Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

Yinlin Deng
University of Illinois
Urbana-Champaign

yinlind2@illinois.edu

Shizhuo Dylan Zhang
University of Illinois
Urbana-Champaign

shizhuo2@illinois.edu

ABSTRACT

Bugs in Deep Learning (DL) libraries may affect almost all down-
stream DL applications, and it is crucial to ensure the quality of
such systems. It is challenging to generate valid input programs
for fuzzing DL libraries, since the input programs need to satisfy
both the syntax/semantics of the supported languages (e.g., Python)
and the tensor/operator constraints for constructing valid compu-
tational graphs. Recently, the TiTaNFuzz work demonstrates that
modern Large Language Models (LLMs) can be directly leveraged
to implicitly learn all the language and DL computation constraints
to generate valid programs for fuzzing DL libraries (and beyond).
However, LLMs tend to generate ordinary programs following sim-
ilar patterns/tokens with typical programs seen in their massive
pre-training corpora (e.g., GitHub), while fuzzing favors unusual
inputs that cover edge cases or are unlikely to be manually produced.

To fill this gap, this paper proposes FuzzGPT, the first approach
to priming LLMs to synthesize unusual programs for fuzzing. Fuz-
zGPT is mainly built on the well-known hypothesis that historical
bug-triggering programs may include rare/valuable code ingredients
important for bug finding. Meanwhile, while traditional techniques
leveraging such historical information require intensive human
efforts to both design dedicated generators and ensure the syntac-
tic/semantic validity of generated programs, FuzzGPT demonstrates
that this process can be fully automated via the intrinsic capabilities
of LLMs (including fine-tuning and in-context learning), while being
generalizable and applicable to challenging domains. While FuzzGPT
can be applied with different LLMs, this paper focuses on the power-
ful GPT-style models: Codex and CoDEGEN. Moreover, FuzzGPT also
shows the potential of directly leveraging the instruction-following
capability of the recent ChatGPT for effective fuzzing. The experi-
mental study on two popular DL libraries (PyTorch and TensorFlow)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00

https://doi.org/10.1145/3597503.3623343

Chungqiu Steven Xia
University of Illinois
Urbana-Champaign

chungiu2@illinois.edu

Shujing Yang
University of Illinois
Urbana-Champaign

shujing6@illinois.edu

Chenyuan Yang
University of Illinois
Urbana-Champaign

cy54@illinois.edu

Lingming Zhang

University of Illinois

Urbana-Champaign
lingming@illinois.edu

shows that FuzzGPT can substantially outperform TrtanFuzz, de-
tecting 76 bugs, with 49 already confirmed as previously unknown
bugs, including 11 high-priority bugs or security vulnerabilities.

ACM Reference Format:

Yinlin Deng, Chungiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang,
Shujing Yang, and Lingming Zhang. 2024. Large Language Models are Edge-
Case Generators: Crafting Unusual Programs for Fuzzing Deep Learning
Libraries. In 2024 IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE °24), April 14-20, 2024, Lisbon, Portugal. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3597503.3623343

1 INTRODUCTION

Deep Learning (DL) has been widely adopted in various applica-
tion domains, including scientific discovery [52], healthcare [6],
finance [63], and transportation [56]. Such DL applications are com-
monly constructed using DL libraries (e.g., PyTorch [49] and Tensor-
Flow [62]) where developers utilize library APIs to build, train, and
deploy DL models. Similar to any other complicated software sys-
tems, DL libraries can also be buggy. Moreover, bugs in DL libraries
can cause serious consequences as they can potentially affect almost
all downstream DL applications, including safety-critical ones [42,
54, 81]. As a result, it is crucial to ensure the quality of DL libraries.

Fuzzing [5, 61, 80], a powerful methodology for bug finding via
random input generation, has been widely studied for testing DL
libraries in recent years. Meanwhile, it is extremely challenging to
generate arbitrary input programs for DL libraries, since the pro-
grams need to satisfy both the syntax/semantics of the supported
languages (such as Python with dynamic typing) and the tensor/-
operator constraints for constructing valid computational graphs.
For example, in multiplication operations, two tensors must have
matching dimensionality. To simplify the problem, prior DL library
fuzzing techniques mainly work on model-level [23, 25, 34, 48, 68]
or API-level fuzzing [14, 69, 73, 75]. Model-level fuzzers either re-
use/mutate existing seed models [25, 48, 68], or generate DL models
from scratch [23,34]. Due to the intricate tensor/operator constraints,
such model-level fuzzers either only focus on manipulating shape-
preserving APIs [68] or require manually-written specifications for
each API [23, 34] to preserve model validity. As a result, they can
only cover limited DL APIs and program patterns. On the other hand,
API-level fuzzers focus on testing each individual API via effective
input generation [69, 73] or oracle inference [14, 75]. While API-level

ICSE 24, April 14-20, 2024, Lisbon, Portugal

fuzzers can easily cover a large number of APIs, they cannot find
any bugs arising from interactions of different DL APIs.

With the recent enormous advances in Large Language Models
(LLMs), TrranFuzz [13] has been proposed to directly leverage LLMs
for fuzzing DL libraries and beyond. The key insight is that LLMs
are pre-trained on billions of code snippets in different languages
from open source, which can include numerous valid DL programs
for popular DL libraries; in this way, LLMs can implicitly learn both
the language syntax/semantics and the tensor/operator constraints
for valid DL computations. TrtaNFuzz has been shown effective in
generating valid input DL programs and substantially outperforms
both traditional model-level and API-level fuzzers. More impor-
tantly, compared with traditional fuzzing techniques that require
intensive human efforts for building generation/mutation strate-
gies [16, 28, 31, 32, 60, 76, 82], TrranFuzz is fully automated, and can
be easily generalized to different application domains and program-
ming languages. Meanwhile, TitaNFuzz directly leverages the gener-
ative capability of LLMs, which is based on token naturalness [26] and
aims to resemble what they saw in the training corpora. In this way,
TrtanFuzz can easily generate ordinary human-like DL programs.

However, such ordinary programs can only cover a limited set of
common/standard DL library behaviors, which may not be important
or interesting for testing. In contrast, unusual programs exhibit less
common behaviors and are more likely to cover code paths that are
not sufficiently tested, potentially revealing new bugs or vulnerabili-
ties. For instance, unusual programs may construct edge-case inputs
or use unconventional parameter combinations and API sequences.
Compared to Figure 1a, Figure 1b shows a historical bug-triggering
code for logicial_pr, where instead of using the same dtype, a bug
occurs when the dtypes are different. Such non-standard (unusual)
code snippets can be difficult for pre-trained LLMs to directly gener-
ate as it does not conform to the large amounts of well-formed code
snippets seen during pre-training.

Our Work. This paper proposes FuzzGPT, the first approach to
guiding LLMs to directly synthesize unusual input programs for
effective fuzzing. While the recent TrTANFUZzz work samples programs
from the natural probability distribution encoded in pre-trained LLMs,
FuzzGPT aims to shift the distribution towards unusual programs in the
search space to explore code paths rarely hit by ordinary programs. Fuz-
zGPT is mainly built on the well-known hypothesis that historical
bug-triggering programs may include edge-case/valuable code ingre-
dients important for bug finding. In the literature, researchers have
proposed various techniques to recompose such code ingredients
or insert them into new code contexts for exposing new interesting
bugs/vulnerabilities [9, 28, 59, 84]. However, such techniques require
intensive human efforts to both design such dedicated generators and
ensure the syntactic/semantic validity of the generated programs.
For example, according to prior work [28, 84], evenresolving the very
common undeclared-identifier issue can be non-trivial. Moreover,
it is hard to generalize such techniques to different domains, not to
mention the challenging DL library fuzzing problem. In contrast,
our key insight is that recent advanced LLMs offer a natural, gener-
alizable, and fully automated solution for leveraging such historical
programs — they can be easily prompted [51] or fine-tuned [50] to
digest such historical programs, and then generate more unusual
programs that resemble the historical ones and effectively exploit
their code ingredients. Compared with traditional techniques on

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

leveraging such historical information, FuzzGPT can implicitly learn

all the generation constraints (including language syntax/semantics,

DL computation constraints, and the new unusualness constraints),

and is fully automated. Moreover, while this paper focuses on the

challenging problem of DL library fuzzing, the FuzzGPT idea is gen-
eralizable to other application domains or programming languages

(e.g., testing/fuzzing for various compilers/interpreters, DB systems,

SMT solvers, or any software libraries with accessible APIs).

To implement FuzzGPT, we first construct a dataset of bug-triggering
code snippets by mining bug reports from open-source repositories
of the target DL libraries. Built on this dataset, FuzzGPT includes the
following strategies. (1) In-context learning [37]: we provide LLMs
with either a few examples of historical bug-triggering programs
(few-shot learning [7, 51]) or a partial bug-triggering program (zero-
shot learning [47, 58]) to either generate a new code snippet or to
autocomplete the partial code. (2) Fine-tuning [50]: we modify the
model weights by training on the extracted historical bug-triggering
programs to obtain fine-tuned LLMs that are specially designed to
generate similar bug-triggering code snippets. From both learning
strategies, FuzzGPT can prime the LLMs to generate bug-triggering
programs by capturing code ingredients within either the local con-
text examples or fine-tuning dataset.

To summarize, this paper makes the following contributions:

e Dimension. This paper opens up a new direction for generating
unusual input programs for effective fuzzing via LLMs. This paper
is the first to show that LLMs can be easily prompted/fine-tuned to
resemble historical bug-triggering programs or even directly fol-
low human instructions to generate unusual programs for fuzzing
real-world systems. Compared with traditional fuzzers for unusual
program generation, FuzzGPT is fully automated, generalizable,
and applicable to challenging application domains (especially for
software systems with accessible APIs).

e Technique. While ouridea is generalizable, we have implemented
FuzzGPT as an LLM-based fuzzer for DL libraries in this paper. We
implement three variants of FuzzGPTbased onin-contextlearning
and fine-tuning: 1) few-shot learning: a few examples of previous
bug-triggering code snippets are provided, 2) zero-shot learning:
a partially complete bug-triggering program is given, and 3) fine-
tuning: training a specialized LLM via learning bug-ingredients
from the historical programs. While FuzzGPT can be applied with
different LLMs, we build our strategies based on state-of-the-art
proprietary and open-source GPT-style LLMs for code, Codex [10]
and CoDEGEN [43]. Moreover, we also build a specific zero-shot
FuzzGPT variant by directly leveraging the instruction-following
capability of ChatGPT [45] without any historical information.

o Extensive Study. We study all FuzzGPT variants on two popular
DL libraries (PyTorch [49] and TensorFlow [62]). Our results show
that FuzzGPT achieves 60.70%/36.03% higher coverage than state-
of-the-art TrtanFuzz on PyTorch/TensorFlow. Overall, FuzzGPT
found 76 bugs on the latest versions of PyTorch and TensorFlow.
49 have already been confirmed as new bugs, with 11 high-priority
bugs or security vulnerabilities.

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

a = torch.tensor([0, 1, 10, 0], dtype=torch.int8)
b = torch.tensor([4, 0, 1, 0], dtype=torch.int8)
torch.logical_or(a, b)
torch.logical_or(a.double(), b.double())

ICSE *24, April 14-20, 2024, Lisbon, Portugal

a = torch.tensor([1, 0], dtype=torch.bfloat16)
b = torch.tensor([0, 1], dtype=torch.float32)
c = torch.empty(0, dtype=torch.float64)
torch.logical_or(a, b, out=c)

a) ordinary example code snippet from documentation

b) historical bug-triggering code snippet

Figure 1: Example code snippets. a) shows an ordinary code snippet where logicial_pr is used in a very standard way by initializing two

tensors with the same dtype. This code snippet is taken from the API documentation. b) shows an unusual code snippet for logicial_pr,

where instead of using the same dtype, a bug occurs when the dtypes are different. This code snippet is taken from a historical bug report.

2 BACKGROUND AND RELATED WORK

2.1 Large Language Model

Large Language Models (LLMs) have demonstrated impressive per-
formance across a wide range of NLP tasks by training on large
corpora of text data scraped from the Internet [20]. Recently, re-
searchers have begun adopting LLMs for code-related tasks, e.g., via
further fine-tuning LLMs on code snippets from open-source repos-
itories [17]. LLMs can be classified based on variations of the pop-
ular Transformer architecture [64] into: Encoder-only, Decoder-only
and Encoder-Decoder models. Decoder-only LLMs (e.g., GPT [7, 46],
Codex [10] and CopeGEN [43]) focus on autoregressive completion
tasks by learning to predict the probability of the next token given
previously generated tokens. Encoder-only (e.g., CodeBERT [17] and
GraphCodeBERT [24]) and Encoder-Decoder (e.g., CodeT5 [79] and
PLBART [4]) models on the other hand are designed for infilling tasks,
where the pre-training objective is to recover masked-out tokens or
token spans in the training data by using bi-directional context.

In order to apply LLMs for down-stream applications, there are
two main paradigms: Fine-tuning [50] and In-context learning [7, 51].
Fine-tuning is the process of updating the model weights by learning
the desired output from the given input of a specific downstream task
dataset. The resulting fine-tuned LLM can be treated as specialized
models designed to perform a particular task such as code summa-
rization [4] and program repair [72]. Different from fine-tuning,
which typically requires large downstream datasets to update the
model, in-context learning only requires a few examples/demon-
stration of the downstream task. In-context learning directly uses
the pre-trained LLM without any weight modification by construct-
ing an input which contains multiple (i.e., few-shot) examples of
input/output demonstrations and then the final task to be solved.
Through looking at the context, LLMs can directly learn the goal of
the specific task and expected output format without fine-tuning.
Various techniques have been proposed to improve in-context learn-
ing, in particular via example selection [35, 53], and via multi-step
reasoning using Scratchpad [44] or Chain-of-Thought [70]. Together,
in-context learning and fine-tuning are two different approaches to
prime LLMs for downstream tasks.

While the approach of FuzzGPT is general for different LLMs,
in this paper we mainly focus on the recent powerful GPT-style
models: Codex [10] and CoDEGEN [43], which are state-of-the-art
proprietary and open-source models for code, respectively. More-
over, we also directly leverage the instruction-following capability
of ChatGPT [45] for fuzzing.

2.2 Fuzzing with Historical Bugs

Fuzzing with historical bugs has been extensively studied for over
a decade. One of the pioneering techniques is LangFuzz [28]: Lang-
Fuzz first parses historical tests which have been known to cause

incorrect behaviors and extracts individual code fragments; then,
LangFuzz will generate code and further replace partial code with
extracted code fragments. Researchers have also mined fuzzer con-
figurations (e.g., grammar/statement probabilities) from historical
bug-triggering programs for more diverse generation [9, 59]. More
recently, JavaTailor [84] leverages extracted code ingredients from
historical bugs to synthesize new input programs for Java Virtual
Machine (JVM) fuzzing. Besides such generation-based or hybrid ap-
proaches, mutation-based fuzzers have also widely utilized such prior
bug reports or regression tests as high-quality input seeds for future
mutations, targeting C compilers [31], SMT solvers [71], and database
systems [66, 86]. Moreover, a recent study [85] shows that directly
reusing code snippets with minimal modification from historical
bug reports can also find interesting bugs in other C/C++ compilers.

FuzzGPT directly learns from historical bug-triggering code via
fine-tuning and in-contextlearning with LLMs. Unlike prior generation-
or mutation-based techniques which require extensive human efforts
to build dedicated generators and ensure syntactic/semantic validity
of generated programs [28, 84], FuzzGPT is fully automated and
generalizable. Moreover, it is extremely challenging to build such
traditional generators/mutators for DL programs due to the compli-
cated language and tensor/operator constraints, while FuzzGPT can
implicitly learn all such constraints using modern LLMs.

2.3 Fuzzing via Deep Learning

In addition to traditional fuzzing approaches, researchers have also
developed fuzzing tools based on Deep Learning (DL) techniques.
SeqFuzzer [83] is a network protocol fuzzer built on Long Short-term
Memory (LSTM) [27], a Recurrent Neural Network (RNN) [11]. RNN-
based fuzzers have also been used for fuzzing other systems such as
OpenCL compilers [12], C compilers [38], and PDF file parsers [22].
Likewise, Montage [33] has been proposed to fuzz JavaScript engines
by directly training the tree-based RNN to mutate existing seed ASTs.
Moreover, COMFORT [77] proposes to fine-tune the pre-trained
GPT-2 model to generate JavaScript programs, and further relies on
additional heuristics to generate inputs for the synthesized programs.
While the above work leverages the development of DL models for
fuzzing, they did not yet study modern LLMs for code. Recently, T1-
TANFUZz [13] demonstrates for the first time that modern LLMs can
be directly leveraged to perform end-to-end fuzzing of real-world sys-
tems, and can simulate both generation- and mutation-based fuzzing
studied for decades. TrTaNFuzz firstleverages Codex [10] to generate
high-quality seed programs and then leverages INCODER [19] with
an evolutionary fuzzing strategy to generate diverse code snippets.
TitaNFuzz has demonstrated state-of-the-art results for fuzzing DL
libraries and can find bugs that can only be uncovered with complex
API sequences. However, TiTaNFuzz is not specifically designed
to generate unusual programs, nor does it utilize historical bugs to
guide the fuzzing process.

ICSE 24, April 14-20, 2024, Lisbon, Portugal

In this work, we propose to leverage the historical bug-triggering
code information to further guide LLMs towards more effective
fuzzing. To our knowledge, this is the first work demonstrating that
LLMs can easily perform history-driven fuzzing (widely studied
for over a decade), while being fully automated, generalizable, and
applicable to the challenging domain of DL library fuzzing. Our
work differs from the recent TrtanFuzz work in terms of both the
overall approach/idea and the concrete techniques. TrtanFuzz di-
rectly leverages LLMs to generate valid programs resembling the
training corpora, where the vast majority would be common usages.
In contrast, FuzzGPT either prompts or fine-tunes LLMs to resemble
the historical bug-triggering programs, which would be extremely
rare in the training data and important for testing/fuzzing.

3 APPROACH

In this section, we describe our FuzzGPT approach of exploiting his-
torical bugs via Large Language Models (LLMs) to automatically fuzz
DL libraries. The key idea of FuzzGPT is to use LLMs and directly
learnfrom historical reported bugs to generate similar bug-triggering
code snippets to find new bugs. Existing work along this direction
requires extensive human efforts, and can hardly generalize to the
challenging domain of DL library fuzzing. In contrast, the recent ad-
vances in LLMs offer a natural, generalizable, and fully automated so-
lution - modern LLMs can be easily prompted or fine-tuned to digest
such historical programs and then generate programs that resemble
the historical ones via effectively exploiting their code ingredients.
Figure 2 shows the overview of FuzzGPT. We first systematically
mine bug reports from the target DL library repositories to collect
historical bug-triggering code snippets (Section 3.1). As FuzzGPT
aims to target specific DL library APIs, each bug-triggering code
snippet requires a corresponding buggy APIlabel. However, often-
times the exact buggy API may not be explicitly indicated within the
bug report. As such, FuzzGPT employs a self-training approach to
automatically generate buggy API labels using LLMs by prompting
with a few manually labeled examples. Next, using these pairs of ex-
tracted bug-triggering code snippets and buggy APIlabels, FuzzGPT
can start the fuzzing procedure to generate edge-case code snippets
(Section 3.2). In this work, we investigate two learning methods:
1) In-context learning: we prompt the pre-trained LLM directly
with either examples of bug-triggering code and buggy API pairs
(few-shot), or a partial/complete bug-triggering code (zero-shot),
and let the model generate/edit programs for a target AP, 2) Fine-
tuning: using the extracted dataset, we fine-tune the LLM to learn
from the bug-triggering code examples and patterns to generate new
bug-triggering code snippets for a target APL Finally, the generated
programs are executed with test oracles (e.g., CPU/GPU [69], or
automatic differentiation oracle [75]) for bug detection (Section 3.3).
While FuzzGPT is general for any generative LLMs, in this paper,
we focus on two specific LLMs: Codex [10] and CODEGEN [43]. Codex
isastate-of-the-art generative model fine-tuned on open-source code
repositories initialized from the GPT-3 [7] model weights. Unlike
Codex whose model weights and training data are not released, CoDE-
GEN is an open-source generative model. Since we target DL library
APIs exposed in Python, we use the Python version of CoDEGEN,
fine-tuned on Python GitHub code [43]. In FuzzGPT, we directly use
both Codex and CopEGEN models - the larger Codex model allows

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

us to show the full potential of fuzzing when using LLMs, while the
open-source CODEGEN models can be used to evaluate the scaling
effect and test out fine-tuning strategies. We next describe each step
in FuzzGPT in more detail.

3.1 Dataset Construction

To facilitate learning from historical bugs, FuzzGPT requires a bug-
triggering code dataset which contains pairs of bug-exposing code
snippet and its corresponding buggy DL library APL

3.1.1 Mining Bug History from GitHub. First, we implement an
HTML crawler to collect all the issues and pull requests (PRs) from
the GitHub issue-tracking systems of our target libraries. Then, we
focus on identifying bug-triggering code snippets from two sources:
(1) Issues associated with accepted or pending PRs. We search in
these bug reports for all code blocks, which contain code snippets to
reproduce the bug, and concatenate them together. (2) PRs contain-
ing code blocks in their commit messages. We further consider PRs
because some PRs may fix bugs without corresponding issues. For
each extracted issue or PR, we extract its title as well and include that
in prompts for few-shot learning and fine-tuning. After mining bug-
triggering code snippets, we will next perform automated annotation
to further label each code snippet with a corresponding buggy APL

3.1.2 Automated Buggy API Annotation. Each code snippet in our
dataset often involves multiple DL APIs. As such, the exact buggy API
cannot be directly extracted. In order to annotate the buggy API for
eachbug-triggering code example, we propose a self-training [55, 87]
approach where we feed a few-shot prompt (shown in Figure 3) to
LLM and use the model completion as the buggy APL We first provide
manual annotation of the buggy API name for several randomly cho-
sen bug-triggering code snippets. These manually annotated pairs
become the few-shot examples used as part of the input to the LLM.
In Figure 3, the few-shot examples are constructed with the chosen
bug-triggering code snippet, the extracted title of the corresponding
issue/pull request (e.g., Tensor.apply_ fails), and finally, the man-
ually annotated buggy API name (e.g., torch. Tensor.apply_). Next,
we combine the few-shot examples with a target bug-triggering code
snippet to create a prompt, and then query the LLM to obtain the
predicted buggy API name for the given code snippet. Note that the
annotation overhead is minimal, since we only need to annotate a
few examples (6 for this work as shown in Section 4) for the targeted
library due to the in-context learning capability of modern LLMs.

Our proposed method is similar to self-training [55, 87] where a
classifier is first trained on a small labeled dataset and then used to la-
bel a larger unlabeled dataset. In our case, we directly use LLMs with
few-shot learning from a small number of manual annotations to pro-
vide annotations for the large amounts of extracted bug-triggering
code snippets in our dataset. Our main goal with labeling is to steer
the LLMs to generate many programs for each targeted DL API by
providing pairs of API and code examples. Note that our automated
API annotation procedure may mislabel the precise buggy API in
abug-triggering program. Meanwhile, even if some issue is misla-
beled with a different API that is also called in the program, the LLM
can still correctly learn the basic task of generating a program that
calls the target API for effective fuzzing (as further confirmed by our
experimental results in Section 6.3.4).

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

g/
DL library repos » torch. gather
DL Libraries DL Library Target API
API: torch.Tensor.apply_

=

Webcrawler

Title: Tensor.apply_fails

In-context learning

x = torch.gather(
01, 2, 31, [D

uzzing output

select x = torch.randn(3, 3)

example | *-2pply-(lanbda a: a+1) 7]
APT: torch.cat Title: Support legacy :’]

empty tensor behavior in cat !

x = torch.randn(4, 3) LLM

ICSE *24, April 14-20, 2024, Lisbon, Portugal

POTENTIAL
BUGS

torch.cat([[1, x1, 1)
extract In-context examples

relevant

Fine-tuning
Y x = torch.randn(2, 2) CPU

y = torch. tensor([o, 11)

X finetune
& n
Issues Pull Requests IS,

LLM Fine-tuned LLM

/ Auto
Diff

output = torch.gather(GPU

X, 0, y)
= differential testing
fuzzing output /
crash

l API: torch.Tensor.apply_
Title: Tensor.apply_ fails

x = torch.randn(3, 3) x = torch.randn(3, 3)
x.apply_(lambda a: a+1) II - | x.apply_(lanbda a: a+1) EOMpL
Buggy code snippet dataset

human annotation

1
API: torch.cat Title: Support legacy
empty tensor behavior in cat

label x = torch.randn(4, 3)
—» | torch.cat([[], x], 1) I

labeled buggy code
snippet dataset

x = torch.gather(
[, 2, 31, [D I

fuzzing outputs

—>

Figure 2: Overview of FuzzGPT.

x = torch.randn(3, 3)

x.apply_(lambda a: a+1)
Title: Tensor.apply_ fails >
Buggy API: torch.Tensor.apply_

Buggy code snippet dataset

manual
annotation

examples

N x = torch.randn(3, 3)
x = torch.Tensor([1,1,11) x.apply_(lambda a: a+1)
x.index_fill_(@, torch.LongTensor([100]1), -1)
= S S i
a= Zorcrfv:ﬁnzgr(ﬂ,W,WJ)Acuda() ¥ 5’ human annotated
a.1lnaex 1] N
- = 59 ST bu code snippet dataset
torch.LongTensor([1001).cuda(), -1) N 88Y P

Title: x.index_fill_() on cuda tensors
doesn’t do bounds checks

Buggy API:
+ query LLM

torch.Tensor.index_fill_

Model Completion

Figure 3: Prompt for buggy API annotation.
3.2 In-contextlearning and Fine-tuning

Using the extracted and annotated buggy code snippet dataset, Fuz-
zGPT starts the process of learning to generate edge-case code. At
a high level, LLM-based learning methods can be separated into
two main approaches: In-context learning and Fine-tuning. In-
context learning involves directly using a pre-trained LLM without
adjusting any of the model parameters. Instead, the input to the LLM
is prepended first with instructions and examples demonstrating the
task before providing the current input. In-context learning allows
the LLM to prime its output by learning not only the desired output
format (e.g., provide a yes or no answer) but also the task domain
(e.g., translate English to French) from the surrounding input context.
Fine-tuning on the other hand aims to modify the LLM parameters
through training on a specific dataset to create a specialized model.

In FuzzGPT, we follow prior work [7] and systematically explore
different learning settings. Specifically, we design three different
learning strategies: few-shot, zero-shot, and fine-tune, each uses
the annotated bug-triggering code dataset differently to generate

fuzzing outputs. Figure 4 illustrates these three strategies, which are
presented in more detail below.

3.2.1 Few-shot Learning. We follow the classic few-shot in-context
learning [7] by prepending the target query with examples from
the annotated bug-triggering code snippet dataset. Figure 4 (@)
shows how the few-shot learning prompt is constructed. Our ex-
ample format consists of the API name (e.g., torch.Tensor.apply_),
bug description which is obtained from the title of the issue/PR (e.g.,
Tensor.apply_ fails), and finally the bug-triggering code snippet.
The purpose of these examples is twofold. Firstly, they are intended
to prime the LLM towards generating the desired output format.
Secondly, they enable the model to learn to produce similar edge-case
code snippets by observing historical bug-triggering code snippets,
without having to modify the model parameters. In few-shot learn-
ing, each prompt consists of K examples (denoted as K-Shot) and
the actual query (the target API and bug description header). Then,
LLMs can generate new predictions based on the prompt.
Chain-of-Thought Prompting. An important component of few-
shot learning is the prompt used. Our prompt design is inspired by
chain-of-thought (CoT) [70] prompting, where instead of directly
generating the final output, the prompt asks the model to perform the
task in a step-by-step manner. Following the format of in-context ex-
amples, we first include the target APIname (e.g., API: torch.gather)
in our query, and then we ask the model to produce a description
of a possible “bug” (Bug description:) before generating the actual
“bug-triggering” code that invokes the target APL The predicted bug
description provides an additional hint to the LLM, indicating that the
generated code should try to cover specific potential buggy behavior.
Let M be the LLM that outputs the probability of generating a
sequence. Let Ex = {< p1.dy,¢1 >,...< px.dg,cx >} be the con-
catenation of K examples consisting of tuples of example API p;,
bug description d;, and code snippet c;. Let prarget be the target API
query and dg be the bug description generated using few-shot learn-
ing. The probability of generating the final output code cg using

ICSE *24, April 14-20, 2024, Lisbon, Portugal

-liAPI:mrch.Tensor.apply_ —
Title: Tensor.apply_ fails R |

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

° Few-shot learning
-

-

API: torch.Tensor.apply <——

x = torch.randn(3, 3)
x.apply_(lambda a: a+1)

e Fine-tuning
|
L1 L API: torch.Tensor.appl

Bug description: Iensor.apply fails

| Bug description: Tensor.apply fail
x = torch.randn(3, 3)
x.apply_(lambda a: a+1)

example —4

annotated buggy code snippet dataset

>
example x = torch.randn(3, 3)

|
|
| x.apply_(lambda a: a+1)

| torch.gather | ¥
K < DL library target API)
examples gradient update
prompt < N :0 Zero-shot | ¥
I learning 4 The following code reveals a bug

.

,—' in torch.gather Sl
! x = torch.randn(3, 3)

target API L
| fine-tuned LLM

prompt

target __ API: torch.gather «—— target API
query Bug description:

zero-shot completion v
Edit the code to use torch.gather
x = torch.randn(3, 3)

x.apply_(lambda a: a+1)

API: torch.gather «—— target API

rompt —
P P Bug description:

zero-shot editing

Figure 4: Fine-tuning, zero-shot, and few-shot learning for DL Library Fuzzing,.

few-shot learning can be formalized as this conditional probability:
M((cgs|Ek, prarget) = M(cis|Ek, Prargets dis) - M(dgs|Eks Prarget)

3.2.2 Zero-shot Learning. We now describe two FuzzGPT variants
under the zero-shot learning scenario:

Zero-shot Completion (default). In this variant, the input is only
made up of a partial code snippet. The partial code snippet is created
from historical bug-triggering code snippet dataset where we ran-
domly remove a portion of the suffix code. Figure 4 (@) shows how
the zero-shot completion input can be created. We first include a
natural language comment # The following code reveals a bug in
{target_api} which allows us to apply zero-shot learning to any ar-
bitrary target API. We then randomly pick an example bug-exposing
code snippet from the dataset. Following, we randomly remove a
portion of the selected bug-triggering code snippet’s suffix and only
keep the prefix lines as the input for the LLM to complete it.

Again let M be the LLM, c, be the selected code snippet with
the first j lines (ce[: j]), and peomp be the completion prompt. The
probability of producing zero-shot completion code c;s-comp can
be formalized as M (czs-comp|PcompsCe[: j1), with ce[: j] +czs-comp
being the complete fuzzing code snippet, including the partial code.
Zero-shot Editing. In this variant, the input is created from a com-
plete code snippet in our historical bug-triggering dataset. Figure 4
(@) also shows an example of the zero-shot editing. To begin with,
we use the natural language comment # Edit the code to use
{target_api} which indicates to the LLM that we want to perform
editing and we should directly reuse a large part of the original code.
Similar to zero-shot completion, we randomly select a bug-triggering
code and attach it to the end of the input. Different from zero-shot
completion, where the model autocompletes the end of the code
snippet, editing is designed to allow the LLM to reuse all parts of his-
torical bug-triggering code snippet to generate new fuzzing output.
Let pegit be the editing prompt. The zero-shot editing output c,q_e gt
can be formalized as this conditional probability: M(c g edit|Pedit-Ce)

Compared with few-shot learning, where multiple historical bugs
are provided to the LLM as examples, zero-shot learning can directly
use the existing code portions from historical bugs and only need to
generate a partial program (completion) or replace a small portion
of the code to use the new target API (editing). These concrete code
lines from prior bug-triggering code can be useful to test new APIs as
they can include special values (e.g., NaN), edge-case tensor shapes/di-
mensions, and other code patterns/ingredients useful for bug finding

(e.g., unconventional API usages). By using zero-shot learning, Fuz-
zZGPT can directly make use of these historical bug-triggering code
snippets to target additional APIs.

While TrtanFuzz [13] also utilizes LLMs in a zero-shot manner,
it cannot be easily modified in order to achieve the goal of this paper.
TrtanNFuzz relies on using the INCODER model (infilling LLM) to
mutate existing seed code snippets generated using Codex. However,
this mutation process requires the generated seeds to be well-formed
and contain vast amounts of valid DL APIs which can be extremely
difficult to obtain in historical bug-triggering code snippets.

3.2.3 Fine-tuning. Apart from in-context learning (few-shot and
zero-shot) to learn from historical bugs which only uses the original
pre-trained LLMs, fine-tuning directly modifies the model param-
eters by training on the historical bug code snippet dataset. Figure 4
(@) shows how the fine-tuning procedure works and also the input
to the fine-tuned model during inference time to produce the fuzzing
outputs. Each training sample follows the same format as few-shot
examples — made up of the API name, bug description and also the
bug-triggering code snippet. We start with the original pre-trained
LLM and then update the model weights through gradient descent
by training to auto-regressively predict each training sample.

Let T={t1,t2,...,tn } be the training token sequence obtained by
tokenizing the training sample, T<s = {t1,t2,....ts—1} be the token
sequence generated by the model so far and M be the LLM which
outputs the probability of generated the next token given the pre-
viously generated tokens. The fine-tuning loss function is defined
as: Lfine-tune = —%Z?:JOQ (M (ti | T<i))

For each DL library, we fine-tune a separate model using the
bug-triggering code snippet collected from that library. By fine-
tuning on these historical bug-triggering code snippets, the LLM
can learn from different kinds of bug-triggering patterns/ingredi-
ents for the targeted library. The input to the fine-tuned model
follows the same pattern as the few-shot approach where we con-
struct a prompt based on the specific target API. Let My, be the fine-
tuned LLM which outputs the probability of generating a sequence
with target API prompt parget. The fine-tune model output code cg
can be formalized as this conditional probability: Mg (cq|prarget) =
Mg (eq |Ptarget, dg) - Mg (dg Ptarget)

3.3 Oracle

Using the generated fuzzing outputs, we test the DL libraries through
both general and DL-specific oracles:

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

Crashes. We detect bugs caused by unexpected crashes found when
executing the fuzzing output. These crashes can include aborts,
segmentation faults, and INTERNAL_ASSERT_FAILED. Bugs exposed by
such crashes may even further trigger security vulnerabilities.
CPU/GPU oracle. We detect wrong-computation bugs by identify-
ing inconsistencies between the output values across two execution
backends (CPU and GPU). We follow prior work [13, 69] to use a
significance tolerance threshold for comparison in order to account
for the non-deterministic nature of particular library APIs when
executed on different backends.

Automatic Differentiation (AD) oracle. We further detect gra-
dient computation bugs in the crucial AD engines of DL libraries,
which support efficient training of DL models. We apply the AD ora-
cle proposed in prior work [75] and compare the computed gradients
between reverse-mode AD (the most commonly used mode in DL
libraries), forward-mode AD, and numerical differentiation (ND).

4 IMPLEMENTATION

Dataset construction. We scraped the GitHub repositories of tar-
geted libraries using the requests library [3], and finally collected
1750 and 633 bug-triggering code snippets for PyTorch and Tensor-
Flow, respectively, from their historical issues or PRs. The lower
number of TensorFlow is because it has fewer PRs than PyTorch,
as TensorFlow developers are not as active in confirming bugs/PRs,
and rarely include code blocks in their PRs. Note that we perform
additional cleaning on the extracted code to filter out error messages
and remove code lines that contain only the inputs and outputs of
executions. We also did not consider the code snippets that fail to
pass syntax checking or are longer than 256 tokens.

For buggy API annotation, we manually annotate K =6 randomly
sampled examples and use them as in-context examples. For each
unlabeled example, we query Codex to complete the buggy API with
temperature = 0 (deterministic greedy decoding) to get the most
confident prediction following [67].

Language models. We evaluate on two specific generative LLMs
Codex (code-davinci-002) and CopEGEN (350M/2B/6B-mono). Un-
like Codex whose training data and model weights are not released,
CoDEGEN [43] is a widely-used open-source generative model [15,
41], which provides trained models of various sizes and allows fine-
tuning. We access Codex through its API and use the PyTorch im-
plementation of the CopEGEN models on Hugging Face [29].
Fine-tuning. We perform fine-tuning on the CopEGEN models be-
cause Codex is not open source. We fine-tune a separate model for
each studied DL library. To update the model parameters for each
targeted library, we use batch_size=32, learning rate=5e-5, and train
the models with AdamW optimizer [39] for 10 epochs, using a linear
learning rate scheduler with 10% warmup proportion.

5 EVALUATION

5.1 Research Questions

We investigate the following research questions in our experiments:

o RQ1:How doesdifferentlearning paradigms of FuzzGPT compare
against each other?

o RQ2: How does FuzzGPT compared against existing fuzzers?

e RQ3: How do the key components of FuzzGPT contribute to its
effectiveness?

ICSE *24, April 14-20, 2024, Lisbon, Portugal
e RQ4:1s FuzzGPT able to detect new bugs?

5.2 Experimental Setup

Subject systems. We evaluate FuzzGPT on fuzzing PyTorch and Ten-
sorFlow, two of the most popular open-source DL libraries. For RQ1,
we separately run FuzzGPT with few-shot, zero-shot, and fine-tune
settings to evaluate their individual effectiveness for fuzzing (de-
noted as FuzzGPT-FS, FuzzGPT-ZS, and FuzzGPT-FT respectively).
We use FuzzGPT-FS as the default implementation for FuzzGPT if
not specified explicitly. For RQ2, We compare our approach with
prior work on PyTorch (v1.12) and TensorFlow (v2.10), the same
version as the most recent work TrtaNFuzz[13], and we use the
same set of public Python APIs as TrtaNFuzz as well. For RQ3, due
to huge costs, we conducted our ablation study experiments for all
three settings of FuzzGPT on 50 APIs randomly sampled from one
example DL library PyTorch, and report the average results of 5 runs
following prior work [13]. For RQ4, we run all the generated tests
on the nightly version of PyTorch and TensorFlow to find previously
unknown bugs (Section 6.4).

Baselines. We compare FuzzGPT to state-of-the-art DL library
fuzzers, including state-of-the-art API-level (FreeFuzz [69], Deep-
REL [14], and VFuzz [75]) and model-level (Muffin [23]) fuzzers, as
well as the most recent TiTaNFuzz [13]. We run each tool with its
default configuration on both libraries, except that Muffin was only
executed on TensorFlow since it does not support PyTorch.
Environment. We use a 64-core workstation with 256 GB RAM
and running Ubuntu 20.04.5 LTS with 4 NVIDIA RTX A6000 GPUs.
Fuzzing budget. Our default setting generates 100 programs for
each target API. In the Few-shot approach, for each target AP, we in-
dependently construct 10 prompts, each with 6-shot examples picked
randomly, and feed each prompt to the LLM to sample 10 genera-
tions. Similarly, in the zero-shot approach, we randomly choose 10
different examples from our dataset, and use the partial/complete
code to construct 10 prompts to perform completion/editing. In the
Fine-tune approach, we use a fixed task description, and query the
model for 10 times to generation all 100 programs for a target API.
Generation. Our default setting when using all LLMs for gener-
ation uses top-p sampling with p = 0.95, temperature = 0.8, and
max_token=256 following prior work [13].

5.3 Metrics

Detected bugs. Following prior work on DL library fuzzing [13, 48,
65, 68, 69, 73, 75], we report the number of unique detected bugs.

Unique crashes. Besides counting all bugs, we also count the num-
ber of unique crashes as another proxy for fuzzing effectiveness.
Unique crashes are widely used in the literature for evaluating
fuzzing technique [18, 30, 40]. Note that our definition in this work is
more strict: First, we manually examine the root cause of each crash.
If different programs crash due to the same reason, we count them as
one unique crash. Second, all the unique crashesreported in our study
have been confirmed by developers as unique and real crash bugs.
Code coverage. Code coverage has been widely adopted in software
testing and recently DL library/compiler testing [13, 23, 36, 69, 75].
We follow recent DL library fuzzing work [13, 23, 69, 75] and measure
Python line coverage with the coverage.py tool [1]. We excluded ad-
ditional coverage added by the oracle checking for fair comparison.

ICSE *24, April 14-20, 2024, Lisbon, Portugal

API coverage. We evaluate the number of covered DL APIs as an
important metric of test adequacy following prior work on fuzzing
DL libraries [13, 14, 69, 75].

Unique valid programs. A generated program is considered valid
if the program executes successfully without exceptions and actually
invokes the target API at least once. We also remove the programs
already generated and only consider unique programs.

6 RESULT ANALYSIS
6.1 Comparison of Learning Paradigms.

We first compare all our three FuzzGPT variants (few-shot, zero-
shot, fine-tune) against each other to understand their performance.
Table 1 summarizes the results. Columns #APIs, #Prog., and Cov
present the number of APIs, unique programs, and lines covered.
More specifically, Valid means only unique programs without run-
time errors are considered, All means all generated unique programs
are considered. Lastly, Valid(%) computes the ratio of valid programs
over all generated unique programs. Figure 5 further shows the cover-
age trend with respect to the number of generated programs per API.

We can observe that FuzzGPT-FS has the highest number of
covered APIs and unique (valid) programs on both PyTorch and Ten-
sorFlow. The reason could be that it provides the LLM (i.e., Codex)
with a rich context (including K = 6 bug examples, which very likely
contain different buggy APIs), enabling it to learn and combine a
variety of bug patterns and use a diverse set of APIs.

FuzzGPT-ZS has a much lower valid rate compared with other
variants. The reason is that it is required to complete existing partial
programs. In this way, the search space is more constrained com-
pared to other variants, and the task is more challenging since the
newly generated code needs to be compatible. Meanwhile, FuzzGPT-
ZS may trigger more interesting interactions between APIs in the
existing partial programs and newly generated APIs. Furthermore,
the partial code reused from bug history can also be very valuable,
and may already cover interesting program paths/behaviors. As a
result, FuzzGPT-ZS even achieves the highest coverage on PyTorch.
FuzzGPT-ZS performs relatively worse on TensorFlow, potentially
because there are fewer snippets (only 633, which can hardly cover
all 3316 TensorFlow APIs) to reuse for TensorFlow.

FuzzGPT-FT achieves comparable code coverage on both libraries,
and has the highest valid rate on PyTorch, even with a smaller model
(CopEGEN-6B). The results suggest that fine-tuning can be a very
effective approach for fuzzing a specific library, since the fine-tuned
model has learned from all collected buggy patterns via updating
model parameters, and can “select” or “mix” the learned buggy in-
gredients to target a specific API during generation. On the contrary,
few-shot consumes a limited number of in-context examples, and
zero-shot relies on one partial example at each inference step. Never-
theless, fine-tuning requires collecting a (high-quality) fine-tuning
dataset, and training a different LLM for every different task (which
can be costly in terms of computation resources and storage).

FuzzGPT demonstrates the ability to generate fuzzing inputs us-
ing techniques from both in-context learning and fine-tuning. From
the coverage trend in Figure 5, we observe that in all three variants,
the coverage does not saturate even after all 100 code snippets get
generated, showing the power of LLMs in learning from historical

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

38000

pe 140000
36000 9 Iy

130000
34000

Code coverage
Code coverage

/ . _.,';rﬁf“"*—.
32000{ o7 & 120000 e
.. @ FuzzGPT-FS T @ FuzzGPT-FS
* -®- FuzzGPT-2S * -®- FuzzGPT-2S
30000 - FuzzGPT-FT 110000 './' -~ FuzzGPT-FT
20 40 60 80 100 20 40 60 80 100

Generated programs per API # Generated programs per API

(a) PyTorch (b) TensorFlow
Figure 5: Coverage trend of FuzzGPT-FS/-ZS/-FT.

bug-triggering datasets to continuously generate valuable fuzzing
programs that can obtain more coverage.

Table 1: Comparison of learning paradigms.

| # APIs | #Prog.

l Paradigm | Valid(%) | Cov
| | Valid All | Valid All | |
FuzzGPT-FS 1377 1588 42496 154904 27.43% 35426
PyTorch FuzzGPT-ZS 1237 1553 7809 132111 5.91% 38284
FuzzGPT-FT 1223 1546 31225 112765 27.69% 36463
FuzzGPT-FS 2309 3314 54058 310483 17.41% 146487
TensorFlow FuzzGPT-ZS 1460 3157 4650 233887 1.99% 126193
FuzzGPT-FT 1834 3292 31105 253216 12.28% 125832

6.2 Comparison with Prior Work

We compare FuzzGPT-FS/-ZS/-FT against state-of-the-art fuzzer
TitaNFuzz and other recent DL library fuzzers. All techniques are
applied under their default configurations.

API and code coverage. As shown in Table 2, all three variants
of FuzzGPT significantly outperform all existing fuzzers including
state-of-the-art TrTANFUZz in code coverage. In particular, the best-
performing variants FuzzGPT-FS/FuzzGPT-ZS achieve state-of-the-
art results of 54.37%/33.72% line coverage on TensorFlow/PyTorch,
36.03%/60.70% improvement over TITANFuzz. We also observe an
interesting fact that FuzzGPT has similar API coverage with TITaN-
Fuzz but has much higher code coverage. This demonstrates that
FuzzGPT can cover much more interesting code behaviors/paths
for DL libraries. Both FuzzGPT and TitanFuzz rely on LLMs to
fully automatically generate (or mutate) programs and significantly
outperform prior techniques (FreeFuzz, DeepREL, VFuzz, Muffin) in
terms of API coverage, showing the superiority of LLMs for fuzzing.

Table 2: Comparison with prior work.

| PyTorch | TensorFlow

| Code Cov APICov | Code Cov APICov

Codebase Under Test | 113538 (100.00%) 1593 | 269448 (100.00%) 3316
FreeFuzz 15688 (13.82%) 468 78548 (29.15%) 581
DeepREL 15794 (13.91%) 1071 82592 (30.65%) 1159
VFuzz 15860 (13.97%) 1071 89722 (33.30%) 1159
Muffin NA NA 79283 (29.42%) 79
TrranFuzz-seed-only 22584 (19.89%) 1329 103054 (38.35%) 2215
TrranFuzz 23823 (20.98%) 1329 107685 (39.97%) 2215
FuzzGPT-FS$-25 32305 (28.45%) 1296 130312 (48.36%) 1937
FuzzGPT-FS 35426 (31.20%) 1377 | 146487 (54.37%) 2309
FuzzGPT-Z$ 38284 (33.72%) 1237 126193 (46.83%) 1460
FuzzGPT-FT 36463 (32.12%) 1223 125832 (46.70%) 1834

Crash detection. We compare the bug finding capabilities of Fuz-
zGPT and TrtanFuzz on an example library PyTorch using the num-
ber of unique crashes as a metric. We did not include inconsistency
bugs in this comparison, because crashes are easier to measure and
can serve as an approximation of bug finding capabilities [30]. We

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

FuzzGPT-28 (7) FuzzGPT-FS (7)

FuzzGPT-2S (5) FuzzGPT-Fs (8)

3 a4

Fnzz((;l’)Tj‘l: . T"‘(";S‘" PuszGPT-FT [. 3 TitanFuzz

0 ey , ©

| [

‘\\ o z \ 0

\ 1 \
1 0 0

\ \ 3
\\ 0 A 0
N\ 0 0 \ 0 ®

0

(a) Direct crashes. (b) AD Crashes.

Figure 6: Venn diagram of unique crashes

24508
27000

24008

ge

26500

23500 26600

600

code coverage
code cover

) 25500
23008

valid prog.

400 25000

e

200 24500 50

code coverage
= g = valid prog.

e code coverage
2508 { =g = valid prog

CodeGen-350M CodeGen-2B CodeGen-6B Codex

CodeGen-350M CodeGen-28 CodeGen-6B Codex

(a) Few-shot (b) Zero-shot
Figure 7: FuzzGPT-FS/-ZS with model size scaling

run both tools with their default settings, and execute the programs
directly to detect crashes. In addition to direct execution, we also
execute all programs with AD oracles to detect more crashes. Fig-
ure 6 shows the Venn diagram comparison of FuzzGPT-FS/-ZS/-FT
and TrtanFuzz where the number in the parenthesis is the number
of total crashes found by each technique. First, we observe that all
three of our techniques can find more crashes in total (including
both AD and direct execution crashes) compared with the baseline of
TrtanFuzz, e.g., our default FuzzGPT-FS detects 2.5 times as many
unique crashes as TITaANFuzz. Moreover, by combining FS/ZS/FT
together, FuzzGPT can detect 19 distinct crashes in total, with 14
unique crashes that cannot be found by TitanFuzz, while only 1
crashis uniquely found by TrranFuzz, highlighting the effectiveness
of FuzzGPT in generating unusual crash-triggering programs with
the help of historical bug-triggering code snippets.

Generation efficiency. We further discuss the generation efficiency
for FuzzGPT and the strongest baseline TrTaNFuzz. Since TitanFuzz
uses Codex to first generate 25 seed programs and then performs
mutations with INCODER, we apply FuzzGPT-FS to only generate 25
programs using Codex (denoted as FuzzGPT-FS-25). According to
Table 2, even FuzzGPT-FS-25 can substantially outperform TiTAN-
Fuzz with much lower cost (TitaNFuzz further involves additional
mutations with INCODER for each API), demonstrating that LLMs like
Codex can effectively leverage historical bug-triggering programs
to generate valuable programs for fuzzing. Moreover, the mutation
phase of TrtanFuzz does not bring significant coverage gain com-
pared to its seed-only version (i.e., TiITaANFUzz-seed-only), while
FuzzGPT’s coverage does not saturate even after 100 generations
(Figure 5). Please note that overall it is hard to precisely compare
the efficiency of techniques using different LLMs (due to different
CPU/GPU/Cloud costs), and we tried our best to make the discussion
fair here.

6.3 Ablation Study

ICSE *24, April 14-20, 2024, Lisbon, Portugal

6.3.1 Few-shot Learning. We first study the various design choices
for FuzzGPT-FS which provide the LLMs with several real bug-
triggering code examples in the prompt. We compare different mod-
els and variants of the prompting strategies.

Model size. We first evaluate the performance of FuzzGPT-FS with
the model size scaling. Figure 7a plots the code coverage and # of valid
programs generated as we increase the model size for all 5 runs (with
lines representing the average values). We can see that larger models
are able to generate more (unique) syntactically and semantically
correct programs. We can also observe a clear gain in coverage with
the increase of model parameters (from CoODEGEN 350M to 2B and
finally 6B), and that CODEGEN-6B can already achieve comparable
performance compared to Codex in terms of coverage.
Chain-of-Thought prompting. We now examine the effective-
ness of the bug description in our few-shot template. Our default
prompting strategy w/ CoT provides natural language explanation
to the buggy code (shown in Figure 4), which can be seen as chain-
of-thought prompting as it instructs the LLM to first generate the
possible bug reason (in natural language) and then generate code
conditioned on it. The baseline strategy w/o CoT removes the Bug
description: ... component from the prompt and only asks the
model to generate programs from the specified API. As shown in Ta-
ble 3, including the bug description significantly improves the code
coverage, indicating that it is beneficial to give LLMs some intermedi-
ate context information to “reason” about the buggy patterns. Table 3
also shows that including natural language description in each exam-
ple encourages the model to generate more unique APIs, potentially
suggesting that the model first generates more diverse natural lan-
guage description which affects the later code generation. The lower
valid rate is probably because the generated programs are more likely
to cover some edge-cases and trigger run-time exceptions.

Table 3: FuzzGPT-FS w/ or w/o CoT prompting.

Prompt | Valid APIs All APIs | Valid Prog. All Prog. | Valid(%) | Cov

23945

22922

w/ CoT 190 428 1092 4885 22.36%
w/o CoT 181 377 1346 4798 28.05%

A i ey -

=
B
3
3

4 /

© 24000 /

3 4

© 23500 4

v

2

S 23000 e code coverage

w—gy= = valid prog.

3
3

@
2
38

valid prog.

0 2 4 6 8 10
K shot

Figure 8: FuzzGPT-FS as the number of examples K increases.

of examples. We study the effect of K, the number of examples in
the context. Figure 8 shows trend of the code coverage and # of valid
programs as we increase the number of examples. We first notice that
having no examples (K =0) is by far the worst in terms of both cover-
ageand valid programs generated. As we slowly increase K the cover-
ageimproves drastically, demonstrating the benefit of using few-shot
learning to provide in-context examples for the LLM to learn from.
However, we see that the coverage actually begins to decrease as we
add more examples. This could be due to having too many prior his-
torical bug-triggering examples, causing the LLMs to restrict its gen-
eration creativity and get distracted. In fact, it has been also observed

ICSE 24, April 14-20, 2024, Lisbon, Portugal

in prior work [74] on NLP that the distracting prompt structure, with
more few-shot examples, can decrease the LLM’s performance.

6.3.2 Zero-shot Learning. Model size. Figure 7b shows the code
coverage and # of valid programs generated using FuzzGPT-ZS as
we vary the size of the model used. We first observe a clear trend of
improvement as we increase model size, except that the coverage
drops for Codex. One reason could be Codex generates much more
valid programs, and may miss coverage obtained during exception-
handling code (covered by invalid programs). Additionally, this could
also be due to the usage of partial programs in the zero-shot setting
where we directly re-use part of the historical bug-triggering code.
As such, smaller models like CODEGEN can obtain a high coverage
results without needing to generate a complete code snippet required
in the few-shot setting. Nevertheless, we still observe that larger
models like Codex is able to achieve the highest number of generated
valid programs which are important to test DL libraries.

Prompting Strategy. We evaluate three different zero-shot prompt-
ing strategies: editing (to edit a complete program), completion
(to complete a partial program, our default zero-shot variant), and
a baseline completion-NL where only a natural language descrip-
tion and no code is given to the LLM for completion. As shown
in Table 4, completion achieves significantly higher coverage than
completion-NL, highlighting the effectiveness of including partial
historical bug-triggering programs in the prompt. It is also note-
worthy that completion has lower valid rate than completion-NL,
because the partial code contains unusual patterns and thus is harder
to generate semantically valid completions. The extremely low valid
rate of editing is because editing an existing program to use new
APIs fully automatically is an even more challenging task for Codex.

Table 4: FuzzGPT-ZS with different prompting strategies.

Prompt | Valid APIs AllAPIs | ValidProg. AllProg. | Valid(%) | Cov
editing 22 304 20 1609 122% | 19440
completion-NL 192 400 506 4972 10.17% | 22917
completion 112 362 238 3470 6.86% | 25893

6.3.3 Fine-tuning. Model size. We study the fine-tuning perfor-
mance with different model sizes. Table 5 shows that fine-tuned
CoDEGEN-6B, the largest CoDEGEN model studied, does achieve the
highest code coverage. Compared to the original CODEGEN (row 6B
w/o FT), our fine-tuned model significantly improves the number of
valid programs and code coverage. Note that although the original
CopEGEN model can cover more library APIs (given the huge number
of code tokens seen during pre-training), it cannot achieve high code
coverage as the model is not specialized for DL code generation and
has a much lower valid program rate (only 10.17%). With fine-tuning,
another interesting observation is that larger models are not always
better. For example, the 2B model has the most unique valid programs.
This could potentially be explained with the validity-unusualness
trade-off: as we fine-tune LLMs towards unusualness-favored gener-
ation, we may lose some validity-preserving information, while both
contribute to code coverage and the ultimate bug-finding capability.
Prompting strategy. According to Table 6, similar to the few-shot
results, including bug description in the fine-tuning process also
helps the fine-tuned LLM to generate much more diverse outputs
(i.e., more unique and valid APIs/programs) and achieve higher cov-
erage. Another interesting finding is that, unlike in FuzzGPT-FS,

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

Table 5: FuzzGPT-FT with different LLM sizes.

Model | ValidAPIs AllAPIs | ValidProg. AllProg. | Valid(%) | Cov
350M 118 329 682 4236 16.10% | 233522
2B 118 292 835 3393 24.60% | 2268838
6B 131 311 768 3532 2175% | 24420.8
6BwW/OFT | 192 400 | 506 4972 | 1017% | 22917

CoT contributes to an increased percentage of valid programs in
FuzzGPT-FT. Our hypothesis s that, in the fine-tuning process, since
the LLM was trained on the entire dataset, CoT can assist it in better
associating a reasonable buggy pattern with a target API, compared
to the few-shot scenario. We would like to further clarify that getting
more valid programs is not the goal of our CoT prompting or our
overall approach. Therefore, we do not expect CoT to consistently
improve this metric. The main advantage of CoT prompting is to
guide the model to generate unusual programs more effectively by
first describing the bug. Our evaluation shows that CoT does consis-
tently improve code coverage in both the few-shot and fine-tuning
settings. This indicates that CoT enables the generation of unusual
programs that cover more (interesting) code paths, even if there are
fewer valid programs in the few-shot scenario.

Table 6: FuzzGPT-FT with different prompting strategies.

Prompt | Valid APIs AIlAPIs | ValidProg. AllProg. | Valid(%) | Cov
w/ CoT 131 311 768 3532 21.75% 24420.8
w/o CoT 83 250 434 2659 16.34% 24242.8

6.3.4 Buggy API Annotation. Finally, we study the impact of our
API annotation method (Section 3.1.2) on fuzzing performance. As a
baseline, we constructed a randomly annotated dataset by selecting
arandom DL API from the bug-triggering program as the buggy APL
We then fine-tune CODEGEN-6B on this dataset and compare it with
FuzzGPT-FT. Table 7 summarizes the results. We evaluate the la-
beling accuracy on a random sample of 100 PyTorch issues/PRs, and
find our Codex-based labeling achieves 76% precision, while random
annotation has 26% precision. When used for fine-tuning, our Codex-
based labeling achieves not only a higher ratio of valid programs but
also higher coverage compared to random labeling. This is because
the wrong API label can be less-aligned with the bug description
and code, leading to decreased performance. Interestingly, we fur-
ther find that even the randomly annotated dataset can still guide
FuzzGPT-FT to outperform the CoDEGEN-6B baseline (without fine-
tuning). This demonstrates that the annotation does not need to be
fully precise - if the mislabeled APIalways appears in the code, such
(API, code) pairs can still guide the model to learn the fundamental
task of generating a program that calls a given target APL

Table 7: FuzzGPT-FT with random API annotation.

Method ‘ Label Acc(%) ‘ Valid(%) Cov
FuzzGPT-FT 76% 21.75% 24421
FuzzGPT-FT-Random 26% 19.48% 23468
CODEGEN-6B W/0 FT | N/A | 1017% 22917

6.4 BugFinding

Due to the extensive human cost in bug finding/reporting, in this
RQ, we mainly focus on our default setting: FuzzGPT-FS with all the

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

x = torch.ones((1,1,1,1,0))
def func(x):

layer = torch.nn.PixelShuffle(1)
pred = layer(x)
jacrev(func)(x) <4m floating point exception
"2) PyTorch crash triggered by 0-dim tensor.
Bug description: Buffer sharing issue when copying array from NumPy to TensorFlow
x = np.arange(10) =
x_copy = tf.experimental.numpy.copy(x)

x[3] = 42 4m x_copy[3] changes to 42 on CPU and remains 3 on GPU
5) TensorFlow bug when copying array.

Figure 9: Example bugs found by FuzzGPT.

oracles in Section 3.3. Meanwhile, we expect FuzzGPT-ZS/FuzzGPT-
FT to be also effective in bug finding (given their performance in code
coverage and crash detection) and may contribute additional bugs.

Bug statistics are summarized in Table 8. In total, FuzzGPT de-
tected 76 bugs, with 61 confirmed, including 49 confirmed as previ-
ously unknown bugs (6 of them have already been fixed). Besides,
Column Pending presents the bugs not yet confirmed and Won’t
Fix shows bugs rejected by developers (usually due to precision
issues or efficiency concerns). Notably, Column High Prio presents
the number of high-priority bugs or security vulnerabilities newly
detected by FuzzGPT. Note that fewer bugs are confirmed or fixed
on TensorFlow, because TensorFlow developers are less active (as
discussed in Section 4 there are fewer PRs in TensorFlow). Out of the
49 confirmed new bugs (including 25 crashes and 24 inconsistencies;
within them 30 are AD-related), only 11 can be found by running
TitanFuzz (augmented with our oracles), and 2 can be found by di-
rectly rerunning historical bug-triggering programs with our oracles.
We next present two exemplary bugs detected by FuzzGPT.

Table 8: Summary of detected bugs.

Confirmed (Fixed)

Total Pending Won’t Fix | High Prio

Unknown Known

PyTorch 43 33(6) 5(1) 1 4 3
TensorFlow 33 16 (0) 7(0) 5 5 8
Total 76 49 (6) 12 (1) 6 9 | 11

Figure 9a shows a crash bug when we apply PixelShuffle on a
special tensor of 0-dimension shape and then compute gradient with
jacrev. Normally PixelShuffle accepts a 4-D tensor where the last
dimension is the width of of an image, typically larger than 1. Fuz-
ZGPT has learned from an in-context historical bug example [21]
where zero-dimension tensors can trigger crashes, and generates
this unusual input of shape (1,1,1,1,0) for PixelShuffle which
triggers floating point exception during gradient computation. As
PixelShuffle is a commonly-used APIin computer vision applica-
tions [57] where crashes can lead to security risks, this bug is labeled
by PyTorch developers as high-priority and immediately fixed.

Figure 9b presents a TensorFlow bug where the generated fuzzing
code snippet first makes a copy of a numpy array x and then modifies
its value. In this case, the tensor x_copy should remain the same.
However, we find that on CPU, after we assign a new value to x[3],
the value of copied tensor x_copy is also modified. Previous work
(including TrranFuzz which also uses LLMs for generation) can-
not trigger this bug because it requires calling the copy API and
then modifying the value of the original data - a series of unnatural
operations. FuzzGPT successfully finds this bug because our CoT
prompting instructs it to first predict a plausible bug reason “buffer
sharing issue” together with its triggering condition “when copying
array .. as a bug description. Following this description, FuzzGPT

ICSE *24, April 14-20, 2024, Lisbon, Portugal

can generate the unusual program which is very rare in the train-
ing dataset and thus hard to be generated by TrtanFuzz. This bug
enables data manipulation attacks by silently changing copies of
the original array, and has been further confirmed as a security
vulnerability by the Google security team.

7 DISCUSSION
Table 9: FuzzGPT w/o historical information with ChatGPT.

System Message: You are a pytorch fuzzer. | # APIs | # Prog. | |

Prompt: Please generate a program touse conv2d ... | Valid ~ All | Valid All | Valid(%) | Cov
to demonstrate the example usage (baseline) | 102 183 | 2298 4209 | 55.00% | 20454
inaway you have not seen in your training dataset 190 207 | 2306 4756 48.00% | 21077
inavery creative way 201 318 | 2104 4801 44.00% | 20971
in a non-conventional way 212 330 | 2038 4880 42.00% | 20759

ina way that is rarely used by developers in practice 200 306 | 2056 4841 4200% | 20759
in a very strange way 181 291 1735 4854 36.00% 20377

FuzzGPT w/o historical information. So far we have leveraged
historical bug-triggering programs to guide LLMs for unusual pro-
gram generation. Meanwhile, with the recent advancesin the instruct-
following capability of LLMs, it is also possible to directly instruct
LLMs (without any historical information) to generate unusual pro-
grams for fuzzing. To this end, we have tested state-of-the-art Chat-
GPT [45] (which has a knowledge cutoff at September 2021) with a
list of representative prompts on the 50 PyTorch APIs used in our ab-
lation study. More specifically, we first instruct ChatGPT to generate
typical example usages of an API as the baseline; then, we instruct
ChatGPT to generate unusual programs using various other prompts.
Table 9 shows that all the studied prompts can help ChatGPT cover
much more APIs than the baseline, demonstrating ChatGPT and
similar models (e.g., GPT-4 [46]) can understand the instructions
and generate more interesting programs that may cover interesting
library paths/behaviors. Another interesting observation is that the
other prompts all have lower valid rates than the baseline, since less
common programs may more likely fail.

Impact of example selection. Besides the random example selec-
tion used in our default FuzzGPT-FS variant, we have also inves-
tigated other strategies to select in-context examples. Intuitively,
examples with APIs similar to the target API may provide more rel-
evant bug-triggering patterns. Conversely, a diverse set of examples
can provide complimentary bug-triggering ingredients. As such,
we design a set of smoothed maximum-marginal-relevance (MMR)
guided selection strategies [8, 78], including strategies favoring sim-
ilarity and diversity, and strategies in-between. Interestingly, we
observe that the default random strategy is competitive compared
with all studied variants. The main reason could be that modern
LLMs are powerful enough to learn even from dissimilar examples
for program generation; in this way, random selection can provide
adiverse set of ingredients to facilitate effective generation.
Threats to validity. The main threats to internal validity lie in the po-
tential bugs in our implementation and experimentation. To mitigate
such threats, we performed rigorous review for our code. The main
threats to external validity lie in the subject systems used. To reduce
the threats, we select two most popular DL libraries, PyTorch and Ten-
sorFlow, which have also been widely studied in recent work [13, 14,
25,69, 75]. Lastly, we also adopt widely used metrics in prior fuzzing
work [13, 69, 75], such as real bug detection and code coverage.

ICSE 24, April 14-20, 2024, Lisbon, Portugal

8 CONCLUSION

We have introduced FuzzGPT, the first approach to leveraging histor-
ical bug-triggering programs to prime LLMs for fuzzing with edge
cases. Compared to traditional fuzzing techniques on leveraging
such historical information studied for over a decade, FuzzGPT is
fully automated, generalizable, and applicable to challenging do-
mains, such as DL library fuzzing. Moreover, FuzzGPT also shows
the potential of ChatGPT for edge-case program generation with-
out any historical information. The experimental results show that
FuzzGPT substantially outperforms existing DL library fuzzers, and
can detect various bugs for PyTorch and TensorFlow.

Artifact Availability. We make our artifact available at [2].

ACKNOWLEDGMENTS

This work was partially supported by NSF grants CCF-2131943 and
CCF-2141474, as well as research awards from Google, Meta, and

Kwai Inc.
REFERENCES

[1] 2023. Coverage.py. https://github.com/nedbat/coveragepy.

[2] 2023. FuzzGPT artifact. https://github.com/ise-uiuc/FuzzGPT.

[3] 2023. requests. https://pypi.org/project/requests/.

[4] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

[5] Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. 2021. Fuzzing:
Challenges and Reflections. IEEE Software 38, 3 (2021), 79-86.

[6] DalvinBrown. 2021. Hospitals turn to artificial intelligence to help with an age-old
problem: Doctors’ poor bedside manners. The Washington Post (2021). https://www.
washingtonpost.com/technology/2021/02/16/virtual-ai- hospital-patients/.

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

[8] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based

[9

[10

[11

[12

]

]

]

[13]

[14]

[15

reranking for reordering documents and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335-336.

Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and
Lu Zhang. 2019. History-guided configuration diversification for compiler
test-program generation. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 305-316.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724-1734. https://doi.org/10.3115/v1/D14-1179

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 95-105.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2023).
Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
Deep-Learning Libraries via Automated Relational API Inference. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 44-56.
https://doi.org/10.1145/3540250.3549085

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan,
Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang. 2022. CoCoMIC:
Code Completion By Jointly Modeling In-file and Cross-file Context. arXiv
preprint arXiv:2212.10007 (2022).

[16]

[17]

[18

=
2

[20

[21

[22

[24

[25

I~
=

%
3

[35

[36]

[37

[38

[39

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Lingming Zhang

Alastair F Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated testing of graphics shader compilers. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1-29.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.
Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies (WOOT 20). USENIX Association,
USA, Article 10, 1 pages.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020).

GitHub. 2022. torch.nn.PixelShuffle crash with floating point ex-
ception when input has 0 size in the last three dimensions. (2022).
https://github.com/pytorch/pytorch/issues/85155.

Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine learn-
ing for input fuzzing. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). 50-59. https://doi.org/10.1109/ASE.2017.8115618

J. Gu, X. Luo, Y. Zhou, and X. Wang. 2022. Muffin: Testing Deep Learning Libraries
via Neural Architecture Fuzzing. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA,
1418-1430. https://doi.org/10.1145/3510003.3510092

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE]

Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated testing for deep learning frameworks. In 2020
35th IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 486-498.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (ICSE ’12). IEEE Press, 837-847.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-term Memory. Neural
computation 9 (12 1997), 1735-80.

Christian Holler, Kim Herzig, Andreas Zeller, et al. 2012. Fuzzing with Code
Fragments.. In USENIX Security Symposium. 445-458.

HuggingFace 2022. Hugging Face. https://huggingface.co.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC conference on
computer and communications security. 2123-2138.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via
equivalence modulo inputs. ACM Sigplan Notices 49, 6 (2014), 216-226.

Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding deep compiler bugs via
guided stochastic program mutation. ACM SIGPLAN Notices 50, 10 (2015), 386-399.
Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
neural network language model-guided javascript engine fuzzer. In Proceedings
of the 29th USENIX Conference on Security Symposium. 2613-2630.

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for
Deep Learning Compilers. In ASPLOS. 530-543.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2022. What Makes Good In-Context Examples for GPT-3?. In
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures. Asso-
ciation for Computational Linguistics, Dublin, Ireland and Online, 100-114.
https://doi.org/10.18653/v1/2022.deelio-1.10

Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation.
Proc. ACM Program. Lang. 6, OOPSLA1, Article 73 (apr 2022), 26 pages.
https://doi.org/10.1145/3527317

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham
Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. Comput. Surveys 55, 9 (2023), 1-35.
Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044-1051.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay
Regularization. In International Conference on Learning Representations.
https://openreview.net/forum?id=Bkg6RiCqY7

Large Language Models are Edge-Case Generators:
Crafting Unusual Programs for Fuzzing Deep Learning Libraries

[40]

[41]

[42]

[43]

[44]

[45]
[46]
[47]

[48]

[49]

[51]

[52

[53]

[56]

[57

[58

[59

[60]

(61

[62]
[63]

[67

M. Zalewski 2016. American Fuzzy Lop - Whitepaper.
//lcamtuf.coredump.cx/afl/technical_details.txt.

Aman Madaan, Alexander Shypula, Uri Alon, Milad Hashemi, Parthasarathy Ran-
ganathan, Yiming Yang, Graham Neubig, and Amir Yazdanbakhsh. 2023. Learning
Performance-Improving Code Edits. arXiv preprint arXiv:2302.07867 (2023).
Tanya Mohn. 2022. Can A.I All but End Car Crashes? The Potential Is There. The
New York Times (2022). https://www.nytimes.com/2022/04/19/technology/ai-
road-car-safety.html.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. 2022. Codegen: An open large language model for
code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474 (2022).
Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David
Luan, et al. 2021. Show your work: Scratchpads for intermediate computation
with language models. arXiv preprint arXiv:2112.00114 (2021).

OpenAl 2023. ChatGPT. (2023). https://openai.com/blog/chatgpt.

OpenAl 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]

Fabio Petroni, Tim Rocktischel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,
Yuxiang Wu, and Alexander Miller. 2019. Language Models as Knowledge Bases?.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP). 2463-2473.

Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1027-1038. https://doi.org/10.1109/ICSE.2019.00107

PyTorch 2023. PyTorch. http://pytorch.org.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
etal. 2019. Language models are unsupervised multitask learners. OpenAl blog
1,8(2019), 9.

Maithra Raghu and Eric Schmidt. 2020. A survey of deep learning for scientific
discovery. arXiv preprint arXiv:2003.11755 (2020).

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. 2022. Learning To Retrieve
Prompts for In-Context Learning. In Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies. 2655-2671.

Adam Satariano and Cade Metz. 2023. Using A.L to Detect Breast Cancer That
Doctors Miss. The New York Times (2023). https://www.nytimes.com/2023/03/
05/technology/artificial-intelligence-breast- cancer-detection.html.

H. Scudder. 1965. Probability of error of some adaptive pattern-recognition
machines. IEEE Transactions on Information Theory 11, 3 (1965), 363-371.
https://doi.org/10.1109/TIT.1965.1053799

Danny Shapiro. 2023. Transportation Generation: See How Al and the Metaverse
Are Shaping the Automotive Industry at GTC. Nvidia Blog (2023). https://blogs.
nvidia.com/blog/2023/02/16/ai-metaverse-shaping-automotive-industry-gtc/.
Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1874-1883.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer
Singh. 2020. AutoPrompt: Eliciting Knowledge from Language Models with
Automatically Generated Prompts. In EMNLP 2020. 4222-4235.

Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and Andreas
Zeller. 2020. Inputs From Hell. IEEE Transactions on Software Engineering 48, 4
(2020), 1138-1153.

Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN international conference
on object-oriented programming, systems, languages, and applications. 849-863.
Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional.

TensorFlow 2023. TensorFlow. https://www.tensorflow.org.

Alina Tugend. 2021. A Smarter App Is Watching Your Wallet. The New York Times
(2021). https://www.nytimes.com/2021/03/09/business/apps-personal-finance-
budget.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. Advances in neural information processing systems 30 (2017).

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan.
2022. EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries. (2022).
Mingzhe Wang, Zhiyong Wu, Xinyi Xu, Jie Liang, Chijin Zhou, Huafeng Zhang,
and Yu Jiang. 2021. Industry practice of coverage-guided enterprise-level DBMS
fuzzing. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP). IEEE, 328-337.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct: Code generation
for few-shot structured prediction from natural language. arXiv preprint

https:

[68

[69

(72

[73

[74]

[76

[77

(78]

=
2,

[80

[81

(82

(83]

[84

[85

(86

[87

ICSE *24, April 14-20, 2024, Lisbon, Portugal

arXiv:2210.12810 (2022).

Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In Proceedings of the 28th
ACM joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 788-799.

Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 995-1007.
https://doi.org/10.1145/3510003.3510041

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2020. On the unusual ef-
fectiveness of type-aware operator mutations for testing SMT solvers. Proceedings
of the ACM on Programming Languages 4, OOPSLA (2020), 1-25.

Chungqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. Revisiting
the Plastic Surgery Hypothesis via Large Language Models. arXiv preprint
arXiv:2303.10494 (2023).

Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: Documentation-Guided Fuzzing for
Testing Deep Learning API Functions. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. 2021. An
explanation of in-context learning as implicit bayesian inference. arXiv preprint
arXiv:2111.02080 (2021).

Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming
Zhang. 2023. Fuzzing Automatic Differentiation in Deep-Learning Libraries. In
International Conference on Software Engineering (ICSE). to appear.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and
understanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation. 283-294.
Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang,
Xiaoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435-450.

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ra-
makanth Pasunuru. 2022. Complementary Explanations for Effective In-Context
Learning. arXiv preprint arXiv:2211.13892 (2022).

Shafiq Joty Yue Wang, Weishi Wang and Steven C.H. Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In EMNLP 2021.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon Fraser, and Christian
Holler. 2019. The fuzzing book.

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
2018. DeepRoad: GAN-based metamorphic testing and input validation framework
for autonomous driving systems. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. 132-142.

Qirun Zhang, Chengnian Sun, and Zhendong Su. 2017. Skeletal program enu-
meration for rigorous compiler testing. In Proceedings of the 38th ACM SIGPLAN
conference on programming language design and implementation. 347-361.

Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang. 2019.
SeqFuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning
Perspective. In 2019 12th IEEE Conference on Software Testing, Validation and
Verification (ICST). 59-67. https://doi.org/10.1109/ICST.2019.00016

Yingquan Zhao, Zan Wang, Junjie Chen, Mengdi Liu, Mingyuan Wu, Yuqun
Zhang, and Lingming Zhang. 2022. History-Driven Test Program Synthesis for
JVM Testing. In ICSE 2022. 1133-1144.

Hao Zhong. 2022. Enriching Compiler Testing with Real Program from Bug
Report. In 37th IEEE/ACM International Conference on Automated Software
Engineering. 1-12.

Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Dinghao
Wau. 2020. Squirrel: Testing database management systems with language validity
and coverage feedback. In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security. 955-970.

Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin Dogus
Cubuk, and Quoc Le. 2020. Rethinking pre-training and self-training. Advances
in neural information processing systems 33 (2020), 3833-3845.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Large Language Model
	2.2 Fuzzing with Historical Bugs
	2.3 Fuzzing via Deep Learning

	3 Approach
	3.1 Dataset Construction
	3.2 In-context learning and Fine-tuning
	3.3 Oracle

	4 Implementation
	5 Evaluation
	5.1 Research Questions
	5.2 Experimental Setup
	5.3 Metrics

	6 Result Analysis
	6.1 Comparison of Learning Paradigms.
	6.2 Comparison with Prior Work
	6.3 Ablation Study
	6.4 Bug Finding

	7 Discussion
	8 Conclusion
	References

