
Fuzz4All: Universal Fuzzing with Large Language Models

Chunqiu Steven Xia
University of Illinois

Urbana-Champaign, USA
chunqiu2@illinois.edu

Matteo Paltenghi
University of

Stuttgart, Germany
mattepalte@live.it

Jia Le Tian
University of Illinois

Urbana-Champaign, USA
jialelt2@illinois.edu

Michael Pradel
University of

Stuttgart, Germany
michael@binaervarianz.de

Lingming Zhang
University of Illinois

Urbana-Champaign, USA
lingming@illinois.edu

ABSTRACT

Fuzzing has achieved tremendous success in discovering bugs and

vulnerabilities in various software systems. Systems under test

(SUTs) that take in programming or formal language as inputs,

e.g., compilers, runtime engines, constraint solvers, and software

libraries with accessible APIs, are especially important as they are

fundamental building blocks of software development. However,

existing fuzzers for such systems often target a specific language,

and thus cannot be easily applied to other languages or even other

versions of the same language. Moreover, the inputs generated

by existing fuzzers are often limited to specific features of the in-

put language, and thus can hardly reveal bugs related to other or

new features. This paper presents Fuzz4All, the first fuzzer that

is universal in the sense that it can target many different input

languages and many different features of these languages. The key

idea behind Fuzz4All is to leverage large language models (LLMs)

as an input generation and mutation engine, which enables the

approach to produce diverse and realistic inputs for any practi-

cally relevant language. To realize this potential, we present a novel

autoprompting technique, which creates LLM prompts that are well-

suited for fuzzing, and a novel LLM-powered fuzzing loop, which

iteratively updates the prompt to create new fuzzing inputs. We

evaluate Fuzz4All on nine systems under test that take in six differ-

ent languages (C, C++, Go, SMT2, Java, and Python) as inputs. The

evaluation shows, across all six languages, that universal fuzzing

achieves higher coverage than existing, language-specific fuzzers.

Furthermore, Fuzz4All has identified 98 bugs in widely used sys-

tems, such as GCC, Clang, Z3, CVC5, OpenJDK, and the Qiskit

quantum computing platform, with 64 bugs already confirmed by

developers as previously unknown.

ACM Reference Format:

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-

ming Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Mod-

els. In 2024 IEEE/ACM 46th International Conference on Software Engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04. . . $15.00
https://doi.org/10.1145/3597503.3639121

(ICSE ’24), April 14ś20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3597503.3639121

1 INTRODUCTION

Fuzz testing [69, 84], also known as fuzzing, is an automated testing

approach for generating inputs designed to expose unexpected be-

haviors, e.g., crashes, of a system under test (SUT). Researchers and

practitioners have successfully built practical fuzzing tools, which

have shown great success in finding numerous bugs and vulnera-

bilities in real-world systems [6]. A particularly important family

of SUTs are systems that take in programming or formal language

inputs, e.g., compilers, runtime engines, and constraint solvers. Nu-

merous fuzzers have been proposed for such systems since they are

the fundamental building blocks for software development [12]. For

example, finding bugs in compilers and runtime engines is crucial

because they can affect all corresponding downstream applications.

Traditional fuzzers can be categorized into generation-based [34,

49, 81] and mutation-based [21, 31, 69]. Generation-based fuzzers

aim to directly synthesize complete code snippets, e.g., using a pre-

defined grammar for the target language. Instead of synthesizing

from scratch, mutation-based fuzzers apply mutation operators or

transformation rules to a set of high quality fuzzing seeds. Unfor-

tunately, both traditional fuzzing approaches face the following

limitations and challenges:

C1: Tight coupling with target system and language. Traditional

fuzzers are often designed to target a specific language or a par-

ticular SUT. However, designing and implementing a fuzzer is

extremely time-consuming. For example, Csmith [81], a fuzzer

for C/C++ compilers, has more than 80k lines of code, while Syz-

kaller [70], a fuzzer for Linux system calls, contains tens of thou-

sands of handcrafted rules [10] to generate and modify system calls.

Because each target language is different, it is often non-trivial to

reuse the effort of implementing a fuzzer from one input language

for another. Furthermore, fuzzing strategies that work well for one

SUT may not work at all for another one.

C2: Lack of support for evolution. Real-world systems are con-

stantly evolving, e.g., by adding new features to the input language.

Traditional fuzzers designed for a specific version of a language

or SUT may lose their effectiveness on a new version and cannot

be easily used to test newly implemented features. For example,

Csmith supports only a limited set of features up to C++11, while

the C++ language has evolved significantly since then. In fact, re-

cent work [20] shows that over a six-month fuzzing period, Csmith

was not able to uncover any new bugs in the latest releases of the

ICSE ’24, April 14ś20, 2024, Lisbon, Portugal Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang

GCC and Clang compilers, showing that new versions of compilers

are becoming immune to existing fuzzers.

C3: Restricted generation ability. Even within the scope of a spe-

cific target language, both generation-based and mutation-based

fuzzing often are unable to cover a large part the input space.

Generation-based fuzzers heavily rely on an input grammar to

synthesize valid code, and additionally are equipped with semantic

rules that ensure the validity of the synthesized code. To generate

a high amount of valid fuzzing inputs or to side-step difficult-to-

model language features, generation-based fuzzers often use a sub-

set of the full language grammar, which limits them to test only a

subset of all language features. Similarly, mutation-based fuzzers

are limited by their mutation operators and require high quality

seeds that can be difficult to obtain.

Our work.We present Fuzz4All, the first fuzzer that is universal in

the sense that it can target many different input languages andmany

different features of theses languages. Our approach fundamentally

differs from existing general-purpose fuzzers, e.g., AFL [50] and

libFuzzer [43], which use extremely simple mutations, are unaware

of the target language, and therefore struggle to producemeaningful

programming language fuzzing inputs. Instead, our key idea is to

leverage a large language model (LLM) as an input generation and

mutation engine. Because LLMs are pre-trained on large amounts

of examples in various programming languages and other formal

languages, they come with an implicit understanding of the syntax

and semantics of these languages. Fuzz4All leverages this ability

by using an LLM as a universal input generation and mutation

engine.

The input to Fuzz4All are user-provided documents describing

the SUT, and optionally, specific features of the SUT to focus on,

e.g., in the form of documentation, example code, or formal specifi-

cations. However, these user inputs may be too verbose to directly

use as a prompt for the LLM. Instead of requiring the user to manu-

ally engineer a prompt [47], which is time-consuming, we present

an autoprompting step that automatically distills all user-provided

inputs into a concise and effective prompt for fuzzing. This prompt

is the initial input to an LLM that generates fuzzing inputs. Since

continuously sampling with the same prompt would lead to many

similar fuzzing inputs, we present an LLM-powered fuzzing loop,

which iteratively updates the prompt to generate a diverse set of

fuzzing inputs. To this end, Fuzz4All combines fuzzing inputs gen-

erated in previous iterations with natural language instructions,

e.g., asking to mutate these inputs. The LLM-generated fuzzing

inputs are then passed to the SUT, which we validate against a

user-provided test oracle, such as checking for system crashes.

Fuzz4All addresses the previously discussed limitations and

challenges of traditional fuzzers. Instead of meticulously designing

a single-purpose fuzzer for a specific SUT (C1), Fuzz4All, by using

an LLM as the generation engine, can be applied to a wide range of

SUTs and input languages. Compared to existing fuzzers that target

a specific version of the SUT or input language (C2), Fuzz4All

can easily evolve with the target. For example, to fuzz-test a newly

implemented feature, a user can simply provide documentation

or example code related to that feature. To address the restricted

generation ability of traditional fuzzers (C3), Fuzz4All exploits

the fact that LLMs are pre-trained on billions of code snippets,

enabling them to create a wide range of examples that likely obey

the syntactic and semantic constraints of the input language. Finally,

Fuzz4All does not require any instrumentation of the SUT, making

the approach easily applicable in practice.

We perform an extensive evaluation on six input languages

(C, C++, SMT, Go, Java, and Python) and nine SUTs. For each of

them, we compare our approach against state-of-the-art generation-

based and mutation-based fuzzers. The results show that Fuzz4All

achieves the highest code coverage across all languages, improving

the previous state-of-the-art coverage by 36.8%, on average. Ad-

ditionally, we demonstrate that Fuzz4All supports both general

fuzzing and fuzzing targeted at specific features of the SUT, which a

user decides upon by providing adequate input documents. Finally,

Fuzz4All detects 98 bugs across our studied SUTs, with 64 already

confirmed by developers as previously unknown.

Contributions: This paper makes the following contributions:

★ Universal fuzzing. We introduce a new dimension for fuzzing

that directly leverages the multi-lingual capabilities of LLMs to

fuzz-test many SUTs with a wide range of meaningful inputs.

★ Autoprompting for fuzzing. We present a novel autoprompt-

ing stage to support both general and targeted fuzzing by auto-

matically distilling user inputs into a prompt that is effective at

generating inputs to the SUT.

★ LLM-powered fuzzing loop. We present an algorithm that con-

tinuously generates new fuzzing inputs by iteratively modifying

the prompt with selected examples and generation strategies.

★ Evidence of real-world effectiveness. We show across six pop-

ular languages and nine real-world SUTs (e.g., GCC, CVC5, Go,

javac, and Qiskit) that our approach significantly improves cover-

age compared to state-of-the-art fuzzers (avg. 36.8%) and detects

98 bugs, with 64 already confirmed as previously unknown.

2 BACKGROUND AND RELATED WORK

2.1 Large Language Models

Recent developments in natural language processing (NLP) has

lead to the wide-spread adoption of large language models (LLMs)

for both natural language [8] and code tasks [80]. State-of-the-

art LLMs are based on transformers [73] and can be classified into

decoder-only (e.g., GPT3 [8] and StarCoder [41]), encoder-only (e.g.,

BERT [19] and CodeBERT [22]) and encoder-decoder (BART [40]

and CodeT5 [83]) models. More recently, instruction-based LLMs

(e.g., ChatGPT [65] and GPT4 [55]) and LLMs fine-tuned using re-

inforcement learning from human feedback (RLHF) [88] are shown

to understand and follow complex instructions [4, 56, 65].

LLMs are typically either fine-tuned [63] or prompted [47] to

perform specific tasks. Fine-tuning updates the model weights

through further training on a task-specific dataset. However, suit-

able datasets may be unavailable, and as LLM sizes continue to

grow [35], fine-tuning an LLM is also increasingly expensive. Prompt-

ing, on the other hand, does not require explicitly updating the

model weights, but provides the LLM with a description of the task,

and optionally, a few examples of solving the task. The process

of picking the input (i.e., prompt) is known as prompt engineer-

ing [47], where a user tries different input instructions until finding

one that works well. Recently, researchers have proposed auto-

prompting [68], an automatic process that uses LLM gradients to

Fuzz4All: Universal Fuzzing with Large Language Models ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

select either soft prompts [42, 62], i.e., continuous vector embed-

dings, or hard prompts [64, 71], i.e., natural language text. Even

more recently, researchers have substituted gradient-basedmethods

by computing a proxy score of effectiveness [87].

This work leverages LLMs for the important problem of fuzzing.

Unlike traditional autoprompting and proxy-based approaches, our

autoprompting strategy directly synthesizes prompts using GPT4

and scores them according to a fuzzing-specific goal.

2.2 Fuzzing and Testing

Fuzz testing aims to generate inputs that cause unexpected behav-

iors of the SUT. Traditional fuzzers can be classified into generation-

based [34, 49, 81] and mutation-based [21, 31, 69]. Generation-based

fuzzers create complete code snippets using pre-defined grammars

and built-in knowledge of the semantics of the target language.

Csmith [81] and YARPGen [49] hard-code language specifications

to ensure the validity of generated code snippets to test C and

C++ compilers, respectively. jsfunfuzz [34] combines a language

grammar with historical bug-triggering code snippets to generate

new inputs to test JavaScript engines. Generation-based fuzzers

have also been used to test OpenCL [44], the JVM [11], CUDA [33],

deep learning compilers [45], Datalog engines [53], and interactive

debuggers [38]. Mutation-based fuzzers [69] iteratively perform

transformations on seeds to generate new fuzzing inputs. In addi-

tion to basic mutations, researchers have developed complex trans-

formations targeted at ensuring type consistency [11, 59], adding

historical bug-triggering code snippets [31, 86], and coverage feed-

back [3, 21, 46]. To benefit from both generation and mutation,

many fuzzers use a combination of both approaches [12, 51].

Different from the above fuzzers, which target specific SUTs or

languages, another line of research is on general-purpose fuzzing.

AFL [50] and libFuzzer [43] are general-purpose fuzzers that use

genetic algorithms with a fitness function to prioritize fuzzing

inputs for further mutations that achieve new coverage. These

mutations are unaware of the SUT and focus on byte-level transfor-

mations. That is, when applied on SUTs that receive programming

languages as input, general-purpose fuzzers are extremely unlikely

to produce valid inputs. Recent work [28] has instead added regular

expression-based mutation operators to match common program-

ming statements (e.g., change + to -). The simplicity of these mu-

tation operators limits the ability of such fuzzers at covering new

code, especially in more complex languages, such as C [21, 28]. Poly-

Glot [14] is another language-agnostic fuzzer, which first parses

the seed programs into a uniform intermediate representation using

a language-specific grammar and then uses a set of mutation oper-

ators to generate new programs. While promising, PolyGlot still

uses a limited set of mutations and cannot achieve the same level of

coverage as fuzzers that are designed for a particular language [21].

To complement traditional fuzzing techniques and apply fuzzing

to emerging domains, learning-based fuzzers have been proposed.

Prior learning-based techniques mainly focus on training a neural

network to generate fuzzing inputs. TreeFuzz [60] parses the train-

ing corpus into a tree structure and through tree traversal, learns a

probabilistic, generative model that synthesizes new fuzzing inputs.

Deep learning models have been used to fuzz PDF parsers [26],

OpenCL [17], C [48], network protocols [85], and JavaScript [37].

Very recently, researchers have also directly leveraged LLMs for

fuzzing specific libraries, e.g., TitanFuzz [18] uses Codex [13] to

generate seed programs and InCoder [24] to perform template-

based mutation for fuzzing deep learning libraries [61, 72].

Unlike prior learning- and LLM-based fuzzers, Fuzz4All is eas-

ily applicable across many programming languages. Prior work

trains language-specific models or requires language-specific pars-

ing. Even TitanFuzz, a recent LLM-based approach, is designed

specifically for deep learning libraries with hand-crafted prompts

and mutation patterns, and therefore cannot be easily extended to

other SUTs. Furthermore, unlike existing techniques, which pro-

duce general fuzzing inputs in a particular language, Fuzz4All

additionally supports targeted fuzzing, which can generate code

snippets that focus on selected features.

In addition to fuzzing, LLMs have also been applied to the re-

lated problem of unit test generation [5, 39, 54, 66, 74, 82]. Co-

daMosa [39] interleaves traditional search-based software testing

with querying Codex to generate new unit tests whenever a cover-

age plateau is reached. TestPilot [66] prompts Codex with method

source code and example usages to generate unit tests and to fix

incorrectly generated tests. In contrast to these LLM-based test gen-

erators, which require a specific type of input (e.g., function source

code) and only work for unit testing [54, 66], by using our novel

autoprompting stage, Fuzz4All can take inputs in arbitrary formats

for both general and targeted fuzzing. Furthermore, such unit test

generators often require manual work to check or complete the

tests as they are limited by automatically generated test-oracles,

which even state-of-the-art LLMs [15, 65] cannot always produce

reliably. Instead, Fuzz4All leverages widely-used fuzzing oracles,

such as crashes, and is fully automated.

3 FUZZ4ALL APPROACH

We present Fuzz4All, a universal fuzzer that leverages LLMs to

support both general and targeted fuzzing of any SUTs that take in

programming language input. Figure 1 provides an overview of our

approach. Fuzz4All first takes in arbitrary user input that describes

the fuzzing inputs to be generated, e.g., documentation of the SUT,

example code snippets, or specifications. As the user input may

be long, redundant, and partially irrelevant, the approach distills

it into a concise but informative prompt for fuzzing. To this end,

Fuzz4All performs an autoprompting step (Section 3.1) by using a

large, state-of-the-art distillation LLM to sample multiple different

candidate prompts 1 . Each candidate prompt is passed on to the

generation LLM to generate code snippets (i.e., fuzzing inputs) 2 .

Fuzz4All then selects the prompt that produces the highest quality

fuzzing inputs 3 .

Fuzz4All builds on two models, a distillation LLM that reduces

the given user input and a generation LLM that creates the fuzzing

inputs, to balance the trade-off between the costs and benefits differ-

ent LLMs provide. Because the distillation LLM needs to understand

and distill arbitrary user input, we use a high-end, large founda-

tional model with strong natural language understanding abilities.

However, directly using such a large model for input generation

would be inefficient due to the high inference cost of autoregressive

generation. Instead, to perform efficient fuzzing, Fuzz4All uses a

smaller model as the generation LLM.While our approach is general

Fuzz4All: Universal Fuzzing with Large Language Models ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

Table 1: SUTs and baseline tools.

Language SUT(s) Baseline tool(s) Version

C GCC, Clang GrayC [21], Csmith [81] GCC-13.1.1

C++ G++, Clang++ YARPGen [49] G++-13.1.1

SMT2 Z3, CVC5 TypeFuzz [59] CVC5-1.0.5

Go Go go-fuzz [25] go-1.20.6

Java javac Hephaestus [11] OpenJDK-javac-18

Python Qiskit MorphQ [58] qiskit-0.43.1

4.2 Systems Under Test and Baselines

To demonstrate the generality of Fuzz4All, we evaluate it on six

input languages and nine SUTs. Table 1 shows each of the languages,

SUTs, and the corresponding baseline tools. Note that we compare

coverage on one SUT per language, with the SUT versions used

for coverage measurements shown in the last column of Table 1.

Except for the coverage experiments, we perform fuzzing on the

nightly release of each target. Unless otherwise mentioned, we use

unexpected compiler crashes as the oracle and consider a fuzzing

input as valid if it compiles successfully. Each baseline fuzzer is

run with its default settings. For baseline fuzzers that require input

seeds, we use the default seed corpus provided in their replication

repository. We now present more evaluation details for each SUT.

4.2.1 C/C++ Compilers. We target the popular GCC and Clang

compilers and provide the standard C library documentation as user

input to Fuzz4All by default. Our baselines include Csmith [81],

a classic generation-based C compiler fuzzer, and GrayC [21], a

recent mutation-based fuzzer that uses coverage feedback together

with specialized mutation operators. For C++, we target new C++23

features by providing the C++23 standard documentation as input

to Fuzz4All. Our baseline is YARPGen [49], a generation-based

fuzzer that extends Csmith with new language features in C++ and

generation policies to trigger different compiler optimizations.

4.2.2 SMT Solvers. We run Fuzz4All on Z3 and CVC5 with com-

monly enabled developer settings, such as debug and assertion,

following prior work [59, 77, 78]. Fuzz4All generates SMT for-

mulas as fuzzing inputs using an overview documentation of the

SMT2 language and SMT solver as input by default. A fuzzing input

is considered valid if the SMT solver returns either SAT or UNSAT

without any error. Our baseline is state-of-the-art TypeFuzz [59],

which mutates existing SMT expressions based on newly generated

expressions of the same type.

4.2.3 Go Toolchain. We run Fuzz4All on the most recent version

of Go. By default, we use the Go standard library documentation as

input to Fuzz4All. As a baseline, we use go-fuzz [25], a coverage-

guided, mutation-based fuzzer designed for Go, which generates

inputs for various Go standard libraries using handwritten tem-

plates.

4.2.4 Java Compiler. We evaluate Fuzz4All on the OpenJDK Java

compiler, javac, which compiles source code into bytecode. Our de-

fault input is the latest standard Java API documentation page. We

compare against Hephaestus [11], a recent combined generation-

and mutation-based fuzzer designed for JVM compilers and target-

ing type-related bugs.

4.2.5 Quantum Computing Platform. We target Qiskit [1], a pop-

ular quantum computing framework [23]. Qiskit is built on top

of Python, i.e., both the input program and the compilation are

defined in Python code. Thus, creating a valid input for Qiskit

means using the Qiskit Python APIs in a meaningful way, e.g., to

create a quantum circuit. It is challenging for traditional synthesis

tools to handle dynamically typed general-purpose languages (like

Python) [29, 67], not to mention the additional API constraints and

quantum-specific nature of many bugs [57], making fuzzing Qiskit

a particularly difficult challenge. Our baseline isMorphQ [58], a

recent fuzzer that uses a template- and grammar-based approach to

generate valid quantum programs and then applies metamorphic

transformations.

Unlike for the other SUTs, which receive fuzzing inputs in a

file, to invoke Qiskit, we must run the generated Python program

itself. As an oracle, we add statements at the end of the generated

Python file, which collect all QuantumCircuit objects via Python’s

built-in introspection APIs and then apply two oracles on each

circuit. The two oracles are directly borrowed from previous work

for a fair comparison [58]. The first oracle compiles the circuit

via a transpile call with different optimization levels and reports

any crash. The second oracle converts the circuit to its lower-level

QASM [16] representation and then reads it back, reporting any

crash.

4.3 Experimental Setup and Metrics

Fuzzing campaigns. For RQ1, we use a fuzzing budget of 24

hours (including autoprompting), which is used commonly in prior

work [36]. To account for variance, we repeat the experiment for

both Fuzz4All and the baselines five times. Due to the high cost

of experiments, for later RQs, we use a fuzzing budget of 10,000

generated fuzzing inputs and repeat four times for the ablation

study.

Environment. Experiments are conducted on a 64-core worksta-

tion with 256 GB RAM running Ubuntu 20.04.5 LTS with 4 NVIDIA

RTX A6000 GPUs (only one GPU is used per fuzzing run).

Metrics. We use the widely adopted measure of code coverage

for evaluating fuzzing tools [7, 36, 76]. To be uniform, we report

the line coverage for each of the targets studied in the evaluation.

Following prior work [36], we use the Mann-Whitney U-test [52]

to compute statistical significance and indicate significant (p < 0.05)

coverage results in applicable tables (Tables 2 and 4) with *. We

additionally measure the validity rate (% valid) of inputs as the

percentage of fuzzing inputs generated that are valid and unique.

As Fuzz4All supports both general and targeted fuzzing, to assess

the effectiveness of targeted fuzzing, we report the hit rate, i.e.,

the percentage of fuzzing inputs that use a specific target feature

(checked with simple regular expressions). Finally, we also report

the most important metric and goal of fuzzing: the number of bugs

detected by Fuzz4All for each of our nine SUTs.

5 RESULTS

5.1 RQ1: Comparison against Existing Fuzzers

5.1.1 Coverage over Time. Figure 4 shows the 24-hour coverage

trend of Fuzz4All compared with the baselines, where the solid

line shows average coverage and the area indicates the minimum

Fuzz4All: Universal Fuzzing with Large Language Models ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

with both valid and invalid code snippets, to additionally showcase

the benefit of generating diverse fuzzing inputs.

We note that Fuzz4All achieves a wide range of validity rates

and numbers of fuzzing inputs across different SUTs. The number of

fuzzing inputs varies across targets due to the varying cost to invoke

the SUT after each fuzzing iteration for bug detection. Regarding

validity rate, a general-purpose programming language, such as C,

has a relatively lower validity rate compared to domain-specific

languages, such as the SMT2 language used for SMT solvers. Amore

rigorous language, e.g., Go, which does not allow any declared but

unused variables, has an even lower validity rate. We also observe

a low validity rate for fuzzing quantum computing platforms. As

quantum computing is an emerging area with its own set of library

APIs, the generation LLM may not have seen as many examples

of quantum programs during its training as for more established

languages. Nevertheless, Fuzz4All is still able to leverage user-

provided documentation to generate interesting fuzzing inputs

that use quantum library APIs and achieve an impressive coverage

improvement (+75.6%) compared to the state-of-the-art fuzzer.

5.2 RQ2: Effectiveness of Targeted Fuzzing

We now evaluate the ability of Fuzz4All to perform targeted

fuzzing, i.e., to generate fuzzing inputs that focus on a particular

feature. For each target SUT and language, we target three different

example features and compare them to the setup with general user

input, as used for RQ1 (described in Section 4.3). These features are

built-in libraries or functions/APIs (Go, C++ and Qiskit), language

keywords (C and Java), and theories (SMT). The user input for the

targeted fuzzing runs is documentation of the particular feature

we are focusing on. Table 3 shows the results of targeted fuzzing

as well as the default general fuzzing used in RQ1. Each column

represents a targeted fuzzing run where we focus on one feature.

The value in each cell shows the hit rate of the feature (Section 4.3)

for a particular fuzzing run. We also include the coverage results

obtained.

We observe that targeting a specific feature yields a high amount

of fuzzing inputs that directly use the feature, with an average

hit rate of 83.0%. This result demonstrates that Fuzz4All indeed

performs targeted fuzzing by prompting the generation LLM with

an input prompt that describes a particular feature. Furthermore,

we observe that fuzzing on features that are related can lead to a

moderately high cross-feature hit rate (i.e., hit rate of feature X on

fuzzing run for feature Y). For example, the C keywords typedef

and union are both related to type operations, and hence, their

cross-feature hit rate is high compared to an unrelated feature,

such as goto. As shown in Table 3, a general fuzzing approach,

while achieving the highest overall code coverage, can be extremely

inefficient in targeting a specific feature (average 96.0% reduction in

hit rate compared with Fuzz4All’s targeted fuzzing). For example,

in Qiskit, the general fuzzing campaign has a 0% hit rate of the

three target features. This can be explained by the fact that these

features were added recently to Qiskit and are not yet widely used,

thus being extremely rare in the LLM training data. However, by

providing suitable user input during the targeted fuzzing campaign,

Fuzz4All can successfully generate fuzzing inputs that use these

Table 3: Hit rate and coverage during targeted fuzzing.

C targeted campaign (keywords)

typedef union goto General

H
it
ra
te typedef 83.11% 47.16% 0.48% 4.38%

union 10.80% 80.43% 0.10% 0.32%

goto 0.22% 0.11% 77.62% 1.16%

Coverage 123,226 125,041 120,452 188,148

C++ targeted campaign (built-in functions)

apply expected variant General

H
it
ra
te apply 70.23% 0.41% 0.68% 0.32%

expected 0.26% 79.72% 0.94% 1.33%

variant 1.16% 5.98% 93.19% 3.63%

Coverage 182,261 175,963 182,333 193,254

SMT targeted campaign (theories)

Array BitVec Real General

H
it
ra
te Array 82.23% 2.08% 1.44% 11.07%

BitVec 2.57% 88.48% 0.86% 5.46%

Real 1.45% 0.17% 96.01% 17.36%

Coverage 46,392 48,841 47,619 52,449

Go targeted campaign (built-in libraries)

atomic atomic heap General

H
it
ra
te atomic 90.09% 0.04% 0.06% 1.01%

big 0.18% 97.20% 0.23% 3.63%

heap 0.30% 0.04% 91.18% 2.22%

Coverage 10,156 12,986 9,790 37,561

Java targeted campaign (keywords)

instanceof synchronized finally General

H
it
ra
te instanceof 88.00% 0.08% 0.85% 1.86%

synchronized 0.16% 94.80% 0.16% 0.85%

finally 0.51% 3.17% 78.62% 0.82%

Coverage 14,546 13,972 13,203 16,128

Qiskit targeted campaign (APIs)

switch for loop linear General

H
it
ra
te switch 71.76% 0.00% 0.00% 0.00%

for loop 0.17% 75.97% 0.00% 0.00%

linear 0.00% 0.00% 54.79% 0.00%

Coverage 30,597 26,703 29,535 33,853

new features. This ability of Fuzz4Allwill be valuable to developers

who want to test novel features or components of a SUT.

5.3 RQ3: Ablation Study

To study how each component of Fuzz4All contributes to the

overall fuzzing effectiveness, we conduct an ablation study based

on the two key components of Fuzz4All: (a) Autoprompting, the

type of initial input prompt provided to the generation LLM; (b)

Fuzzing loop, the use of selected examples and generation strategies.

We study three variants for each of the two key components. Table 4

shows the coverage and validity rate of our studied variants.

5.3.1 Autoprompting. First, we examine the effect of different ini-

tial inputs provided to the generation LLM. To reduce the impact

of additional factors, we fix the generation strategy to only use

generate-new and study three variants1: 1) no input does not use

any initial prompts 2) raw prompt directly uses the raw user input as

1The impact of additional generation strategies can be found in Section 5.3.2.

Fuzz4All: Universal Fuzzing with Large Language Models ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

The developers have already confirmed and fixed this bug. Interest-

ingly, they even added a slightly modified version of our submitted

code snippet to the official test suite of GCC.

Figure 5b shows a bug found in Clang, where the invalid code

leads to a segmentation fault. Fuzz4All uses an unusual syntax for

function declaration (i.e., auto x (...) -> return_type), which

makes use of the decltype operation in C++. However, the bug

occurs when the throw statement inside of the decltype is evaluated

first, skipping the evaluation of the return type since throw exits

the scope early and crashes Clang. This code, while invalid, is still

useful to reveal a bug in the Clang frontend as confirmed by the

developers. Additionally, prior fuzzing tools can hardly find this

bug since they typically focus on generating valid code only and

do not handle the especially difficult-to-model decltype function.

Figure 5c shows a bug found in Go where a nil input causes a

segmentation fault instead of producing a useful failure message.

This bug is found by targeting the runtime Go standard library,

where we provide the documentation, which includes the descrip-

tion of the ReadMemStats function. The bug has been confirmed and

fixed by the developers. While this bug might look simple (invoking

a singular function), it cannot be found by the go-fuzz baseline

simply because go-fuzz requires manually written templates to tar-

get specific libraries, and runtime is not a part of any such template.

With Fuzz4All, users can directly target any Go standard libraries

by providing relevant input information (e.g., documentation).

Figure 5d shows a bug found in Qiskit’s QASM exporter. A quan-

tum program, represented by the qc variable, is exported to QASM,

a low level representation, silently generating an invalid output file,

which leads to a crash when being reimported. The problem is that

the exporter represents the register in QASM using its name as iden-

tifier, i.e.,"crz", which also is the name of a well-known operation

of the QASM language, thus making the generated code ambiguous.

Note that prior work [58] could not find this bug because they

use pre-defined templates with only anonymous registers, whereas

Fuzz4All effectively leverages the quantum knowledge of LLMs to

inject a meaningful string literal for detecting this bug.

6 THREATS TO VALIDITY

Internal. The main internal threat comes from the implementa-

tion of Fuzz4All. To address this, we performed code reviews and

testing to ensure correctness. Furthermore, we run each baseline

from their provided replication package whenever possible.

External. The main external threat is our evaluation targets. To

support our generality claim, we apply Fuzz4All on nine different

SUTs across six languages. Additionally, to account for variance

in long fuzzing runs, we repeat the 24-hour fuzzing campaign five

times and check for statistically significant results. Since the gen-

eration LLM leverages the knowledge acquired during its training

done within the last year, reapplying Fuzz4All using the exact

checkpoint of the LLM (StarCoder) used in this work might degrade

the effectiveness in the future due to data-shift. Fuzz4All can mit-

igate this using the autoprompting step where more up-to-date

documentation/example code allows the model to also generate

up-to-date fuzzing inputs. One additional threat comes from the

use of the distillation LLM to generate the initial inputs, where

the LLM may łhallucinatež, i.e., produce made-up or inaccurate

information [30] . This limitation is common to most pipelines that

use LLMs, and we hope to address it in our future work.

7 CONCLUSION

We present Fuzz4All, a universal fuzzer leveraging LLMs to sup-

port both general and targeted fuzzing of arbitrary SUTs that take

in a multitude of programming languages. Fuzz4All uses a novel

autoprompting stage to produce input prompts that concisely sum-

marize the user-provided inputs. In its fuzzing loop, Fuzz4All

iteratively updates the initial input prompt with both code exam-

ples and generation strategies aimed at producing diverse fuzzing

inputs. Evaluation results on nine different SUTs across six differ-

ent languages demonstrate that Fuzz4All is able to significantly

improve coverage compared to state-of-the-art tools. Furthermore,

Fuzz4All is able to detect 98 bugs with 64 already confirmed by

developers as previously unknown.

DATA AVAILABILITY

Our code and data are available at: https://doi.org/10.5281/zenodo.

10456883 and https://github.com/fuzz4all/fuzz4all

ACKNOWLEDGMENT

This work was supported by the National Science Foundation

(grants CCF-2131943 and CCF-2141474), Kwai Inc., the European

Research Council (ERC, grant agreement 851895), and the German

Research Foundation within the ConcSys and DeMoCo projects.

REFERENCES
[1] 2021. Qiskit/Qiskit. https://github.com/Qiskit/qiskit.
[2] 2023. std::expected. https://en.cppreference.com/w/cpp/utility/expected.
[3] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars.. In NDSS.

[4] Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan
Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and
interactivity. arXiv preprint arXiv:2302.04023 (2023).

[5] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. 2022. Code
Generation Tools (Almost) for Free? A Study of Few-Shot, Pre-Trained Language
Models on Code. CoRR abs/2206.01335 (2022). https://doi.org/10.48550/arXiv.
2206.01335 arXiv:2206.01335

[6] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. 2020. Fuzzing: Chal-
lenges and reflections. IEEE Software 38, 3 (2020), 79ś86.

[7] Marcel Böhme, László Szekeres, and Jonathan Metzman. 2022. On the reliability
of coverage-based fuzzer benchmarking. In Proceedings of the 44th International
Conference on Software Engineering. 1621ś1633.

[8] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165.

[9] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. 2023.
Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv
preprint arXiv:2303.12712 (2023).

[10] Alexander Bulekov, Bandan Das, Stefan Hajnoczi, and Manuel Egele. 2023. No
Grammar, No Problem: Towards Fuzzing the Linux Kernel without System-Call
Descriptions. In Network and Distributed System Security (NDSS) Symposium
2023.

[11] Stefanos Chaliasos, Thodoris Sotiropoulos, Diomidis Spinellis, Arthur Gervais,
Benjamin Livshits, and Dimitris Mitropoulos. 2022. Finding typing compiler bugs.
In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 183ś198.

ICSE ’24, April 14ś20, 2024, Lisbon, Portugal Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang

[12] Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu Zhang, Dan
Hao, and Lu Zhang. 2020. A survey of compiler testing. ACM Computing Surveys
(CSUR) 53, 1 (2020), 1ś36.

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[14] Yongheng Chen, Rui Zhong, Hong Hu, Hangfan Zhang, Yupeng Yang, Dinghao
Wu, and Wenke Lee. 2021. One engine to fuzz’em all: Generic language processor
testing with semantic validation. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 642ś658.

[15] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv:2204.02311 [cs.CL]

[16] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. 2017.
Open Quantum Assembly Language. arXiv:1707.03429 [quant-ph] (July 2017).
arXiv:1707.03429 [quant-ph]

[17] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 95ś105.

[18] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis. 423ś435.

[19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[20] Karine Even-Mendoza, Cristian Cadar, and Alastair F Donaldson. 2022.
CsmithEdge: more effective compiler testing by handling undefined behaviour
less conservatively. Empirical Software Engineering 27, 6 (2022), 129.

[21] Karine Even-Mendoza, Arindam Sharma, Alastair F. Donaldson, and Cristian
Cadar. 2023. GrayC: Greybox Fuzzing of Compilers and Analysers for C (ISSTA
2023). Association for Computing Machinery, New York, NY, USA, 1219ś1231.
https://doi.org/10.1145/3597926.3598130

[22] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, andMing Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.

[23] Mark Fingerhuth, Tomáš Babej, and Peter Wittek. 2018. Open Source Software
in Quantum Computing. PLOS ONE 13, 12 (Dec. 2018), e0208561. https://doi.
org/10.1371/journal.pone.0208561

[24] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[25] go-fuzz 2023. go-fuzz: randomized testing for Go. https://github.com/dvyukov/
go-fuzz.

[26] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 50ś59.

[27] gpt4endpoint 2023. Models - GPT-4. https://platform.openai.com/docs/models/
gpt-4.

[28] Alex Groce, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, and Claire
Le Goues. 2022. Making no-fuss compiler fuzzing effective. In Proceedings of the
31st ACM SIGPLAN International Conference on Compiler Construction. 194ś204.

[29] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program synthesis.
Foundations and Trends® in Programming Languages 4, 1-2 (2017), 1ś119.

[30] Zhijiang Guo, Michael Schlichtkrull, and Andreas Vlachos. 2022. A survey on
automated fact-checking. Transactions of the Association for Computational
Linguistics 10 (2022), 178ś206.

[31] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with code
fragments. In 21st USENIX Security Symposium (USENIX Security 12). 445ś458.

[32] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
Curious Case of Neural Text Degeneration. arXiv:1904.09751.

[33] Bo Jiang, Xiaoyan Wang, Wing Kwong Chan, TH Tse, Na Li, Yongfeng Yin, and
Zhenyu Zhang. 2020. Cudasmith: A fuzzer for CUDA compilers. In 2020 IEEE
44th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,

861ś871.
[34] jsfunfuzz 2017. Introducing jsfunfuzz. https://www.squarefree.com/2007/08/02/

introducing-jsfunfuzz/.
[35] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361 (2020).

[36] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’18). Association for Computing
Machinery, New York, NY, USA, 2123ś2138. https://doi.org/10.1145/3243734.
3243804

[37] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
Neural Network Language {Model-Guided}{JavaScript} Engine Fuzzer. In 29th
USENIX Security Symposium (USENIX Security 20). 2613ś2630.

[38] Daniel Lehmann and Michael Pradel. 2018. Feedback-directed differential testing
of interactive debuggers. In ESEC/SIGSOFT FSE. 610ś620.

[39] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 45th International Conference on Software
Engineering.

[40] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv preprint arXiv:1910.13461 (2019).

[41] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[42] Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning: Optimizing continuous
prompts for generation. arXiv preprint arXiv:2101.00190 (2021).

[43] libFuzzer 2023. libFuzzer ś a library for coverage-guided fuzz testing. https:
//llvm.org/docs/LibFuzzer.html.

[44] Christopher Lidbury, Andrei Lascu, Nathan Chong, and Alastair F Donaldson.
2015. Many-core compiler fuzzing. ACM SIGPLAN Notices 50, 6 (2015), 65ś76.

[45] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep
learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. 530ś543.

[46] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.
Coverage-guided tensor compiler fuzzing with joint ir-pass mutation. Proceedings
of the ACM on Programming Languages 6, OOPSLA1 (2022), 1ś26.

[47] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2021. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. CoRR abs/2107.13586 (2021).
arXiv:2107.13586 https://arxiv.org/abs/2107.13586

[48] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid c programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044ś1051.

[49] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for
C and C++ compilers with YARPGen. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1ś25.

[50] M. Zalewski 2016. American Fuzzy Lop - Whitepaper. https://lcamtuf.coredump.
cx/afl/technical_details.txt.

[51] Haoyang Ma. 2023. A Survey of Modern Compiler Fuzzing. arXiv preprint
arXiv:2306.06884 (2023).

[52] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50ś60.

[53] Muhammad Numair Mansur, Maria Christakis, and Valentin Wüstholz. 2021.
Metamorphic testing of Datalog engines. In ESEC/FSE ’21: 29th ACM Joint Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 639ś650. https://doi.org/10.1145/3468264.3468573

[54] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. 2023. LearningDeep Semantics for Test Completion. In 45th International
Conference on Software Engineering.

[55] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[56] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.
Training language models to follow instructions with human feedback. Advances
in Neural Information Processing Systems 35 (2022), 27730ś27744.

[57] Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing plat-
forms: an empirical study. Proc. ACM Program. Lang. 6, OOPSLA (2022), 1ś27.
https://doi.org/10.1145/3527330

[58] Matteo Paltenghi and Michael Pradel. 2023. MorphQ: Metamorphic Testing of
the Qiskit Quantum Computing Platform. In 2023 IEEE/ACM 45th International
Conference on Software Engineering (ICSE). IEEE Computer Society, 2413ś2424.
https://doi.org/10.1109/ICSE48619.2023.00202

Fuzz4All: Universal Fuzzing with Large Language Models ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

[59] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gener-
ative type-aware mutation for testing SMT solvers. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1ś19.

[60] Jibesh Patra and Michael Pradel. 2016. Learning to fuzz: Application-independent
fuzz testing with probabilistic, generative models of input data. (2016).

[61] PyTorch 2023. PyTorch. http://pytorch.org.
[62] Guanghui Qin and Jason Eisner. 2021. Learning How to Ask: Querying LMs with

Mixtures of Soft Prompts. In Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

[63] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[64] Timo Schick and Hinrich Schütze. 2020. Exploiting cloze questions for few shot
text classification and natural language inference. arXiv preprint arXiv:2001.07676
(2020).

[65] John Schulman, Barret Zoph, Jacob Hilton Christina Kim, Jacob Menick, Ji-
ayi Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vijayvergiya, Eric Sigler, Adam Perel-
man, Chelsea Voss, Mike Heaton, Joel Parish, Dave Cummings, Rajeev Nayak,
Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas Turley,
Noah Deutsch, Vik Goel, Jonathan Ward, Aris Konstantinidis, Wojciech Zaremba,
Long Ouyang, Leonard Bogdonoff, Joshua Gross, David Medina, Sarah Yoo, Teddy
Lee, Ryan Lowe, Dan Mossing, Joost Huizinga, Roger Jiang, Carroll Wainwright,
Diogo Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Katarina Slama, Steven Bills,
Alex Gray, Jan Leike, Jakub Pachocki, Phil Tillet, Shantanu Jain, Greg Brockman,
and Nick Ryder. 2022. ChatGPT: Optimizing Language Models for Dialogue.
(2022). https://openai.com/blog/chatgpt/.

[66] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive Test
Generation Using a Large Language Model. arXiv:2302.06527 [cs.SE]

[67] Kensen Shi, David Bieber, and Rishabh Singh. 2022. Tf-coder: Program synthesis
for tensor manipulations. ACM Transactions on Programming Languages and
Systems (TOPLAS) 44, 2 (2022), 1ś36.

[68] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, EricWallace, and Sameer Singh.
2020. Autoprompt: Eliciting knowledge from language models with automatically
generated prompts. arXiv preprint arXiv:2010.15980 (2020).

[69] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional.

[70] syzkaller 2023. syzkaller - kernel fuzzer. https://github.com/google/syzkaller.
[71] Derek Tam, Rakesh R Menon, Mohit Bansal, Shashank Srivastava, and Colin

Raffel. 2021. Improving and simplifying pattern exploiting training. arXiv preprint
arXiv:2103.11955 (2021).

[72] TensorFlow 2023. TensorFlow. https://www.tensorflow.org.
[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[74] Vasudev Vikram, Caroline Lemieux, and Rohan Padhye. 2023. Can Large Lan-
guage Models Write Good Property-Based Tests? arXiv preprint arXiv:2307.04346
(2023).

[75] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 382ś394.

[76] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
lunch for testing: Fuzzing deep-learning libraries from open source. In Proceedings
of the 44th International Conference on Software Engineering. 995ś1007.

[77] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the unusual
effectiveness of type-aware operator mutations for testing SMT solvers. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 193:1ś193:25.

[78] Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. Validating SMT
Solvers via Semantic Fusion. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation. 718ś730.

[79] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[80] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022.
A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (San
Diego, CA, USA) (MAPS 2022). Association for Computing Machinery, New York,
NY, USA, 1ś10.

[81] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283ś294.

[82] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. arXiv:2305.04207 [cs.SE]

[83] Shafiq Joty YueWang,WeishiWang and Steven C.H. Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and

Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021.

[84] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. The fuzzing book.

[85] Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang. 2019. Seq-
Fuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspec-
tive. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). 59ś67. https://doi.org/10.1109/ICST.2019.00016

[86] Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis
for JVM Testing. In Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). 1133ś1144.

[87] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910 (2022).

[88] Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford,
Dario Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-Tuning Language
Models from Human Preferences. arXiv:1909.08593.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Large Language Models
	2.2 Fuzzing and Testing

	3 Fuzz4All Approach
	3.1 Autoprompting
	3.2 Fuzzing Loop

	4 Experimental Design
	4.1 Implementation
	4.2 Systems Under Test and Baselines
	4.3 Experimental Setup and Metrics

	5 Results
	5.1 RQ1: Comparison against Existing Fuzzers
	5.2 RQ2: Effectiveness of Targeted Fuzzing
	5.3 RQ3: Ablation Study
	5.4 RQ4: Bug Finding

	6 Threats to Validity
	7 Conclusion
	References

