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ABSTRACT

Bugs in Deep Learning (DL) libraries may affect almost all down-

stream DL applications, and it is crucial to ensure the quality of

such systems. It is challenging to generate valid input programs

for fuzzing DL libraries, since the input programs need to satisfy

both the syntax/semantics of the supported languages (e.g., Python)

and the tensor/operator constraints for constructing valid compu-

tational graphs. Recently, the TitanFuzzwork demonstrates that

modern Large Language Models (LLMs) can be directly leveraged

to implicitly learn all the language and DL computation constraints

to generate valid programs for fuzzing DL libraries (and beyond).

However, LLMs tend to generate ordinary programs following sim-

ilar patterns/tokens with typical programs seen in their massive

pre-training corpora (e.g., GitHub), while fuzzing favors unusual

inputs that cover edge cases or are unlikely to bemanually produced.

To fill this gap, this paper proposes FuzzGPT, the first approach

to priming LLMs to synthesize unusual programs for fuzzing. Fuz-

zGPT is mainly built on the well-known hypothesis that historical

bug-triggeringprogramsmay include rare/valuable code ingredients

important for bug finding. Meanwhile, while traditional techniques

leveraging such historical information require intensive human

efforts to both design dedicated generators and ensure the syntac-

tic/semantic validity of generated programs, FuzzGPT demonstrates

that this process can be fully automated via the intrinsic capabilities

of LLMs (including fine-tuning and in-context learning), while being

generalizableandapplicable tochallengingdomains.WhileFuzzGPT

can be applied with different LLMs, this paper focuses on the power-

fulGPT-stylemodels: Codex andCodeGen.Moreover, FuzzGPT also

shows the potential of directly leveraging the instruction-following

capability of the recent ChatGPT for effective fuzzing. The experi-

mental study on two popular DL libraries (PyTorch and TensorFlow)
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shows that FuzzGPT can substantially outperform TitanFuzz, de-

tecting 76 bugs, with 49 already confirmed as previously unknown

bugs, including 11 high-priority bugs or security vulnerabilities.
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1 INTRODUCTION

Deep Learning (DL) has been widely adopted in various applica-

tion domains, including scientific discovery [52], healthcare [6],

finance [63], and transportation [56]. Such DL applications are com-

monly constructed using DL libraries (e.g., PyTorch [49] and Tensor-

Flow [62]) where developers utilize library APIs to build, train, and

deploy DLmodels. Similar to any other complicated software sys-

tems, DL libraries can also be buggy. Moreover, bugs in DL libraries

can cause serious consequences as they can potentially affect almost

all downstream DL applications, including safety-critical ones [42,

54, 81]. As a result, it is crucial to ensure the quality of DL libraries.

Fuzzing [5, 61, 80], a powerful methodology for bug finding via

random input generation, has been widely studied for testing DL

libraries in recent years. Meanwhile, it is extremely challenging to

generate arbitrary input programs for DL libraries, since the pro-

grams need to satisfy both the syntax/semantics of the supported

languages (such as Python with dynamic typing) and the tensor/-

operator constraints for constructing valid computational graphs.

For example, in multiplication operations, two tensors must have

matching dimensionality. To simplify the problem, prior DL library

fuzzing techniques mainly work onmodel-level [23, 25, 34, 48, 68]

or API-level fuzzing [14, 69, 73, 75]. Model-level fuzzers either re-

use/mutate existing seed models [25, 48, 68], or generate DL models

fromscratch [23, 34].Due to the intricate tensor/operator constraints,

such model-level fuzzers either only focus on manipulating shape-

preserving APIs [68] or require manually-written specifications for

each API [23, 34] to preserve model validity. As a result, they can

only cover limitedDLAPIs and programpatterns. On the other hand,

API-level fuzzers focus on testing each individual API via effective

input generation [69, 73] or oracle inference [14, 75].WhileAPI-level
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fuzzers can easily cover a large number of APIs, they cannot find

any bugs arising from interactions of different DL APIs.

With the recent enormous advances in Large Language Models

(LLMs),TitanFuzz [13] has been proposed to directly leverage LLMs

for fuzzing DL libraries and beyond. The key insight is that LLMs

are pre-trained on billions of code snippets in different languages

from open source, which can include numerous valid DL programs

for popular DL libraries; in this way, LLMs can implicitly learn both

the language syntax/semantics and the tensor/operator constraints

for valid DL computations. TitanFuzz has been shown effective in

generating valid input DL programs and substantially outperforms

both traditional model-level and API-level fuzzers. More impor-

tantly, compared with traditional fuzzing techniques that require

intensive human efforts for building generation/mutation strate-

gies [16, 28, 31, 32, 60, 76, 82],TitanFuzz is fully automated, and can

be easily generalized to different application domains and program-

ming languages.Meanwhile,TitanFuzzdirectly leverages thegener-

ative capability of LLMs,which is based on tokennaturalness [26] and

aims to resemble what they saw in the training corpora. In this way,

TitanFuzz can easily generate ordinary human-like DL programs.

However, such ordinary programs can only cover a limited set of

common/standardDL librarybehaviors,whichmaynotbe important

or interesting for testing. In contrast, unusual programs exhibit less

common behaviors and are more likely to cover code paths that are

not sufficiently tested, potentially revealing new bugs or vulnerabili-

ties. For instance, unusual programsmay construct edge-case inputs

or use unconventional parameter combinations and API sequences.

Compared to Figure 1a, Figure 1b shows a historical bug-triggering

code for logicial_pr, where instead of using the same dtype, a bug

occurs when the dtypes are different. Such non-standard (unusual)

code snippets can be difficult for pre-trained LLMs to directly gener-

ate as it does not conform to the large amounts of well-formed code

snippets seen during pre-training.

Our Work. This paper proposes FuzzGPT, the first approach to

guiding LLMs to directly synthesize unusual input programs for

effective fuzzing.While the recent TitanFuzzwork samples programs

from the natural probability distribution encoded in pre-trained LLMs,

FuzzGPTaims to shift the distribution towardsunusual programs in the

search space to explore code paths rarely hit by ordinary programs. Fuz-

zGPT is mainly built on the well-known hypothesis that historical

bug-triggeringprogramsmay include edge-case/valuable code ingre-

dients important for bug finding. In the literature, researchers have

proposed various techniques to recompose such code ingredients

or insert them into new code contexts for exposing new interesting

bugs/vulnerabilities [9, 28, 59, 84]. However, such techniques require

intensivehumanefforts tobothdesignsuchdedicatedgenerators and

ensure the syntactic/semantic validity of the generated programs.

For example, according topriorwork [28, 84], even resolving thevery

common undeclared-identifier issue can be non-trivial. Moreover,

it is hard to generalize such techniques to different domains, not to

mention the challenging DL library fuzzing problem. In contrast,

our key insight is that recent advanced LLMs offer a natural, gener-

alizable, and fully automated solution for leveraging such historical

programs ś they can be easily prompted [51] or fine-tuned [50] to

digest such historical programs, and then generate more unusual

programs that resemble the historical ones and effectively exploit

their code ingredients. Compared with traditional techniques on

leveraging suchhistorical information, FuzzGPT can implicitly learn

all the generation constraints (including language syntax/semantics,

DL computation constraints, and the new unusualness constraints),

and is fully automated. Moreover, while this paper focuses on the

challenging problem of DL library fuzzing, the FuzzGPT idea is gen-

eralizable to other application domains or programming languages

(e.g., testing/fuzzing for various compilers/interpreters, DB systems,

SMT solvers, or any software libraries with accessible APIs).

To implementFuzzGPT,wefirstconstructadatasetofbug-triggering

code snippets by mining bug reports from open-source repositories

of the target DL libraries. Built on this dataset, FuzzGPT includes the

following strategies. (1) In-context learning [37]:weprovideLLMs

with either a few examples of historical bug-triggering programs

(few-shot learning [7, 51]) or a partial bug-triggering program (zero-

shot learning [47, 58]) to either generate a new code snippet or to

autocomplete the partial code. (2) Fine-tuning [50]: we modify the

model weights by training on the extracted historical bug-triggering

programs to obtain fine-tuned LLMs that are specially designed to

generate similar bug-triggering code snippets. From both learning

strategies, FuzzGPT can prime the LLMs to generate bug-triggering

programs by capturing code ingredients within either the local con-

text examples or fine-tuning dataset.

To summarize, this paper makes the following contributions:

• Dimension. This paper opens up a new direction for generating

unusual input programs for effective fuzzing via LLMs. This paper

is the first to show that LLMs can be easily prompted/fine-tuned to

resemble historical bug-triggering programs or even directly fol-

low human instructions to generate unusual programs for fuzzing

real-world systems.Comparedwith traditional fuzzers forunusual

program generation, FuzzGPT is fully automated, generalizable,

and applicable to challenging application domains (especially for

software systems with accessible APIs).

• Technique.While our idea is generalizable,wehave implemented

FuzzGPT as an LLM-based fuzzer for DL libraries in this paper.We

implement threevariantsof FuzzGPTbasedon in-context learning

and fine-tuning: 1) few-shot learning: a few examples of previous

bug-triggering code snippets are provided, 2) zero-shot learning:

a partially complete bug-triggering program is given, and 3) fine-

tuning: training a specialized LLM via learning bug-ingredients

from the historical programs.While FuzzGPT can be applied with

different LLMs, we build our strategies based on state-of-the-art

proprietary and open-sourceGPT-style LLMs for code, Codex [10]

and CodeGen [43]. Moreover, we also build a specific zero-shot

FuzzGPT variant by directly leveraging the instruction-following

capability of ChatGPT [45] without any historical information.

• Extensive Study.We study all FuzzGPT variants on two popular

DL libraries (PyTorch [49] and TensorFlow [62]). Our results show

that FuzzGPT achieves 60.70%/36.03% higher coverage than state-

of-the-art TitanFuzz on PyTorch/TensorFlow. Overall, FuzzGPT

found 76 bugs on the latest versions of PyTorch and TensorFlow.

49 have already been confirmed as newbugs,with 11 high-priority

bugs or security vulnerabilities.
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In this work, we propose to leverage the historical bug-triggering

code information to further guide LLMs towards more effective

fuzzing. To our knowledge, this is the first work demonstrating that

LLMs can easily perform history-driven fuzzing (widely studied

for over a decade), while being fully automated, generalizable, and

applicable to the challenging domain of DL library fuzzing. Our

work differs from the recent TitanFuzzwork in terms of both the

overall approach/idea and the concrete techniques. TitanFuzz di-

rectly leverages LLMs to generate valid programs resembling the

training corpora, where the vast majority would be common usages.

In contrast, FuzzGPT either prompts or fine-tunes LLMs to resemble

the historical bug-triggering programs, which would be extremely

rare in the training data and important for testing/fuzzing.

3 APPROACH

In this section, we describe our FuzzGPT approach of exploiting his-

torical bugs via Large LanguageModels (LLMs) to automatically fuzz

DL libraries. The key idea of FuzzGPT is to use LLMs and directly

learn fromhistorical reported bugs to generate similar bug-triggering

code snippets to find new bugs. Existing work along this direction

requires extensive human efforts, and can hardly generalize to the

challenging domain of DL library fuzzing. In contrast, the recent ad-

vances in LLMs offer a natural, generalizable, and fully automated so-

lution śmodern LLMs can be easily prompted or fine-tuned to digest

such historical programs and then generate programs that resemble

the historical ones via effectively exploiting their code ingredients.

Figure 2 shows the overview of FuzzGPT. We first systematically

mine bug reports from the target DL library repositories to collect

historical bug-triggering code snippets (Section 3.1). As FuzzGPT

aims to target specific DL library APIs, each bug-triggering code

snippet requires a corresponding buggy API label. However, often-

times the exact buggy API may not be explicitly indicated within the

bug report. As such, FuzzGPT employs a self-training approach to

automatically generate buggy API labels using LLMs by prompting

with a fewmanually labeled examples. Next, using these pairs of ex-

tracted bug-triggering code snippets and buggyAPI labels, FuzzGPT

can start the fuzzing procedure to generate edge-case code snippets

(Section 3.2). In this work, we investigate two learning methods:

1) In-context learning:we prompt the pre-trained LLM directly

with either examples of bug-triggering code and buggy API pairs

(few-shot), or a partial/complete bug-triggering code (zero-shot),

and let the model generate/edit programs for a target API, 2) Fine-

tuning: using the extracted dataset, we fine-tune the LLM to learn

from the bug-triggering code examples and patterns to generate new

bug-triggering code snippets for a target API. Finally, the generated

programs are executed with test oracles (e.g., CPU/GPU [69], or

automatic differentiation oracle [75]) for bug detection (Section 3.3).

While FuzzGPT is general for any generative LLMs, in this paper,

we focus on two specific LLMs:Codex [10] andCodeGen [43]. Codex

is a state-of-the-artgenerativemodelfine-tunedonopen-sourcecode

repositories initialized from the GPT-3 [7] model weights. Unlike

Codexwhosemodelweights and trainingdataarenot released,Code-

Gen is an open-source generative model. Since we target DL library

APIs exposed in Python, we use the Python version of CodeGen,

fine-tuned on PythonGitHub code [43]. In FuzzGPT, we directly use

both Codex and CodeGenmodels ś the larger Codex model allows

us to show the full potential of fuzzing when using LLMs, while the

open-source CodeGenmodels can be used to evaluate the scaling

effect and test out fine-tuning strategies. We next describe each step

in FuzzGPT in more detail.

3.1 Dataset Construction

To facilitate learning from historical bugs, FuzzGPT requires a bug-

triggering code dataset which contains pairs of bug-exposing code

snippet and its corresponding buggy DL library API.

3.1.1 Mining Bug History from GitHub. First, we implement an

HTML crawler to collect all the issues and pull requests (PRs) from

the GitHub issue-tracking systems of our target libraries. Then, we

focus on identifying bug-triggering code snippets from two sources:

(1) Issues associated with accepted or pending PRs. We search in

these bug reports for all code blocks, which contain code snippets to

reproduce the bug, and concatenate them together. (2) PRs contain-

ing code blocks in their commit messages. We further consider PRs

because some PRs may fix bugs without corresponding issues. For

each extracted issue or PR,we extract its title aswell and include that

in prompts for few-shot learning and fine-tuning. After mining bug-

triggering code snippets,wewill next performautomatedannotation

to further label each code snippet with a corresponding buggy API.

3.1.2 Automated Buggy API Annotation. Each code snippet in our

dataset often involvesmultipleDLAPIs.As such, the exact buggyAPI

cannot be directly extracted. In order to annotate the buggy API for

eachbug-triggering code example,wepropose a self-training [55, 87]

approach where we feed a few-shot prompt (shown in Figure 3) to

LLManduse themodel completionas thebuggyAPI.Wefirst provide

manual annotation of the buggyAPI name for several randomly cho-

sen bug-triggering code snippets. These manually annotated pairs

become the few-shot examples used as part of the input to the LLM.

In Figure 3, the few-shot examples are constructed with the chosen

bug-triggering code snippet, the extracted title of the corresponding

issue/pull request (e.g., Tensor.apply_ fails), and finally, the man-

ually annotated buggy API name (e.g., torch.Tensor.apply_). Next,

we combine the few-shot exampleswith a target bug-triggering code

snippet to create a prompt, and then query the LLM to obtain the

predicted buggy API name for the given code snippet. Note that the

annotation overhead isminimal, since we only need to annotate a

few examples (6 for this work as shown in Section 4) for the targeted

library due to the in-context learning capability of modern LLMs.

Our proposed method is similar to self-training [55, 87] where a

classifier is first trained on a small labeled dataset and then used to la-

bel a larger unlabeled dataset. In our case, we directly use LLMswith

few-shot learning froma small number ofmanual annotations to pro-

vide annotations for the large amounts of extracted bug-triggering

code snippets in our dataset. Our main goal with labeling is to steer

the LLMs to generate many programs for each targeted DL API by

providing pairs of API and code examples. Note that our automated

API annotation procedure may mislabel the precise buggy API in

a bug-triggering program. Meanwhile, even if some issue is misla-

beled with a different API that is also called in the program, the LLM

can still correctly learn the basic task of generating a program that

calls the target API for effective fuzzing (as further confirmed by our

experimental results in Section 6.3.4).







Large LanguageModels are Edge-Case Generators:

Crafting Unusual Programs for Fuzzing Deep Learning Libraries ICSE ’24, April 14ś20, 2024, Lisbon, Portugal

Crashes.We detect bugs caused by unexpected crashes foundwhen

executing the fuzzing output. These crashes can include aborts,

segmentation faults, and INTERNAL_ASSERT_FAILED. Bugs exposed by

such crashes may even further trigger security vulnerabilities.

CPU/GPU oracle. We detect wrong-computation bugs by identify-

ing inconsistencies between the output values across two execution

backends (CPU and GPU). We follow prior work [13, 69] to use a

significance tolerance threshold for comparison in order to account

for the non-deterministic nature of particular library APIs when

executed on different backends.

Automatic Differentiation (AD) oracle.We further detect gra-

dient computation bugs in the crucial AD engines of DL libraries,

which support efficient training of DLmodels. We apply the AD ora-

cle proposed in priorwork [75] and compare the computed gradients

between reverse-mode AD (the most commonly used mode in DL

libraries), forward-mode AD, and numerical differentiation (ND).

4 IMPLEMENTATION

Dataset construction. We scraped the GitHub repositories of tar-

geted libraries using the requests library [3], and finally collected

1750 and 633 bug-triggering code snippets for PyTorch and Tensor-

Flow, respectively, from their historical issues or PRs. The lower

number of TensorFlow is because it has fewer PRs than PyTorch,

as TensorFlow developers are not as active in confirming bugs/PRs,

and rarely include code blocks in their PRs. Note that we perform

additional cleaning on the extracted code to filter out errormessages

and remove code lines that contain only the inputs and outputs of

executions. We also did not consider the code snippets that fail to

pass syntax checking or are longer than 256 tokens.

For buggy API annotation, we manually annotate𝐾 =6 randomly

sampled examples and use them as in-context examples. For each

unlabeled example, we query Codex to complete the buggy API with

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0 (deterministic greedy decoding) to get the most

confident prediction following [67].

Languagemodels.We evaluate on two specific generative LLMs

Codex (code-davinci-002) and CodeGen (350M/2B/6B-mono). Un-

like Codex whose training data and model weights are not released,

CodeGen [43] is a widely-used open-source generative model [15,

41], which provides trained models of various sizes and allows fine-

tuning. We access Codex through its API and use the PyTorch im-

plementation of the CodeGenmodels on Hugging Face [29].

Fine-tuning.We perform fine-tuning on the CodeGenmodels be-

cause Codex is not open source. We fine-tune a separate model for

each studied DL library. To update the model parameters for each

targeted library, we use batch_size=32, learning rate=5e-5, and train

the models with AdamWoptimizer [39] for 10 epochs, using a linear

learning rate scheduler with 10% warmup proportion.

5 EVALUATION

5.1 Research Questions

We investigate the following research questions in our experiments:

• RQ1:Howdoesdifferent learningparadigmsof FuzzGPTcompare

against each other?

• RQ2:How does FuzzGPT compared against existing fuzzers?

• RQ3:How do the key components of FuzzGPT contribute to its

effectiveness?

• RQ4: Is FuzzGPT able to detect new bugs?

5.2 Experimental Setup

Subjectsystems.WeevaluateFuzzGPTonfuzzingPyTorchandTen-

sorFlow, two of the most popular open-source DL libraries. For RQ1,

we separately run FuzzGPTwith few-shot, zero-shot, and fine-tune

settings to evaluate their individual effectiveness for fuzzing (de-

noted as FuzzGPT-FS, FuzzGPT-ZS, and FuzzGPT-FT respectively).

We use FuzzGPT-FS as the default implementation for FuzzGPT if

not specified explicitly. For RQ2, We compare our approach with

prior work on PyTorch (v1.12) and TensorFlow (v2.10), the same

version as the most recent work TitanFuzz[13], and we use the

same set of public Python APIs as TitanFuzz as well. For RQ3, due

to huge costs, we conducted our ablation study experiments for all

three settings of FuzzGPT on 50APIs randomly sampled from one

example DL library PyTorch, and report the average results of 5 runs

following prior work [13]. For RQ4, we run all the generated tests

on the nightly version of PyTorch and TensorFlow to find previously

unknown bugs (Section 6.4).

Baselines. We compare FuzzGPT to state-of-the-art DL library

fuzzers, including state-of-the-art API-level (FreeFuzz [69], Deep-

REL [14], and ∇Fuzz [75]) and model-level (Muffin [23]) fuzzers, as

well as the most recent TitanFuzz [13]. We run each tool with its

default configuration on both libraries, except that Muffinwas only

executed on TensorFlow since it does not support PyTorch.

Environment. We use a 64-core workstation with 256 GB RAM

and running Ubuntu 20.04.5 LTS with 4 NVIDIA RTX A6000 GPUs.

Fuzzing budget. Our default setting generates 100 programs for

each target API. In the Few-shot approach, for each target API, we in-

dependently construct 10 prompts, eachwith 6-shot examples picked

randomly, and feed each prompt to the LLM to sample 10 genera-

tions. Similarly, in the zero-shot approach, we randomly choose 10

different examples from our dataset, and use the partial/complete

code to construct 10 prompts to perform completion/editing. In the

Fine-tune approach, we use a fixed task description, and query the

model for 10 times to generation all 100 programs for a target API.

Generation. Our default setting when using all LLMs for gener-

ation uses top-p sampling with 𝑝 = 0.95, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 = 0.8, and

𝑚𝑎𝑥_𝑡𝑜𝑘𝑒𝑛=256 following prior work [13].

5.3 Metrics

Detected bugs. Following prior work on DL library fuzzing [13, 48,

65, 68, 69, 73, 75], we report the number of unique detected bugs.

Unique crashes. Besides counting all bugs, we also count the num-

ber of unique crashes as another proxy for fuzzing effectiveness.

Unique crashes are widely used in the literature for evaluating

fuzzing technique [18, 30, 40]. Note that our definition in thiswork is

more strict: First, we manually examine the root cause of each crash.

If different programs crash due to the same reason, we count them as

oneuniquecrash. Second, all theuniquecrashes reported inour study

have been confirmed by developers as unique and real crash bugs.

Code coverage.Code coverage has beenwidely adopted in software

testing and recently DL library/compiler testing [13, 23, 36, 69, 75].

We follow recentDL library fuzzingwork [13, 23, 69, 75] andmeasure

Python line coverage with the coverage.py tool [1]. We excluded ad-

ditional coverage added by the oracle checking for fair comparison.
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in priorwork [74] onNLP that the distracting prompt structure, with

more few-shot examples, can decrease the LLM’s performance.

6.3.2 Zero-shot Learning. Model size. Figure 7b shows the code

coverage and # of valid programs generated using FuzzGPT-ZS as

we vary the size of the model used. We first observe a clear trend of

improvement as we increase model size, except that the coverage

drops for Codex. One reason could be Codex generates much more

valid programs, and may miss coverage obtained during exception-

handling code (coveredby invalid programs).Additionally, this could

also be due to the usage of partial programs in the zero-shot setting

where we directly re-use part of the historical bug-triggering code.

As such, smaller models like CodeGen can obtain a high coverage

resultswithoutneeding togenerate a complete code snippet required

in the few-shot setting. Nevertheless, we still observe that larger

models like Codex is able to achieve the highest number of generated

valid programs which are important to test DL libraries.

Prompting Strategy.We evaluate three different zero-shot prompt-

ing strategies: editing (to edit a complete program), completion

(to complete a partial program, our default zero-shot variant), and

a baseline completion-NLwhere only a natural language descrip-

tion and no code is given to the LLM for completion. As shown

in Table 4, completion achieves significantly higher coverage than

completion-NL, highlighting the effectiveness of including partial

historical bug-triggering programs in the prompt. It is also note-

worthy that completion has lower valid rate than completion-NL,

because the partial code contains unusual patterns and thus is harder

to generate semantically valid completions. The extremely low valid

rate of editing is because editing an existing program to use new

APIs fully automatically is an even more challenging task for Codex.

Table 4: FuzzGPT-ZS with different prompting strategies.

Prompt Valid APIs All APIs Valid Prog. All Prog. Valid(%) Cov

editing 22 304 20 1609 1.22% 19440
completion-NL 192 400 506 4972 10.17% 22917
completion 112 362 238 3470 6.86% 25893

6.3.3 Fine-tuning. Model size.We study the fine-tuning perfor-

mance with different model sizes. Table 5 shows that fine-tuned

CodeGen-6B, the largest CodeGenmodel studied, does achieve the

highest code coverage. Compared to the original CodeGen (row 6B

w/o FT), our fine-tuned model significantly improves the number of

valid programs and code coverage. Note that although the original

CodeGenmodel cancovermore libraryAPIs (given thehugenumber

of code tokens seen during pre-training), it cannot achieve high code

coverage as the model is not specialized for DL code generation and

has amuch lower valid program rate (only 10.17%).With fine-tuning,

another interesting observation is that larger models are not always

better. For example, the2Bmodelhas themostuniquevalidprograms.

This could potentially be explained with the validity-unusualness

trade-off: as we fine-tune LLMs towards unusualness-favored gener-

ation, wemay lose some validity-preserving information, while both

contribute to code coverage and the ultimate bug-finding capability.

Prompting strategy.According to Table 6, similar to the few-shot

results, including bug description in the fine-tuning process also

helps the fine-tuned LLM to generate much more diverse outputs

(i.e., more unique and valid APIs/programs) and achieve higher cov-

erage. Another interesting finding is that, unlike in FuzzGPT-FS,

Table 5: FuzzGPT-FT with different LLM sizes.

Model Valid APIs All APIs Valid Prog. All Prog. Valid(%) Cov

350M 118 329 682 4236 16.10% 23352.2
2B 118 292 835 3393 24.60% 22688.8
6B 131 311 768 3532 21.75% 24420.8

6B w/o FT 192 400 506 4972 10.17% 22917

CoT contributes to an increased percentage of valid programs in

FuzzGPT-FT.Ourhypothesis is that, in thefine-tuningprocess, since

the LLMwas trained on the entire dataset, CoT can assist it in better

associating a reasonable buggy pattern with a target API, compared

to the few-shot scenario.Wewould like to further clarify that getting

more valid programs is not the goal of our CoT prompting or our

overall approach. Therefore, we do not expect CoT to consistently

improve this metric. The main advantage of CoT prompting is to

guide the model to generate unusual programs more effectively by

first describing the bug. Our evaluation shows that CoT does consis-

tently improve code coverage in both the few-shot and fine-tuning

settings. This indicates that CoT enables the generation of unusual

programs that cover more (interesting) code paths, even if there are

fewer valid programs in the few-shot scenario.

Table 6: FuzzGPT-FT with different prompting strategies.

Prompt Valid APIs All APIs Valid Prog. All Prog. Valid(%) Cov

w/ CoT 131 311 768 3532 21.75% 24420.8
w/o CoT 83 250 434 2659 16.34% 24242.8

6.3.4 Buggy API Annotation. Finally, we study the impact of our

API annotation method (Section 3.1.2) on fuzzing performance. As a

baseline, we constructed a randomly annotated dataset by selecting

a random DL API from the bug-triggering program as the buggy API.

We then fine-tune CodeGen-6B on this dataset and compare it with

FuzzGPT-FT. Table 7 summarizes the results. We evaluate the la-

beling accuracy on a random sample of 100 PyTorch issues/PRs, and

find our Codex-based labeling achieves 76% precision, while random

annotation has 26% precision.When used for fine-tuning, our Codex-

based labeling achieves not only a higher ratio of valid programs but

also higher coverage compared to random labeling. This is because

the wrong API label can be less-aligned with the bug description

and code, leading to decreased performance. Interestingly, we fur-

ther find that even the randomly annotated dataset can still guide

FuzzGPT-FT to outperform the CodeGen-6B baseline (without fine-

tuning). This demonstrates that the annotation does not need to be

fully precise ś if themislabeledAPI always appears in the code, such

(API, code) pairs can still guide the model to learn the fundamental

task of generating a program that calls a given target API.

Table 7: FuzzGPT-FT with randomAPI annotation.

Method Label Acc(%) Valid(%) Cov

FuzzGPT-FT 76% 21.75% 24421
FuzzGPT-FT-Random 26% 19.48% 23468

CodeGen-6B w/o FT N/A 10.17% 22917

6.4 Bug Finding

Due to the extensive human cost in bug finding/reporting, in this

RQ, wemainly focus on our default setting: FuzzGPT-FS with all the
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8 CONCLUSION

Wehave introduced FuzzGPT, thefirst approach to leveraginghistor-

ical bug-triggering programs to prime LLMs for fuzzing with edge

cases. Compared to traditional fuzzing techniques on leveraging

such historical information studied for over a decade, FuzzGPT is

fully automated, generalizable, and applicable to challenging do-

mains, such as DL library fuzzing. Moreover, FuzzGPT also shows

the potential of ChatGPT for edge-case program generation with-

out any historical information. The experimental results show that

FuzzGPT substantially outperforms existing DL library fuzzers, and

can detect various bugs for PyTorch and TensorFlow.

Artifact Availability.Wemake our artifact available at [2].
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