code
completion [16, 73], program synthesis [40, 52], and test genera-
tion [14, 65]. In summary, we make the following contributions:

e Direction. We open a new direction for fusing LLMs with Com-
pletion Engines for more powerful APR and beyond. Compared
to prior techniques which either perform post-processing to fix
invalid generations or use simple static methods to approximate
these valid tokens, our approach leverages a powerful Completion
Engine to directly provide accurate feedback on partial programs
to avoid invalid token generations.

o Technique. We implement Repilot, an LLM for APR approach
instantiated with the CodeT5 and INCODER models to perform
cloze-style repair combined with our modified Eclipse JDT Lan-
guage Server [1, 18] as the Completion Engine. In Repilot, we
use the Completion Engine to systematically prune invalid to-
kens generated by LLMs and to directly complete code given the
current prefix. Furthermore, we implement optimizations to sig-
nificantly reduce the overhead of Repilot. We have open-sourced
our tool at: https://github.com/ise-uiuc/Repilot.

o Study. We compare Repilot against state-of-the-art APR tools on
Defects4] 1.2 and 2.0. Repilot is able to achieve new state-of-the-
art results of 66 Defects4] 1.2 single-hunk bugs and 50 Defects4]
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2.0 single-line bugs fixed respectively with 30 more combined
fixes across both datasets compared to the previous best baseline.
Our further evaluation shows that Repilot consistently improves
the validity and correctness of the generated patches with a
limited overhead (7% for CodeT5 and negligible for INCODER).

2 BACKGROUND AND RELATED WORK
2.1 Large Language Models for Code

Recent advances in Natural Language Processing (NLP) have em-
powered the idea of using Large Language Models (LLMs) that are
pre-trained on enormous corpora of natural language and code for
various code-related tasks [4, 5, 10, 38, 70]. LLMs are based on the
transformer architecture [59] that can be categorized into encoder-
only, decoder-only and encoder-decoder. Encoder-only models
use only the encoder component by training using Masked Lan-
guage Modeling (MLM) [15] objective where a small percentage
(e.g., 15%) of the tokens are masked on. The goal of MLM is to re-
cover these masked tokens given the surrounding context. Encoder-
only models such as CodeBERT [17] and GraphCodeBERT [23] are
designed to provide a representation of the input code to be used for
downstream tasks such as code classification [71]. Decoder-only
models, on the other hand, aim to autoregressively generate to-
kens based on all previously generated tokens. CodeGEN [50, 51],
Codex [10] and PolyCoder [70] are examples of decoder-only LLMs
where they can be used for code autocompletion tasks. Different
from encoder- and decoder-only LLMs, encoder-decoder models
(e.g., CodeT5 [60, 61] and PLBART [3]) combine both encoder and
decoder together and jointly train both components together. A
commonly used pre-training objective for encoder-decoder models
is Masked Span Prediction (MSP) where random spans (multiple
consecutive tokens) are replaced with single masked tokens and the
models learn to fill in the masked span with the correct sequence of
tokens. Furthermore, decoder-only models like INCODER [19] can
also do infilling through the causal language modeling [2] objective.
Instead of using the decoder to predict the next token in the origi-
nal training data, similar to MSP, INCODER also replaces random
spans with masked span tokens. During training, INCODER learns
to autoregressively recover the original spans. With this training
strategy, INCODER can perform infilling with bidirectional context
similar to encoder-decoder models, enabling cloze-style repair.

2.2 Code Completion

Code completion is one of the most frequently used features in
Integrated Development Environments (IDEs). It substantially al-
leviates the complexity of software development by interactively
suggesting program constructs after the user’s caret position while
programmers are typing, including identifier names and library
APIs. Code completion is now an indispensable infrastructure of
the most widely-used programming languages and can be easily
integrated into most modern text editors thanks to the presence
of the Language Server Protocol [48], which standardizes the com-
munication between tools and language services. Traditionally, a
semantics-based Completion Engine is implemented on top of a se-
ries of complex incremental syntactic and semantic analyses of
the target programming language, since it needs to understand
partially written programs and provide real-time feedback. The

Completion Engine has full access to a project repository and its de-
pendencies and can produce suggestions according to its semantic
understanding. Recent advances in LLMs demonstrate the capa-
bility of generating long and complicated completions. However,
they may produce unreasonable programs due to the limitation in
the code context size and the loss of program analysis by simply
treating programs as token sequences. In this paper, we use the
term Completion Engine to refer to the semantics-based one. We
formally define the expected properties of a Completion Engine in
our framework in Definition 3.4.

2.3 Automated Program Repair

Automated Program Repair (APR) aims to generate patches given
the buggy code location and the bug-exposing tests. Traditionally,
APR approach can be categorized as constraint-based [13, 35, 43, 47],
heuristic-based [36, 37, 63] and template-based [21, 25, 34, 41, 42,
46]. Among these classic techniques, template-based tools have
been shown to achieve the highest number of bug fixes by using
handcrafted repair templates to target specific bug patterns [21].
However, these handcrafted patterns cannot cover all types of bugs
that exist and as such, template-based tools cannot fix bugs outside
of their pre-determined templates.

To address the issue faced by template-based APR tools, re-
searchers resort to Neural Machine Translation (NMT) [57] to de-
velop NMT-based APR tools [11, 29, 39, 44, 72, 74]. NMT-based APR
tools train an NMT model to translate the input buggy code into
the correct code through bug-fixing datasets containing pairs of
buggy and fixed code. However, these bug-fixing datasets may con-
tain only a small number/types of bug fixes, especially compared
to a large amount of available open-source code snippets, due to
the difficulty in obtaining bug-fixing commits [67]. Additionally,
the datasets can fail to filter out unrelated commits [30] such as
refactoring, which adds noise to the training datasets. Due to this
reliance on training using bug-fixing datasets, these NMT-based
tools also cannot generalize to bug types not seen during training.

Recently, researchers begin to directly apply LLMs for APR [66].
AlphaRepair [67] is the first to directly use LLMs for cloze-style
(or infilling-style) APR: it masks out the buggy code snippet and
then uses CodeBERT [17] to directly fill in the correct code given
the surrounding context. While AlphaRepair demonstrates the po-
tential to use encoder-only models for cloze-style APR, other stud-
ies [33, 53, 66] have looked into applying all three types of LLM ar-
chitecture. FitRepair [64] further improves AlphaRepair via domain-
specific fine-tuning and prompting strategies leveraging the plastic
surgery hypothesis [6]. Even more recently, researchers have ap-
plied dialogue-based models for APR [8, 56, 68, 69]. For example,
CHATREPAIR [69] proposes a fully automated conversational APR
approach by learning from prior patching attempts, including both
patch code and test failure information.

Compared to traditional and NMT-based APR techniques, LLM-
based techniques are able to achieve new state-of-the-art bug-fixing
results [66, 67]. While the performance is impressive, one particular
limitation of these techniques is the lack of guidance in patch gen-
eration. Prior work mainly treats the LLM as a black box and only
queries the model via beam search [67] or sampling [33, 53, 66]. This
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means LLMs, while powerful, may still generate invalid patches
given the current code context.

In this work, we address these limitations by using a semantics-
based Completion Engine to guide and prune the LLM search space.
Our approach is orthogonal to recent LLM-based APR techniques
and can be easily combined with them. In fact, NMT-based APR
techniques have also attempted to tackle this problem. CURE [29]
first statically obtains the valid identifiers and forces the NMT model
to only select from valid identifiers during generation. Recoder [74]
builds an edit-based NMT model to enforce syntax correctness and
introduce placeholder tokens and then as a post-processing step,
Recoder will replace placeholder tokens with statically determined
valid identifiers. RewardRepair [72] on the other hand, attempts to
increase the number of compilable patches by penalizing uncompi-
lable patches during training. Compared to these prior techniques,
Repilot is more general and effective. Repilot does not require any
domain-specific training and leverages the incremental analysis of
off-the-shelf Completion Engines to enforce guaranteed constraints
to guide LLMs on the fly.

3 PRELIMINARIES

In this section, we first define concepts about programming lan-
guages used throughout the paper (§3.1). Then we discuss the formal
abstractions of the two key components used in our Repilot frame-
work: Completion Engine (§3.2) and Large Language Model (§3.3).
These two abstractions are crucial in that each of them describes a
collection of fitting implementations, which forms the reason why
Repilot is a generalizable framework.

3.1 Languages with Static Checking

We now introduce the concept of programming languages equipped
with static checking and define the feasibility of a partial program
before the formulation of the Completion Engine (Definition 3.3).

Definition 3.1 (Programming Language with Static Checking). A
programming language with static checking is defined as a pair of
its character set X,, and its static specification ® C X! as a unary
relation on X7 .

PL; = (Z,, D), (3.1)

*

Given a prog € X7, the notation ®(prog) (or prog € ®) states that
prog is a statically valid program in this language. For statically-
typed programming languages like Java, the compilation check is a
kind of static checking.

Definition 3.2 (Static Feasibility of A Partial Program). For a par-
tially written program prog € 2 , we say it is feasible at the caret
position caret with respect to the static specification ®, written as
(prog, caret) £ @, if and only if there exists a possible continuation
after caret with which completing prog results in a statically valid

program. The definition can be formally written as
(prog, caret) E @ = Jcont € X, ®(prog [caret «— cont]), (3.2)

where we use the notation prog [caret < cont] as the action of
completing prog at caret with cont, i.e.

prog [caret «— cont] = progy_ care; - €Ot Progegrer..|prog|-  (3-3)

Yuxiang Wei, Chungiu Steven Xia, and Lingming Zhang

In Algorithm 1, we extend this notation to accept a range: Nx N, so
that prog [range « hunk] specifies the action of replacing prog’s
contents within range with hunk.

3.2 Abstraction of Completion Engines

A Completion Engine, showed in Figure 2, provides suggested con-
tinuations to a partially written program given the caret position.

Definition 3.3 (Completion Engine). Formally speaking, a Com-
pletion Engine CE is a pair

CE = (2,,, complete), (3.4)
where X, is the character set of the target language, and

complete: (£ ,N) — P(2r ) U {unknown} (3.5)

LY

is a function to obtain the completions given a program at some
caret position, with unknown indicating the engine cannot deter-
mine the suggestions from the code context (e.g., when completing
a variable declaration). Note that we make a distinction between
unknown and empty completions @ because in this paper we are
interested in a specific group of strict Completion Engines that
helps determine the feasibility of a partial program.
P(2:,) U {unknown}
(2,1)

(31, 1) - P(33,) U {unknown} Dataset
DatasetGroup
BackgroundAlpha
DataExtractOrder

DrawingSupplier
ForegroundAlpha

public MultiplePiePlot(..) { A
O Completion

this. set| Engine

complete

Program and caret position
Completions

Figure 2: Abstraction of a Completion Engine.

Definition 3.4 (Strict Completion Engine). Assume that a Comple-
tion Engine CE can obtain a set of completions given a program
prog feasible at caret (i.e., (prog, caret)  D):

completions = complete( prog, caret) 56)

where completions # unknown.
Then, CE is said to be strict if and only if, under this condition,
continuing prog with any code that does not match with this set of
completions yields an infeasible program at the new caret position:

Ve ¢ Prefix(completions), (prog’, caret’) ¥ @,
where prog’ = prog [caret < c] and caret’ = caret + |c|, (3.7)

Prefix(:) = {c¢ | s € - and c is a prefix of s or vice versa}.

This definition essentially means that a strict Completion Engine
should not give incorrect suggestions. It should return unknown
whenever unsure. A trivial strict Completion Engine can be the one
that always returns unknown.

3.3 Abstraction of LLMs

In this section, we give a formal abstraction of an encoder-decoder
based LLM as showed in Figure 3, which in practice is more complex
but conforms to the abstraction. The abstraction subsumes decoder-
only models and can also describe encoder-only models that use
the encoder outputs directly as token probabilities for generation.
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Figure 3: Abstraction of encoder-decoder based LLM.

Definition 3.5 (Large Language Model). Formally, We define an
encoder-decoder based LLM LM as a 3-tuple

LM = (3,,, encode, decode), (3.8)

where X, is a vocabulary consisting of the set of tokens defined
by the model. The encoder encode is a function that maps from an
input sequence to its encoded representation in EncRep:

encode: =, — EncRep. (3.9)

The decoder decode, defined below, then memorizes the encoded
representation in EncRep, takes as input a sequence of tokens, and
produces as output its decoded representation in DecRep:

decode: EncRep — (=}, — DecRep) . (3.10)

In this definition, the decoder memorizing the encoded represen-
tation is modeled as a higher-order function that returns a detailed
decoding function given the encoded representation. The decoded
representation in DecRep essentially assigns a probability to each
token in the vocabulary to state its likelihood of being the next
token in the sequence. Therefore, we can define DecRep as

DecRep =2, — [0,1]. (3.11)

4 APPROACH

Following most recent deep learning based APR tools [67, 72, 74],
Repilot focuses on fixing single-hunk bugs, where the patch is
obtained by changing a continuous section of code under perfect
fault localization. Repilot can be extended for multi-hunk bugs
by replacing all hunk locations at the same time with separate
infilling tokens and using LLM to generate the replacement hunks.
Benefiting from the era of LLMs, as shown in Figure 4, in this paper,
we treat the repair problem as a cloze task [67], where a patch is
formed by first replacing the buggy hunk with a masked span token
(<SPAN>) and then using the LLM to direct synthesize the fixed hunk
from the surrounding code context to replace the span token.

private boolean inSpecificScope(...) { | private boolean inSpecificScope(...) {

int bottom = stack.size() -1; H Cloze
if (bottom > MaxScopeSearchDepth) { final int top = bottom > ..
bottom = MaxScopeSearchDepth;
)_ ) _ private boolean inSpecificScope(...) {
() S G S LHED > - ifinal int bottom = stack.size() - 1i | patch

Bug final int top = bottom > ..

Figure 4: Cloze-style program repair.

4.1 Overview

Figure 5 shows an overview of how Repilot synthesizes a program
that acts as the repaired hunk of the original buggy program. The
generation loop consists of a loop that keeps updating the gen-
eration with tokens newly generated from the synergy between
the language model and Completion Engine. The loop starts by

applying the current generation as the input to the language model
(@), which returns a search space of a mapping from a suggested
next token to its probability. Repilot then enters a token selection
phase that repeatedly samples a token from the search space, check-
ing its feasibility, and pruning the search space until a token is
accepted. Every time a token is sampled, Repilot first checks if it
hits the memorization (@), which stores the tokens that are known
to be feasible or infeasible. The memorization of infeasible tokens
includes the use of a prefix tree data structure (Trie) discussed in
§4.3. When the token hits the memorization and is infeasible, the
search space is pruned by setting this token’s probability to zero
(@), and the next sampling will run on the updated search space.
In this way, the same token is not sampled again during the token
selection phase. If the token misses the memorization, the search
space is pruned under the guidance of the Completion Engine (@),
which we elaborate in §4.2. Provided that the sampled token is re-
jected by the Completion Engine, Repilot zeroes out its probability.
Otherwise, it is accepted and this token selection process termi-
nates. The memorization gets updated in both cases (@). After a
token is accepted (@), we further leverage the Completion Engine,
trying to actively complete the token (@). The active completion,
discussed in §4.4, may either produce more tokens or add noth-
ing to the accepted token. Finally, Repilot appends all the newly
generated tokens to the current generation and begins a new loop
until a complete patch is generated. The loop stops when the model
generates the special token end-token.

Algorithm 1 details this process and shows how a complete patch
program is generated using what is established in §3. It additionally
describes how Repilot performs the pre-processing (Lines 3 to 6)
and formalizes completion-guided pruning procedure illustrated
in Figure 5 using two functions GUIDEDPRUNE and ACTIVELY-
ComPLETE (Lines 7 to 17). In all our algorithms, we use a "dot-
notation" to specify an entity of a tuple (e.g., LM.encode), but use
an abbreviation form when the context is clear (e.g., 2, and X, for
LM.X,, and CE.Z,,). We also optionally apply type annotations for
clarification. Note that we simplify the definition of the Completion
Engine by restricting it to be called with one program. In practice,
a Completion Engine is always initialized with the entire project
and can provide suggestions based on global information.

4.2 Completion-Guided Search Space Pruning

In this section, we explain the core idea of how Repilot utilizes a
Completion Engine to prune the search space of an LLM.
Algorithm 2 explains in depth how a Completion Engine helps
prune the model’s search space. The function GUIDEDPRUNE takes
as inputs a Completion Engine CE, the current program prog, the
current caret position caret, and the probability map tokens given by
the model, and produces a token next-token as the continuation of
the program prog at position caret. The function consists of a while-
loop (Lines 2 to 11) where Repilot first samples a possible next
token according to the probabilities (Line 3), updates the current
program accordingly (Line 4), and moves the caret after next-token.
Repilot then invokes the Completion Engine using the function
complete defined in Equation (3.5), given the program prog” and
the caret position caret’. If the result is not unknown but there is
no completion (Line 8), it means that no possible continuation can
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Figure 5: Overview of Repilot.

Algorithm 1 Main Repair Loop of Repilot

Algorithm 2 Completion-Guided Search Space Pruning

Inputs: Large Language Model LM, Completion Engine CE, Buggy pro-
gram prog, and Range of buggy hunk range.
Output: Patch for the buggy program.

s

: func REPAIR(LM, CE, prog: 3 , range: N X N) — ¥ :

: > Initializations based on Definition 3.5 <
encoder-inputs: 3%, := BUILDINPUTS(prog, range)
encoded-rep: EncRep := LM.encode( encoder-inputs)

1
2
3
4:
5: decoder: 3}, — DecRep := LM.decode(encoded-rep)
6
7
8
9

hunk: 3}, =¢
while true do
> Form patch by replacing buggy hunk with hunk <
patch = prog [range <« STR(hunk) ]
10: > Move caret after the current generation <
11: caret := range.start + |STR( hunk) |
12: tokens: 3., — [0, 1] := decoder(hunk)
13: next-token: ¥,,, := GUIDEDPRUNE (CE, patch, caret, tokens)
14: if next-token = end-token then
15: | return patch
16: completion-toks: 2, := AcTIVELYCOMPLETE (CE, patch, caret)
17: hunk := hunk - next-token - completion-toks

be formed after next-token, so the token next-token is considered
infeasible, thus pruned (Line 9) in this round of search, and the loop
will continue (Line 10). Otherwise, we consider the token feasible
and return next-token (Line 11).

The pruning at Line 9 is done by setting the probability of the
entry next-token of the probability map tokens to zero. The notation
used at this line is defined subsequently. Assume that

f:X>Y={x yo.x1— y1,...} (4.1)
is an arbitrary function, and
aX—=Y={xg ypx — ...} (4.2)

is a partial function of the same type, meaning that only a subset of
inputs in the domain X is associated with an output in the range Y.
We define the action of changing the output values of the inputs in
f using the assignments given by a as

f [a] = (f _ﬁ’emoved) Ua (43)
where fremoved = {x" = f(x') | x' =y € a}. '
4.3 Memorization for Faster Search

Algorithm 2 (GuiDEDPRUNE) involves a loop of trials and pruning
actions, which slows down the repair task in some situation. To

Inputs: Completion Engine CE, Current Program prog, Caret Position
caret, and Token Probability Map tokens.
Output: Next token next-token to generate.

1: func GUuIDEDPRUNE(CE, prog, caret, tokens: X,y — [0,1]) = X,\:
2 while true do

3 next-token: 3, := SAMPLE (tokens)

4 prog’ := prog [ caret «— STR(next-token) ]|

5 caret’ := caret + |STR(next-token) |

6 > completions: P (3, ) U {unknown} <
7 completions := CE.complete(prog’, caret”)

8 if completions # unknown and |completions| = 0 then

9 tokens := tokens [ { next-token — 0} ]

10: continue

11: | return next-token

speedup its search procedure, we apply several memorization tech-
niques to reduce the frequency of invoking the Completion Engine
for analysis.

Memorizing rejected tokens. To repair a bug in practice requires
generating plenty of samples, meaning that the same program prog’
and caret’ (Lines 4 to 5) may occur repeatedly in Algorithm 2 (Guip-
EDPRUNE). Therefore, we can memorize all the tokens pruned at
Line 9 by storing them in a variable

rejected: (X, N) — P(Z..,),

s (4.4)
which maps from a program prog and a caret position caret to a set
of rejected tokens. Then we zero the probabilities of the rejected

tokens in advance, written as

tokens := tokens [{tok — 0 | tok € rejected(prog, caret)}], (4.5)

before the while-loop (Line 2) starts.

Memorizing accepted tokens. Besides rejected tokens, we can also
memorize tokens that are accepted before in a variable

accepted: (2, N) — P(Z,,)

o (4.6)
to avoid the overhead incurred from querying the Completion

Engine at Lines 7 to 8.

Building a Prefix Tree of Rejected Tokens. It is common that many
tokens in the vocabulary of the language model are prefixes of
another. And it is obvious that if a token is rejected, meaning that
no possible continuation can be formed after the token to obtain a
statically valid program, then any token sharing such prefix should
be rejected. For this reason, we build and keep updating a prefix
tree, or Trie, of all the rejected tokens given prog and caret, and
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checks if any of the tokens in the Trie is a prefix of next-token right
after Line 3 in Algorithm 2. If it is the case, Repilot directly skips to
the next iteration, avoiding further analysis.

4.4 Active Completion

Not only is a Completion Engine able to determine the feasibility of
apossible next token suggested by the model, as shown in §4.2, but it
can also proactively suggest a potential continuation of the current
program without querying the model, just like how developers
benefit from autocompletion.

Algorithm 3 describes active completion in detail. The function
AcTIVELYCOMPLETE takes three inputs: the Completion Engine CE,
the current program prog, and the current caret position caret, and
outputs a sequence of tokens completion-toks as the continuation of
prog at caret. Initially, Repilot gets the completion result according
to Equation (3.5), given prog and caret (Line 2), and checks if it is
unknown (Line 3). If it is the case (completions = unknown), the
result is set to an empty string, meaning no extra completions are
produced (Line 4). Otherwise, Repilot calculates the common prefix
of all the completions (Line 6). Note that the type of the resultant
variable completion is a sequence of characters in the Programming
Language alphabet, different from the language model’s X, so
Repilot further aligns the completion to fit the model’s vocabulary
(Line 7). Finally, the result is returned at Line 8.

Algorithm 3 Active Completion

Inputs: Completion Engine CE, Program prog, and Caret Position caret.
Output: The actively completed tokens completion-toks.

1: func AcTiveLyCompLETE(CE, prog, caret) — Xj,:

2 completions: P (X;,) U {unknown} := CE.complete(prog, caret)
3 if completions = unknown then

4 ‘ completion-toks := €

5: else

6 completion: X}, := COMMONPREFIX (completions)

7 L completion-toks: 2, := ALIGNTOKENS (2, completion)

8 return completion-toks

4.5 Soundness of Repilot

In this section, we show the theoretical guarantee of each algorithm
discussed above under the condition that the Completion Engine is
strict (Definition 3.4).

LEMMA 4.1 (SOUNDNESS OF PRUNING). The tokens pruned away
in Algorithm 2 (GuiDEDPRUNE) result in infeasbile programs.

DiscussioN. From Equation (3.7) in Definition 3.4, we can de-
duce that a program is infeasible at some caret position if the Com-
pletion Engine does not return unknown but the set of completions
is empty, i.e.,

|completions| = 0 — (prog, caret) § ®
. . (4.7)
if completions # unknown
The pruning at Algorithm 2 happens at Lines 8 to 9, which is exactly
what is described above. As a result, we can conclude that the
program with next-token appended is infeasible, and hence it is safe
for Repilot to abandon the token. O

LEMMA 4.2 (SOUNDNESS OF MEMORIZATION). The memorization
discussed in §4.3 does not affect GUIDEDPRUNE s behavior.

DiscussioN. The theorem holds because all the memorization
techniques mentioned in §4.3 do not change the semantics of Guip-
eDPRUNE but only speed up the process. O

LEMMA 4.3 (SOUNDNESS OF AcTIVE COMPLETION). If a program
is feasible at some caret position, the new program produced by Algo-
rithm 3 (AcTIVELYCOMPLETE) is feasible at its new caret position.

DiscussioN. Based on Equation (3.7) from Definition 3.4, any
continuations not matching the set of completions would bring
about an infeasible program. In the case where these completions
have a shared common prefix, any continuations not starting with
this common prefix would be invalid. Therefore, completing the
original program with the common prefix (Line 6 in Algorithm 3)
is the only way to yield a new feasible program. O

On the basis of Lemmas 4.1 to 4.3, we can easily prove that
Repilot’s overall algorithm is sound.

THEOREM 4.4 (OVERALL SOUNDNESS). Algorithm 1 (REPAIR) does
not miss any feasible programs in the language model’s search space.

When will Repilot fail? Although the theorems are about the
soundness of Repilot, i.e., it prunes the search space correctly, it does
not provides any guarantee that Repilot produces a valid patch every
time. Therefore, Repilot’s expected behavior is to be able to obtain
valid patches more efficiently, rather than being entirely error-free
during the generation.

5 EXPERIMENTAL SETUP

In this paper, we study the following research questions to evaluate

Repilot.

e RQ1: How does Repilot’s bug fixing capability compare with
state-of-the-art APR techniques (§6.1)?

o RQ2: How effective is Repilot in improving the compilation rate
of patch generation (§6.2)?

e RQ3: Are all components of Repilot making positive contribu-
tions to its effectiveness (§6.3)?

e RQ4: Can Repilot generalize to different subjects of bugs and
models (§6.4)?

We first compare the repair performance of Repilot, instantiated
with CodeT5, against state-of-the-art APR tools across both tradi-
tional, NMT-based, and LLM-based tools on the Defects4] datasets
in RQ1. In RQ2, we then closely evaluate the improvement in compi-
lation rate — percentage of compilable patches generated to demon-
strate that Repilot is not only effective in bug repair but can gener-
ate a higher number of compilable patches compared with existing
tools. Furthermore, we perform a detailed ablation study in RQ3
to evaluate the contribution of different components of Repilot.
Finally, in RQ4, we extend our evaluation of Repilot beyond its use
with CodeT5 in the previous RQs. We go a step further by imple-
menting Repilot with INCODER and assessing the performance of
Repilot using both CodeT5 and INCODER on single-hunk bugs from
both Defects4] 1.2 and 2.0 to demonstrate the generalizability of
Repilot across different LLMs and bug subjects.
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5.1 Implementation

We use the Python implementation of the CodeT5-large and the
INCoDER-6.7B models obtained on Hugging Face [26]. We build
our generation pipeline in Python with 5K lines of code and imple-
ment a modified version of the Eclipse JDT Language Server [1, 18]
in Java with 1.5K additional lines of code, which serves as the
strict Completion Engine of our framework. Our default genera-
tion uses top-p nucleus sampling [24] with p = 1.0, temperature =
1.0, max-tokens = 50 and samples 5000 times per bug for fair
comparisons against prior works (§6.1 and §6.2). Due to the high
cost of APR, we sample 500 times per bug for the ablation study
(§6.3) and the generalizability evaluation (§6.4). Following prior
work [39, 44, 67, 74], we use a timeout of 5 hours to generate and
validate all patches per bug. We generate and validate patches on a
32-Core with Ryzen Threadripper PRO 3975WX CPU, 256 GB RAM
and NVIDIA RTX A6000 GPU, running Ubuntu 20.04.4 LTS with
Java version Open]DK 1.8.0_181.

5.2 Subject Programs

We use the popular repair benchmark of Defects4] for our evalu-
ation. Defects4] is a manually curated Java dataset with pairs of
buggy and patched versions of the source project along with de-
veloper test suites for validation. Following prior work and APR
literature convention, we separate Defects4] into Defects4] 1.2, con-
taining 391 bugs (removing 4 depreciated bugs) from 6 Java source
projects, and Defects4] 2.0, containing 438 new bugs from 9 addi-
tional projects. For Defects4] 1.2, we focus on only the single-hunk
bugs as Repilot is designed for single-hunk repair. Note this is also
the evaluation setting used in the prior baseline [72]. Furthermore,
we remove the bugs that are incompatible with our Completion En-
gine due to engineering issues. In total, we consider 138 single-hunk
bugs from Defects4] 1.2 and 135 single-hunk bugs from Defects4]
2.0. For our main evaluation in RQ1, following the same setup as
prior LLM for APR work [66, 67], we report the results on all 135
single-hunk bugs from Defects4] 1.2 and 76 single-line bugs (a
subset of single-hunk bugs) from Defects4] 2.0. Meanwhile, in our
generalizability study (RQ4), we further evaluate Repilot on the full
set of single-hunk bugs from both Defects4] 1.2 and 2.0 for both
CodeT5 and INCODER.

5.3 Compared Techniques

We compare Repilot against state-of-the-art baselines from tradi-
tional, NMT-based, and LLM for APR tools. We evaluate against
AlphaRepair [67] as it is the top performing LLM for APR ap-
proach. For NMT-based approaches, we choose 6 recent tools:
RewardRepair [72], Recoder [74], CURE [29], CoCoNuT [44], DL-
Fix [39] and SequenceR [11] based on the NMT architecture. Addi-
tionally, we compare against 12 traditional APR tools: PraPR [21],
TBar [41], AVATAR [42], SimFix [28], FixMiner [34], CapGen [63],
JAID [9], SketchFix [25], NOPOL [13], jGenProg [45], jMutRe-
pair [46] and jKali [46]. Altogether, we include 19 APR baselines and
compare Repilot against them on Defects4] 1.2 and 2.0. Our evalua-
tion setting is on perfect fault localization — where the ground-truth
location of the bug is given to the APR tool. We note that this is the
preferred evaluation setting as it eliminates any differences caused
by different fault localization methods [29, 44, 58, 74]. We follow the
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Table 1: Number of correct fixes on Defects4] 1.2 single-hunk
and Defects4] 2.0 single-line bugs

#Correct Fixes

Tool Methodology

Defects4] 1.2 Defects4] 2.0  Total
CoCoNuT NMT 30 - -
DLFix NMT 32 - -
PraPR Template 35 - -
TBar Template 41 7 48
CURE NMT 43 - -
RewardRepair ~ NMT 45 24 69
Recoder NMT 51 10 61
AlphaRepair LLM 52 34 86
Repilot LLM 66 50 116

Recoder Recoder

AlphaRepair AlphaRepair

Others

3 .
|
N
\2 5 N,
31 \
3 00 . ho
/ /
Ay °
o 1,
8 1
Repilot RewardRepair Repilot RewardRepair

a) with best LLM and NMT-based baselines
Figure 6: Correct fix Venn diagrams on Defects4] 1.2

b) with all APR tools

convention used in prior work [21, 29, 41, 74] and directly report
the bug fix results obtained from previous studies [21, 67, 72].

5.4 Evaluation Metrics

e Plausible patches are patches that pass all test cases but may
violate the real user intent.

o Correct patches are patches that are semantically equivalent
to the developer patch. Following common APR practice, we
determine semantic equivalency by manually examining each
plausible patch.

e Patch compilation rate is also used in many deep learning
based APR works [29, 72], which indicates the percentage of
compilable patches in all generated patches.

6 RESULT ANALYSIS

6.1 RQ1: Comparison with Existing Tools

In RQ1 and RQ2, we follow the prior approach for cloze-style
APR [67] to make use of repair templates for a faithful evaluation.
Instead of replacing the entire buggy line with model-generated
code, these templates systematically keep parts of the buggy line
to reduce the amount of code the LLM needs to generate. Note
that we do not apply any repair templates in RQ3 and RQ4 because
we consider a smaller number of samples there (i.e., 500 samples
as shown in Section 5.1) and also want to focus on the impact of
different experimental configurations.

Defects4] 1.2. We first compare Repilot against the state-of-the-art
APR tools on single-hunk bugs from Defects4] 1.2. Table 1 shows
the number of correct patches produced by Repilot, evaluated in
cloze-style, along with the baselines. Repilot achieves the new state-
of-the-art result of 66 correct bug fixes on Defects4] 1.2, outperforming
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private String getRemainingJSDocLine() {
String result = stream.getRemainingJSDocLine();
unreadToken = NO_UNREAD_TOKEN;
return result;

3
Bug-ID: Closure-133

Completion
Engine

I_+_\
[P unreadToken' = NO_UNREAD_TOKEN;;

LLM L}
Patch Generation Process

Figure 7: Unique bug fix by Repilot on Defects4] 1.2

all previous APR tools. Figure 6a shows the Venn diagram of the
unique bugs fixed for the top performing LLM- and NMT-based
APR tools where Repilot is able to obtain the highest number of
8 unique bugs Furthermore, Figure 6b compares the unique bugs
fixed for all top-performing baselines and with all other APR tools
combined (Others). We observe that Repilot is able to fix 7 bugs
that no other baselines have been able to fix so far.

To demonstrate the ability of Repilot to fix difficult bugs, Fig-

ure 7 shows a unique bug (Closure-133) from Defects4] 1.2 that
only Repilot can fix. This bug is fixed by adding the new assign-
ment statement using the global variable NO_UNREAD_TOKEN which is
difficult to generate as it does not appear within the surrounding
context of the bug location. Repilot first uses CodeT5 to generate the
initial prefix of unread. Then using the Completion Engine, Repilot
recognizes that Token is the only semantically correct continuation
and directly performs active completion to return unreadToken. Sim-
ilarly for generating NO_UNREAD_TOKEN, Repilot first generates NO_
and then uses active completion to directly generate this rare iden-
tifier without having to repeatedly sample the LLM. It is difficult for
prior LLM- and NMT-based APR tools to generate this fix as LLMs
or NMT models may not be able to complete this rare identifier
since it requires multiple continuous steps to generate. In contrast,
Repilot, through the use of active completion, can directly generate
this rare identifier given only the initial identifier prefix to quickly
arrive at this correct patch.
Defects4] 2.0. We further evaluate Repilot against baselines eval-
uated on the single-line bugs in Defects4] 2.0. For these bugs, we
follow prior approach for cloze-style APR [67] to make use of repair
templates. Instead of replacing the entire buggy line with model-
generated code, these templates systematically keep parts of the
buggy line (e.g., prefix or suffix, method parameters and calls) to re-
duce the amount of code the LLM needs to generate. We apply these
repair templates for Defects4] 2.0 single-line bugs only since they
are designed for single-line bugs. Table 1 also shows the number
of correct fixes on Defects4] 2.0 compared with the baselines. We
observe that Repilot is able to fix the highest number of bugs 50 (16
more than the next best baseline) on Defects47 2.0. This improvement
over existing baselines shows that Repilot can generalize to two
versions of Defects4] datasets and demonstrates the power of repair
templates to boost the performance of LLM-based APR tools.

Figure 8 shows a unique bug from Defects4] 2.0 that only Repilot
can fix. First, Repilot generates the patch up to the caret position.
The Completion Engine then captures the exact type of the object
from Token.EndTag to String. Using this information, Repilot cor-
rectly prunes tokens that are not a part of the String class (e.g., name
and text). Hence, the generated patch contains a valid String class

private void popStackToClose(Token.EndTag endTag) {
String elName = endTag.name();
String elName = endTag.name().toLowerCase();
Element firstFound = null;
Bug-ID: Jsoup-77

text ®

e: Strin,
TP hame ()

- String elName = endTag.name() || ---
— tolLower @

Type: Token.EndTag  Completion Engine
Patch Generation Process

Figure 8: Unique bug fix by Repilot on Defects4] 2.0

Table 2: Comparison with existing APR tools on compilation
rate on Defects4] 1.2. "-" denotes data not available.

% Compilable Patches

Tool

Top-30  Top-100  Top-1000  Top-5000
SequenceR 33% - - -
CoCoNuT 24% 15% 6% 3%
CURE 39% 28% 14% 9%
AlphaRepair 25% 22% 16% 13%
RewardRepair 45% 38% 33%! -
Repilot 66% 62% 58% 59%

! This is the top 200 rate for RewardRepair as it does not include top 1000

method of toLowerCase() which correctly fixes this bug. Similar
to the previous unique bug fix in Defects4] 1.2, prior LLM-based
APR tools may waste a lot of time generating semantically incor-
rect continuations as they do not have access to the type infor-
mation. Furthermore, NMT-based APR tools such as CURE [29],
over-approximating the list of valid identifiers by statically grabbing
all the accessible fields, may not generate this fix since a pruned
identifier (e.g., name) can also be valid for a different object type.
Repilot uses the Completion Engine to analyze partial programs
and realize complex type propagation for effective pruning.

6.2 RQ2: Compilation Rate Analysis

We evaluate the compilation rate of the patches generated by Repi-
lot compared with prior learning-based APR techniques. Table 2
shows the percentage of compilable patches on the Defects4] 1.2
dataset. We observe that across all numbers of patches generated,
Repilot significantly improves the percentage of compilable patches
compared with prior tools. We first notice that LLM-based APR
tools (Repilot and AlphaRepair), are able to sustain their compila-
tion rate compared with NMT-based tools (CoCoNuT and CURE)
where the compilation rate drastically decreases as we increase the
number of patches. This shows the ability for LLMs to generate
large amounts of reasonable patches. Repilot is able to sustain a
near 60% compilation percentage at 1000 patches generated while
the prior approach is barely above 30%.

Compared with CURE [29], where an overestimation of valid
identifiers is obtained via static analysis and used to prune invalid
tokens generated by NMT model, Repilot leverages the powerful
Completion Engine to keep track of the current context to obtain
a more accurate pruning step. Furthermore, compared with Re-
wardRepair [72], where the compilation rate is boosted through
penalizing uncompilable patches during training, Repilot directly
uses a LLM combined with a Completion Engine to avoid this high
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Table 3: Component contribution of Repilot

Variant  Generation %Compilable %Plausible #Plausible #Correct

Time Patches Patches Fixes Fixes
Repilot@ 0.232s 43.2% 3.95% 56 37
RepilotP 0.294s 60.7% 5.02% 62 41
Repilot;‘," 0.255s 58.7% 4.82% 60 40
Repilot 0.248s 63.4% 5.21% 63 42

cost of training a new model. Additionally, Repilot uses the active
completion ability of Completion Engine to directly generate these
rare identifiers to further boost the compilation rate. As such, Repi-
lot is able to achieve the highest percentage of compilable patches
across all four different settings.

6.3 RQ3: Ablation Study

To study the contribution of each component of Repilot to its overall
effectiveness, we conduct an ablation study that aims at justifying
the following hypothesis:

o Algorithm 2 (GuiDEDPRUNE) helps LLM to achieve valid (compi-
lable) patches more efficiently on a pruned search space.

o Memorization (§4.3) reduces the frequency of querying the Com-
pletion Engine, thus speeding up patch synthesis.

e Active completion provides further guidance of synthesis that
and helps Repilot efficiently achieve more valid patches.

o The plausible rate of patches becomes higher along with the
compilation rate.

To give grounds for these hypotheses, we set up the following
four variants:

Repilot, uses only the base LLM (CodeT5) for patch synthesis.
Repilot, applies pruning defined in Algorithm 2.

Repilot}' leverages memorization (§4.3) on top of pruning.
Repilot employs active completion for further guidance.

and evaluate them by comparing them against their efficiency in
generating compilable, plausible patches, and correct patches.

Table 3 shows the generation time (in seconds per patch), the
contribution in terms of the percentage of compilable and plausi-
ble patches among all uniquely generated patches, the number of
plausible fixes, and the number of correct fixes for each of the four
variants on Defects4] 1.2 single-hunk bugs. We first observe that
just using the base LLM for APR (Repilot,,), we achieve the lowest
compilation rate at 43.2%. By adding the pruning provided by the
Completion Engine, we can significantly improve the compilation
rate to 60.7%, the number of plausible fixes from 56 to 62, and the
number of correct fixes from 37 to 41. Additional improvement is
made by adding the active completion technique to achieve the
full Repilot with the highest compilation rate at 63.4%, plausible
percentage 5.21%, the most number of plausible fixes at 63, and the
most correct fixes at 42.

Looking at the patch generation time, starting from Repilot,
adding pruning via Completion Engine incurs an over 25% overhead.
However, this can be significantly reduced by using memorization
(Repilot,) to achieve around 10% overhead by avoiding querying
the Completion Engine once we know an identifier is invalid. Fur-
thermore, active completion can further reduce the overhead to
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7% since instead of having to sample the LLM for each step in the
generation, we can actively complete an identifier.

As aresult, all the components contribute to the overall effective-
ness of Repilot. Repilot can consistently increase the compilation
and plausible rate, as well as produce more plausible/correct fixes
while incurring minimal overhead compared with directly using
LLMs for patch synthesis.

6.4 RQ4: Generalizability

To demonstrate the generalizability of Repilot across different sub-
jects of bugs and models, on the one hand, we further evaluate
Repilot with CodeT5 on all single-hunk bugs of Defects4] 2.0. On
the other hand, we additionally instantiate and evaluate Repilot
with a larger INCODER-6.7B model. Identical to RQ3, we also conduct
500 samples in RQ4 due to the high cost of APR.

Table 4 shows the comparison between the baseline Repilot,,
and our full Repilot approach across different subjects of bugs and
models. We consider the same set of Defects4] 1.2 single-hunk bugs
as in RQ3 and an extra set of Defects4] 2.0 single-hunk bugs.

Upon investigation, we can see that Repilot with CodeT5 sur-
passes the baseline on Defects4] 1.2 as illustrated in RQ3. Further-
more, on Defects4] 2.0, it can also achieve 18.1 percentage points
(pp) more compilable and 3.0 pp more plausible patches, as well as 6
more plausible fixes and 4 more correct fixes, with a 7.4% overhead.

Meanwhile, when Repilot is instantiated with INCODER, it still
produces more compilable and plausible patches, as well as more
plausible and correct fixes on both Defects4] 1.2 and Defects4] 2.0
over the baseline INCODER. It eventually gives 6 more correct fixes
on Defects4] 1.2 and 1 more on Defects4] 2.0.

One major difference comparing Repilot with INCODER and
CodeT5 is that when Repilot is equipped with INCODER, a much
larger model than CodeT5, it incurs negligible overhead. This is
because compared to the high cost of autoregressive sampling using
larger models, the extra cost from querying the Completion Engine
is much smaller and thus trivializes the overhead of Repilot when
applied on larger models. Also, the larger INCODER model, whether
or not it is applied with Repilot, can consistently fix more bugs
across both Defects4] 1.2 and 2.0 than CodeT5, further confirming
prior finding that larger LLMs often perform better for APR [66].

Overall, the experimental results indicate that Repilot can gener-
alize to different sets of bugs (both single-hunk bugs in Defects4]
1.2 and 2.0) as well as larger LLMs (INCODER)

7 LIMITATIONS

First, to bring out Repilot’s full potential, it is important that the
Completion Engine can provide useful guidance while remaining
strict (Definition 3.4). However, it is generally more difficult to
balance the usefulness and strictness of a Completion Engine in
many dynamically typed programming languages, such as Python,
compared with Java studied in this paper, which is a statically typed
programming language. Meanwhile, there is a growing trend of
dynamically typed languages adopting support for type hints [12,
49, 54]. Considering this, we believe that Repilot can still provide
significant advantages in such environments.

Another limitation of Repilot lies in the evaluation. On the one
hand, while it is true that an increase in the compilation rate of
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Table 4: Generalizability of Repilot across both subjects of bugs and models

Variant Model Subject of Bugs  Generation Time  %Compilable Patches ~ %Plausible Patches  #Plausible Fixes  #Correct Fixes
Repilot,  CodeT5-large  Defects4] 1.2 0.232s 43.2% 3.95% 56 37
Repilot CodeT5-large  Defects4] 1.2 0.248s 63.4% 5.21% 63 42
Repilot,  CodeT5-large  Defects4] 2.0 0.230s 46.7% 9.02% 59 41
Repilot CodeT5-large  Defects4] 2.0 0.247s 64.8% 12.02% 65 45
Repilot,  INCODER-6.7B  Defects4] 1.2 1.70s 32.4% 3.85% 70 48
Repilot INCODER-6.7B  Defects4] 1.2 1.70s 47.2% 4.96% 78 54
Repilot,  INCODER-6.7B  Defects4] 2.0 1.67s 34.6% 5.06% 67 45
Repilot INCODER-6.7B  Defects4] 2.0 1.69s 48.0% 6.87% 68 46

Repilot can lead to the discovery of more plausible and correct fixes,
it is important to note that a significantly higher compilation rate
does not necessarily translate to a proportionally large increase
in plausible and correct fixes. On the other hand, Repilot is only
evaluated with CodeT5 for RQ1 and RQ2 with a 5000 sampling
budget. CodeT5 is a rather “small” LLM compared to those LLMs
with billions of parameters. Although we further include INCODER-
6.7B as a multi-billion-parameter LLM in RQ4, due to time cost, we
only sample 500 times per bug, which may be insufficient to reflect
the distribution of the generated patches. Overall, the scope of our
evaluation considering two LLMs (CodeT5 and INCODER) and one
programming language (Java) is still narrow given that Repilot is
a general framework that can be instantiated with any pair of an
LLM and a Completion Engine for some programming language.
Finally, despite the examples we show in the paper, our eval-
uation lacks strong empirical evidence to support the claim that
LLMs have difficulty in generating rare tokens and how Repilot
solves the problem. Besides, our evaluation limits the application
of Repilot to patch synthesis, even though we claim that Repilot
can be applied to other code generation tasks. In the future, we will
apply and evaluate Repilot on more diverse code generation tasks.

8 THREATS TO VALIDITY

Internal. We share the same main internal threat to validity with
prior APR tools where we have to manually examine each plausible
patch to determine patch correctness. We address this by carefully
analyzing each patch to determine if it is semantically equivalent
to the reference developer patch. Furthermore, we have released
our full set of correct patches for public evaluation [62].

Our use of the CodeT5 model poses another internal threat where
the open-source training dataset of GitHub projects [27] may over-
lap with our evaluation of Defects4]. We follow prior work [66, 67]
and address this by computing the correct bug fixes of Repilot from
Defects4] that is part of the CodeT5 training data. In total, 7 out
of 66 and 6 out of 50 overlap with training data on Defects4] 1.2
and 2.0 respectively. For comparison fairness, if we were to exclude
these 7 and 6 bugs and compare them with the previous baseline
tools on the remaining bugs, we are still able to achieve the highest
bug fixes at 59 and 44 (best baseline at 45 and 29). The same threat
applies to the use of INCODER, but since its detailed training data is
not revealed, we are unable to explicitly address this problem. To
mitigate the problem, we only evaluate INCODER in RQ4, where all
the variants face the same potential leakage.

Moreover, our modified implementation of the completion en-
gine requires manual inspection to guarantee soundness property.
In practice, this is a significant trust base that may introduce false
positives during pruning. However, our theorem still provides a
partial guarantee and is able to explain unsoundness. At the same
time, our evaluation result justifies our claims and demonstrates
the practicality of Repilot.

Finally, in our evaluation, we follow the convention used in prior

work to directly report the bug fix results without reproducing them,
which poses a threat to the reliability of the results. Meanwhile,
we only run each of our experiments once, which could introduce
extra statistical biases.
External. The main external threat to validity comes from our
evaluation dataset where the performance of Repilot may not gen-
eralize to other datasets. To address this, we compare Repilot against
state-of-the-art baselines on both Defects4] 1.2 and 2.0 to show that
the performance is sustained across both versions. To address this
further, we plan to evaluate Repilot on additional APR datasets also
across different programming languages.

9 CONCLUSION

We propose Repilot — the first APR approach to combining the
direct usage of LLMs (e.g., CodeT5 and INCODER) with on-the-fly
guidance provided by Completion Engines. During autoregressive
token generation, Repilot queries the Completion Engine not only
to prune invalid tokens but also to proactively complete the currently
generated partial program, thereby reducing the search space of the
LLM. Our evaluation on a subset of the widely-studied Defects4] 1.2
and 2.0 datasets shows Repilot is able to achieve the state-of-the-art
results. Furthermore, Repilot, through the usage of Completion
Engine, is able to generate more valid and compilable patches than
prior tools with minimal overhead compared with directly using
LLMs for APR.

DATA AVAILABILITY

We have open-sourced Repilot, which can be accessed on GitHub
at https://github.com/ise-uiuc/Repilot. Additionally, an immutable
artifact for Repilot is publicly available on Zenodo [62].
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