
Large Language Models Are Zero-Shot Fuzzers:
Fuzzing Deep-Learning Libraries via Large Language Models

Yinlin Deng
University of Illinois

Urbana-Champaign, USA
yinlind2@illinois.edu

Chunqiu Steven Xia
University of Illinois

Urbana-Champaign, USA
chunqiu2@illinois.edu

Haoran Peng
University of Science and

Technology of China, China
hurrypeng@mail.ustc.edu.cn

Chenyuan Yang
University of Illinois

Urbana-Champaign, USA
cy54@illinois.edu

Lingming Zhang
University of Illinois

Urbana-Champaign, USA
lingming@illinois.edu

ABSTRACT

Deep Learning (DL) systems have received exponential growth in

popularity and have become ubiquitous in our everyday life. Such

systems are built on top of popular DL libraries, e.g., TensorFlow

and PyTorch which provide APIs as building blocks for DL systems.

Detecting bugs in these DL libraries is critical for almost all down-

stream DL systems in ensuring effectiveness/safety for end users.

Meanwhile, traditional fuzzing techniques can be hardly effective

for such a challenging domain since the input DL programs need

to satisfy both the input language (e.g., Python) syntax/semantics

and the DL API input/shape constraints for tensor computations.

To address these limitations, we propose TitanFuzz ś the first

approach to directly leveraging Large Language Models (LLMs)

to generate input programs for fuzzing DL libraries. LLMs are ti-

tanic models trained on billions of code snippets and can auto-

regressively generate human-like code snippets. Our key insight

is that modern LLMs can also include numerous code snippets

invoking DL library APIs in their training corpora, and thus can

implicitly learn both language syntax/semantics and intricate DL

API constraints for valid DL program generation. More specifically,

we use both generative and infilling LLMs (e.g., Codex/InCoder) to

generate and mutate valid/diverse input DL programs for fuzzing.

Our experimental results demonstrate that TitanFuzz can achieve

30.38%/50.84% higher code coverage than state-of-the-art fuzzers

on TensorFlow/PyTorch. Furthermore, TitanFuzz is able to detect

65 bugs, with 44 already confirmed as previously unknown bugs.

This paper demonstrates that modern titanic LLMs can be lever-

aged to directly perform both generation-based and mutation-based

fuzzing studied for decades, while being fully automated, gener-

alizable, and applicable to domains challenging for traditional ap-

proaches (such as DL systems). We hope TitanFuzz can stimulate

more work in this promising direction of LLMs for fuzzing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598067

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; Software reliability.

KEYWORDS

Fuzz Testing, Test Generation, Large Language Model

ACM Reference Format:

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Ling-

ming Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing

Deep-Learning Libraries via Large Language Models. In Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and Anal-

ysis (ISSTA ’23), July 17ś21, 2023, Seattle, WA, USA. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3597926.3598067

1 INTRODUCTION

Deep Learning (DL) is constantly providing revolutionary results

and systems in critical fields like autonomous driving [34, 85],

healthcare [9], and finance [68]. To build these systems, developers

use popular DL libraries such as TensorFlow [66] and PyTorch [57]

by composing individual library API calls, typically exposed in

Python, to build models and perform computations. Due to the

significance of detecting and fixing bugs in these DL libraries, re-

searchers have applied various automated bug-finding techniques

to test/analyze these libraries [16, 27, 45, 56, 70ś72, 77]. One such

popular methodology is fuzzing [8, 65, 84] ś where a large set of

inputs are generated and fed to the libraries to find potential bugs.

Previous work on fuzzing DL libraries mainly falls into two cat-

egories: API-level fuzzing [16, 72, 77] and model-level fuzzing [27,

44, 56, 71]. API-level fuzzing focuses on testing individual library

APIs by generating various different inputs for each target API to

discover potential crashes or result inconsistencies. On the other

hand, model-level fuzzing techniques aim to generate diverse com-

plete DL models and then compare the model outputs on different

backends (e.g., different low-level libraries of Keras [36]) to discover

potential bugs. While both model-level and API-level fuzzing tech-

niques have been shown effective in bug finding, they still suffer

from the following limitations:

1) Lack of diverse API sequences. Previous API-level fuzzers [16,

72] only focus on fuzzing each single DL library API in isolation.

These techniques attempt to create many different inputs to a partic-

ular target API via simple mutation rules. However, these inputs are

usually constructed by single code lines (at most one library input

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

test and the test signature written by human developers. TestPi-

lot [63] directly uses Codex by prompting with the source code and

example usages of the method under test to automatically generate

unit tests. Additionally, TestPilot also involves an adaptive compo-

nent which re-generates failed unit tests by querying Codex given

the error message. CodaMosa [41] combines traditional search-

based software testing (SBST) [19, 20] with LLMs (e.g., Codex) for

effective unit test generation. Such existing techniques on LLM-

based unit test generation are project/system specific by requiring

precise information such as detailed code units under test and/or

dynamic test execution traces combined with prompting to elicit

generation of unit tests. In contrast, our approach directly leverages

the pre-training strategies of LLMs to auto-complete/infill code and

therefore can easily generalize to arbitrary real-world systems such

as compilers/interpreters of different programming languages, DB

systems, SMT solvers, smart contracts, and additional popular li-

braries with sufficient code examples in the massive pre-training

corpora of LLMs. Furthermore, such unit testing techniques can

only assist developers and require manual interaction since even

current largest LLMs (e.g., PaLM [14] and ChatGPT [62]) cannot re-

liably produce oracles for unit tests, while TitanFuzz on the other

hand is a fully automated approach through the usage of effective

fuzzing oracles (such as differential testing) at the system level, and

has already detected various bugs for real-world systems. Addi-

tionally, TitanFuzz is the first work to demonstrate that LLMs can

perform both generation-based [30, 80] and mutation-based [39, 50]

fuzzing studied for decades [84], while being fully automated, gen-

eralizable, and applicable to domains challenging for traditional

approaches (such as DL systems).

3 APPROACH

Figure 4 shows the overview of our TitanFuzz approach. Given any

target API, TitanFuzz first uses a generative LLM to generate a list

of high-quality seed programs for fuzzing (Section 3.1). This is done

by providing the model with a step-by-step prompt [60] to generate

code snippets that directly use the target API. For the generated

seeds, we further apply an evolutionary fuzzing algorithm to itera-

tively generate new code snippets (Section 3.2). In each iteration, we

start by selecting a seed program with a high fitness score from the

seed bank. We systematically replace parts of the selected seed with

masked tokens using different mutation operators (Section 3.2.1) to

produced masked inputs. Mutation operators are selected using a

multi-armed bandit algorithm [67] (Section 3.2.2) aiming to maxi-

mize the number of valid and unique mutations generated. Using

the masked inputs, we leverage the ability of infilling LLMs to per-

form code infilling to generate new code that replaces the masked

tokens (Section 3.2.3). For each generated mutant, we first filter out

any execution failures and use our fitness function (Section 3.2.4)

to score each mutant. We then place all generated mutants into

the seed bank, and for future mutation rounds, we prioritize seeds

that have a higher score, allowing us to generate a more diverse

set of high-quality code snippets for fuzzing. Finally, we execute

all generated programs using differential testing oracle on different

backends (CPU/GPU) to identify potential bugs (Section 3.3).

While our approach is general for any pair of generative and

infilling LLMs, in this work, we use Codex [12] and InCoder [21]

as our generative and infilling models, respectively. Codex is a state-

of-the-art generative code model based on the popular GPT-3 [10]

architecture where the model weights are first initialized using GPT-

3 weights trained on natural language text and then fine-tuned on

a large corpus of open-source code files. Codex can be used to

perform auto-completion where the input is simply a description

of the task (known as a prompt [10, 43]). In TitanFuzz, we use

Codex to automatically create the high-quality seed programs for

our evolutionary fuzzing algorithm. To obtain mutations from the

seed programs, we use the InCodermodel to perform code infilling.

Unlike the generative models such as Codex which only uses the

context before, InCoder is able to fill in code in the middle by using

both the context before and after. In TitanFuzz, we combine the

power of both types of LLMs by first using the generative model

(Codex) to produce high-quality seed programs and then using the

infilling model (InCoder) to generate additional mutated programs.

3.1 Initial Seed Generation

To generate the initial seed programs for a target DL API, we first

query the Codex model with a step-by-step prompt and sample mul-

tiple completions. Codex is trained using causal language modeling

where the model aims to predict the next token using all previous

generations. Given a training sequence of tokens 𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛},

let 𝑇<𝑚 = {𝑡1, 𝑡2, ..., 𝑡𝑚−1} be the token sequence generated so far

(𝑚 ≤ 𝑛) and 𝑃 be the Codex model which outputs the probability

of generating a token. The Codex loss function is defined as:

L𝐶𝑜𝑑𝑒𝑥 = −
1

𝑛

𝑛∑︁

𝑖=1

𝑙𝑜𝑔 (𝑃 (𝑡𝑖 | 𝑇<𝑖)) (1)

Figure 5 shows an example of the constructed prompt and model

output. In the prompt, we wrap our task description in a docstring

following [12]. More specifically, we include the target library (e.g.,

TensorFlow) and the target API signature (e.g., tf.nn.conv2d(input,

filters, ...)) in the prompt. The API signature is automatically

extracted from the API documentation with an HTML crawler. We

also design a step-by-step instruction (i.e., Task 1: ... Task 2:

... Task 3: ... in Figure 5) to improve the model’s performance

following [2, 47, 53, 73]. More precisely, we instruct the model to

perform three tasks sequentially: (1) import the target library; (2)

generate input data; and (3) invoke the target API. The constructed

prompt serves as the initial input for Codex and the raw seed

programs are obtained by sampling the autocompletion from Codex.

3.2 Evolutionary Fuzzing

Algorithm 1 describes the main evolutionary fuzzing algorithm of

TitanFuzz. We start by initializing the seed bank with the Codex

generated seeds (Line 2). The seed bank maintains the list of code

snippets that have been generated so far. Next, we initialize the

prior distribution of each mutation operator, which we will use and

update in the main loop for selecting mutation operators (Line 3).

We then enter the generation loop by selecting a current seed for

mutation according to a fitness score (Line 5). This seed selection

process first prioritizes those with higher fitness scores by choosing

the top 𝑁 seeds with the highest fitness score. Out of the top 𝑁

seeds, we perform a softmax [22] operation on their exact fitness

scores to determine the probability of picking each seed.

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

Algorithm 2:Mutation operator selection algorithm
1 Function InitializeMPrior():
2 for m ∈ MutationOps do
3 m.S, m.F← 1, 1

4 Function SelectMutationOp():
Output :The chosen mutation operator m

5 for m ∈ MutationOps do
6 Sample 𝜃m ∼ Beta(m.S, m.F)

7 m★ = 𝑎𝑟𝑔𝑚𝑎𝑥m𝜃m
8 return m★

9 Function UpdateMPosterior(m, NumValid, NumInvalid):

10 m.S← m.S + NumValid
11 m.F← m.F + NumInvalid

the argument-replacement operator which replaces the entire argu-

ment list (which can includemore than one argument), the keyword-

insertion operator appends two span tokens at the end of the ar-

gument list. The two span tokens sandwich an equal sign, which

signifies to the model that the two spans together should form a

keyword. The equal sign is important, as without it, the model may

think that an additional argument should be added here instead of

a keyword. Keywords can unveil many interesting bugs because

typically only the base case keyword values are tested; this is espe-

cially true for API sequences, as the combination of keywords in

multiple API calls can lead to previously undiscovered bugs.

Prefix/Suffix. Just modifying the arguments of a specific API can

only produce limited code mutants, since there are only a limited

number of variables/literals available in the current scope for each

argument in the API call. As such, to further augment the seed

input, we apply prefix and suffix mutation operators, which choose

a code segment (spanning one or multiple lines) before or after

the target API invocation to insert the span token. In Figure 6, the

prefix-only operator replaces the first line in the seed input with the

span token. Themodel may then fill in this span tokenwith different

input generation methods instead of torch.rand. On the other hand,

the suffix-only operator adds a span token after the target API.

This allows the model to generate more code, potentially applying

other DL APIs on the output of the prior code, covering additional

interesting program behaviors/bugs. Since both the prefix and suffix

can affect arguments of the API, we further combine the prefix and

suffix together with the argument (i.e., the prefix-argument and

suffix-argument operators) to allow more freedom for generating

code before/after at the same time as argument generation.

Method. We include the method operator which replaces a ran-

domly chosen library API method name with a span token. The

idea is to generate a different library API invocation while using the

existing arguments. The inspiration comes from prior work [16],

which shows that it is common in DL libraries for related APIs to

share the same input, and borrowing inputs from one API can help

trigger bugs in its relational APIs. We can also leverage the method

operator to generate more unique code snippets and test more APIs.

3.2.2 Mutation Operator Selection. We first formulate our muta-

tion operator selection problem as a multi-arm bandit (MAB) prob-

lem [67], and then detail our algorithm. Our assumption is that

the mutation operator that works well (e.g., generating more bug-

triggering mutants) can be different for different DL APIs. Thus, we

would like to adaptively learn the effectiveness of each operator in

the generation loop. Intuitively, the validity of generated programs

from a mutation operator can be a strong hint for prioritizing/de-

prioritizing the operator. Thus, we model the mutation operator

selection problem as a Bernoulli bandit problem [61] as follows:

Definition 1. Bernoulli Bandit. Suppose there are 𝐾 arms, and

when played, each arm yields either a success or a failure. Each arm 𝑖 ∈

{1, . . . ,K} is associated with a success probability 𝜇𝑖 ∈ [0, 1], which

is unknown to the agent. At each time step 𝑡 , the agent will pull an

arm 𝑖𝑡 and observe a success/failure output drawn from the Bernoulli

distribution 𝐵𝑒𝑟 (𝜇𝑖𝑡). The objective is to maximize the accumulated

number of successes over 𝑇 rounds of experimentation.

Definition 2. Beta-Bernoulli Bandit. For a Bernoulli bandit

problem, let the agent adopt a Bayesian framework and choose the

standard beta distribution [1] as the independent prior belief over

each arm𝑚. The probability density function of the beta distribution,

for 0 ≤ 𝑥 ≤ 1, and parameters 𝛼 > 0, 𝛽 > 0 is given by

𝑓 (𝑥 ;𝛼, 𝛽) =
Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)
𝑥𝛼−1 (1 − 𝑥)𝛽−1

, where Γ denotes the gamma function [4]. If the prior is a 𝐵𝑒𝑡𝑎(𝛼, 𝛽)

distribution, the posterior will also be a beta distribution, with 𝛼 or 𝛽

increases by one with each observed success or failure, respectively.

For TitanFuzz, each mutation operator𝑚 can be seen as an arm

associated with an unknown expected success probability, defined

as the unique pass rate (percentage of generated code snippets

when using a mutation operator that are valid and different from

historical generations). When wełplayž an arm at time 𝑡 , we apply

the mutation operator to generate programs, validate them, and

interpret each program execution status as a success or failure.

To balance the exploitation and exploration trade-off in this

beta-Bernoulli bandit problem, we leverage the classic Thompson

Sampling (TS) algorithm [11, 67]. Algorithm 2 shows how TS, spe-

cialized for our mutation operator selection, proceeds. By initializ-

ing𝑚.𝑆 and𝑚.𝐹 to 1 (Lines 2-3), the algorithm assumes each arm

𝑚 has prior 𝐵𝑒𝑡𝑎(1, 1) (i.e., uniform distribution). After observing

𝑚.𝑆 − 1 successes and𝑚.𝐹 − 1 failures of arm𝑚, the posterior dis-

tribution of 𝜇𝑚 is updated as 𝐵𝑒𝑡𝑎(𝑚.𝑆,𝑚.𝐹). To select an arm, we

draw a sample 𝜃𝑚 from each of those posterior distributions (Line 6)

and play the arm with the largest sampled value (which indicates

that it has the highest probability of having the highest success

rate). After generation using LLMs, we then update the posterior

of the chosen mutation operator based on the execution statuses

of generated programs (Lines 10-11). Compared to randomly pick-

ing mutation operators to use, this approach allows us to identify

mutation operators that help generate more valid and unique code

snippets. Note the best mutation operators can be different for dif-

ferent target APIs, therefore we start a separate MAB game and

re-initialize the operator prior distribution for each end-to-end run

of the evolutionary fuzzing targeting one API.

3.2.3 Code Generation. After using the selected mutation oper-

ator to produce the masked input for code generation, we use

InCoder to generate new code to fill-in the masked-out location.

InCoder is trained using causal masking objective [21] to per-

form code infilling by using bi-directional context to determine

reasonable code snippets to place in the middle. Let 𝑇𝑚𝑎𝑠𝑘𝑒𝑑 =

{𝑇1,𝑇2, ...,𝑇𝑛} be training code tokens where span mask to-

kens are inserted,𝑀 = {𝑚1,𝑚2, ...,𝑚𝑘 } be the tokens masked out,

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

𝑀<𝑔 = {𝑚1,𝑚2, ...,𝑚𝑔−1} be the list of tokens generated so far

(𝑔 ≤ 𝑘), 𝑃 be the InCoder model which outputs the probabilities of

generating a token. The loss function of InCoder can described as:

LInCoder = −
1

𝑘

𝑘∑︁

𝑖=1

𝑙𝑜𝑔 (𝑃 (𝑚𝑖 | 𝑇𝑚𝑎𝑠𝑘𝑒𝑑 , 𝑀<𝑖)) (2)

We leverage the ability of InCoder to generate arbitrary but related

code snippets to target intricate library API relationships as the

model can learn from the context (surrounding code which already

focuses on library APIs) to generate additional APIs/code. As DL

library APIs operate on Tensors, a shape mismatch (e.g., vector

addition with incorrect dimensions) can lead to runtime errors.

Traditional mutations (e.g., changing random code elements) do not

work in generating valid DL programs since they can easily cause

runtime errors by incorrectly mutating the input and argument

space, and also cannot easily ensure the semantic validity [38, 55]

of the generated programs due to the dynamically typed language.

In contrast, InCoder is trained on millions of code snippets, many

of which contain usages of these library APIs [28]. This allows

InCoder to directly provide interesting/correct code based on the

bi-directional context and generate potentially valid DL programs.

Using the code generated by InCoder, we place them directly into

the of the mutated input to produce new code snippets.

3.2.4 Fitness Function. Similar to the mutation operator, the seed

programs we choose to mutate over are also important to generate

unique and interesting code snippets for fuzzing. As such, we design

a fitness function and score to rank each generated program. We

apply static analysis to calculate the fitness scores of each test pro-

gram. The intuition behind the fitness calculation is to give higher

scores to the generated mutation programs with deeper execution

path, more diverse computation graph, and more complicated API

invocations. Specifically, we consider the following features:

• Depth of dataflow graph.We statically analyse the dataflow of

variables within the generate code snippets to build a dataflow

graph with each edge representing data dependencies between

two operations. The depth of the dataflow graph (D) is defined

as the maximum number of edges in any path of the graph.

• Number of API calls. We count the number of unique library

API calls (U) that exist within each code snippets. Since LLM

tends to generate many code snippets where code line(s) are

repeated, we also count and penalize the number of library APIs

that are repeatedly called with the same inputs (R).

Combining all these factors, given generated code snippet 𝐶 , we

define our fitness function to be:

FitnessFunction(𝐶) = D + U − R (3)

According to the formula, TitanFuzz favors input programs in-

volving long-chained API sequences and more unique APIs. In this

way, it allows us to cover more interactions between different APIs,

potentially triggering more interesting program behaviors/bugs.

Meanwhile, using only the first two sub-terms would cause Titan-

Fuzz to cover longer and longer API sequences with repeated API

calls, making the fuzzing process less efficient. Therefore, Titan-

Fuzz further penalizes the sequences with repeated API calls.

3.3 Oracle

After the generation loop, we leverage differential testing oracle to

detect bugs by running the generated code snippets on two separate

backends. In short, we execute the generated code snippets on CPU

and GPU, record all the variables including the intermediate ones,

and detect potential bugs. We focus on the following bug types:

Wrong-Computation. We compare the values of all intermedi-

ate variables across the two execution backends and find wrong-

computation when values are significantly different. Due to the

non-deterministic nature of certain computations leading to slightly

different results on CPU or GPU, we follow previous work [72]

and use a tolerance threshold to check if values are significantly

different. Difference in computed values can indicate a potential

semantic bug in different backend implementations of a library API

or interactions between different APIs.

Crash. During program execution, we also detect unexpected

crashes, e.g. segmentation faults, aborts, INTERNAL_ASSERT_FAILED

errors. Such crashes indicate failures to check or handle invalid

inputs or corner cases, and can lead to security risks.

4 EVALUATION

We aim to investigate the following research questions:

• RQ1: How does TitanFuzz compare against existing DL

library fuzzers?

• RQ2: How do the key components of TitanFuzz contribute

to its effectiveness?

• RQ3: Is TitanFuzz able to detect real-world bugs?

4.1 Implementation

For seed generation, we use the Codex Completion model with

code-davinci-002 engine to sample 25 programs for each API. Since

the Codex model is not open-sourced, we access it by interacting

with the Codex API through HTTP requests from Python. Our

default setting for code completion for Codex uses top-𝑝 (nucleus)

sampling [31] with 𝑝 = 0.95 following previous studies [12, 21], and

𝑚𝑎𝑥_𝑡𝑜𝑘𝑒𝑛𝑠=256, 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒=0.4 tuned for our task. Since we

pose a maximum token limit to Codex model for code completion,

the generated program can end with an incomplete line. Thus, for

each Codex-produced program, we iteratively remove the last line

of the program until the syntax parsing succeeds. For fuzzing, we

choose𝑁=10 for seed selection and use the PyTorch implementation

of the InCoder 1.3B model on Hugging Face [33]. Our default

setting when using InCoder uses temperature = 1 with default

settings of top 𝑝 = 0.95 from previous studies [21]. We apply code

filtering to remove unnecessary code generated by the model such

as print statements. Furthermore, we apply dataflow analysis to

perform dead code elimination.

4.2 Experimental Setup

Targeted DL libraries. We include both PyTorch (v1.12) [57] and

TensorFlow (v2.10) [66], since they are two of the most popular

DL libraries and are widely studied in prior DL library testing

work [70, 72, 77].

Fuzzing budget. By default, we use a one-minute fuzzing budget

per API for all possible APIs of both studied libraries. Meanwhile,

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

Figure 8: Codex seed generation trend

only provides the API name instead of API signature in the prompt

(e.g. replacing the entire target API signature with tf.nn.conv2d

in Figure 5). TitanFuzz-step removes the first two steps (import

library and input generation) and only asks Codex to call the target

API from the specified library version. First, we find that our default

sampling temperature value of 0.4 (red dotted line) provides a good

balance in terms of generating more valid programs and also cover-

ing more unique APIs on both PyTorch and TensorFlow. Second, we

observe that by adding step-by-step instructions (first import the

library and generate input data) to the prompt, we can substantially

improve Codex’s performance in both the number of unique valid

programs generated and API coverage, demonstrating the power

of prompt engineering for fuzzing for the first time. Furthermore,

by adding the API signature to the prompt, we provide Codex with

valuable information regarding the input parameter space to help

Codex generate more valid programs.

5.2.2 Evolutionary Generation. Next we look at the different fac-

tors and choices in the evolutionary fuzzing algorithm.

Mutation Operators.We examine the effectiveness of each of our

additional mutation operator types (except the default argument

operators). Table 3 shows results when we remove each type from

TitanFuzz. Column Valid considers only unique valid programs

and Column All also includes programs with runtime errors. We

observe that the highest number of unique programs and coverage

is obtained when we use full set of mutation operator. This shows

that each of the mutation operators can help in producing more

unique programs and covering additional lines.

Table 3: Ablation study of operators

Variants
PyTorch TensorFlow

Unique Prog. Coverage # Unique Prog. Coverage

Valid All Valid All Valid All Valid All

TitanFuzz 6969 18245 17411 17957 5173 16865 84447 86536
-Suffix 5770 15813 16709 17691 4642 14501 81145 85294
-Method 6239 16943 16886 17615 3492 12519 83405 85454
-Prefix 6211 17082 17075 17797 3359 12345 83435 85645

Fitness Function. We compare our default fitness function against

its variants, as well as random selection (Random) and a simplistic

coverage guided [18, 35, 42, 50] (Coverage) baseline in Table 4. The

fitness function variants are constructed by removing each sub-

term from the original fitness function (Equation 3). We observe

that our chosen fitness function (D+U-R) is able to achieve close to

the highest coverage and number of unique programs generated for

both TensorFlow and PyTorch. Compared to random selection, our

chosen fitness function approach is able to obtain higher coverage.

This is due to the fitness function’s ability to guide the fuzzing pro-

cess towards using seeds with more unique APIs and longer chained

API sequences, leading to covering more lines of code. Compared to

our coverage-guided baseline which only adds programs with new

coverage to the seed bank for later mutation, our fitness function

has minimal additional overhead. This allows TitanFuzz to spend

more time on the generation, leading to not only higher coverage

but also more unique code snippets for testing.

Table 4: Ablation study of fitness function

Variants
PyTorch Tensorflow

Unique Prog. Coverage # Unique Prog. Coverage

Valid All Valid All Valid All Valid All

D+U-R 6960 18245 17411 17957 5173 16865 84447 86536
D+U 5817 15609 17725 18415 2993 11253 82963 85455
D-R 5872 16916 17229 18046 2876 11861 83563 85599
U-R 6234 17321 16894 17820 4315 15495 84057 86286

Random 7288 20720 16674 17586 3274 13237 83440 85045
Coverage 5098 15300 16715 17617 3210 12880 83030 84194

Operator Selection Algorithm. We compare our default Thomp-

son Sampling operator selection algorithm (TS) with a uniformly

random selection baseline (Random). Table 5 summarizes the re-

sults. The TS bandit algorithm helps to generate more unique valid

programs and achieve higher code coverage in both libraries com-

pared to the random strategy. Specifically, the TS strategy can

generate around 2X more valid unique programs for TensorFlow;

in PyTorch, although TS can generate fewer unique programs in

total, it can still produce 12.5% more valid ones, demonstrating the

effectiveness of our MAB-based operator prioritization.

Table 5: Evaluation of operator selection algorithms

Library Algorithm
#Unique programs Coverage

Valid All Valid All

PyTorch
TS 6960 18245 17411 17957
Random 6185 18504 17003 17683

TensorFlow
TS 5173 16865 84447 86536
Random 2612 11816 83238 85469

InCoder vs Codex. Lastly, we also take a closer look at the con-

tribution of both Codex and InCoder in generating unique test

programs (# Unique Prog. per API) and time cost per unique pro-

gram (Time) in Table 6. We observe that while Codex can provide

high-quality seed programs, it is relatively slow compared to the

smaller InCoder model, demonstrating the benefits of leveraging

infilling LLMs and evolutionary mutation to further complement

the powerful but costly large generative LLMs for fuzzing.

Table 6: Generation efficiency of Codex and InCoder

Library Model
Unique Prog. per API Time per Prog. (s)

Valid All Valid All

PyTorch
Codex 13.55 23.16 0.82 0.48
InCoder 92.38 450.68 0.51 0.10

TensorFlow
Codex 6.85 22.26 1.69 0.52
InCoder 67.17 358.06 0.67 0.13

5.3 RQ3: Detected Bugs

Table 7 summarizes the statistics of bugs detected by TitanFuzz. In

total, TitanFuzz detected 65 bugs, with 55 confirmed (including 20

crash and 35 wrong-computation bugs), including 44 confirmed as

ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang

REFERENCES
[1] 2022. Beta distribution. https://en.wikipedia.org/wiki/Beta_distribution.
[2] 2022. Codex Documentation - Best Practices. https://beta.openai.com/docs/

guides/code/best-practices.
[3] 2022. Coverage.py. https://github.com/nedbat/coveragepy.
[4] 2022. Gamma function. https://en.wikipedia.org/wiki/Gamma_function.
[5] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.

2021. Unified Pre-training for Program Understanding and Generation.
arXiv:2103.06333 [cs.CL]

[6] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
https://arxiv.org/abs/2108.07732

[7] Rahul Banerjee. 2021. Writing Better Tests with AI and GitHub Copilot. Codecov
(2021). https://about.codecov.io/blog/writing-better-tests-with-ai-and-github-
copilot/.

[8] Marcel Boehme, Cristian Cadar, and Abhik ROYCHOUDHURY. 2021. Fuzzing:
Challenges and Reflections. IEEE Software 38, 3 (2021), 79ś86.

[9] Dalvin Brown. 2021. Hospitals turn to artificial intelligence to help with
an age-old problem: Doctors’ poor bedside manners. The Washington Post
(2021). https://www.washingtonpost.com/technology/2021/02/16/virtual-ai-
hospital-patients/.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165.

[11] Olivier Chapelle and Lihong Li. 2011. An Empirical Evaluation of Thomp-
son Sampling. In Advances in Neural Information Processing Systems, J. Shawe-
Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger (Eds.), Vol. 24.
Curran Associates, Inc. https://proceedings.neurips.cc/paper/2011/file/
e53a0a2978c28872a4505bdb51db06dc-Paper.pdf

[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[13] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN EncoderśDecoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,
1724ś1734. https://doi.org/10.3115/v1/D14-1179

[14] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez,
Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran,
Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin,
Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, HenrykMichalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek
Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani
Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr
Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. PaLM: Scaling Language Modeling
with Pathways. arXiv:2204.02311 [cs.CL]

[15] Chris Cummins, Pavlos Petoumenos, Alastair Murray, and Hugh Leather. 2018.
Compiler fuzzing through deep learning. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. 95ś105.

[16] Yinlin Deng, Chenyuan Yang, Anjiang Wei, and Lingming Zhang. 2022. Fuzzing
Deep-Learning Libraries via Automated Relational API Inference. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (Singapore, Singapore) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 44ś56. https:
//doi.org/10.1145/3540250.3549085

[17] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, andMing Zhou. 2020. CodeBERT: A
Pre-Trained Model for Programming and Natural Languages. arXiv:2002.08155.

[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In Proceedings of the 14th
USENIX Conference on Offensive Technologies (WOOT’20). USENIX Association,
USA, Article 10, 1 pages.

[19] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416ś419.

[20] Gordon Fraser and Andrea Arcuri. 2012. Whole test suite generation. IEEE
Transactions on Software Engineering 39, 2 (2012), 276ś291.

[21] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[22] Josiah Willard Gibbs. 1902. Elementary principles in statistical mechanics: devel-
oped with especial reference to the rational foundations of thermodynamics. C.
Scribner’s sons.

[23] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
learning for input fuzzing. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). 50ś59. https://doi.org/10.1109/ASE.2017.
8115618

[24] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT
Press, Cambridge, MA, USA, 2672ś2680.

[25] J. Gu, X. Luo, Y. Zhou, and X.Wang. 2022. Muffin: Testing Deep Learning Libraries
via Neural Architecture Fuzzing. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA,
1418ś1430. https://doi.org/10.1145/3510003.3510092

[26] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan, Jian Yin, Daxin Jiang, and
Ming Zhou. 2021. GraphCodeBERT: Pre-training Code Representations with
Data Flow. arXiv:2009.08366 [cs.SE]

[27] Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated testing for deep learning frameworks. In 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 486ś498.

[28] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the Naturalness of Software. In Proceedings of the 34th International
Conference on Software Engineering (Zurich, Switzerland) (ICSE ’12). IEEE Press,
837ś847.

[29] SeppHochreiter and Jürgen Schmidhuber. 1997. Long Short-termMemory. Neural
computation 9 (12 1997), 1735ś80.

[30] Christian Holler, Kim Herzig, Andreas Zeller, et al. 2012. Fuzzing with Code
Fragments.. In USENIX Security Symposium. 445ś458.

[31] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2019. The
Curious Case of Neural Text Degeneration. arXiv:1904.09751.

[32] Zhicheng Hu, Jianqi Shi, YanHong Huang, Jiawen Xiong, and Xiangxing Bu.
2018. GANFuzz: A GAN-Based Industrial Network Protocol Fuzzing Framework.
In Proceedings of the 15th ACM International Conference on Computing Frontiers
(Ischia, Italy) (CF ’18). Association for Computing Machinery, New York, NY,
USA, 138ś145. https://doi.org/10.1145/3203217.3203241

[33] HuggingFace 2022. Hugging Face. https://huggingface.co.
[34] Brody Huval, Tao Wang, Sameep Tandon, Jeff Kiske, Will Song, Joel Pazhayam-

pallil, Mykhaylo Andriluka, Pranav Rajpurkar, Toki Migimatsu, Royce Cheng-Yue,
FernandoMujica, AdamCoates, andAndrew Y. Ng. 2015. An Empirical Evaluation
of Deep Learning on Highway Driving. arXiv:1504.01716 [cs.RO]

[35] K. Serebryany 2015. libFuzzer a library for coverage-guided fuzz testing. https:
//llvm.org/docs/LibFuzzer.html.

[36] Keras 2020. Keras. https://keras.io/.
[37] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association
for Computing Machinery, New York, NY, USA, 2123ś2138. https://doi.org/10.
1145/3243734.3243804

[38] Leonidas Lampropoulos, Michael Hicks, and Benjamin C Pierce. 2019. Cover-
age guided, property based testing. Proceedings of the ACM on Programming
Languages 3, OOPSLA (2019), 1ś29.

[39] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via equiv-
alence modulo inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. 216ś226.

[40] Suyoung Lee, HyungSeok Han, Sang Kil Cha, and Sooel Son. 2020. Montage: A
Neural Network Language {Model-Guided}{JavaScript} Engine Fuzzer. In 29th
USENIX Security Symposium (USENIX Security 20). 2613ś2630.

[41] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen.
2023. CODAMOSA: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 45th International Conference on Software
Engineering.

[42] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy
for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering. 475ś485.

Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning Libraries via Large Language Models ISSTA ’23, July 17ś21, 2023, Seattle, WA, USA

[43] Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The Power of Scale
for Parameter-Efficient Prompt Tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, Online and Punta Cana, Dominican Republic, 3045ś3059. https:
//doi.org/10.18653/v1/2021.emnlp-main.243

[44] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. NNSmith: Generating Diverse and Valid Test Cases for
Deep Learning Compilers. In ASPLOS. 530ś543.

[45] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation. Proc.
ACM Program. Lang. 6, OOPSLA1, Article 73 (apr 2022), 26 pages. https://doi.
org/10.1145/3527317

[46] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. arXiv preprint arXiv:2305.01210 (2023).

[47] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2022. Pre-Train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. (sep
2022). https://doi.org/10.1145/3560815

[48] Xiao Liu, Xiaoting Li, Rupesh Prajapati, and Dinghao Wu. 2019. Deepfuzz:
Automatic generation of syntax valid c programs for fuzz testing. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 33. 1044ś1051.

[49] Yang Liu. 2019. Fine-tune BERT for Extractive Summarization. arXiv:1903.10318.
[50] M. Zalewski 2016. American Fuzzy Lop - Whitepaper. https://lcamtuf.coredump.

cx/afl/technical_details.txt.
[51] Zohar Manna and Richard J. Waldinger. 1971. Toward Automatic Program

Synthesis. Commun. ACM 14, 3 (mar 1971), 151ś165.
[52] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos

Gligoric. 2023. LearningDeep Semantics for Test Completion. In 45th International
Conference on Software Engineering.

[53] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski,
Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena. 2021. Show Your Work:
Scratchpads for Intermediate Computation with Language Models. https:
//doi.org/10.48550/ARXIV.2112.00114

[54] Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and
Hanjun Dai. 2020. BUSTLE: Bottom-Up program synthesis through learning-
guided exploration. arXiv preprint arXiv:2007.14381 (2020).

[55] Jiwon Park, Dominik Winterer, Chengyu Zhang, and Zhendong Su. 2021. Gener-
ative type-aware mutation for testing SMT solvers. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1ś19.

[56] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. 2019. CRADLE:
Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
1027ś1038. https://doi.org/10.1109/ICSE.2019.00107

[57] PyTorch 2018. PyTorch. http://pytorch.org.
[58] Alec Radford, JeffreyWu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. 2019. Language models are unsupervised multitask learners. OpenAI blog
1, 8 (2019), 9.

[59] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. (jan 2020).

[60] Laria Reynolds and Kyle McDonell. 2021. Prompt Programming for Large Lan-
guage Models: Beyond the Few-Shot Paradigm. arXiv:2102.07350.

[61] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen,
et al. 2018. A tutorial on thompson sampling. Foundations and Trends® in Machine
Learning 11, 1 (2018), 1ś96.

[62] John Schulman, Barret Zoph, Jacob Hilton Christina Kim, Jacob Menick, Ji-
ayi Weng, Juan Felipe Ceron Uribe, Liam Fedus, Luke Metz, Michael Pokorny,
Rapha Gontijo Lopes, Shengjia Zhao, Arun Vijayvergiya, Eric Sigler, Adam Perel-
man, Chelsea Voss, Mike Heaton, Joel Parish, Dave Cummings, Rajeev Nayak,
Valerie Balcom, David Schnurr, Tomer Kaftan, Chris Hallacy, Nicholas Turley,
Noah Deutsch, Vik Goel, Jonathan Ward, Aris Konstantinidis, Wojciech Zaremba,
Long Ouyang, Leonard Bogdonoff, Joshua Gross, David Medina, Sarah Yoo, Teddy
Lee, Ryan Lowe, Dan Mossing, Joost Huizinga, Roger Jiang, Carroll Wainwright,
Diogo Almeida, Steph Lin, Marvin Zhang, Kai Xiao, Katarina Slama, Steven Bills,
Alex Gray, Jan Leike, Jakub Pachocki, Phil Tillet, Shantanu Jain, Greg Brockman,
and Nick Ryder. 2022. ChatGPT: Optimizing Language Models for Dialogue.
(2022). https://openai.com/blog/chatgpt/.

[63] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. Adaptive Test
Generation Using a Large Language Model. arXiv:2302.06527 [cs.SE]

[64] Armando Solar-Lezama. 2008. Program synthesis by sketching. University of
California, Berkeley.

[65] Michael Sutton, Adam Greene, and Pedram Amini. 2007. Fuzzing: Brute Force
Vulnerability Discovery. Addison-Wesley Professional.

[66] TensorFlow 2020. TensorFlow. https://www.tensorflow.org.

[67] WILLIAM R THOMPSON. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two samples.
Biometrika 25, 3-4 (12 1933), 285ś294. https://doi.org/10.1093/biomet/25.3-
4.285 arXiv:https://academic.oup.com/biomet/article-pdf/25/3-4/285/513725/25-
3-4-285.pdf

[68] Alina Tugend. 2021. A Smarter App Is Watching Your Wallet. The New York
Times (2021). https://www.nytimes.com/2021/03/09/business/apps-personal-
finance-budget.html.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. (2017). arXiv:1706.03762.

[70] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin
Tan. 2022. EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries.
(2022).

[71] Zan Wang, Ming Yan, Junjie Chen, Shuang Liu, and Dongdi Zhang. 2020. Deep
learning library testing via effective model generation. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 788ś799.

[72] Anjiang Wei, Yinlin Deng, Chenyuan Yang, and Lingming Zhang. 2022. Free
Lunch for Testing: Fuzzing Deep-Learning Libraries from Open Source. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 995ś1007.
https://doi.org/10.1145/3510003.3510041

[73] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903 (2022).

[74] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In Proceedings of
the 45th International Conference on Software Engineering (ICSE 2023).

[75] Chunqiu Steven Xia and Lingming Zhang. 2022. Less Training, More Re-
pairing Please: Revisiting Automated Program Repair via Zero-shot Learning.
arXiv:2207.08281.

[76] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[77] Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W Godfrey. 2022. DocTer: Documentation-Guided Fuzzing for
Testing Deep Learning API Functions. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis.

[78] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. 2022.
A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (San
Diego, CA, USA) (MAPS 2022). Association for Computing Machinery, New York,
NY, USA, 1ś10.

[79] Chenyuan Yang, Yinlin Deng, Jiayi Yao, Yuxing Tu, Hanchi Li, and Lingming
Zhang. 2023. Fuzzing Automatic Differentiation in Deep-Learning Libraries. In
International Conference on Software Engineering (ICSE). to appear.

[80] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and under-
standing bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation. 283ś294.

[81] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V. Le. 2020. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. arXiv:1906.08237.

[82] Guixin Ye, Zhanyong Tang, Shin Hwei Tan, Songfang Huang, Dingyi Fang, Xi-
aoyang Sun, Lizhong Bian, Haibo Wang, and Zheng Wang. 2021. Automated
conformance testing for JavaScript engines via deep compiler fuzzing. In Pro-
ceedings of the 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation. 435ś450.

[83] Shafiq Joty YueWang,WeishiWang and Steven C.H. Hoi. 2021. CodeT5: Identifier-
aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and
Generation. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021.

[84] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. The fuzzing book.

[85] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khur-
shid. 2018. DeepRoad: GAN-based metamorphic testing and input validation
framework for autonomous driving systems. In 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). 132ś142.

[86] Hui Zhao, Zhihui Li, Hansheng Wei, Jianqi Shi, and Yanhong Huang. 2019. Seq-
Fuzzer: An Industrial Protocol Fuzzing Framework from a Deep Learning Perspec-
tive. In 2019 12th IEEE Conference on Software Testing, Validation and Verification
(ICST). 59ś67. https://doi.org/10.1109/ICST.2019.00016

Received 2022-11-10; accepted 2023-01-16

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Fuzzing Deep Learning Libraries
	2.2 Large Pre-trained Language Models
	2.3 Testing using Deep Learning Models

	3 Approach
	3.1 Initial Seed Generation
	3.2 Evolutionary Fuzzing
	3.3 Oracle

	4 Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Metrics

	5 Result Analysis
	5.1 RQ1: Comparison with Prior Work
	5.2 RQ2: Evaluation of Key Components
	5.3 RQ3: Detected Bugs
	5.4 Threats to Validity

	6 Conclusion
	References

