Large Language Models Are Zero-Shot Fuzzers:
Fuzzing Deep-Learning Libraries via Large Language Models

Yinlin Deng
University of Illinois
Urbana-Champaign, USA
yinlind2@illinois.edu

Chenyuan Yang
University of Illinois
Urbana-Champaign, USA
cy54@illinois.edu

ABSTRACT

Deep Learning (DL) systems have received exponential growth in
popularity and have become ubiquitous in our everyday life. Such
systems are built on top of popular DL libraries, e.g., TensorFlow
and PyTorch which provide APIs as building blocks for DL systems.
Detecting bugs in these DL libraries is critical for almost all down-
stream DL systems in ensuring effectiveness/safety for end users.
Meanwhile, traditional fuzzing techniques can be hardly effective
for such a challenging domain since the input DL programs need
to satisfy both the input language (e.g., Python) syntax/semantics
and the DL API input/shape constraints for tensor computations.

To address these limitations, we propose TitanFuzz — the first
approach to directly leveraging Large Language Models (LLMs)
to generate input programs for fuzzing DL libraries. LLMs are ti-
tanic models trained on billions of code snippets and can auto-
regressively generate human-like code snippets. Our key insight
is that modern LLMs can also include numerous code snippets
invoking DL library APIs in their training corpora, and thus can
implicitly learn both language syntax/semantics and intricate DL
API constraints for valid DL program generation. More specifically,
we use both generative and infilling LLMs (e.g., Codex/INCODER) to
generate and mutate valid/diverse input DL programs for fuzzing.
Our experimental results demonstrate that TiTANFuZzz can achieve
30.38%/50.84% higher code coverage than state-of-the-art fuzzers
on TensorFlow/PyTorch. Furthermore, TITANFUZZ is able to detect
65 bugs, with 44 already confirmed as previously unknown bugs.

This paper demonstrates that modern titanic LLMs can be lever-
aged to directly perform both generation-based and mutation-based
fuzzing studied for decades, while being fully automated, gener-
alizable, and applicable to domains challenging for traditional ap-
proaches (such as DL systems). We hope TrTanFuzz can stimulate
more work in this promising direction of LLMs for fuzzing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07...$15.00
https://doi.org/10.1145/3597926.3598067

Chungqiu Steven Xia
University of Illinois
Urbana-Champaign, USA
chunqiu2@illinois.edu

Haoran Peng
University of Science and
Technology of China, China
hurrypeng@mail.ustc.edu.cn

Lingming Zhang
University of Illinois
Urbana-Champaign, USA
lingming@illinois.edu

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; Software reliability.

KEYWORDS

Fuzz Testing, Test Generation, Large Language Model

ACM Reference Format:

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Ling-
ming Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing
Deep-Learning Libraries via Large Language Models. In Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing and Anal-
ysis (ISSTA °23), July 17-21, 2023, Seattle, WA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3597926.3598067

1 INTRODUCTION

Deep Learning (DL) is constantly providing revolutionary results
and systems in critical fields like autonomous driving [34, 85],
healthcare [9], and finance [68]. To build these systems, developers
use popular DL libraries such as TensorFlow [66] and PyTorch [57]
by composing individual library API calls, typically exposed in
Python, to build models and perform computations. Due to the
significance of detecting and fixing bugs in these DL libraries, re-
searchers have applied various automated bug-finding techniques
to test/analyze these libraries [16, 27, 45, 56, 70-72, 77]. One such
popular methodology is fuzzing [8, 65, 84] — where a large set of
inputs are generated and fed to the libraries to find potential bugs.

Previous work on fuzzing DL libraries mainly falls into two cat-
egories: API-level fuzzing [16, 72, 77] and model-level fuzzing [27,
44, 56, 71]. API-level fuzzing focuses on testing individual library
APIs by generating various different inputs for each target API to
discover potential crashes or result inconsistencies. On the other
hand, model-level fuzzing techniques aim to generate diverse com-
plete DL models and then compare the model outputs on different
backends (e.g., different low-level libraries of Keras [36]) to discover
potential bugs. While both model-level and API-level fuzzing tech-
niques have been shown effective in bug finding, they still suffer
from the following limitations:

1) Lack of diverse API sequences. Previous API-level fuzzers [16,
72] only focus on fuzzing each single DL library API in isolation.
These techniques attempt to create many different inputs to a partic-
ular target API via simple mutation rules. However, these inputs are
usually constructed by single code lines (at most one library input

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

x = torch.randn(3, 3, dtype=torch.float32)

print("Intermediate: ", torch.log(x * 2 - 1)) # Intermediate contains NaN
output = torch.matrix_exp(torch.log(x * 2 - 1)) # on CPU: Contains NaN

x = x.cuda()

output = torch.matrix_exp(torch.log(x * 2 - 1)) # on GPU: Does not contain NaN

a)

-8, 0, -0] # generated by previous statements
/ torch.clamp(x, min=0, max=1)
P
Pl

=1/ [-6, 6, -0] = [-Inf, Inf, -Inf] wrong!
=1/ [e, o, @] = [Inf, Inf, Inf] correct!

b)
Figure 1: Bugs in DL Libraries

creation AP, e.g., randomly initializing a tensor with a certain data
type and shape) and cannot reveal bugs that are caused by chained
API sequences. While model-level fuzzing techniques [27, 56, 71]
can potentially test API sequences, the mutation rules usually have
strict constraints, e.g., LEMON’s layer addition rule cannot be ap-
plied to layers with different input and output shape [71], while
Muffin needs to manually annotate input/output restrictions of
considered DL APIs and uses additional reshaping operation to
ensure valid connections [25]. As a result, model-level fuzzers can
only cover a limited set of APIs with limited patterns [72], missing
many diverse and interesting API sequences that can lead to bugs.

Figure 1a shows an example bug in PyTorch exposed by an API
sequence. A random input is created and the code produces an in-
termediate variable by invoking the log APIL The log function will
produce NaN (Not a Number) for negative inputs. In theory, when
matrix_exp is applied it should also contain NaN values. However,
when running this code on GPU, it does not output any NaN values.
More interestingly, this incorrect behavior on GPU cannot be repro-
duced if we just pass the intermediate tensor (which contains NaN)
instead of the API call log to matrix_exp. The bug is only triggered
by a synchronization error when we apply the API sequence. Prior
API-level fuzzers cannot find this bug; model-level fuzzers can also
hardly detect this bug as the specific sequence of log followed by
matrix_exp is rarely used in building DL models where the focus is
on layer APIs such as Conv2d or MaxPool2d.

2) Cannot generate arbitrary code. DL library APIs are exposed
to the end user in Python which is not a statically typed language,
making it hard to directly obtain the input and output argument
types. Also, library APIs usually operate on input tensors where a
shape mismatch (e.g., matrix multiplication with incorrect dimen-
sions) can lead to runtime errors. Traditional program synthesis
techniques [51, 54, 64] typically restrict themselves to a small set of
functionalities in the language and cannot deal with a large num-
ber of library APIs, each with their own specific input and output
parameters and types. As such, existing DL library fuzzers use pre-
defined generation grammars that focus on mutating a small part
of the program to minimize these errors. This limits the variety in
both code structure and also the types of inputs that we can use
to test library APIs. For example, FreeFuzz [72], a state-of-the-art
API-level fuzzer, will first collect the valid argument space (e.g.,
type and shape of the input tensor) for a target API by mining
open-source code snippets. During the fuzzing loop, FreeFuzz will
perform small mutations of these valid inputs to generate new in-
puts, e.g., changing the data type (e.g., float32 to float16). As such,
FreeFuzz is limited by the traced argument space and predefined
mutation rules. Meanwhile, Muffin [25], a recent state-of-the-art
model-level fuzzer, generates diverse models via using manually

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

annotated specifications for each manipulated API and predefined
code structures (e.g. models consisting of sequential layers) in order
to preserve model validity. As such, such prior DL library fuzzers
cannot fully explore the huge search space that exists when it comes
to using DL library APIs.

Figure 1b shows an example bug in PyTorch which cannot be
detected by previous fuzzing techniques. The bug is caused by the
clamp function not clamping negative zero to positive zero on CPU.
Even though this bug is due to a single API, previous techniques
cannot detect this bug as negative zero is almost zero. However, the
bug is exposed when we apply 1 divided by the clamped list where
the correct value should be Positive Inf not Negative Inf (significant
value difference). Such Python basic expression is often used by
developers in combination with library APIs. However, this bug is
missed by prior work due to the restricted generation methods of
both existing API-level and model-level techniques.

Our Work. We propose TitanFuzz — the first fully automated
approach for fuzzing DL libraries via Large Pre-trained Language
Models (LLMs) [10]. As discussed earlier, DL libraries expose APIs
mostly in Python (dynamically typed), making it challenging to
directly apply traditional program synthesis to generate syntacti-
cally/semantically valid DL programs [6]. Moreover, DL APIs may
involve complicated input/shape constraints for tensor computa-
tions that are extremely hard to satisfy without additional manual
efforts. In contrast, modern LLMs can serve as a natural solution
as they are built using the popular Transformer [69] architecture
which allows for autoregressive generation (based on left context)
or infilling (based on bi-directional context) trained using billions
of code tokens to generate “human-like” programs. Our key insight
is that modern titanic LLMs can include numerous code snippets using
various DL libraries in their training corpora (e.g., there are >400,000
TensorFlow/PyTorch projects on GitHub, which is an important train-
ing source for modern LLMs), allowing them to implicitly learn both
Python syntax/semantics and intricate types/constraints of DL APIs to
directly generate/mutate valid DL programs for fuzzing DL libraries.

In TrranFuzz, we first use a generative LLM with a step-by-
step input prompt [47] to produce the initial seed programs for
fuzzing. To enrich the pool of test programs, we further adopt an
evolutionary strategy to produce new test programs by using LLMs
to automatically mutate the seed programs. This mutation process
is done using multiple mutation operators designed to leverage an
infilling LLM to replace only parts of the seed with new code. In
order to generate more complicated and diverse API call relations,
we design a fitness function which prioritizes seeds or mutated
test programs based on data-dependency depth and number of
unique library APIs, allowing us to discover bugs that can only be
found when studying complex API relationships. Finally, we execute
the generated test programs with differential testing on different
backends to detect bugs. In fact, both bugs in Figure 1 which cannot
be detected by any previous DL library fuzzers are detected by
TrtanFuzz and confirmed by developers as previously unknown
bugs. While our approach is general and can be built upon any
LLMs, we build our technique on Codex [12] and INCODER [21] as
they have shown state-of-the-art results for generative and infilling
tasks, respectively. Also, while we evaluate on two most popular
DL libraries: TensorFlow and PyTorch, our idea of directly using

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

LLMs as the generation engine can be applied for fuzzing any DL
libraries with little additional effort and can further be extended for
fuzzing/testing software systems from other application domains.
In summary, this paper makes the following contributions:

e Dimension. This paper opens a new dimension for fuzzing
DL libraries (and beyond) by directly using LLMs as generation
engines. To our knowledge, this is also the first work demon-
strating that modern titanic LLMs can directly perform both
generation-based [80] and mutation-based [50] fuzzing studied
for decades, while being fully automated, generalizable, and
applicable to domains challenging for traditional approaches
(such as DL systems). Our approach can be easily extended to
test software systems from other application domains (e.g., com-
pilers, interpreters, DB systems, SMT solvers, smart contracts,
and other popular libraries). Moreover, this paper demonstrates
the promising future of directly leveraging modern LLMs for
fuzzing and testing in general.

e Technique. We implement TrranFuzz, a fully automated fuzzer
for DL libraries that first uses a generative LLM (Codex) to syn-
thesize high-quality seed inputs and then combines an infilling
LLM (INCoDER) with an evolutionary algorithm to guide the gen-
eration towards a higher number of unique library API usages
and valid/diverse DL programs.

e Study. We perform an extensive evaluation on two of the most
popular DL libraries: PyTorch and TensorFlow. Our result shows
that TITaANFuzz is able to cover 1329 / 2215 APIs with 20.98% /
39.97% coverage on PyTorch and TensorFlow respectively, im-
proving on the state-of-the-art fuzzing tools by 24.09% / 91.11%
in API coverage and 50.84% / 30.38% in code coverage. In ad-
dition, TrtaNFuzz is able to detect 65 bugs, with 44 already
confirmed as previously unknown bugs. Furthermore, we per-
form a broad ablation study to justify the design of components
in TrranFuzz.

2 BACKGROUND AND RELATED WORK

2.1 Fuzzing Deep Learning Libraries

DL libraries (e.g., TensorFlow [66] and PyTorch [57]) serve as the
fundamental building block for all DL pipelines by providing thou-
sands of APIs for building, training, and deploying DL models.
Figure 2 shows an example DL model that classifies an input image
with its associated training and inference steps. The DL model con-
sists of two convolutional (Conv2d) and one fully connected linear
(Linear) layers. In the forward pass, the first convolutional layer
with a non-linear activation function (RELU) produces an interme-
diate output, which is then passed to the second convolutional
layer. Next, the fully connected layer is called to produce the final
output. In short, using these sets of library APIs, which define the
functionality of each layer, the DL libraries essentially create a
computational graph, highlighting the flow of data in the model as
shown on the right side of the figure. In order to train the model,
we first initialize it together with an optimizer that updates the
model weights. Next, we load the training data, and for each pair of
input and its associated label, we obtain the model output. Finally,
we compute the loss together with its gradient to perform back-
propagation and update the model weights. To use the model for
inference, we first load the trained model and then pass the chosen

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

Model Class
class ConvNet():

self.convl = Conv2d(3, 6, 3)
self.conv2 = Conv2d(6, 12, 3) N v

self.fc = Linear(300, 10)

def forward(self, input):
output = self.convi(input)
output = RELU(output)

output = self.conv2(output)
output = self.fc(output)

return output _—| \Jo
— Conv2d |y 2
Training Loop
NN = ConvNet() Linear
optim = Adam(NN.param, 1r=0.085)

train_Dataset = load_train_dataset() o) O
for input, label in train_dataset: 9
output = NN(input)
loss = loss_fn(output, label)
loss.backward()
optim.step()

[0.2, 4 ... 0.2, 8]

SoftMax [6, 1 ... 9, 8]
Inference label

NN = LoadNet(saved_file)

Image = Camera() Dog: 99%

output = NN(Image) Cat: 1%

prob = Softmax(output)

Figure 2: Deep Learning basics

image to get the model output. Further, we can use the Softmax API
to obtain the probability representation of the output.

Prior work on fuzzing DL libraries can be mainly classified into
two categories, namely model-level and API-level fuzzers. Model-
level fuzzers attempt to leverage complete DL models (which cover
various sets of DL library APIs) as test inputs. CRADLE [56] is one
of the first work in the area that detects inconsistencies by run-
ning existing models on multiple low-level backends of Keras [36].
To generate more diverse models, LEMON [71] and AUDEE [27]
further extend the idea of CRADLE to apply predefined mutation
rules on seed models/inputs. Muffin [25] further applies a top-down
approach to generate DL models for bug detection in both the in-
ference and training phases. Very recently, NNSmith [44] leverages
symbolic constraint solving and gradient-based search for high-
quality model synthesis. While such model-level fuzzers are able
to find bugs in DL libraries, due to the input/output constraints
of DL APIs, model-level mutation/generation rules either are re-
strictive to certain shape-preserving APIs [71] or require manual
annotation of the restrictions of all targeted APIs [25], leading to a
limited number of unique APIs covered. Different from model-level
fuzzing, API-level fuzzing focuses on finding bugs within a single
API at a time. FreeFuzz [72] is an API-level fuzzer that first learns
the valid inputs for each target API through mining open-source
code snippets and then applies simple mutations to generate diverse
inputs to test a target APL Similarly, DocTer [77] mines the input
constraints from API documentation by learning the extraction
rules with 30% manually annotated API parameters, and then gen-
erates valid and invalid inputs based on the extracted constraints to
detect crashes. More recently, DeepREL [16] and VFuzz [79] further
leverage relational APIs (e.g., APIs that always return the same re-
sults/statuses given the same inputs) and automatic differentiation,
respectively, as the test oracle for more effective API-level DL li-
brary fuzzing. While researchers have demonstrated that API-level
fuzzing can cover many more DL library APIs than model-level
fuzzing [16, 72, 79], API-level fuzzers cannot detect any bug that
arises from interactions within a complex API sequence.

2.2 Large Pre-trained Language Models

Large Pre-trained Language Models (LLMs) typically follow the
Transformer [69] architecture of an encoder to produce an encoded
representation of the input and a decoder to generate output tokens.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Encoder-only Models
(Masked-Language Models)

i Decoder-only Models
| (Left-to-Right Models)

input = torch.
Decoder :|
zeros

Figure 3: Overview of different LLM architectures

Encoder-Decoder Models

training | input = torch. 6)

input input = torch.<ASIO(3, <MASIO) |

i | !
nodel i Encoder i EncodeTs
| | 3 DeCQder :]

output | <MASK>:zeros <MASK>:6 :zeros(3,

These LLMs are pre-trained on billions of available text on the inter-
net and have been widely used in many different Natural Language
Processing (NLP) tasks [10, 49, 81]. Due to the large amounts of
available pre-training data, LLMs without any fine-tuning on spe-
cialized datasets can already be directly used for very specific down-
stream tasks. This is accomplished using prompt engineering [47],
where a natural language description of the task together with a
few demonstrations of the task is provided to the LLM first before
the actual input. Researchers have demonstrated that this paradigm
of directly leveraging LLMs through prompts can already achieve
state-of-the-art performance on downstream tasks [10]. More re-
cently, supported by code naturalness [28], researchers have begun
to apply LLMs for programming languages [12, 17, 21, 78]. Similar
to the impressive performance achieved on NLP tasks, LLMs can
also excel in many code related tasks such as code completion [12],
code synthesis [6, 46], and automated program repair [74-76].

Based on the model architectures and pre-training tasks, LLMs
can be categorized into: Decoder-only, Encoder-only and Encoder-
decoder. Figure 3 shows the three LLM types. Decoder-only mod-
els [10, 12] use the decoder to predict the probability of the next
token based on all previous tokens. These models can be used in
an auto-regressive manner to perform auto-completion given all
previous (or left) context. Encoder-only models [17, 26] aim to pro-
vide a representation of the input through the use of the encoder
component. Such models are trained using the Masked Language
Model (MLM) objective where a percentage (e.g., 15%) of the tokens
during training are masked out, and the goal is to recover the true
values of these masked tokens based on both the context before
and after. Encoder-decoder models [5, 59] use both the encoder
and decoder component and are most commonly trained using the
Masked Span Prediction (MSP) objective. Instead of replacing each
chosen token with a masked token, MSP replaces a sequence of
tokens with a single masked span token. The model is then asked to
recover the entire sequence during training. During inference, these
models can be used to directly fill in code in the middle using both
the context before and after. However, training both the encoder
and decoder components can be time-consuming. As such, recently,
researchers have proposed the INCODER [21] model which uses
only the decoder component but can fill in text/code in the middle
through the Causal Language Model training objective [21]. Instead
of using the decoder to autoregressively predict the next token in
the original training data, similar to MSP, INCODER also replaces
random sequences in the training data with masked span tokens.
Using this processed training data, INCODER only autoregressively
predicts the original masked sequence given the processed input.
With this training strategy, the resulting INCODER model is also
able to perform infilling and achieve state-of-the-art results.

In summary, LLMs can perform two main types of code genera-
tion tasks: generative and infilling. Generative tasks involve auto-
completing a complete code snippet given the left context only

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

(e.g., some starting code or a natural language description), typi-
cally done using decoder-only models. Infilling tasks aim to insert
the most natural code based on bi-directional context (e.g., in the
middle of a code snippet), which can be done using encoder-only,
encoder-decoder, and also decoder-only models that are trained
for infilling, such as INCODER. In this work, we leverage modern
LLMs to perform both types of generation tasks for fuzzing DL li-
braries. Besides generative models, inspired by recent work [74, 75]
on infilling-style program repair (where LLMs generate correct
patches by directly filling in the correct code given the context), we
also leverage infilling models to perform mutations by replacing a
small part of an input program with masked tokens and then filling
in generated code to produce even more diverse programs.

2.3 Testing using Deep Learning Models

Due to the recent advances in Deep Learning (DL), researchers have
looked into using DL models to facilitate automated test generation
or fuzzing of different software systems. Traditionally, such tech-
niques rely on training a neural network to produce code snippets
automatically. Seqfuzzer [86] employs a Recurrent Neural Network
(RNN) [13, 29] and GANFuzz [32] leverages the Generative Adver-
sarial Network (GAN) [24] for protocol fuzzing. Learn&Fuzz [23],
DeepSmith [15] and DeepFuzz [48] each trains a RNN to gener-
ate programs for PDF file parsers, OpenCL and C, respectively.
Similarly, Montage [40] targets JavaScript engines by training a
RNN to mutate subtrees of a seed input to produce valid JavaScript
programs. None of the above work has leveraged LLMs for fuzzing.

More recently, COMFORT [82], has been proposed to fine-tune
GPT-2 (with 1.5B parameters) [58] on open-source JavaScript pro-
grams. COMFORT then uses the fine-tuned GPT-2 model to synthe-
size JavaScript programs to test specific engines. While COMFORT
has demonstrated the potential of LLMs for fuzzing, it did not
leverage state-of-the-art LLMs for code and thus requires an ex-
tensive fine-tuning dataset. Moreover, COMFORT cannot perform
end-to-end test generation using GPT-2, and has to rely on addi-
tional heuristics to generate inputs for the synthesized programs.
In contrast, our work demonstrates for the first time that directly
leveraging state-of-the-art LLMs (e.g., Codex with 12B parameters)
can already perform end-to-end input generation for fuzzing real-
world systems (without any further fine-tuning). Also, our work
shows for the first time that step-by-step prompt engineering [60]
can substantially help boost fuzzing. Moreover, to our knowledge,
we are the first to apply infilling models (e.g., INCODER) to directly
perform mutation-based fuzzing [39, 50] to generate more diverse
input programs in an evolutionary fuzzing loop.

In addition to using DL techniques for fuzzing, another very
recently explored direction involves using LLMs for automated unit
test generation, e.g., GitHub Copilot has been shown to be promis-
ing for such purposes [7]. Different from fuzzing which focuses on
general approaches for testing complex real-world software sys-
tems, unit test generation involves targeting particular modules or
functions. As such, unit test generation requires additional knowl-
edge from the program under test such as callable modules (e.g.,
constructors) and functions. TeCo [52] fine-tunes the CodeT5 [83]
model to perform test completion for any targeted method under

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

test and the test signature written by human developers. TestPi-
lot [63] directly uses Codex by prompting with the source code and
example usages of the method under test to automatically generate
unit tests. Additionally, TestPilot also involves an adaptive compo-
nent which re-generates failed unit tests by querying Codex given
the error message. CodaMosa [41] combines traditional search-
based software testing (SBST) [19, 20] with LLMs (e.g., Codex) for
effective unit test generation. Such existing techniques on LLM-
based unit test generation are project/system specific by requiring
precise information such as detailed code units under test and/or
dynamic test execution traces combined with prompting to elicit
generation of unit tests. In contrast, our approach directly leverages
the pre-training strategies of LLMs to auto-complete/infill code and
therefore can easily generalize to arbitrary real-world systems such
as compilers/interpreters of different programming languages, DB
systems, SMT solvers, smart contracts, and additional popular li-
braries with sufficient code examples in the massive pre-training
corpora of LLMs. Furthermore, such unit testing techniques can
only assist developers and require manual interaction since even
current largest LLMs (e.g., PaLM [14] and ChatGPT [62]) cannot re-
liably produce oracles for unit tests, while TrTANFuzz on the other
hand is a fully automated approach through the usage of effective
fuzzing oracles (such as differential testing) at the system level, and
has already detected various bugs for real-world systems. Addi-
tionally, TrTaNFuzz is the first work to demonstrate that LLMs can
perform both generation-based [30, 80] and mutation-based [39, 50]
fuzzing studied for decades [84], while being fully automated, gen-
eralizable, and applicable to domains challenging for traditional
approaches (such as DL systems).

3 APPROACH

Figure 4 shows the overview of our TITaANFuUZz approach. Given any
target API, TrtaNFuzz first uses a generative LLM to generate a list
of high-quality seed programs for fuzzing (Section 3.1). This is done
by providing the model with a step-by-step prompt [60] to generate
code snippets that directly use the target API For the generated
seeds, we further apply an evolutionary fuzzing algorithm to itera-
tively generate new code snippets (Section 3.2). In each iteration, we
start by selecting a seed program with a high fitness score from the
seed bank. We systematically replace parts of the selected seed with
masked tokens using different mutation operators (Section 3.2.1) to
produced masked inputs. Mutation operators are selected using a
multi-armed bandit algorithm [67] (Section 3.2.2) aiming to maxi-
mize the number of valid and unique mutations generated. Using
the masked inputs, we leverage the ability of infilling LLMs to per-
form code infilling to generate new code that replaces the masked
tokens (Section 3.2.3). For each generated mutant, we first filter out
any execution failures and use our fitness function (Section 3.2.4)
to score each mutant. We then place all generated mutants into
the seed bank, and for future mutation rounds, we prioritize seeds
that have a higher score, allowing us to generate a more diverse
set of high-quality code snippets for fuzzing. Finally, we execute
all generated programs using differential testing oracle on different
backends (CPU/GPU) to identify potential bugs (Section 3.3).
While our approach is general for any pair of generative and
infilling LLMs, in this work, we use Codex [12] and INCODER [21]

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

as our generative and infilling models, respectively. Codex is a state-
of-the-art generative code model based on the popular GPT-3 [10]
architecture where the model weights are first initialized using GPT-
3 weights trained on natural language text and then fine-tuned on
a large corpus of open-source code files. Codex can be used to
perform auto-completion where the input is simply a description
of the task (known as a prompt [10, 43]). In TrtanFuzz, we use
Codex to automatically create the high-quality seed programs for
our evolutionary fuzzing algorithm. To obtain mutations from the
seed programs, we use the INCODER model to perform code infilling.
Unlike the generative models such as Codex which only uses the
context before, INCODER is able to fill in code in the middle by using
both the context before and after. In TritaNFuzz, we combine the
power of both types of LLMs by first using the generative model
(Codex) to produce high-quality seed programs and then using the
infilling model (INCODER) to generate additional mutated programs.

3.1 Initial Seed Generation

To generate the initial seed programs for a target DL API, we first
query the Codex model with a step-by-step prompt and sample mul-
tiple completions. Codex is trained using causal language modeling
where the model aims to predict the next token using all previous
generations. Given a training sequence of tokens T = {t1,t2, ..., tn},
let Tey = {t1, t2, ..., tm—1} be the token sequence generated so far
(m < n) and P be the Codex model which outputs the probability
of generating a token. The Codex loss function is defined as:

1 n

Leodex ==~ 21) log (P (t; | T<i)) M

Figure 5 shows an example of the constructed prompt and model
output. In the prompt, we wrap our task description in a docstring
following [12]. More specifically, we include the target library (e.g.,
TensorFlow) and the target API signature (e.g., tf.nn.conv2d(input,
filters, ...))in the prompt. The API signature is automatically
extracted from the API documentation with an HTML crawler. We
also design a step-by-step instruction (i.e., Task 1: ... Task 2:
. Task 3: ... in Figure 5) to improve the model’s performance
following [2, 47, 53, 73]. More precisely, we instruct the model to
perform three tasks sequentially: (1) import the target library; (2)
generate input data; and (3) invoke the target APIL. The constructed
prompt serves as the initial input for Codex and the raw seed
programs are obtained by sampling the autocompletion from Codex.

3.2 Evolutionary Fuzzing

Algorithm 1 describes the main evolutionary fuzzing algorithm of
TrtanFuzz. We start by initializing the seed bank with the Codex
generated seeds (Line 2). The seed bank maintains the list of code
snippets that have been generated so far. Next, we initialize the
prior distribution of each mutation operator, which we will use and
update in the main loop for selecting mutation operators (Line 3).
We then enter the generation loop by selecting a current seed for
mutation according to a fitness score (Line 5). This seed selection
process first prioritizes those with higher fitness scores by choosing
the top N seeds with the highest fitness score. Out of the top N
seeds, we perform a softmax [22] operation on their exact fitness
scores to determine the probability of picking each seed.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

t_a'p'i'(X)

select
Seed Code Snippets t_a.p.i‘(x) seed
T generate e
Seeds Seed Bank
g
o
H update
¢ ? bank
/| # prompt text
> completion < compute

API Prompt score

construct
prompt

DL Library /- @
API [

PR —=d\ Fitness
t dim=0
_ap;()‘::‘ =) | 21— g/,_ﬁ‘AFunction -~

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

POTENTIAL
BUGS

A

Compare

t_api() Results
Infilling LLM
apply
operator] @
Mutation I I
U

Operators update OUtPUt cPy
prob

execute

t_api(y, dim=e)

t_api(x)

fuzzing outputs

Figure 4: Overview of TitanFuzz

]
Task 1: Import [TensorFlow|2.10.0 target library

Task 2: Generate input data

F;:rom ptt Task 3: Call the API|tf.nn.conv2d(input,filters,strides,
npu
P padding, data_format="NHWC',dilations=None, name=None)

import tensorflow as tf target API signature
tf.__version__

Codex input = tf.variable(tf.random.normal([1, 10, 1@, 1]))

Output

filter = tf.variable(tf.random.normal([3, 3, 1, 1]))
op = tf.nn.conv2d(input, filter, strides=[1, 1, 1, 1], padding='VALID')

Figure 5: Example generation from the Codex model.

Besides the seed selection, we also decide which mutation opera-
tor will be applied on the seed (Line 6). Since the mutation operators
that work well in helping the model to generate valid and unique
mutations can be different for different target APIs, we dynami-
cally learn the operator prioritization strategy using a Multi-Armed
Bandit (MAB) [67] algorithm. Each mutation operator will mask
out one or multiple segments of the current seed program with a
special token (Line 7). The masked input is then fed into the
INCoDER model to generate code snippets that infill the masked
regions (Line 8) with sampling. For each sample generated, we run
and statically analyze the code snippet (Line 9). Specifically, we
determine the code snippets that can be compiled (ValidSamples).
We then update the posterior distribution of the mutation operator
according to the number of valid and invalid samples it produced
(Line 10). For each valid sample, we compute the fitness score ac-
cording to our defined fitness function (FitnessFunction), which
is designed to prioritize a diverse set of seeds that have a high
number of unique interactions between different APIs, enabling us
to discover more potential bugs. Using the fitness score, we add
these samples into the seed bank for next iteration of seed selection
(Line 12). Finally, when the time budget is exhausted, we terminate
the generation and return the seed bank, now filled with a number
of unique code snippets using the target APL Next, we will detail
the key components for our algorithm.

3.2.1 Mutation Operators. We use four basic types of mutation
operators: argument, prefix, suffix and method. Figure 6 shows
the example masked inputs generated using each of our mutation
operators. We start by identifying the target API (e.g., torch.mm) in
the seed code snippet. Each mutation operator replaces a particular
location of the chosen seed code with a masked span token ().
For example, the argument-replacement mutation operator will

Algorithm 1: Evolutionary fuzzing algorithm

1 Function EvoFuzz(API, Seeds, T_Budget):

Input :The test target API, the seed programs Seeds, the time budget T_Budget
Output: The generated programs
2 SeedBank «— Seeds
3 InitializeMPrior ()
4 while T_Elapsed < T_Budget do
5 CurrentSeed «— SelectSeed (SeedBank)
6 MutationOp < SelectMutationOp ()
7 MaskedInput < Mask (CurrentSeed, MutationOp)
8 Samples <— InCoder (MaskedInput)
9 ValidSamples, InvalidSamples «— Evaluate (Samples)
10 UpdateMPosterior (MutationOp, Count (ValidSamples), Count
(InvalidSamples))
11 FitnessScore <— FitnessFunction (ValidSamples)
12 SeedBank «— SeedBank U ValidSamples
13 | return SeedBank
Seed A = torch.rand(50, 50)
Input B = torch.clone(A
= target API
(argument-replacement prefix-only
A = torch.rand(5@, 50)
B = torch.clone(A) B = torch.clone(A)
= torch.mm() C = torch.nm(A, B)
argument< keyword-insertion prefix prefix-argument
A = torch.rand(50, 50)
B = torch.clone(A) B = torch.clone(A)
C = torch.mm(A, B, =) C = torch.mm()
AN
rsuffix-only
A = torch.rand(50, 50)
B = torch.clone(A)
C = torch.mm(A, B)
T method n " ,
suffix . A = torch.rand(50, 5@
< suffix argument method B = e Elene)
A = torch.rand(50, 50) C = torch.(A, B)
B = torch.clone(A)
C = torch.mm()
\

Figure 6: Mutation operators outputs (inputs for the model)

replace the argument of the target API call with the span token.
The key idea is to create inputs which leverage the ability of LLMs
to generate code snippets which replace each span token at the
desired location, i.e., replacing the token with the model
generation. We now define each of our mutation operator types:

Argument. The first is the argument-replacement mutation oper-
ator which replaces the API call arguments with the span token.
Using this masked input, the model can fill-in different arguments
to the API, generating unique and different program behaviors.
Note, the argument-replacement mutation operator is not limited
to just the target API and can be applied on any arbitrary library
APl in the code snippet. Furthermore, we use the keyword-insertion
mutation operator which attempts to allow the model to generate
additional keywords for a particular library API. Different from

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

Algorithm 2: Mutation operator selection algorithm

1 Function InitializeMPrior():

2 for m € MutationOps do

3 L mSmFe1,1

4 Function SelectMutationOp():

Output: The chosen mutation operator m

5 for m € MutationOps do

6 | Sample O, ~ Beta(m.S, m.F)
7 m* = argmaxmOm

8 | returnm*

9 Function UpdateMPosterior(m, NumValid, NumInvalid):

10 m.S < m.S + NumValid
11 | mF < mF+ Numlnvalid

the argument-replacement operator which replaces the entire argu-
ment list (which can include more than one argument), the keyword-
insertion operator appends two span tokens at the end of the ar-
gument list. The two span tokens sandwich an equal sign, which
signifies to the model that the two spans together should form a
keyword. The equal sign is important, as without it, the model may
think that an additional argument should be added here instead of
a keyword. Keywords can unveil many interesting bugs because
typically only the base case keyword values are tested; this is espe-
cially true for API sequences, as the combination of keywords in
multiple API calls can lead to previously undiscovered bugs.

Prefix/Suffix. Just modifying the arguments of a specific API can
only produce limited code mutants, since there are only a limited
number of variables/literals available in the current scope for each
argument in the API call. As such, to further augment the seed
input, we apply prefix and suffix mutation operators, which choose
a code segment (spanning one or multiple lines) before or after
the target API invocation to insert the span token. In Figure 6, the
prefix-only operator replaces the first line in the seed input with the
span token. The model may then fill in this span token with different
input generation methods instead of torch.rand. On the other hand,
the suffix-only operator adds a span token after the target APL
This allows the model to generate more code, potentially applying
other DL APIs on the output of the prior code, covering additional
interesting program behaviors/bugs. Since both the prefix and suffix
can affect arguments of the API, we further combine the prefix and
suffix together with the argument (i.e., the prefix-argument and
suffix-argument operators) to allow more freedom for generating
code before/after at the same time as argument generation.

Method. We include the method operator which replaces a ran-
domly chosen library API method name with a span token. The
idea is to generate a different library API invocation while using the
existing arguments. The inspiration comes from prior work [16],
which shows that it is common in DL libraries for related APIs to
share the same input, and borrowing inputs from one API can help
trigger bugs in its relational APIs. We can also leverage the method
operator to generate more unique code snippets and test more APIs.

3.2.2 Mutation Operator Selection. We first formulate our muta-
tion operator selection problem as a multi-arm bandit (MAB) prob-
lem [67], and then detail our algorithm. Our assumption is that
the mutation operator that works well (e.g., generating more bug-
triggering mutants) can be different for different DL APIs. Thus, we
would like to adaptively learn the effectiveness of each operator in
the generation loop. Intuitively, the validity of generated programs

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

from a mutation operator can be a strong hint for prioritizing/de-
prioritizing the operator. Thus, we model the mutation operator
selection problem as a Bernoulli bandit problem [61] as follows:

DEFINITION 1. Bernoulli Bandit. Suppose there are K arms, and
when played, each arm yields either a success or a failure. Each arm i €
{1,...,K} is associated with a success probability u; € [0, 1], which
is unknown to the agent. At each time step t, the agent will pull an
arm iy and observe a success/failure output drawn from the Bernoulli
distribution Ber (y1;,). The objective is to maximize the accumulated
number of successes over T rounds of experimentation.

DEFINITION 2. Beta-Bernoulli Bandit. For a Bernoulli bandit
problem, let the agent adopt a Bayesian framework and choose the
standard beta distribution [1] as the independent prior belief over
each arm m. The probability density function of the beta distribution,
for0 < x <1, and parameters o > 0, f > 0 is given by

) B T(a+pf) 41 —1
flxap) = mx (1-x)?
, where T denotes the gamma function [4]. If the prior is a Beta(a,)
distribution, the posterior will also be a beta distribution, with a or
increases by one with each observed success or failure, respectively.

For TrtanFuzz, each mutation operator m can be seen as an arm
associated with an unknown expected success probability, defined
as the unique pass rate (percentage of generated code snippets
when using a mutation operator that are valid and different from
historical generations). When we“play” an arm at time ¢, we apply
the mutation operator to generate programs, validate them, and
interpret each program execution status as a success or failure.

To balance the exploitation and exploration trade-off in this
beta-Bernoulli bandit problem, we leverage the classic Thompson
Sampling (TS) algorithm [11, 67]. Algorithm 2 shows how TS, spe-
cialized for our mutation operator selection, proceeds. By initializ-
ing m.S and m.F to 1 (Lines 2-3), the algorithm assumes each arm
m has prior Beta(1,1) (i.e., uniform distribution). After observing
m.S — 1 successes and m.F — 1 failures of arm m, the posterior dis-
tribution of py, is updated as Beta(m.S, m.F). To select an arm, we
draw a sample 0, from each of those posterior distributions (Line 6)
and play the arm with the largest sampled value (which indicates
that it has the highest probability of having the highest success
rate). After generation using LLMs, we then update the posterior
of the chosen mutation operator based on the execution statuses
of generated programs (Lines 10-11). Compared to randomly pick-
ing mutation operators to use, this approach allows us to identify
mutation operators that help generate more valid and unique code
snippets. Note the best mutation operators can be different for dif-
ferent target APIs, therefore we start a separate MAB game and
re-initialize the operator prior distribution for each end-to-end run
of the evolutionary fuzzing targeting one APL

3.2.3 Code Generation. After using the selected mutation oper-
ator to produce the masked input for code generation, we use
INCODER to generate new code to fill-in the masked-out location.
INCODER is trained using causal masking objective [21] to per-
form code infilling by using bi-directional context to determine
reasonable code snippets to place in the middle. Let T,,,q5keq =
{T1, o, ..., T, } be training code tokens where span mask to-
kens are inserted, M = {mq, ma, ..., my. } be the tokens masked out,

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

Mey = {m1,my, ..., mg_l} be the list of tokens generated so far
(9 £ k), P be the INCopER model which outputs the probabilities of
generating a token. The loss function of INCODER can described as:

S

k
LinCoper = — Z log (P (mi | Tnaskeds M<i)) (2)
i=1

We leverage the ability of INCODER to generate arbitrary but related
code snippets to target intricate library API relationships as the
model can learn from the context (surrounding code which already
focuses on library APIs) to generate additional APIs/code. As DL
library APIs operate on Tensors, a shape mismatch (e.g., vector
addition with incorrect dimensions) can lead to runtime errors.
Traditional mutations (e.g., changing random code elements) do not
work in generating valid DL programs since they can easily cause
runtime errors by incorrectly mutating the input and argument
space, and also cannot easily ensure the semantic validity [38, 55]
of the generated programs due to the dynamically typed language.
In contrast, INCODER is trained on millions of code snippets, many
of which contain usages of these library APIs [28]. This allows
INCoDER to directly provide interesting/correct code based on the
bi-directional context and generate potentially valid DL programs.
Using the code generated by INCODER, we place them directly into
the of the mutated input to produce new code snippets.

3.2.4 Fitness Function. Similar to the mutation operator, the seed
programs we choose to mutate over are also important to generate
unique and interesting code snippets for fuzzing. As such, we design
a fitness function and score to rank each generated program. We
apply static analysis to calculate the fitness scores of each test pro-
gram. The intuition behind the fitness calculation is to give higher
scores to the generated mutation programs with deeper execution
path, more diverse computation graph, and more complicated API
invocations. Specifically, we consider the following features:

e Depth of dataflow graph. We statically analyse the dataflow of
variables within the generate code snippets to build a dataflow
graph with each edge representing data dependencies between
two operations. The depth of the dataflow graph (D) is defined
as the maximum number of edges in any path of the graph.

e Number of API calls. We count the number of unique library
API calls (U) that exist within each code snippets. Since LLM
tends to generate many code snippets where code line(s) are
repeated, we also count and penalize the number of library APIs
that are repeatedly called with the same inputs (R).

Combining all these factors, given generated code snippet C, we
define our fitness function to be:

FitnessFunction(C) =D+ U -R 3)

According to the formula, TitaNFuzz favors input programs in-
volving long-chained API sequences and more unique APIs. In this
way, it allows us to cover more interactions between different APIs,
potentially triggering more interesting program behaviors/bugs.
Meanwhile, using only the first two sub-terms would cause TITAN-
Fuzz to cover longer and longer API sequences with repeated API
calls, making the fuzzing process less efficient. Therefore, TITAN-
Fuzz further penalizes the sequences with repeated API calls.

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

3.3 Oracle

After the generation loop, we leverage differential testing oracle to
detect bugs by running the generated code snippets on two separate
backends. In short, we execute the generated code snippets on CPU
and GPU, record all the variables including the intermediate ones,
and detect potential bugs. We focus on the following bug types:

Wrong-Computation. We compare the values of all intermedi-
ate variables across the two execution backends and find wrong-
computation when values are significantly different. Due to the
non-deterministic nature of certain computations leading to slightly
different results on CPU or GPU, we follow previous work [72]
and use a tolerance threshold to check if values are significantly
different. Difference in computed values can indicate a potential
semantic bug in different backend implementations of a library API
or interactions between different APIs.

Crash. During program execution, we also detect unexpected
crashes, e.g. segmentation faults, aborts, INTERNAL_ASSERT_FAILED
errors. Such crashes indicate failures to check or handle invalid
inputs or corner cases, and can lead to security risks.

4 EVALUATION
We aim to investigate the following research questions:

e RQ1: How does TrtanFuzz compare against existing DL
library fuzzers?

e RQ2: How do the key components of TrtanFuzz contribute
to its effectiveness?

e RQ3: Is TrtanFuzz able to detect real-world bugs?

4.1 Implementation

For seed generation, we use the Codex Completion model with
code-davinci-002 engine to sample 25 programs for each API. Since
the Codex model is not open-sourced, we access it by interacting
with the Codex API through HTTP requests from Python. Our
default setting for code completion for Codex uses top-p (nucleus)
sampling [31] with p = 0.95 following previous studies [12, 21], and
max_tokens=256, temperature=0.4 tuned for our task. Since we
pose a maximum token limit to Codex model for code completion,
the generated program can end with an incomplete line. Thus, for
each Codex-produced program, we iteratively remove the last line
of the program until the syntax parsing succeeds. For fuzzing, we
choose N=10 for seed selection and use the PyTorch implementation
of the INCoDpER 1.3B model on Hugging Face [33]. Our default
setting when using INCODER uses temperature = 1 with default
settings of top p = 0.95 from previous studies [21]. We apply code
filtering to remove unnecessary code generated by the model such
as print statements. Furthermore, we apply dataflow analysis to
perform dead code elimination.

4.2 Experimental Setup

Targeted DL libraries. We include both PyTorch (v1.12) [57] and
TensorFlow (v2.10) [66], since they are two of the most popular
DL libraries and are widely studied in prior DL library testing
work [70, 72, 77].

Fuzzing budget. By default, we use a one-minute fuzzing budget
per API for all possible APIs of both studied libraries. Meanwhile,

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

for RQ2, we randomly sample 100 public APIs in each library and
conduct the ablation study experiments for five times and report
the average following prior work [37]. Also, for RQ3, we extend
the fuzz budget to four-minute per API for maximal bug finding.

Environment. We use a 64-core workstation with 256 GB RAM
and running Ubuntu 20.04.5 LTS with 4 NVIDIA RTX A6000 GPUs.
We use the coverage.py [3] tool to measure Python code coverage.

4.3 Metrics

Number of detected bugs. Following prior work on fuzzing DL
libraries [56, 70-72, 77], we report the number of detected bugs.
Code coverage. Code coverage has been widely adopted in soft-
ware testing and recently DL library/compiler testing [25, 45, 72].
We follow recent DL library fuzzing work (Muffin [25] and Free-
Fuzz [72]) and use line coverage.

Number of covered APIs. Following prior work [16, 72], we report
the number of covered APIs as another important metric of test
adequacy in DL libraries which typically have thousands of APIs.
Number of unique valid programs generated. A generated
program is considered valid if the program executes successfully
without exceptions and actually invokes the target API at least once.
We also remove the code snippets that have already been generated
and only consider unique programs.

Execution time. Since TrTaNFUzz uses LLMs as the generation
engines, it may take more time than existing fuzzers. As such, we
also record the execution time following prior work [45, 71, 72].

5 RESULT ANALYSIS
5.1 RQ1: Comparison with Prior Work

We compare TitanFuzz against both state-of-the-art API-level
(FreeFuzz [72], DeepREL [16]) and model-level (LEMON [71], Muf-
fin [25]) fuzzers for testing DL libraries. Table 1 presents the number
of library APIs covered by all studied techniques on TensorFlow
and PyTorch. We run each tool with its default setting, and since
LEMON and Muffin do not support PyTorch models, we only re-
port their results on TensorFlow. Column Total presents the total
number of APIs in each DL library. Note that we excluded the dep-
recated APIs and compatibility APIs in TensorFlow as they are no
longer actively maintained by developers.

We observe that TITANFuzz is able to cover 2215 and 1329 APIs
in TensorFlow and PyTorch, achieving the highest number of APIs
covered compared to state-of-the-art techniques. TITANFUZz increases
the number of APIs covered by 91.11% and 24.09% compared to the
best-performing baseline DeepREL. Compared with model-level
fuzzing techniques (LEMON and Muffin), LLM can greatly outper-
form them in terms of the number of covered APIs. This is due to
the fact that model-level fuzzers use complete DL models that are
implemented using a small set of layer-wise APIs such as Conv2d.
On the other hand, TitanFuzz is able to generate arbitrary code
through the use of both generative (Codex) and infilling (INCODER)
LLMs to achieve state-of-the-art results in terms of API coverage.

Table 1: Comparison on API coverage

| TrtanFuzz | DeepREL FreeFuzz | Muffin LEMON | Total

TensorFlow
PyTorch

2215 1159 581 79 35 3316
1329 1071 468 - - 1593

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

TensorFlow PyTorch
108000 24000

106000 23560

23000
PV e = =P Y F = e =Y,
4000 h

16500) amndh i b b Akt ol Sk 4
82000 1 7
1 16000 /
1 =¥- DeepRel / =¥ Deeprel

TitanFuzz TitanFuzz

15500
50 60 [10 20 30 % 50 60
time (seconds)

Line Coverage
Line Coverage

80000

] 10 20 30 %
time (seconds)

Figure 7: Coverage trend against DeepREL

Table 2 presents the overall code coverage rate. We choose the
best-performing API-level and model-level baselines DeepREL and
Muffin according to API coverage and run with their default set-
tings. We observe that TitaNFuzz significantly outperforms both
DeepREL and Muffin, achieving the state-of-the-art result of 20.98%
and 39.97% line coverage on PyTorch and TensorFlow. Compared with
DeepREL, we increase the coverage result by 50.84% and 30.38% on
PyTorch and TensorFlow. The time cost of TrtanFuzz is higher due
to the larger number of tested APIs and the use of LLMs. However,
we observe that simply running TrtanFuzz with only seed genera-
tion and targeting only the APIs that are covered by DeepREL (Row
TrranFuzz-seed-only (w/ DeepREL APIs)) can already greatly
outperform DeepREL with even less time, showing the power of
directly using LLMs to produce high-quality seeds.

Figure 7 further shows the coverage trend of TrtanFuzz against
the best baseline DeepREL as we increase the time spent on fuzzing
each target APL In this experiment, we run both techniques with a
one-minute time budget for each API. We note that the DeepREL
coverage barely increases after around 10 to 20 seconds of fuzzing.
On the other hand, TrtanFuzz does not suffer from the same cov-
erage saturation. Even after 50 seconds of fuzzing, TrtaNFuzz can
still generate new programs that improve coverage. We attribute
this to both the usage of LLM to perform infilling and our guided
seed and mutation operator selection in the generation process.

Table 2: Comparison with the best existing techniques

PyTorch | TensorFlow

Coverage Time | Coverage Time

DeepREL 15794 (13.91%) 5.1h | 82592 (30.65%) 9.3h

Muffin

- - | 79283 (29.42%) 6.8h

TitanFuzz-seed-only
(w/ DeepREL APIs)
TrtanFuzz-seed-only
(w/ all APIs)
TrtanFuzz

18447 (16.25%) 3.4h | 89048 (33.05%) 4.9h

22584 (19.89%) 5.1h
23823 (20.98%) 9.9h

103054 (38.35%) 11.9h
107685 (39.97%) 21.1h

5.2 RQ2: Evaluation of Key Components

5.2.1 Seed Generation. We first study the various design choices
for our seed generation which uses the Codex model with a carefully
designed input prompt. The goal of the seed generation is to provide
high-quality programs for as many APIs as possible. Therefore, we
compare several variants of the input prompt and different Codex
model hyperparameter values.

Figure 8 shows the API coverage and number of unique valid
programs with different temperatures and prompts. TrtaNFuzz
represents the default strategy presented in Section 3.1, where the
prompt includes three steps to first import the DL library, generate
input, and then call the target APL. We also include the full API sig-
nature in the prompt to provide syntax guidance. TrTaANFUZz-sig.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

TensorFlow

PyTorch

valid programs

)
i
a
<
°
d 1
& I
g | — TitanFuzz
3 : TitanFuzz-sig.
= | — TitanFuzz-step
I
T T T T T T T f T T T
0.0 0.2 e.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
temperature temperature

Figure 8: Codex seed generation trend

only provides the API name instead of API signature in the prompt
(e.g. replacing the entire target API signature with tf.nn.conv2d
in Figure 5). TrTaANFuUZZ-step removes the first two steps (import
library and input generation) and only asks Codex to call the target
API from the specified library version. First, we find that our default
sampling temperature value of 0.4 (red dotted line) provides a good
balance in terms of generating more valid programs and also cover-
ing more unique APIs on both PyTorch and TensorFlow. Second, we
observe that by adding step-by-step instructions (first import the
library and generate input data) to the prompt, we can substantially
improve Codex’s performance in both the number of unique valid
programs generated and API coverage, demonstrating the power
of prompt engineering for fuzzing for the first time. Furthermore,
by adding the API signature to the prompt, we provide Codex with
valuable information regarding the input parameter space to help
Codex generate more valid programs.

5.2.2 Evolutionary Generation. Next we look at the different fac-
tors and choices in the evolutionary fuzzing algorithm.
Mutation Operators. We examine the effectiveness of each of our
additional mutation operator types (except the default argument
operators). Table 3 shows results when we remove each type from
TrtanFuzz. Column Valid considers only unique valid programs
and Column All also includes programs with runtime errors. We
observe that the highest number of unique programs and coverage
is obtained when we use full set of mutation operator. This shows
that each of the mutation operators can help in producing more
unique programs and covering additional lines.

Table 3: Ablation study of operators

PyTorch ‘ TensorFlow

Variants " "

‘ # Unique Prog. Coverage ‘ # Unique Prog. Coverage

| Valid Al Valid All | Valid All Valid All
TrranFuzz 6969 18245 17411 17957 5173 16865 84447 86536
-Suffix 5770 15813 16709 17691 4642 14501 81145 85294
-Method 6239 16943 16886 17615 3492 12519 83405 85454
-Prefix 6211 17082 17075 17797 3359 12345 83435 85645

Fitness Function. We compare our default fitness function against
its variants, as well as random selection (Random) and a simplistic
coverage guided [18, 35, 42, 50] (Coverage) baseline in Table 4. The
fitness function variants are constructed by removing each sub-
term from the original fitness function (Equation 3). We observe
that our chosen fitness function (D+U-R) is able to achieve close to
the highest coverage and number of unique programs generated for
both TensorFlow and PyTorch. Compared to random selection, our

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

chosen fitness function approach is able to obtain higher coverage.
This is due to the fitness function’s ability to guide the fuzzing pro-
cess towards using seeds with more unique APIs and longer chained
API sequences, leading to covering more lines of code. Compared to
our coverage-guided baseline which only adds programs with new
coverage to the seed bank for later mutation, our fitness function
has minimal additional overhead. This allows TrtaNFuzz to spend
more time on the generation, leading to not only higher coverage
but also more unique code snippets for testing.

Table 4: Ablation study of fitness function

PyTorch Tensorflow
Variants) n
Unique Prog. Coverage # Unique Prog. Coverage
Valid All Valid Valid All Valid All
D+U 5817 15609 17725 18415 2993 11253 82963 85455

5872 16916 17229 18046
6234 17321 16894 17820
Random 7288 20720 16674 17586
Coverage 5098 15300 16715 17617

2876 11861 83563 85599
4315 15495 84057 86286
3274 13237 83440 85045
3210 12880 83030 84194

\ \
\ \
\ I |
D+U-R 6960 18245 17411 17957 5173 16865 84447 86536

Operator Selection Algorithm. We compare our default Thomp-
son Sampling operator selection algorithm (TS) with a uniformly
random selection baseline (Random). Table 5 summarizes the re-
sults. The TS bandit algorithm helps to generate more unique valid
programs and achieve higher code coverage in both libraries com-
pared to the random strategy. Specifically, the TS strategy can
generate around 2X more valid unique programs for TensorFlow;
in PyTorch, although TS can generate fewer unique programs in
total, it can still produce 12.5% more valid ones, demonstrating the
effectiveness of our MAB-based operator prioritization.

Table 5: Evaluation of operator selection algorithms

Library ‘ Algorithm ‘ #Unique programs Coverage

| | Valid All - Valid All
PoTorch 6960 18245 17411 17957
yrore Random 6185 18504 17003 17683
TensorFl 5173 16865 84447 86536
ensortiow Random 2612 11816 83238 85469

INCoDER vs Codex. Lastly, we also take a closer look at the con-
tribution of both Codex and INCODER in generating unique test
programs (# Unique Prog. per API) and time cost per unique pro-
gram (Time) in Table 6. We observe that while Codex can provide
high-quality seed programs, it is relatively slow compared to the
smaller INCODER model, demonstrating the benefits of leveraging
infilling LLMs and evolutionary mutation to further complement
the powerful but costly large generative LLMs for fuzzing.

Table 6: Generation efficiency of Codex and INCODER

Unique Prog. per API ‘ Time per Prog. (s)

Library ‘ Model
| | Valid All | Valid All
PyTorch Codex 13.55 2316 | 082 0.48
yrore INCODER | 9238 45068 | 051 0.10
TensorFlo Codex 6.85 2226 | 169 0.52
W | InCoper | 67.17 358.06 | 0.67 0.13

5.3 RQ3: Detected Bugs

Table 7 summarizes the statistics of bugs detected by TrranFuzz. In
total, TrtanFuzz detected 65 bugs, with 55 confirmed (including 20
crash and 35 wrong-computation bugs), including 44 confirmed as

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

input_file = ['https://.../iris_training.csv’',
‘https://.../iris_test.csv']
training_dataset = tf.data.experimental.
CsvDataset(input_file[@], ..., header=True)
for e in range(10):
The following operation 1is causing Check Fail
training_dataset = training_dataset.shuffle(1000).repeat().batch(512)
Target API: tf.data.experimental.CsvDataset
Catch: Check failed: @ <= new_num_elements ... (core dumped)
a)
X = torch.randn(10, 10).log() # x contains NaN
y = torch.histc(x, bins=16, min=0, max=1)
On CPU: [48, ...] counts all NaN
On GPU: [2, ...] does not count any NaN
Target API: torch.histc
Catch: Inconsistency between GPU and CPU
b)

u High Priority

indices = tf.constant([1, 2, 3, 4]) Security

data = [1.0, 2.0, 3.0, 4.0] p Vulnerability
output = tf.raw_ops.ParallelDynamicStitch(indices=indices, data=data)

On CPU: [7.6904807, ...] out-of-bound read

#0n GPU: [0, ...

]
Target API: tf.raw_ops.ParallelDynamicStitch
Catch: Inconsistency between EPU and CPU
c
X = tf.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.int32)
Z = tf.bitwise.right_shift(X, -1)
#0n CcPU: [[1, 2, 3], [4, 5, 6]]
0On GPU: [[0, 6, 0], [0, 6, 0]]
Target API: tf.bitwise.right_shift
Catch: Inconsistency between GPU and CPU
d

ot

Implementation
(-defined

Figure 9: Bugs detected by TitanFuzz

previously unknown bugs (21 of which already fixed). Out of the 55
confirmed bugs, only 9 can be also found by the studied API-level
fuzzers while none can be found by model-level fuzzers. Notably,
10 confirmed bugs are found by directly using the Codex generated
seeds without any mutation. We next present example bugs that
can only be detected by TitanFuzz, as well as one rejected bug:

Table 7: Summary of detected bugs

| Total | Confirmed Unknown (Fixed) | Rejected

PyTorch 37 32 25 (13) 5
TensorFlow 28 23 19 (8) 5
Total | 65 | 55 44 (21) | 10

Figure 9a shows an overflow bug found when we repeatedly
batch an instance of CsvDataset. The code incorrectly crashes with
Check failed message when it instead should throw a catchable
overflow exception. What makes this bug hard to detect is that we
first must create the dataset, which TrTaNFuzz correctly generates
by calling CsvDataset (the two hyperlinks are in fact valid links to
obtain data). Furthermore, the bug is triggered by using the for
loop to repeatedly call the batch function. This type of unique input
generation and program structure (for loop) makes it impossible for
previous fuzzers to generate this test program. TrtanFuzz through
the use of LLMs can successfully generate the dataset creation code
and also Python-specific code (e.g., for loop) to expose this bug.

Figure 9b shows a bug in the torch.histc API where on CPU
the API incorrectly counts NaN values as part of the first bin in the
histogram. This bug is only found through TrranFuzz as it relies
on a chained API sequence of first generating the regular random
input and then applying the log function which can generate NaN
values for negative inputs. Due to the silent incorrect computation,
PyTorch developers have labeled this as a high priority bug.

Figure 9c shows a bug when a certain output index is left unspec-
ified for the API ParallelDynamicStitch. When running on CPU,
this API can perform an out-of-bound read without throwing any
exception. Although in theory, previous API-level fuzzers should be
able to find this bug since it is isolated within a single API. In prac-
tice, this bug is missed since this API is not covered by any of the
previous techniques. This is due to the fact that the particular API

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

(ParallelDynamicStitch) is not commonly used. As such, previous
work cannot generate valid inputs to cover this API since they rely
on known valid input/API pairs obtained from databases created
by scraping open-source code [16, 72]. TiTaNFuzz is able to suc-
cessfully cover this API through the usage of Codex (with prompt
engineering) to provide high quality seeds. Due to the potential
for exploiting this silent out-of-bound read, TensorFlow developers
have labeled this bug as a security vulnerability.

Since we use the differential testing oracle by comparing the
values obtained when running on CPU and GPU, there could be
false positive cases where inconsistencies are tolerated or intended.
Figure 9d shows an obvious inconsistency detected by TitanFuzz
but rejected by developers. The cause is due to the inconsistency
when using right_shift with a negative value. While it is not ex-
plicitly stated in the documentation, the developers commented
on the issue report that because the CPU and GPU use different
lower-level shifting operators, the output result when shifting with
negative values will be dependent on the implementation.

5.4 Threats to Validity

Internal. The main threat to internal validity comes from the im-
plementation of TrtaNFuzz. To address this threat, the authors
carefully performed testing and code review to validate that it was
correctly implemented. Regarding randomness, while we only con-
duct RQ1 experiments for one run due to the large number of APIs,
we analyze the 5 runs for 100 APIs in RQ2. Targeting just 100 sam-
pled APIs, TrtanFuzz’s code coverage is 17957(+887) for PyTorch
and 86536(+£1499) for TensorFlow, substantially outperforming the
strongest baseline (DeepREL) with p-value<0.001 for both libraries.

External. The main external threat to validity originates from
our studied benchmarks. We mitigate this by evaluating on two
most popular DL libraries: PyTorch and TensorFlow. Our result
shows that TrTaNFuzz achieves the state-of-the-art results on both
libraries.

6 CONCLUSION

We propose and implement TITaNFuzz, the first approach for fuzzing
DL libraries via Large Pre-trained Language Models. TitanFuzz
first uses a generative LLM (e.g., Codex) to provide high-quality
seed programs through prompt engineering, and then leverages
an infilling LLM (e.g., INCODER) to mutate seed programs with an
evolutionary fuzzing algorithm. Our extensive evaluation on two
popular DL libraries (PyTorch and TensorFlow) demonstrates that
TrtanFuzz significantly improves the number of covered library
APIs and code coverage. Furthermore, TITANFUZz is able to detect 65
bugs, 44 of which are confirmed to be previously unknown. Overall,
this work demonstrates a promising future of directly leveraging
modern LLMs for fuzzing and testing in general.

ACKNOWLEDGEMENTS

We thank the reviewers for their insightful feedback and comments
to improve this paper. This work was partially supported by NSF
grants CCF-2131943 and CCF-2141474. We also acknowledge sup-
port from Kwai Inc., Google, and Meta.

ISSTA °23, July 17-21, 2023, Seattle, WA, USA

REFERENCES

[10

(11

[12

[13

[14

(15

[16

[17

[18

]

2022. Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution.

2022. Codex Documentation - Best Practices. https://beta.openai.com/docs/
guides/code/best-practices.

2022. Coverage.py. https://github.com/nedbat/coveragepy.

2022. Gamma function. https://en.wikipedia.org/wiki/Gamma_function.

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
https://arxiv.org/abs/2108.07732

Rahul Banerjee. 2021. Writing Better Tests with Al and GitHub Copilot. Codecov
(2021). https://about.codecov.io/blog/writing-better-tests-with-ai-and-github-
copilot/.

Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. 2021. Fuzzing:
Challenges and Reflections. IEEE Software 38, 3 (2021), 79-86.

Dalvin Brown. 2021. Hospitals turn to artificial intelligence to help with
an age-old problem: Doctors’ poor bedside manners. The Washington Post
(2021). https://www.washingtonpost.com/technology/2021/02/16/virtual-ai-
hospital-patients/.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165.

Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thomp-
son Sampling. In Advances in Neural Information Processing Systems, J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (Eds.), Vol. 24.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/
€53a0a2978c28872a4505bdb51db06dc-Paper.pdf

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724-1734. https://doi.org/10.3115/v1/D14-1179

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv:2204.02311 [cs.CL]

Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 95-105.

Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
Deep-Learning Libraries via Automated Relational API Inference. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 44-56. https:
//doi.org/10.1145/3540250.3549085

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.
Andrea Fioraldi, Dominik Maier, Heiko Eif3feldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies (WOOT 20). USENIX Association,
USA, Article 10, 1 pages.

Yinlin Deng, Chungqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

(19]

[20]

[21

[22

~
=

[24

[25]

I
S

[27

[28

@
=

@
&,

[38

[39

[40

[41

[42

Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416-419.
Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2012), 276-291.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruigi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

Josiah Willard Gibbs. 1902. Elementary principles in statistical mechanics: devel-
oped with especial reference to the rational foundations of thermodynamics. C.
Scribner’s sons.

Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 50-59. https://doi.org/10.1109/ASE.2017.
8115618

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT
Press, Cambridge, MA, USA, 2672-2680.

J. Gu, X. Luo, Y. Zhou, and X. Wang. 2022. Muffin: Testing Deep Learning Libraries
via Neural Architecture Fuzzing. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA,
1418-1430. https://doi.org/10.1145/3510003.3510092

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE]

Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated testing for deep learning frameworks. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 486-498.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (Zurich, Switzerland) (ICSE '12). IEEE Press,
837-847.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long Short-term Memory. Neural
computation 9 (12 1997), 1735-80.

Christian Holler, Kim Herzig, Andreas Zeller, et al. 2012. Fuzzing with Code
Fragments.. In USENIX Security Symposium. 445-458.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
Curious Case of Neural Text Degeneration. arXiv:1904.09751.

Zhicheng Hu, Jianqi Shi, YanHong Huang, Jiawen Xiong, and Xiangxing Bu.
2018. GANFuzz: A GAN-Based Industrial Network Protocol Fuzzing Framework.
In Proceedings of the 15th ACM International Conference on Computing Frontiers
(Ischia, Italy) (CF ’18). Association for Computing Machinery, New York, NY,
USA, 138-145. https://doi.org/10.1145/3203217.3203241

HuggingFace 2022. Hugging Face. https://huggingface.co.

Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayam-
pallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue,
Fernando Mujica, Adam Coates, and Andrew Y. Ng. 2015. An Empirical Evaluation
of Deep Learning on Highway Driving. arXiv:1504.01716 [cs.RO]

K. Serebryany 2015. libFuzzer a library for coverage-guided fuzz testing. https:
//Mlvm.org/docs/LibFuzzer.html.

Keras 2020. Keras. https://keras.io/.

George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123-2138. https://doi.org/10.
1145/3243734.3243804

Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Cover-
age guided, property based testing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1-29.

Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 216-226.

Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
Neural Network Language {Model-Guided} {JavaScript} Engine Fuzzer. In 29th
USENIX Security Symposium (USENIX Security 20). 2613-2630.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 45th International Conference on Software
Engineering.

Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475-485.

[43] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale

for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 3045-3059. https:
//doi.org/10.18653/v1/2021.emnlp-main.243

Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for
Deep Learning Compilers. In ASPLOS. 530-543.

Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation. Proc.
ACM Program. Lang. 6, OOPSLAL1, Article 73 (apr 2022), 26 pages. https://doi.
org/10.1145/3527317

Jiawei Liu, Chungjiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2022. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. (sep
2022). https://doi.org/10.1145/3560815

Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid ¢ programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044-1051.

Yang Liu. 2019. Fine-tune BERT for Extractive Summarization. arXiv:1903.10318.
M. Zalewski 2016. American Fuzzy Lop - Whitepaper. https://Icamtuf.coredump.
cx/afl/technical_details.txt.

Zohar Manna and Richard J. Waldinger. 1971. Toward Automatic Program
Synthesis. Commun. ACM 14, 3 (mar 1971), 151-165.

Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos
Gligoric. 2023. Learning Deep Semantics for Test Completion. In 45th International
Conference on Software Engineering.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski,
Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena. 2021. Show Your Work:
Scratchpads for Intermediate Computation with Language Models. https:
//doi.org/10.48550/ARXIV.2112.00114

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and
Hanjun Dai. 2020. BUSTLE: Bottom-Up program synthesis through learning-
guided exploration. arXiv preprint arXiv:2007.14381 (2020).

Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gener-
ative type-aware mutation for testing SMT solvers. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1-19.

Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1027-1038. https://doi.org/10.1109/ICSE.2019.00107

PyTorch 2018. PyTorch. http://pytorch.org.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. (jan 2020).

Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. arXiv:2102.07350.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
etal. 2018. A tutorial on thompson sampling. Foundations and Trends® in Machine
Learning 11, 1 (2018), 1-96.

John Schulman, Barret Zoph, Jacob Hilton Christina Kim, Jacob Menick, Ji-
ayi Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vijayvergiya, Eric Sigler, Adam Perel-
man, Chelsea Voss, Mike Heaton, Joel Parish, Dave Cummings, Rajeev Nayak,
Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas Turley,
Noah Deutsch, Vik Goel, Jonathan Ward, Aris Konstantinidis, Wojciech Zaremba,
Long Ouyang, Leonard Bogdonoff, Joshua Gross, David Medina, Sarah Yoo, Teddy
Lee, Ryan Lowe, Dan Mossing, Joost Huizinga, Roger Jiang, Carroll Wainwright,
Diogo Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Katarina Slama, Steven Bills,
Alex Gray, Jan Leike, Jakub Pachocki, Phil Tillet, Shantanu Jain, Greg Brockman,
and Nick Ryder. 2022. ChatGPT: Optimizing Language Models for Dialogue.
(2022). https://openai.com/blog/chatgpt/.

Max Schifer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive Test
Generation Using a Large Language Model. arXiv:2302.06527 [cs.SE]

Armando Solar-Lezama. 2008. Program synthesis by sketching. University of
California, Berkeley.

Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional.

TensorFlow 2020. TensorFlow. https://www.tensorflow.org.

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models

[67]

(68

[69

(71

[72

(73]

<
=t

[75

[76

[77

[79

[80

[81

(82

(83

(84

[85

%
o

ISSTA 23, July 17-21, 2023, Seattle, WA, USA

WILLIAM R THOMPSON. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two samples.
Biometrika 25, 3-4 (12 1933), 285-294. https://doi.org/10.1093/biomet/25.3-
4.285 arXiv:https://academic.oup.com/biomet/article-pdf/25/3-4/285/513725/25-
3-4-285.pdf

Alina Tugend. 2021. A Smarter App Is Watching Your Wallet. The New York
Times (2021). https://www.nytimes.com/2021/03/09/business/apps-personal-
finance-budget.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. (2017). arXiv:1706.03762.

Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin
Tan. 2022. EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries.
(2022).

Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In Proceedings of the 28th
ACM Foint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 788-799.

Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 995-1007.
https://doi.org/10.1145/3510003.3510041

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023).

Chungqiu Steven Xia and Lingming Zhang. 2022. Less Training, More Re-
pairing Please: Revisiting Automated Program Repair via Zero-shot Learning.
arXiv:2207.08281.

Chungqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: Documentation-Guided Fuzzing for
Testing Deep Learning API Functions. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis.

Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022.
A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (San
Diego, CA, USA) (MAPS 2022). Association for Computing Machinery, New York,
NY, USA, 1-10.

Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming
Zhang. 2023. Fuzzing Automatic Differentiation in Deep-Learning Libraries. In
International Conference on Software Engineering (ICSE). to appear.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283-294.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2020. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv:1906.08237.

Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435-450.

Shafiq Joty Yue Wang, Weishi Wang and Steven C.H. Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021.

Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon Fraser, and Christian
Holler. 2019. The fuzzing book.

Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 132-142.

Hui Zhao, Zhihui Li, Hansheng Wei, Jiangi Shi, and Yanhong Huang. 2019. Seq-
Fuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspec-
tive. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). 59-67. https://doi.org/10.1109/ICST.2019.00016

Received 2022-11-10; accepted 2023-01-16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fuzzing Deep Learning Libraries
	2.2 Large Pre-trained Language Models
	2.3 Testing using Deep Learning Models

	3 Approach
	3.1 Initial Seed Generation
	3.2 Evolutionary Fuzzing
	3.3 Oracle

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Metrics

	5 Result Analysis
	5.1 RQ1: Comparison with Prior Work
	5.2 RQ2: Evaluation of Key Components
	5.3 RQ3: Detected Bugs
	5.4 Threats to Validity

	6 Conclusion
	References

