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ABSTRACT

Fuzzing has achieved tremendous success in discovering bugs and
vulnerabilities in various software systems. Systems under test
(SUTs) that take in programming or formal language as inputs,
e.g., compilers, runtime engines, constraint solvers, and software
libraries with accessible APIs, are especially important as they are
fundamental building blocks of software development. However,
existing fuzzers for such systems often target a specific language,
and thus cannot be easily applied to other languages or even other
versions of the same language. Moreover, the inputs generated
by existing fuzzers are often limited to specific features of the in-
put language, and thus can hardly reveal bugs related to other or
new features. This paper presents Fuzz4ALL, the first fuzzer that
is universal in the sense that it can target many different input
languages and many different features of these languages. The key
idea behind Fuzz4ALL is to leverage large language models (LLMs)
as an input generation and mutation engine, which enables the
approach to produce diverse and realistic inputs for any practi-
cally relevant language. To realize this potential, we present a novel
autoprompting technique, which creates LLM prompts that are well-
suited for fuzzing, and a novel LLM-powered fuzzing loop, which
iteratively updates the prompt to create new fuzzing inputs. We
evaluate Fuzz4ALL on nine systems under test that take in six differ-
ent languages (C, C++, Go, SMT2, Java, and Python) as inputs. The
evaluation shows, across all six languages, that universal fuzzing
achieves higher coverage than existing, language-specific fuzzers.
Furthermore, Fuzz4ALL has identified 98 bugs in widely used sys-
tems, such as GCC, Clang, Z3, CVC5, Open]DK, and the Qiskit
quantum computing platform, with 64 bugs already confirmed by
developers as previously unknown.
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1 INTRODUCTION

Fuzz testing [69, 84], also known as fuzzing, is an automated testing
approach for generating inputs designed to expose unexpected be-
haviors, e.g., crashes, of a system under test (SUT). Researchers and
practitioners have successfully built practical fuzzing tools, which
have shown great success in finding numerous bugs and vulnera-
bilities in real-world systems [6]. A particularly important family
of SUTs are systems that take in programming or formal language
inputs, e.g., compilers, runtime engines, and constraint solvers. Nu-
merous fuzzers have been proposed for such systems since they are
the fundamental building blocks for software development [12]. For
example, finding bugs in compilers and runtime engines is crucial
because they can affect all corresponding downstream applications.

Traditional fuzzers can be categorized into generation-based [34,
49, 81] and mutation-based [21, 31, 69]. Generation-based fuzzers
aim to directly synthesize complete code snippets, e.g., using a pre-
defined grammar for the target language. Instead of synthesizing
from scratch, mutation-based fuzzers apply mutation operators or
transformation rules to a set of high quality fuzzing seeds. Unfor-
tunately, both traditional fuzzing approaches face the following
limitations and challenges:

C1: Tight coupling with target system and language. Traditional
fuzzers are often designed to target a specific language or a par-
ticular SUT. However, designing and implementing a fuzzer is
extremely time-consuming. For example, CsmiTH [81], a fuzzer
for C/C++ compilers, has more than 80k lines of code, while Syz-
KALLER [70], a fuzzer for Linux system calls, contains tens of thou-
sands of handcrafted rules [10] to generate and modify system calls.
Because each target language is different, it is often non-trivial to
reuse the effort of implementing a fuzzer from one input language
for another. Furthermore, fuzzing strategies that work well for one
SUT may not work at all for another one.

C2: Lack of support for evolution. Real-world systems are con-
stantly evolving, e.g., by adding new features to the input language.
Traditional fuzzers designed for a specific version of a language
or SUT may lose their effectiveness on a new version and cannot
be easily used to test newly implemented features. For example,
CsMITH supports only a limited set of features up to C++11, while
the C++ language has evolved significantly since then. In fact, re-
cent work [20] shows that over a six-month fuzzing period, CsmITH
was not able to uncover any new bugs in the latest releases of the
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GCC and Clang compilers, showing that new versions of compilers
are becoming immune to existing fuzzers.

C3: Restricted generation ability. Even within the scope of a spe-

cific target language, both generation-based and mutation-based
fuzzing often are unable to cover a large part the input space.
Generation-based fuzzers heavily rely on an input grammar to
synthesize valid code, and additionally are equipped with semantic
rules that ensure the validity of the synthesized code. To generate
a high amount of valid fuzzing inputs or to side-step difficult-to-
model language features, generation-based fuzzers often use a sub-
set of the full language grammar, which limits them to test only a
subset of all language features. Similarly, mutation-based fuzzers
are limited by their mutation operators and require high quality
seeds that can be difficult to obtain.
Our work. We present Fuzz4ALL, the first fuzzer that is universal in
the sense that it can target many different input languages and many
different features of theses languages. Our approach fundamentally
differs from existing general-purpose fuzzers, e.g., AFL [50] and
L1BFUZZER [43], which use extremely simple mutations, are unaware
of the target language, and therefore struggle to produce meaningful
programming language fuzzing inputs. Instead, our key idea is to
leverage a large language model (LLM) as an input generation and
mutation engine. Because LLMs are pre-trained on large amounts
of examples in various programming languages and other formal
languages, they come with an implicit understanding of the syntax
and semantics of these languages. Fuzz4ALL leverages this ability
by using an LLM as a universal input generation and mutation
engine.

The input to Fuzz4ALL are user-provided documents describing
the SUT, and optionally, specific features of the SUT to focus on,
e.g., in the form of documentation, example code, or formal specifi-
cations. However, these user inputs may be too verbose to directly
use as a prompt for the LLM. Instead of requiring the user to manu-
ally engineer a prompt [47], which is time-consuming, we present
an autoprompting step that automatically distills all user-provided
inputs into a concise and effective prompt for fuzzing. This prompt
is the initial input to an LLM that generates fuzzing inputs. Since
continuously sampling with the same prompt would lead to many
similar fuzzing inputs, we present an LLM-powered fuzzing loop,
which iteratively updates the prompt to generate a diverse set of
fuzzing inputs. To this end, Fuzz4ALL combines fuzzing inputs gen-
erated in previous iterations with natural language instructions,
e.g., asking to mutate these inputs. The LLM-generated fuzzing
inputs are then passed to the SUT, which we validate against a
user-provided test oracle, such as checking for system crashes.

Fuzz4A1L addresses the previously discussed limitations and
challenges of traditional fuzzers. Instead of meticulously designing
a single-purpose fuzzer for a specific SUT (C1), Fuzz4ALL, by using
an LLM as the generation engine, can be applied to a wide range of
SUTs and input languages. Compared to existing fuzzers that target
a specific version of the SUT or input language (C2), Fuzz4ALL
can easily evolve with the target. For example, to fuzz-test a newly
implemented feature, a user can simply provide documentation
or example code related to that feature. To address the restricted
generation ability of traditional fuzzers (C3), Fuzz4ALL exploits
the fact that LLMs are pre-trained on billions of code snippets,
enabling them to create a wide range of examples that likely obey
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the syntactic and semantic constraints of the input language. Finally,

Fuzz4ALL does not require any instrumentation of the SUT, making

the approach easily applicable in practice.

We perform an extensive evaluation on six input languages
(C, C++, SMT, Go, Java, and Python) and nine SUTs. For each of
them, we compare our approach against state-of-the-art generation-
based and mutation-based fuzzers. The results show that Fuzz4ALL
achieves the highest code coverage across all languages, improving
the previous state-of-the-art coverage by 36.8%, on average. Ad-
ditionally, we demonstrate that Fuzz4ArL supports both general
fuzzing and fuzzing targeted at specific features of the SUT, which a
user decides upon by providing adequate input documents. Finally,
Fuzz4ALL detects 98 bugs across our studied SUTs, with 64 already
confirmed by developers as previously unknown.

Contributions: This paper makes the following contributions:

* Universal fuzzing. We introduce a new dimension for fuzzing
that directly leverages the multi-lingual capabilities of LLMs to
fuzz-test many SUTs with a wide range of meaningful inputs.

* Autoprompting for fuzzing. We present a novel autoprompt-
ing stage to support both general and targeted fuzzing by auto-
matically distilling user inputs into a prompt that is effective at
generating inputs to the SUT.

* LLM-powered fuzzing loop. We present an algorithm that con-
tinuously generates new fuzzing inputs by iteratively modifying
the prompt with selected examples and generation strategies.

* Evidence of real-world effectiveness. We show across six pop-
ular languages and nine real-world SUTs (e.g., GCC, CVC5, Go,
javac, and Qiskit) that our approach significantly improves cover-
age compared to state-of-the-art fuzzers (avg. 36.8%) and detects
98 bugs, with 64 already confirmed as previously unknown.

2 BACKGROUND AND RELATED WORK
2.1 Large Language Models

Recent developments in natural language processing (NLP) has
lead to the wide-spread adoption of large language models (LLMs)
for both natural language [8] and code tasks [80]. State-of-the-
art LLMs are based on transformers [73] and can be classified into
decoder-only (e.g., GPT3 [8] and StarCoder [41]), encoder-only (e.g.,
BERT [19] and CodeBERT [22]) and encoder-decoder (BART [40]
and CodeT5 [83]) models. More recently, instruction-based LLMs
(e.g., ChatGPT [65] and GPT4 [55]) and LLMs fine-tuned using re-
inforcement learning from human feedback (RLHF) [88] are shown
to understand and follow complex instructions [4, 56, 65].

LLMs are typically either fine-tuned [63] or prompted [47] to
perform specific tasks. Fine-tuning updates the model weights
through further training on a task-specific dataset. However, suit-
able datasets may be unavailable, and as LLM sizes continue to
grow [35], fine-tuning an LLM is also increasingly expensive. Prompt-
ing, on the other hand, does not require explicitly updating the
model weights, but provides the LLM with a description of the task,
and optionally, a few examples of solving the task. The process
of picking the input (i.e., prompt) is known as prompt engineer-
ing [47], where a user tries different input instructions until finding
one that works well. Recently, researchers have proposed auto-
prompting [68], an automatic process that uses LLM gradients to
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select either soft prompts [42, 62], i.e., continuous vector embed-
dings, or hard prompts [64, 71], i.e., natural language text. Even
more recently, researchers have substituted gradient-based methods
by computing a proxy score of effectiveness [87].

This work leverages LLMs for the important problem of fuzzing.
Unlike traditional autoprompting and proxy-based approaches, our
autoprompting strategy directly synthesizes prompts using GPT4
and scores them according to a fuzzing-specific goal.

2.2 Fuzzing and Testing

Fuzz testing aims to generate inputs that cause unexpected behav-
iors of the SUT. Traditional fuzzers can be classified into generation-
based [34, 49, 81] and mutation-based [21, 31, 69]. Generation-based
fuzzers create complete code snippets using pre-defined grammars
and built-in knowledge of the semantics of the target language.
CsmrITH [81] and YARPGEN [49] hard-code language specifications
to ensure the validity of generated code snippets to test C and
C++ compilers, respectively. JSFUNFUZZ [34] combines a language
grammar with historical bug-triggering code snippets to generate
new inputs to test JavaScript engines. Generation-based fuzzers
have also been used to test OpenCL [44], the JVM [11], CUDA [33],
deep learning compilers [45], Datalog engines [53], and interactive
debuggers [38]. Mutation-based fuzzers [69] iteratively perform
transformations on seeds to generate new fuzzing inputs. In addi-
tion to basic mutations, researchers have developed complex trans-
formations targeted at ensuring type consistency [11, 59], adding
historical bug-triggering code snippets [31, 86], and coverage feed-
back [3, 21, 46]. To benefit from both generation and mutation,
many fuzzers use a combination of both approaches [12, 51].
Different from the above fuzzers, which target specific SUTs or
languages, another line of research is on general-purpose fuzzing.
AFL [50] and L1BFUZZER [43] are general-purpose fuzzers that use
genetic algorithms with a fitness function to prioritize fuzzing
inputs for further mutations that achieve new coverage. These
mutations are unaware of the SUT and focus on byte-level transfor-
mations. That is, when applied on SUTs that receive programming
languages as input, general-purpose fuzzers are extremely unlikely
to produce valid inputs. Recent work [28] has instead added regular
expression-based mutation operators to match common program-
ming statements (e.g., change + to -). The simplicity of these mu-
tation operators limits the ability of such fuzzers at covering new
code, especially in more complex languages, such as C [21, 28]. PoLy-
Gror [14] is another language-agnostic fuzzer, which first parses
the seed programs into a uniform intermediate representation using
a language-specific grammar and then uses a set of mutation oper-
ators to generate new programs. While promising, PoLyGLoT still
uses a limited set of mutations and cannot achieve the same level of
coverage as fuzzers that are designed for a particular language [21].
To complement traditional fuzzing techniques and apply fuzzing
to emerging domains, learning-based fuzzers have been proposed.
Prior learning-based techniques mainly focus on training a neural
network to generate fuzzing inputs. TREEFUZz [60] parses the train-
ing corpus into a tree structure and through tree traversal, learns a
probabilistic, generative model that synthesizes new fuzzing inputs.
Deep learning models have been used to fuzz PDF parsers [26],
OpenCL [17], C [48], network protocols [85], and JavaScript [37].
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Very recently, researchers have also directly leveraged LLMs for
fuzzing specific libraries, e.g., TrTaNFuzz [18] uses Codex [13] to
generate seed programs and InCoder [24] to perform template-
based mutation for fuzzing deep learning libraries [61, 72].

Unlike prior learning- and LLM-based fuzzers, Fuzz4ALL is eas-
ily applicable across many programming languages. Prior work
trains language-specific models or requires language-specific pars-
ing. Even TrtanFuzz, a recent LLM-based approach, is designed
specifically for deep learning libraries with hand-crafted prompts
and mutation patterns, and therefore cannot be easily extended to
other SUTs. Furthermore, unlike existing techniques, which pro-
duce general fuzzing inputs in a particular language, Fuzz4ALL
additionally supports targeted fuzzing, which can generate code
snippets that focus on selected features.

In addition to fuzzing, LLMs have also been applied to the re-
lated problem of unit test generation [5, 39, 54, 66, 74, 82]. Co-
DAMosa [39] interleaves traditional search-based software testing
with querying Codex to generate new unit tests whenever a cover-
age plateau is reached. TESTPILOT [66] prompts Codex with method
source code and example usages to generate unit tests and to fix
incorrectly generated tests. In contrast to these LLM-based test gen-
erators, which require a specific type of input (e.g., function source
code) and only work for unit testing [54, 66], by using our novel
autoprompting stage, Fuzz4ALL can take inputs in arbitrary formats
for both general and targeted fuzzing. Furthermore, such unit test
generators often require manual work to check or complete the
tests as they are limited by automatically generated test-oracles,
which even state-of-the-art LLMs [15, 65] cannot always produce
reliably. Instead, Fuzz4ALL leverages widely-used fuzzing oracles,
such as crashes, and is fully automated.

3 FUZZ4ALL APPROACH

We present Fuzz4ALL, a universal fuzzer that leverages LLMs to
support both general and targeted fuzzing of any SUTs that take in
programming language input. Figure 1 provides an overview of our
approach. Fuzz4ALL first takes in arbitrary user input that describes
the fuzzing inputs to be generated, e.g., documentation of the SUT,
example code snippets, or specifications. As the user input may
be long, redundant, and partially irrelevant, the approach distills
it into a concise but informative prompt for fuzzing. To this end,
Fuzz4ALL performs an autoprompting step (Section 3.1) by using a
large, state-of-the-art distillation LLM to sample multiple different
candidate prompts ). Each candidate prompt is passed on to the
generation LLM to generate code snippets (i.e., fuzzing inputs) @.
Fuzz4ALL then selects the prompt that produces the highest quality
fuzzing inputs @.

Fuzz4ALL builds on two models, a distillation LLM that reduces
the given user input and a generation LLM that creates the fuzzing
inputs, to balance the trade-off between the costs and benefits differ-
ent LLMs provide. Because the distillation LLM needs to understand
and distill arbitrary user input, we use a high-end, large founda-
tional model with strong natural language understanding abilities.
However, directly using such a large model for input generation
would be inefficient due to the high inference cost of autoregressive
generation. Instead, to perform efficient fuzzing, Fuzz4ALL uses a
smaller model as the generation LLM. While our approach is general
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Figure 1: Overview of Fuzz4ALL.

Algorithm 1: Autoprompting for fuzzing

1 Function Autoprompting:

Input :userlnput, numSamples

Output:inputPrompt

greedyPrompt « Mg (userlnput, APInstruction, temp=0)

candidatePrompts «— [ greedyPrompt ]

while |candidatePrompts | < numSamples do
prompt < My, (userInput, APInstruction, temp=1)
candidatePrompts « candidatePrompts + [ prompt ]

Scoring (Mg (p), SUT)

o ow oA W N

7 inputPrompt « arg max
pecandidatePrompts

8 return inputPrompt

across any pairs of distillation and generation LLMs, we implement
Fuzz4 A1l with the state-of-the-art GPT4 [55] and StarCoder [41].

Using the best prompt selected via autoprompting as the initial
input prompt for the generation LLM, we then move on to the
fuzzing loop (Section 3.2), where Fuzz4ALL continuously samples
the generation LLM to generate fuzzing inputs @. To avoid gener-
ating many similar fuzzing inputs, Fuzz4ALL continuously updates
the input prompt in each iteration. Specifically, the approach selects
a previously generated input as an example @), which demonstrates
the kind of future inputs we want the model to generate. In addi-
tion to the example, Fuzz4ALL also appends a generation instruction
to the initial prompt, which guides the model toward generating
new fuzzing inputs @. This process is repeated while continuously
passing the generated fuzzing inputs into the SUT and checking its
behavior against a user-defined oracle, such as crashes.

3.1 Autoprompting

The following presents the details of the first of two main steps of
Fuzz4ALiL, which distills the given user input via autoprompting
into a prompt suitable for fuzzing. The user input may describe the
SUT in general, or particular feature of the SUT to be tested. As

shown in Figure 1, user inputs may include technical documenta-
tion, example code, specifications, or even combinations of different
modalities. Unlike traditional fuzzers that require inputs to follow
a specific format, e.g., code snippets to use as seeds or well-formed
specifications, Fuzz4ALL can directly understand the natural lan-
guage descriptions or code examples in the user input. However,
some information in the user input may be redundant or irrelevant,
and hence, directly using the user inputs as a prompt for the gener-
ation LLM may be ineffective, as confirmed by our ablation study
in Section 5.3. Therefore, the goal of autoprompting is to generate
a distilled input prompt that enables effective LLM-based fuzzing.

3.1.1 Autoprompting Algorithm. Algorithm 1 details Fuzz4ALL’s
autoprompting step. The inputs are the user input and the number
of candidate prompts to generate. The final output is the input
prompt selected to be used for the fuzzing campaign. As our goal is
to use a distillation LLM to generate prompts that distill the infor-
mation provided by the user, we give the following autoprompting
instruction to the distillation LLM: “Please summarize the above
information in a concise manner to describe the usage and function-
ality of the target”. Let Mg be the distillation LLM, userInput be
the user input and APInstruction be the autoprompting instruction.
The prompt prompt generated can be formalized as the conditional
probability: Mg (prompt | userInput, APInstruction)

Fuzz4ALL first generates a candidate prompt using greedy sam-
pling with temperature 0 (line 2). By first sampling with low temper-
ature, the algorithm obtains a plausible solution with a high degree
of confidence. This approach is commonly used in other domains,
e.g., program synthesis [13], where the greedy output is evaluated
first to check if it can solve the problem. The algorithm then moves
on to sampling with higher temperature to obtain more diverse
prompts (line 5), as done in prior work [13, 79]. Compared to a
greedy approach, sampling with high temperature yields different
prompts that can each provide a unique distilled summary of the
user input. Each generated prompt is added to a list of candidate
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High level expected value of type T or an unexpected value of type E. It is useful for
description handling functions that may return an error or a valid result. The stored value
of feature is allocated directly within the storage occupied by the expected object,

The C++23 std: :expected class template provides a way to store either an
without dynamic memory allocation.

Descriptions The template parameters are T (the expected value type) and E (the unexpected
of the inputs value type). Both types must meet the Destructible requirements, and certain
P types are not allowed.

std: :expected provides member functions for construction, destruction,
assignment, and accessing the stored values. Observers like operator bool and
has_value can be used to check if the object contains an expected value.
Functions like value, error, and value_or can be used to access the expected
or unexpected values.

Monadic operations like and_then, transform, or_else, and transform_error
. allow chaining operations on expected values and handling errors in a
Different functional manner.
usages of
target Modifiers like emplace and swap can be used to construct the expected value

in-place or exchange the contents of expected objects. Non-member functions
like operator= and swap(std::expected) provide comparison and swapping
functionality.

Helper classes like unexpected, bad_expected_access, and unexpect_t are used
to represent unexpected values, exceptions, and in-place construction tags for
unexpected values in expected objects.

Figure 2: Autoprompting result for std: : expected.

prompts (line 6), until the algorithm reaches the desired number of
candidates.

To pick the best input prompt to be used in the fuzzing step,
the algorithm evaluates each candidate prompt by performing a
small-scale fuzzing experiment. Specifically, the approach uses each
prompt as an input to the generation LLM to produce multiple code
snippets per prompt. Fuzz4ALL then scores the generated code
snippets for each prompt based on a scoring function. While the
scoring function can be based on a variety of different metrics, e.g.,
coverage, bug finding, or the complexity of generated fuzzing inputs,
to make the approach lightweight and general, our scoring function
is the number of unique generated code snippets that are valid, i.e.,
accepted by the target SUT. This metric is chosen since for fuzzing,
we want fuzzing inputs to be valid or close to valid to the logic deep
inside the SUT. Let Mg be the generation LLM, p be a candidate
prompt, isValid be a function that returns 1 if a generated code ¢
is valid and 0 otherwise. Our default scoring function is defined as:
Yice Mg (p) [isvalid(c, sUT)]. Finally, Fuzz4ALL selects the input
prompt with the highest score (line 7) as the initial input prompt to
be used for fuzzing. In summary, our autoprompting step combines
both prompt generation and scoring, which allows Fuzz4ALL to
automatically generate and select a prompt suitable for the fuzzing
target.

3.1.2  Example: Autoprompting. Figure 2 shows an example of an
input prompt generated by our autoprompting algorithm. The ex-
ample is for fuzzing C++ compilers while focusing specifically on
std: :expected, a new feature introduced in C++23. As the user
input, we pass the original cppreference documentation [2] to
Fuzz4ALiL, which spans multiple screen lengths with small tables
and verbose descriptions (498 words, 3,262 characters). In contrast,
the distilled input prompt created by the autoprompting algorithm
provides a more concise natural language description of the tar-
geted feature (214 words, 1,410 characters). The input prompt con-
tains a high-level description of how std: :expected is to be used.
For example, the input prompt contains a concise sentence (high-
lighted in orange) that summarizes the situations the feature is
useful in. Additionally, the input prompt contains descriptions of
the inputs, as well as the different usages (i.e., member functions)
of the feature. For example, functions and_then, transform, or_else,
and transform_error have very similar descriptions in the original
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Algorithm 2: Fuzzing loop

1 Function Fuzzingloop:
Input :inputPrompt, timeBudget
Output:bugs
2 genStrats « [ generate-new, mutate-existing,
semantic-equiv ]
fuzzinglnputs « Mg (inputPrompt + generate-new)
bugs « Oracle (fuzzinglnputs, SUT)
while timeElapsed < timeBudget do
example < sample (fuzzingInputs, SUT)
instruction « sample (genStrats)
fuzzinglnputs < Mg (inputPrompt + example +
instruction)
9 bugs « bugs + Oracle (fuzzinglnputs, SUT)

N N ]

10 return bugs

documentation, which is repeated for each function. Instead, in the
distilled input prompt, these functions are grouped together in a
concise manner that still illustrates how they can be used. Using
the distilled input prompt, Fuzz4ALL can generate fuzzing inputs
that effectively target the std: :expected feature of C++ compilers.

3.1.3  Comparison with Existing Autoprompting Techniques. To the
best of our knowledge, we are the first to automatically distill
knowledge from arbitrary user inputs for a software engineering
task using black-box autoprompting. Compared to prior work on
autoprompting in NLP [68] and software engineering [75], which
optimize the prompt by accessing model gradients, our autoprompt-
ing needs only black-box, sampling access to the distillation LLM.
While the use of a scoring function to evaluate each prompt is
similar to recent work in NLP [87], our scoring function directly
evaluates the prompt on the exact downstream task of generating
valid code snippets, instead of using an approximate proxy scoring
function.

3.2 Fuzzing Loop

Given the input prompt created in the first step of Fuzz4ALL, the
goal of the fuzzing loop is to generate diverse fuzzing inputs using a
generation LLM. However, due to the probabilistic nature of LLMs,
sampling multiple times using the same input would produce the
same or similar code snippets. For fuzzing, we aim to avoid such
repeated inputs and instead want to generate a diverse set of fuzzing
inputs that cover new code and discover new bugs. To accomplish
this goal, we exploit the ability of LLMs to utilize both examples
and natural language instructions to guide the generation.

The high-level idea of the fuzzing loop is to continuously aug-
ment the original input prompt by selecting an example fuzzing
input from previous iterations and by specifying a generation strat-
egy. The goal of using an example is to demonstrate the kind of
code snippet we want the generation LLM to produce. The gener-
ation strategies are designed as instructions on what to do with
the provided code example. These strategies are inspired by tradi-
tional fuzzers, mimicking their ability to synthesize new fuzzing
inputs (as in generation-based fuzzers) and to produce variants of
previously generated inputs (as in mutation-based fuzzers). Before
each new iteration of the fuzzing loop, Fuzz4ALL appends both an
example and a generation strategy to the input prompt, enabling
the generation LLM to continuously create new fuzzing inputs.
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Figure 3: Fuzzing strategies and example of fuzzing loop.

3.2.1 Fuzzing Loop Algorithm. Algorithm 2 describes the fuzzing
loop. The inputs are the initial input prompt and the fuzzing budget.
The final output is a set of bugs identified by the user-defined
oracle. First, the algorithm initializes the generation strategies
(generate-new, mutate-existing, and semantic-equiv), which will
be used to modify the input prompt during the fuzzing loop (line 2).
Figure 3 (top-right) lists our three generation strategies along with
their corresponding instructions. For the first invocation of the
generation LLM, denoted with Mg, the algorithm does not yet
have any examples of fuzzing inputs. Hence, it appends to the input
prompt the generate-new generation instruction, which guides the
model toward producing a first batch of fuzzing inputs (line 3).

Next, the algorithm enters the main fuzzing loop (lines 5-9),
which continuously updates the prompt to create new fuzzing in-
puts. To this end, the algorithm selects an example from the previous
batch of generated fuzzing inputs, randomly picking from all those
fuzzing inputs that are valid for the SUT (line 6). In addition to the
example, the algorithm also randomly picks one of the three gen-
eration strategies (line 7). The generation strategy either instructs
the model to mutate the selected example (mutate-existing), to
produce a fuzzing input that is semantically equivalent to the ex-
ample (semantic-equiv), or to come up with a new fuzzing input
(generate-new). The algorithm concatenates the initial input prompt,
the selected example, and the selected generation strategy into a
new prompt, and then queries the generation LLM with this prompt
to produce another batch of fuzzing inputs (line 8).

The main fuzzing loop is repeated until the algorithm has ex-
hausted the fuzzing budget. For each created fuzzing input, Fuzz4ArL
passes the input to the SUT. If the user-defined oracle identifies an
unexpected behavior, e.g., a crash, then the algorithm adds a report
to the set of detected bugs (lines 4 and 9).

3.2.2  Example: Fuzzing Loop. Figure 3 illustrates how our fuzzing
loop uses input examples and the generation strategies to create
different fuzzing inputs. In this case, we are fuzzing an SMT solver
where the inputs are logic formulas written in the SMT2 language.
Initially @), there are no examples, and hence, the algorithm uses
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the generate-new strategy to synthesize new fuzzing inputs. Next,
taking a generated, valid fuzzing input as an example, the algo-
rithm queries the model to create a new input @ based on the
mutate-existing strategy, which aims to mutate the selected ex-
ample. We observe that the new fuzzing input subtly modifies the
previous input by swapping the type of a variable as well as adding
some computation. In the next fuzzing iteration @), the algorithm
selects the previously generated fuzzing input as the example and
uses the semantic-equiv generation strategy, which aims to create
an input that does not modify the semantics of the given exam-
ple. This time, we observe that the new fuzzing input simply adds
a syntax tag to the selected example. In fact, the combination of
generation strategies shown in the example helps Fuzz4ALL to gen-
erate a fuzzing input that causes an unexpected crash in the SMT
solver. The crash exposes one of the real-world bugs detected by
Fuzz4A1LL during our evaluation, which has been confirmed and
fixed by developers.

3.2.3 Oracle. The fuzzing inputs produced by Fuzz4ALL during the
fuzzing loop can be used to check the behavior of the SUT against
an oracle to detect bugs. The oracle is custom for each SUT, and it
can be fully defined and customized by the user. For example, when
fuzzing C compilers, a user could define a differential testing oracle
that compares the compiler behavior under different optimization
levels [81]. In this paper, we focus on simple and easy-to-define
oracles, such as crashes due to segmentation faults and internal
assertion failures, with more details discussed in Section 4.2.

4 EXPERIMENTAL DESIGN

We evaluate Fuzz4ALL on the following research questions:

e RQ1: How does Fuzz4ALL compare against existing fuzzers?

o RQ2: How effective is Fuzz4ALL in performing targeted fuzzing?
e RQ3: How do different components contribute to Fuzz4ArLr’s
effectiveness?

RQ4: What real-world bugs does Fuzz4ALL find?

4.1 Implementation

Fuzz4ALL is primarily implemented in Python. The autoprompting
and fuzzing loop components of Fuzz4ALL contain only 872 LoC.
Compared to traditional fuzzers, such as CsmrtH (>80K LoC), which
need high manual effort to implement generators, Fuzz4ALL has a
very lightweight implementation. Fuzz4ALL uses GPT4 [55] as the
distillation LLM to perform autoprompting since this model is the
state-of-the-art for a wide range of NLP-based reasoning tasks [9].
Specifically, we use the gpt-4-0613 checkpoint with max_token of
500 provided via the OpenAI API [27]. max_token forces the prompts
to always fit within the context window of the generation LLM.
For autoprompting, we sample four candidate prompts, generate
30 fuzzing inputs each, and evaluate using a scoring function based
on validity rate (as described in Section 3.1.1). For the fuzzing loop,
we use the Hugging Face implementation of the StarCoder [41]
model as the generation LLM, which is trained on over one trillion
code tokens across over 80 languages. Our default setting when
generating fuzzing inputs uses a temperature of 1, a batch size of
30, a maximum output length of 1,024 using nucleus sampling [32]
with a top-p of 1.
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Table 1: SUTs and baseline tools.

Language SUT(s) Baseline tool(s) Version
C GCC, Clang  GrayC [21], CsmITH [81] GCC-13.1.1
C++ G++, Clang++ YARPGEN [49] G++-13.1.1
SMT2 Z3, CVC5 TyreFuzz [59] CV(C5-1.0.5
Go Go GO-FUzZ [25] £0-1.20.6
Java javac HEePHAESTUS [11]  OpenJDK-javac-18
Python Qiskit MorpHQ [58] qiskit-0.43.1

4.2 Systems Under Test and Baselines

To demonstrate the generality of Fuzz4ALL, we evaluate it on six
input languages and nine SUTs. Table 1 shows each of the languages,
SUTs, and the corresponding baseline tools. Note that we compare
coverage on one SUT per language, with the SUT versions used
for coverage measurements shown in the last column of Table 1.
Except for the coverage experiments, we perform fuzzing on the
nightly release of each target. Unless otherwise mentioned, we use
unexpected compiler crashes as the oracle and consider a fuzzing
input as valid if it compiles successfully. Each baseline fuzzer is
run with its default settings. For baseline fuzzers that require input
seeds, we use the default seed corpus provided in their replication
repository. We now present more evaluation details for each SUT.

4.2.1 C/C++ Compilers. We target the popular GCC and Clang
compilers and provide the standard C library documentation as user
input to Fuzz4ALL by default. Our baselines include CsmiTH [81],
a classic generation-based C compiler fuzzer, and GrRayC [21], a
recent mutation-based fuzzer that uses coverage feedback together
with specialized mutation operators. For C++, we target new C++23
features by providing the C++23 standard documentation as input
to Fuzz4ArL. Our baseline is YARPGEN [49], a generation-based
fuzzer that extends CsMITH with new language features in C++ and
generation policies to trigger different compiler optimizations.

4.2.2  SMT Solvers. We run Fuzz4ALL on Z3 and CVC5 with com-
monly enabled developer settings, such as debug and assertion,
following prior work [59, 77, 78]. Fuzz4ALL generates SMT for-
mulas as fuzzing inputs using an overview documentation of the
SMT2 language and SMT solver as input by default. A fuzzing input
is considered valid if the SMT solver returns either SAT or UNSAT
without any error. Our baseline is state-of-the-art TypeFuzz [59],
which mutates existing SMT expressions based on newly generated
expressions of the same type.

4.2.3  Go Toolchain. We run Fuzz4ALL on the most recent version
of Go. By default, we use the Go standard library documentation as
input to Fuzz4ALL. As a baseline, we use GO-Fuzz [25], a coverage-
guided, mutation-based fuzzer designed for Go, which generates
inputs for various Go standard libraries using handwritten tem-
plates.

4.24 Java Compiler. We evaluate Fuzz4ALL on the OpenJDK Java
compiler, javac, which compiles source code into bytecode. Our de-
fault input is the latest standard Java API documentation page. We
compare against HEPHAESTUS [11], a recent combined generation-
and mutation-based fuzzer designed for JVM compilers and target-
ing type-related bugs.
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4.2.5 Quantum Computing Platform. We target Qiskit [1], a pop-
ular quantum computing framework [23]. Qiskit is built on top
of Python, i.e., both the input program and the compilation are
defined in Python code. Thus, creating a valid input for Qiskit
means using the Qiskit Python APIs in a meaningful way, e.g., to
create a quantum circuit. It is challenging for traditional synthesis
tools to handle dynamically typed general-purpose languages (like
Python) [29, 67], not to mention the additional API constraints and
quantum-specific nature of many bugs [57], making fuzzing Qiskit
a particularly difficult challenge. Our baseline is MOrRPHQ [58], a
recent fuzzer that uses a template- and grammar-based approach to
generate valid quantum programs and then applies metamorphic
transformations.

Unlike for the other SUTs, which receive fuzzing inputs in a
file, to invoke Qiskit, we must run the generated Python program
itself. As an oracle, we add statements at the end of the generated
Python file, which collect all QuantumCircuit objects via Python’s
built-in introspection APIs and then apply two oracles on each
circuit. The two oracles are directly borrowed from previous work
for a fair comparison [58]. The first oracle compiles the circuit
via a transpile call with different optimization levels and reports
any crash. The second oracle converts the circuit to its lower-level
QASM [16] representation and then reads it back, reporting any
crash.

4.3 Experimental Setup and Metrics

Fuzzing campaigns. For RQ1, we use a fuzzing budget of 24
hours (including autoprompting), which is used commonly in prior
work [36]. To account for variance, we repeat the experiment for
both Fuzz4ALL and the baselines five times. Due to the high cost
of experiments, for later RQs, we use a fuzzing budget of 10,000
generated fuzzing inputs and repeat four times for the ablation
study.

Environment. Experiments are conducted on a 64-core worksta-
tion with 256 GB RAM running Ubuntu 20.04.5 LTS with 4 NVIDIA
RTX A6000 GPUs (only one GPU is used per fuzzing run).
Metrics. We use the widely adopted measure of code coverage
for evaluating fuzzing tools [7, 36, 76]. To be uniform, we report
the line coverage for each of the targets studied in the evaluation.
Following prior work [36], we use the Mann-Whitney U-test [52]
to compute statistical significance and indicate significant (p < 0.05)
coverage results in applicable tables (Tables 2 and 4) with *. We
additionally measure the validity rate (% valid) of inputs as the
percentage of fuzzing inputs generated that are valid and unique.
As Fuzz4ALL supports both general and targeted fuzzing, to assess
the effectiveness of targeted fuzzing, we report the hit rate, i.e.,
the percentage of fuzzing inputs that use a specific target feature
(checked with simple regular expressions). Finally, we also report
the most important metric and goal of fuzzing: the number of bugs
detected by Fuzz4ALL for each of our nine SUTs.

5 RESULTS

5.1 RQ1: Comparison against Existing Fuzzers

5.1.1 Coverage over Time. Figure 4 shows the 24-hour coverage
trend of Fuzz4ALL compared with the baselines, where the solid
line shows average coverage and the area indicates the minimum
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Figure 4: Coverage trend of Fuzz4ALL against state-of-the-art fuzzers in a 24-hour fuzzing campaign.

Table 2: Fuzz4 ALL against state-of-the-art fuzzers (* indicates
statistically significant coverage improvement).

Target Fuzzer # programs % valid Coverage
GrayC 104,326 95.96% 167,453

GCC CsMITH 61,883 99.99% 111,668
Fuzz4ALL 44,324 37.26% *198,927 +18.8%

Gir YARPGEN 255,581 99.99% 166,614
Fuzz4ALL 26,365 40.74% *210,743 +26.5%

CVCs TypeFuzz 43,001 93.24% 46,174
Fuzz4ALL 36,054 47.63%  *57,674 +24.9%

G GO-FUZZ 20,002  100.00% 38,024

© Fuzz4ALL 22,817 23.02% 43,317 +13.7%

javac HEPHAESTUS 728,217 57.22% 10,285
Fuzz4ALL 31,967 49.05%  *16,552 +60.9%

oL MorpPHQ 38,474  100.00% 19,929
Fuzz4ALL 33,454 24.90%  *34,988 +75.6%

and maximum across five runs. We observe that Fuzz4ALL achieves
the highest coverage by the end of the fuzzing campaign across all
targets, with an average improvement of 36.8% compared to the top
performing baselines. Contrasting with generation-based fuzzers
(i.e., YARPGEN and MorPHQ), Fuzz4ALL is able to almost immedi-
ately achieve higher coverage, demonstrating the powerful genera-
tive ability of LLMs in producing diverse code snippets compared to
traditional program generation techniques. While mutation-based
fuzzers (i.e., Go-Fuzz and GraYC) are able to achieve higher cov-
erage in the beginning through the use of high quality seeds, the
coverage gained via mutations rapidly falls off and Fuzz4ALL is
able to slowly but surely cover more code. Note that we include
the autoprompting time as part of the fuzzing budget for a fair
comparison, which incurs negligible overhead (avg. 2.3 minutes per
fuzzing campaign).

Unlike the baseline fuzzers, which reach a coverage plateau by
the end of the 24-hour period, Fuzz4ALL keeps finding inputs that
cover new code, even near the end of the fuzzing campaign. Recall
that during each iteration of Fuzz4ALL’s fuzzing loop, the original
input prompt is updated with both a new example and a generation
strategy (Section 3.2), nudging the LLM to generate new fuzzing
inputs. We hypothesize that this allows Fuzz4ALL to effectively
generate new and diverse fuzzing inputs even after a long period
of fuzzing, leading to sustained coverage increase.

5.1.2  Generation Validity, Number, and Coverage. We examine the
number of fuzzing inputs generated and their validity rate across
our studied SUTs. In Table 2, Column “# programs” represents
the number of unique inputs generated, “% valid” is the percent-
age of fuzzing inputs that are valid, and “Coverage” shows the
final coverage obtained by each fuzzer along with the relative im-
provement over the best baseline. We first observe that almost
all traditional fuzzing tools can achieve a very high validity rate
apart from HEPHAESTUS, which purposefully generates invalid code
(focused on incorrect types) to check for miscompilation bugs. In
contrast, Fuzz4ALL has a lower percentage of valid fuzzing inputs
generated (56.0% average reduction compared to baseline tools).
Furthermore, the raw number of fuzzing inputs generated by base-
line tools are also much higher. By using an LLM as the generation
engine, Fuzz4ALL is bottlenecked by GPU inference, leading to
43.0% fewer fuzzing inputs compared to traditional fuzzers.

In spite of the lower validity rate and number of fuzzing inputs,
Fuzz4ALL generates much more diverse programs compared to
traditional fuzzing tools, as evidenced by the high coverage obtained
(+36.8% average increase). Additionally, even invalid code snippets
that are close to valid can be useful for fuzzing, as they allow for
finding bugs in the validation logic of the SUT. In Section 5.4, we
further describe the various types of bugs detected by Fuzz4ALL,
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with both valid and invalid code snippets, to additionally showcase
the benefit of generating diverse fuzzing inputs.

We note that Fuzz4ALL achieves a wide range of validity rates
and numbers of fuzzing inputs across different SUTs. The number of
fuzzing inputs varies across targets due to the varying cost to invoke
the SUT after each fuzzing iteration for bug detection. Regarding
validity rate, a general-purpose programming language, such as C,
has a relatively lower validity rate compared to domain-specific
languages, such as the SMT2 language used for SMT solvers. A more
rigorous language, e.g., Go, which does not allow any declared but
unused variables, has an even lower validity rate. We also observe
a low validity rate for fuzzing quantum computing platforms. As
quantum computing is an emerging area with its own set of library
APIs, the generation LLM may not have seen as many examples
of quantum programs during its training as for more established
languages. Nevertheless, Fuzz4ALL is still able to leverage user-
provided documentation to generate interesting fuzzing inputs
that use quantum library APIs and achieve an impressive coverage
improvement (+75.6%) compared to the state-of-the-art fuzzer.

5.2 RQ2: Effectiveness of Targeted Fuzzing

We now evaluate the ability of Fuzz4ALL to perform targeted
fuzzing, i.e., to generate fuzzing inputs that focus on a particular
feature. For each target SUT and language, we target three different
example features and compare them to the setup with general user
input, as used for RQ1 (described in Section 4.3). These features are
built-in libraries or functions/APIs (Go, C++ and Qiskit), language
keywords (C and Java), and theories (SMT). The user input for the
targeted fuzzing runs is documentation of the particular feature
we are focusing on. Table 3 shows the results of targeted fuzzing
as well as the default general fuzzing used in RQ1. Each column
represents a targeted fuzzing run where we focus on one feature.
The value in each cell shows the hit rate of the feature (Section 4.3)
for a particular fuzzing run. We also include the coverage results
obtained.

We observe that targeting a specific feature yields a high amount
of fuzzing inputs that directly use the feature, with an average
hit rate of 83.0%. This result demonstrates that Fuzz4ALL indeed
performs targeted fuzzing by prompting the generation LLM with
an input prompt that describes a particular feature. Furthermore,
we observe that fuzzing on features that are related can lead to a
moderately high cross-feature hit rate (i.e., hit rate of feature X on
fuzzing run for feature Y). For example, the C keywords typedef
and union are both related to type operations, and hence, their
cross-feature hit rate is high compared to an unrelated feature,
such as goto. As shown in Table 3, a general fuzzing approach,
while achieving the highest overall code coverage, can be extremely
inefficient in targeting a specific feature (average 96.0% reduction in
hit rate compared with Fuzz4ALL’s targeted fuzzing). For example,
in Qiskit, the general fuzzing campaign has a 0% hit rate of the
three target features. This can be explained by the fact that these
features were added recently to Qiskit and are not yet widely used,
thus being extremely rare in the LLM training data. However, by
providing suitable user input during the targeted fuzzing campaign,
Fuzz4ALL can successfully generate fuzzing inputs that use these
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Table 3: Hit rate and coverage during targeted fuzzing.

C targeted campaign (keywords)

typedef union goto General
% typedef 83.11% 47.16% 0.48% 4.38%
Z  union 10.80% 80.43% 0.10% 0.32%
T goto 0.22% 0.11% 77.62%  1.16%
Coverage 123,226 125,041 120,452 188,148
C++ targeted campaign (built-in functions)
apply expected variant General
% apply 70.23% 0.41% 0.68% 0.32%
= expected 0.26% 79.72% 0.94% 1.33%
;TE variant 1.16% 5.98% 93.19% 3.63%
Coverage 182,261 175,963 182,333 193,254
SMT targeted campaign (theories)
Array BitVec Real General
% Array 82.23% 2.08% 1.44% 11.07%
o BitVec 2.57% 88.48% 0.86% 5.46%
T Real 1.45% 0.17% 96.01%  17.36%
Coverage 46,392 48,841 47,619 52,449
Go targeted campaign (built-in libraries)
atomic atomic heap General
Lc; atomic 90.09% 0.04% 0.06% 1.01%
o big 0.18% 97.20% 0.23% 3.63%
T heap 0.30% 0.04% 91.18%  2.22%
Coverage 10,156 12,986 9,790 37,561
Java targeted campaign (keywords)
instanceof synchronized finally General
% instanceof 88.00% 0.08% 0.85% 1.86%
= synchronized 0.16% 94.80% 0.16% 0.85%
;TE finally 0.51% 3.17% 78.62% 0.82%
Coverage 14,546 13,972 13,203 16,128
Qiskit targeted campaign (APIs)
switch for loop linear General
% switch 71.76% 0.00% 0.00% 0.00%
o for loop 0.17% 75.97% 0.00% 0.00%
T linear 0.00% 0.00% 54.79% 0.00%
Coverage 30,597 26,703 29,535 33,853

new features. This ability of Fuzz4ArL will be valuable to developers
who want to test novel features or components of a SUT.

5.3 RQ3: Ablation Study

To study how each component of Fuzz4A1L contributes to the
overall fuzzing effectiveness, we conduct an ablation study based
on the two key components of Fuzz4A1L: (a) Autoprompting, the
type of initial input prompt provided to the generation LLM; (b)
Fuzzing loop, the use of selected examples and generation strategies.
We study three variants for each of the two key components. Table 4
shows the coverage and validity rate of our studied variants.

5.3.1 Autoprompting. First, we examine the effect of different ini-
tial inputs provided to the generation LLM. To reduce the impact
of additional factors, we fix the generation strategy to only use
generate-new and study three variants': 1) no input does not use
any initial prompts 2) raw prompt directly uses the raw user input as

The impact of additional generation strategies can be found in Section 5.3.2.
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Table 4: Effectiveness of variants (* indicates statistically significant coverage improvement compared w/ 2nd best variant).

. . C C++ SMT Go Java Qiskit
Variants Description

Cov. % valid Cov. % valid Cov. % valid Cov. % valid Cov. % valid Cov. % valid

o B o input no initial prompt 127,261  42.57% 181,493  51.63% 50,838  49.49% 35,765  39.54% 14,374  50.25% 31,701  34.63%
;:5' g raw prompt  use user-provided input 137,204 33.95% 189,030  33.79% 49,697  39.49% 36,168  16.84% 15,445  37.64% 31,922 22.74%
8. autoprompt  apply autoprompting 182,530 39.09% 190,318  36.62% 51,496  45.04% 36,732 24.87% 15,838 45.54% 32,691  29.12%

Ed o w/o example generate-new w/o example 143,349  34.23% 190,288  28.25% 50,089 18.41% 35,839 19.38% 15,444 44.69% 32,663 24.04%
] ] w/ example  generate-new w/ example 182,530  39.09% 190,318  36.62% 51,496  45.04% 36,732 24.87% 15,838  45.54% 32,691  29.12%
i Fuzz4ALL all strategies w/ example 185,491 40.58% *193,845 41.22% *53,069 50.06% 37,981 32.00% *16,209 50.99% *33,913 27.45%

the initial prompt, 3) autoprompt applies autoprompting to generate
the initial prompt. We observe that across all studied languages, the
no input variant achieves the lowest coverage. In no input, we do
not provide any initial prompt, which provides useful information
on the features we want to generate fuzzing inputs for. As such,
the LLM can only generate simple code snippets with high validity
rate but is less effective in covering the SUT. We observe a cover-
age boost as we use the raw prompt variant, where we provide the
raw documentation as the initial prompt. However, we can further
improve both the code coverage and the validity rate by using our
autoprompting stage to distill the user input into a concise but in-
formative prompt (autoprompt), instead of using the raw user input.
Directly using the user-provided input may include information
that is irrelevant for fuzzing, leading to both a lower validity rate
(as the generation LLM may struggle to understand the raw docu-
mentation) and lower coverage (since, unlike our autoprompting
generated prompt, the raw documentation is not designed to be
used for LLM generation).

5.3.2  Fuzzing loop. Next, we examine the different variants of
our fuzzing loop setup by keeping the initial prompt the same (by
using the default autoprompting): 1) w/o example does not select
an example during the fuzzing loop (i.e., it continuously samples
from the same initial prompt), 2) w/ example selects an example
but only uses the generate-new instruction?, 3) Fuzz4ALL is the
full approach with all generation strategies used. We first observe
that by only sampling from the same input (w/o example), LLMs
will often repeatedly generate the same or similar fuzzing inputs.
On average, 8.0% of the fuzzing inputs generated are repeated in
w/o example compared to only 4.7% when using the full Fuzz4A1L
approach. Adding an example to the input prompt (w/ example)
avoids sampling from the same distribution and improves both the
coverage and the validity rate. Finally, the full Fuzz4ALL approach
achieves the highest coverage across all SUTs. Compared to the w/
example variant (the second-best), the full Fuzz4ArL adds additional
generation strategies, semantic-equiv and mutate-existing, which
provide useful instructions to the generation LLM.

54 RQ4:Bug Finding

Table 5 summarizes the bugs found by Fuzz4ALL on our nine studied
SUTs. In total, Fuzz4ALL detects 98 bugs, with 64 bugs already
confirmed by the developers as previously unknown. These results
not only demonstrate the practical effectiveness of Fuzz4ALL in
finding large amounts of bugs but also the promised generality of

2Note that autoprompt and w/ example are the same variant, but we include them
separately for ease of comparison.

Table 5: Summary of Fuzz4ALL-detected bugs.

Total Confirmed Pending Won’t fix
Unknown Known

GCC 30 14 11 5 0
Clang 27 18 9 0 0
CVC5 9 7 2 0 0
73 14 12 0 0 2
Go 4 2 2 0 0
Java 3 3 0 0 0
Qiskit 11 8 2 1 0
Total 98 64 26 6 2

#include <optional>
void y(std::optional<int> z)
noexcept(noexcept(std:: optional<int>{z})) {}

&

(a) GCC bug: Internal compiler error (segmentation fault)

#include <iostream>
using E = std::numeric_limits<int>;
auto fail(E e) — decltype(throw e, void()) { throw e; }

(b) Clang bug: Segmentation fault

package main
import ("runtime")
func main() { runtime.ReadMemStats(nil) }

(c) Go bug: Segmentation violation

from qiskit import QuantumCircuit, ClassicalRegister
crz = ClassicalRegister(1, name="crz")

gc = QuantumCircuit(crz)

gc.gasm(filename="my.gasm")
QuantumCircuit.from_gasm_file("my.qgasm")

(d) Qiskit bug: Crash

=

Figure 5: Exemplary bugs found by Fuzz4ALL.

Fuzz4 A1l across languages and SUTs. A detailed list of reported
bugs and issue links can be found in our artifact.

5.4.1 Examples. Figure 5a shows a bug found in GCC when using
noexcept(x), a C++ feature that specifies a function is non-throwing
if x evaluates to true. In this example bug, Fuzz4A1L generates a
rather complex code using std: :optional, which indicates that a
particular value may or may not be present at runtime. While this
code is valid and should compile correctly, this combination of dif-
ficult runtime dependencies cause GCC to crash with an internal
compiler error. We note that this bug cannot be found by prior
techniques since they simply do not support the noexcept feature.
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The developers have already confirmed and fixed this bug. Interest-
ingly, they even added a slightly modified version of our submitted
code snippet to the official test suite of GCC.

Figure 5b shows a bug found in Clang, where the invalid code
leads to a segmentation fault. Fuzz4ALL uses an unusual syntax for
function declaration (i.e., auto x (...) -> return_type ), which
makes use of the decltype operation in C++. However, the bug
occurs when the throw statement inside of the decltype is evaluated
first, skipping the evaluation of the return type since throw exits
the scope early and crashes Clang. This code, while invalid, is still
useful to reveal a bug in the Clang frontend as confirmed by the
developers. Additionally, prior fuzzing tools can hardly find this
bug since they typically focus on generating valid code only and
do not handle the especially difficult-to-model decltype function.

Figure 5c shows a bug found in Go where a nil input causes a
segmentation fault instead of producing a useful failure message.
This bug is found by targeting the runtime Go standard library,
where we provide the documentation, which includes the descrip-
tion of the ReadMemStats function. The bug has been confirmed and
fixed by the developers. While this bug might look simple (invoking
a singular function), it cannot be found by the Go-ruzz baseline
simply because Go-Fuzz requires manually written templates to tar-
get specific libraries, and runtime is not a part of any such template.
With Fuzz4ALL, users can directly target any Go standard libraries
by providing relevant input information (e.g., documentation).

Figure 5d shows a bug found in Qiskit’s QASM exporter. A quan-
tum program, represented by the qc variable, is exported to QASM,
a low level representation, silently generating an invalid output file,
which leads to a crash when being reimported. The problem is that
the exporter represents the register in QASM using its name as iden-
tifier, i.e.,"crz", which also is the name of a well-known operation
of the QASM language, thus making the generated code ambiguous.
Note that prior work [58] could not find this bug because they
use pre-defined templates with only anonymous registers, whereas
Fuzz4ALL effectively leverages the quantum knowledge of LLMs to
inject a meaningful string literal for detecting this bug.

6 THREATS TO VALIDITY

Internal. The main internal threat comes from the implementa-
tion of Fuzz4ALL. To address this, we performed code reviews and
testing to ensure correctness. Furthermore, we run each baseline
from their provided replication package whenever possible.

External. The main external threat is our evaluation targets. To
support our generality claim, we apply Fuzz4ALL on nine different
SUTs across six languages. Additionally, to account for variance
in long fuzzing runs, we repeat the 24-hour fuzzing campaign five
times and check for statistically significant results. Since the gen-
eration LLM leverages the knowledge acquired during its training
done within the last year, reapplying Fuzz4ALL using the exact
checkpoint of the LLM (StarCoder) used in this work might degrade
the effectiveness in the future due to data-shift. Fuzz4ALL can mit-
igate this using the autoprompting step where more up-to-date
documentation/example code allows the model to also generate
up-to-date fuzzing inputs. One additional threat comes from the
use of the distillation LLM to generate the initial inputs, where
the LLM may “hallucinate”, i.e., produce made-up or inaccurate
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information [30] . This limitation is common to most pipelines that
use LLMs, and we hope to address it in our future work.

7 CONCLUSION

We present Fuzz4ALL, a universal fuzzer leveraging LLMs to sup-
port both general and targeted fuzzing of arbitrary SUTs that take
in a multitude of programming languages. Fuzz4ALL uses a novel
autoprompting stage to produce input prompts that concisely sum-
marize the user-provided inputs. In its fuzzing loop, Fuzz4ALL
iteratively updates the initial input prompt with both code exam-
ples and generation strategies aimed at producing diverse fuzzing
inputs. Evaluation results on nine different SUTs across six differ-
ent languages demonstrate that Fuzz4ALL is able to significantly
improve coverage compared to state-of-the-art tools. Furthermore,
Fuzz4ALL is able to detect 98 bugs with 64 already confirmed by
developers as previously unknown.
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