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Abstract

Asteroseismology has been used extensively in recent years to study the interior structure and physical processes of
main-sequence stars. We consider prospects for using pressure modes (p-modes) near the frequency of maximum
oscillation power to probe the structure of the near-core layers of main-sequence stars with convective cores by
constructing stellar model tracks. Within our mass range of interest, the inner turning point of p-modes as
determined by the Jeffreys–Wentzel–Kramers–Brillouin (JWKB) approximation evolves in two distinct phases
during the main sequence, implying a sudden loss of near-core sensitivity during the discontinuous transition
between the two phases. However, we also employ non-JWKB asymptotic analysis to derive a contrasting set of
expressions for the effects that these structural properties will have on the mode frequencies, which do not encode
any such transition. We show analytically that a sufficiently near-core perturbation to the stellar structure results in
nonoscillatory, degree-dependent perturbations to the star’s oscillation mode frequencies, contrasting with the case
of an outer glitch. We also demonstrate numerically that these near-core acoustic glitches exhibit strong angular
degree dependence, even at low degree, agreeing with the non-JWKB analysis, rather than the degree-independent
oscillations that emerge from JWKB analyses. These properties have important implications for using p-modes to
study near-core mixing processes for intermediate-mass stars on the main sequence, as well as for the interpretation
of near-center acoustic glitches in other astrophysical configurations, such as red giants.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Stellar physics (1621); Stellar evolution (1599);
Main sequence (2047)

1. Introduction

The long temporal baselines of the Kepler (Borucki et al.
2010) and TESS (Ricker et al. 2015) missions make the
interiors of thousands of stars amenable to examination through
the asteroseismology of individual mode frequencies in their
photometric power spectra. Stars with convective envelopes,
such as our Sun, oscillate in multiple modes excited by
convective motions (Goldreich & Keeley 1977a, 1977b). The
frequencies of these oscillation modes can trace stellar structure
in the deep interior, thereby encoding information about the
star’s evolutionary state (Chaplin & Miglio 2013; García &
Ballot 2019, and references therein). The internal modes of
solar-type oscillators are generally classified as either p-modes
—where the restoring force is pressure—or g-modes—where
the restoring force is gravity. Asymptotic analysis of wave
propagation in stars under the Jeffreys–Wentzel–Kramers–
Brillouin (JWKB) approximation (see Gough 2007) indicates
that all nonradial modes are limited in their sensitivity to
different regions of the star, depending on their character. In
Sun-like stars, p-modes and g-modes occur in different regions:
p-modes propagate in the outer convective envelope, and
g-modes in the core. The loci of these different classes of
modes are governed by two characteristic frequencies: the
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where ℓ is the angular degree of the mode, cs the sound speed,
P the pressure, ρ the density, and r the radial coordinate. Waves
that are higher in frequency than both these frequencies are
p-modes (shaded in orange in Figure 2), while those that are
lower in frequency than both are g-modes (shaded in blue). For
stars on the main sequence, these p- and g-mode cavities are
well separated both in frequency and spatially, so any normal
modes with observable amplitudes (that is, with frequencies
near that of maximum oscillation power, maxn ) are purely
acoustic (p-modes). The depth to which p-modes sample the
stellar structure is set by the Lamb frequency of the
corresponding ℓ, which, due to its dependence on the sound
speed, will also depend on the mean molecular weight gradient
∇μ. Depending on the properties of near-core mixing, as well
as how evolved the star is along the main sequence, the
observed p-modes may therefore not penetrate deeply enough
to reach the convective cores of main-sequence stars—thereby,
in principle, limiting the applicability of these p-modes for
diagnosing the nature of such near-core mixing, under the
WKB approximation.

The Astrophysical Journal, 950:19 (11pp), 2023 June 10 https://doi.org/10.3847/1538-4357/acccf5
© 2023. The Author(s). Published by the American Astronomical Society.

3 Hubble Fellow.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-8722-1436
https://orcid.org/0000-0001-8722-1436
https://orcid.org/0000-0001-8722-1436
https://orcid.org/0000-0001-7664-648X
https://orcid.org/0000-0001-7664-648X
https://orcid.org/0000-0001-7664-648X
https://orcid.org/0000-0002-6163-3472
https://orcid.org/0000-0002-6163-3472
https://orcid.org/0000-0002-6163-3472
mailto:christopher.lindsay@yale.edu
http://astrothesaurus.org/uat/73
http://astrothesaurus.org/uat/1621
http://astrothesaurus.org/uat/1599
http://astrothesaurus.org/uat/2047
https://doi.org/10.3847/1538-4357/acccf5
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acccf5&domain=pdf&date_stamp=2023-06-07
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/acccf5&domain=pdf&date_stamp=2023-06-07
http://creativecommons.org/licenses/by/4.0/


The interior locations of convective boundaries and abundant
element ionization zones are frequently studied through
asteroseismic “glitch” analysis. Steep variations in the first
adiabatic index, Γ1, or in the sound speed, are known to
introduce an oscillatory component (δν) to the frequencies of
low angular degree stellar oscillation modes (e.g., Gough &
Thompson 1988; Vorontsov 1988; Gough 1990; Basu et al.
1994). A number of investigations have explored the theor-
etical seismic consequences arising from sharp variations in the
internal stellar structure at the convective envelope boundary
(e.g., Monteiro et al. 2000) or in the region of helium ionization
(Monteiro et al. 1998; Houdek & Gough 2007). These glitch
signals are present across a range of stellar evolutionary states,
and they have been used to investigate the properties of
convection and ionization zones in both red giant stars (Miglio
et al. 2010; Corsaro et al. 2015; Vrard et al. 2015; Dréau et al.
2020) and Sun-like main-sequence stars (Mazumdar et al.
2012, 2014). Because these convective envelope and helium
ionization zone features are localized far outside the convective
core, in this work we will refer to these glitches as “outer
glitches.”

The sharp variations in stellar structure present at the
boundaries of convective cores are also expended to leave a
signature on the oscillation frequencies of a star. However, any
such signature from a convective core will have properties
different than those generated from an outer glitch, owing to
their localization close to the stellar center rather than the
surface. Roxburgh & Vorontsov (2001) investigated the
expected seismic signatures resulting from a glitch in the
neighborhood of a convective core, provided that the structural
variation was located well within the mode propagation cavity,
far from the turning point of the oscillations. Similar analyses
were performed by Provost et al. (1993) in the case of structural
variations at the boundary of Jupiter’s core and by Audard et al.
(1995) in the case of intermediate mass (1.7–2.0 Me) stars with
g-mode pulsations. In the case of a lower-mass (1.2–1.5 Me)
main-sequence star, though, the aforementioned works do not
apply, as the convective core is small, with its boundary located
very close to the inner turning point of the oscillation modes.

Mazumdar et al. (2006) studied the seismic effects of small
convective cores in stellar models and proposed a combination
of small frequency separations with the goal of determining the
presence of convective overshooting. A similar investigation
was carried out by Cunha & Metcalfe (2007), who found that
the seismic signatures of small convective cores are non-
oscillatory and frequency-dependent. They suggest a combina-
tion of frequency separation ratios that may have diagnostic
potential for studying convective cores in real stars with high-
quality asteroseismic data. However, as with Mazumdar et al.
(2006), their proposed diagnostic combined information from
modes of different degrees. As such, they were unable to
investigate the angular degree dependence of the seismic signal
(instead assuming a priori that it would only affect the radial
modes). Brandão et al. (2010) further investigated these
diagnostics to look for age dependence. Cunha & Brandão
(2011) built on the work of Cunha & Metcalfe (2007) and
further investigated the seismic signatures of small convective
cores. In particular, the work modeled the structural variation at
the edge of convective cores in a more physically motivated
fashion to study the evolution of their seismic diagnostic as a
star advances in age.

In this work, we investigate the near-core locations available
for study through low angular degree mode glitch signature
analysis, both within (Section 2) and outside (Section 3) the
WKB approximation, using evolutionary tracks of stellar
models. We discuss our results and compare our work to
previous studies of the seismic signatures of convective cores
in Section 4.

2. WKB Analysis with Stellar Models

To illustrate the evolution of the well-mixed core and
p-mode penetration depths, we construct stellar model tracks
with masses between 1.2 and 1.5 Me using MESA version
r12778 (Paxton et al. 2011, 2013, 2015, 2018, 2019). We
construct models using an Eddington-gray atmospheric bound-
ary condition and the mixing-length prescription of Cox &
Giuli (1968). Elemental diffusion following the formulation of
Thoul et al. (1994) was included with mass-dependent scaling
(see Viani et al. 2018). We show results for three model tracks
with M= 1.2, 1.4, and 1.5 Me, calculated with solar-calibrated
initial values of helium abundance (Y0= 0.273), metallicity
(relative to Grevesse & Sauval 1998), and mixing length
(αmlt= 1.81719). MESA’s implementation of overmixing (see
Section 2 of Lindsay et al. 2022) from the convective core was
also used, with fov= 0.05.
Within the WKB approximation, nonradial p-modes are

assumed to only be sensitive to stellar structure within a mode
cavity bounded on the inside by the WKB inner turning point,
where the mode angular frequencies are equal to the Lamb
frequency. For nonradial modes of the same frequency, this
inner turning point’s radius value increases with ℓ, and it is thus
deepest for dipole modes. Accordingly, we show in Figure 1
the evolution of both the outer boundary of the well-mixed
core, Rc, as well as of the inner turning points of dipole
p-modes at maxn , Rℓ=1, over the course of evolution along these
tracks (parameterized by the central hydrogen fraction XH). We
define Rc as the location where the chemical gradient ∇μ

changes by more than 0.1 between adjacent mesh points, while
Rℓ=1 is the innermost point where S 2ℓ 1 maxpn== . Locations are
indicated with respect to the relative mass coordinate m(r)/M.
From Figure 1, we see that, for the 1.4 and 1.5 Me

evolutionary tracks (solid and dotted–dashed lines), Rℓ=1

begins increasing steadily with evolution along the main
sequence. This steady rise is interrupted by a sharp disconti-
nuity just after reaching XH = 0.3 for the 1.4 Me track and just
before reaching XH = 0.3 for the 1.5 Me track. After this jump
in Rℓ=1, the dipole p-mode inner turning point at maxn lies
outside the near-core layers of these stars, rendering them
insensitive to this region. Conversely, this discontinuous jump
in Rℓ=1 does not occur in the 1.2 Me track because, given our
specific combination of model input parameters, the position of
the p-mode inner turning point starts (at zero age main
sequence) at approximately the same location as the well-
mixed core outer boundary (Rℓ=1≈ Rc). Therefore, for this
example 1.2 Me track, nonradial modes may not be used
(under the JWKB approximation) to probe the near-core layers,
no matter how far along the main sequence the star has
evolved.
These discontinuities in the evolution of the p-mode inner

turning point (Rℓ=1) emerge from kinks in the Lamb frequency
profile, caused by the change in mean molecular weight
gradient at the boundary of the star’s convective core. To
examine the underlying mechanism for this, we show
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propagation diagrams from the 1.4 Me track, before and after
this discontinuous jump in Rℓ=1, in Figure 2. The spikes in
buoyancy frequency (N, solid black lines), which correspond to
local enhancements of ∇μ, coincide with localized kinks in
Lamb frequency (Sℓ=1, dotted lines). As the star evolves, these
kinks move inward, and the Lamb frequency at their location
increases relative to maxn (horizontal dotted–dashed line). When
these kinks coincide with maxn , this results in a temporally
discontinuous increase in Rℓ=1. Because the pulsation wave
function is assumed to decay exponentially in the WKB-
evanescent region, this corresponds to a discontinuous
reduction in the probing power of dipole modes to these
near-core features on either side of this evolutionary boundary.

Unlike the nonradial modes, the radial (ℓ= 0) modes are
known to penetrate more deeply into the stellar interior. These
modes admit description by an equation of Schrödinger form
(i.e., the “normal form” of Gough 2007, for JWKB analysis),
with respect to the acoustic radial coordinate ( ) /t r dr c

r
s0ò= ,

where the acoustic potential function V (shown in Figure 2), is
set by the stellar structure and determines the behavior of their
wave functions near the center (see, e.g., Gough 1993;
Roxburgh 2010; Ong & Basu 2019, for a thorough discussion
of the radial-mode acoustic potential). Localized enhancements
in this potential function are known to yield oscillatory
signatures (e.g., Houdek & Gough 2006), known colloquially
as “glitches.” Accordingly, we show this acoustic potential
function in both propagation diagrams of Figure 2 (scaled by
maxn , using the gray dotted–dashed lines). Sharply localized
peak-like features in V can be seen to emerge, corresponding to
the locations in the star where chemical abundances vary
rapidly with depth (near m/M= 0.09 and m/M= 0.07 for the
XH = 0.4 and XH = 0.05 Figure 2 propagation diagrams,
respectively). As such, these features must also have a direct
effect on the radial-mode frequencies.

3. Beyond the WKB Approximation

Thus far, our discussion has taken place within the context of
the commonly used WKB approximation (Gough 1993, 2007).

This is qualitatively suitable where the acoustic glitches are
situated far enough away from the turning points of the mode
cavity that the behavior of the wave functions there may be
treated as approximately sinusoidal. However, at the turning
points, the solutions are instead more accurately approximated
by Airy functions, which relate to these sinusoidal solutions
through the asymptotic expansion of the Airy functions at large
argument, by way of the Jeffreys connection formulae (i.e., the
“J” of JWKB). In turn, the use of Airy functions near the
turning points is only justifiable when boundary conditions of
the pulsation problem as a whole can be neglected. The
resulting oscillatory variations induced into the mode frequen-
cies from such analysis (e.g., Houdek & Gough 2006) have
historically been assumed to emerge even in existing theor-
etical studies of p-mode convective core signatures (e.g.,
Monteiro et al. 1998; Mazumdar & Antia 2001). However, the
near-core structural discontinuities in the mass range under
consideration here do not possess these properties. Because
these features, as well as the turning points themselves, are
localized close to the core, the inner boundary condition may
no longer be neglected. Because the glitches may not be inside
the WKB-oscillatory region as is typically assumed, the wave
functions likewise may not be approximated well as sinusoidal
there. As such, we must pursue an alternative derivation of the
frequency perturbations induced by these glitch features
accounting for these properties, which may correspondingly
yield qualitatively different behavior from the standard
sinusoidal phenomenology.

3.1. Analytic Development

From local asymptotic theory, it is known that the scaled
p-mode radial Lagrangian displacement wave functions,

r cr s
2y x r= , near the center of the star may be approximated

by linear combinations of Riccati–Bessel functions of degree ℓ,
with argument ωt. These linear combinations are in turn
described well by using only the Bessel function of the first
kind, with further position-dependent phases added to the
argument. We refer the reader to Calogero (1963) and

Figure 1. Evolution of the well-mixed core outer boundary (blue) inner turning point (orange) of ℓ = 1 modes near maxn in mass coordinates for 1.2 Me (dotted),
1.4 Me (solid), and 1.5 Me (dotted–dashed) mass model tracks. Evolution goes from left to right as central hydrogen fraction decreases along the main sequence.
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Babikov (1976) for more details about this construction, and to
Roxburgh (2010) and Ong & Basu (2019) for more detailed
discussion of the use of such phase functions in the context of
p-modes. Here, we use sℓ(x)= xjℓ(x) to refer to the Riccati–
Bessel functions of degree ℓ of the first kind, rather than the
customary Sℓ, to avoid confusion with the Lamb frequency.

We first consider sharp variations in the Brunt–Väisälä
frequency relative to a smooth background, N N2

smooth
2= +

N 2d , and wave functions that are unit normalized under the
usual inner product. These sharp variations exist in our stellar
models (see the N profiles in Figure 2) and are collocated with
enhancements to the acoustic potential V, which encapsulates
all the relevant information for radial modes. By inspection
of the wave equations (e.g., Ong & Basu 2020, and also

Appendix B), δN2 induces deviations in the mode frequencies,
ceteris paribus, as

( ) · ( )N dm, 3r
2 2 2òd w x d~

compared to if only Nsmooth were present, to leading order in
perturbation theory (as also used in, e.g., Houdek & Gough
2006, 2007). We first recount how the usual expression of these
glitches, relating δ-function features in the Brunt–Väisälä
frequency, δN2∼ δ(r− r0), to sinusoidal perturbations to the
mode frequencies, may be recovered from this description.
Near the outer boundary, t= T, the glitch signature of such a δ-
function feature may be computed with an approximate

Figure 2. Upper Left Panel: Propagation diagram for a 1.4 Me model with XH = 0.4 (leftmost vertical gray dotted line in Figure 1) showing, in units of maxn , the
buoyancy frequency (N), the Lamb frequency (Sℓ=1), and the acoustic potential, V, which is a characteristic frequency describing the propagation of a star’s radial
modes. The orange region of the propagation diagrams represent the regions where p-modes can propagate, while the blue regions represent the g-mode propagation
regions. In the outer layers of the star, the minimum frequency at which p-modes can propagate is governed by the critical frequency (νcrit mirrors V near the model’s
surface) in the outer layers. Upper Right Panel: Same as the left panel, but for the 1.4 Me model later in evolution (right gray dotted line in Figure 1, XH = 0.05).
Lower Panels: Propagation diagrams for the same two models as in the upper panels, but the x-axis shows the relative mass coordinate in log-scale in order to show the
near-core features in more detail. The acoustic potential, V, shows a sharp, localized peak at the position of the near-core glitch.
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expression for the outer phase function of the form
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where r0 and t0 are the physical and acoustic radii of the
localized feature, np is the radial order of the mode, and αℓ is
the phase function induced by the outer boundary condition.
Far away from the center, the star may be approximated well
as being plane-parallel-stratified, and so the outer phase
functions αℓ do not materially depend on ℓ at low degree
(e.g., Roxburgh 2016). The usual expression for acoustic
glitches—i.e., [ ( ) ]T tsin 2 0dw w f~ - + for all ℓ, up to
some frequency-dependent amplitude function—is then recov-
ered upon introducing the asymptotic expansion of Riccati–
Bessel functions as sinusoids at large argument: ( )s xl ~

( )x
ℓ

xsin
2

1p- + ⎛
⎝

⎞
⎠

.

However, as we have described above, this usual derivation
does not apply to these core acoustic glitches. Rather, because
the glitches we consider are localized near the center of the star,
we must instead make use of the converse expansion of
Riccati–Bessel functions as power laws at small argument (see
Arfken & Weber 2005, and Appendix A):
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with the double exclamation marks denoting the semifactorial.
Accordingly, the frequency perturbation induced by such near-
core features takes the form
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where δℓ(ω, t) is an inner phase function induced by the inner
boundary condition, satisfying δℓ(ω, t)→ 0 as t→ 0 under
regular boundary conditions at the center (see Roxburgh 2010,
2016, although we note that, by using Riccati–Bessel functions
here rather than sinusoids as in those works, we absorb the
phase lag of πℓ/2 shown there—see Appendix A). This quantity
can be seen to depend on ℓ. Qualitatively, this implies that any
frequency perturbation induced by a near-center feature must (1)
diverge gradually with increasing frequency (as opposed to
being sinusoidal, like outer glitches), and (2) possess an
amplitude that decreases rapidly with increasing ℓ (as opposed
to the ℓ-independent behavior of outer glitches). In particular,
because the semifactorial suppression with increasing ℓ is so
steep, this effectively produces an offset of the radial-mode
frequencies relative to all other ℓ.

The variations to the Brunt–Väisälä frequency profile by
themselves do not account completely for all structural
variations at the boundary. For example, there are also
variations to the sound speed profile at the convective core
boundary (seismic properties of which have been studied by,
e.g., Mazumdar et al. 2006; Cunha & Metcalfe 2007; Cunha &
Brandão 2011), which could dominate the glitch signature for
radial modes. In this work, we restrict our analysis to only a

deviation in the Brunt–Väisälä frequency profile, as we are
interested in the qualitative properties of the near-core glitch
signatures, namely their apparent nonoscillatory nature and
strong dependence on angular degree, ℓ. As demonstrated in
Figure 2, the sharp Brunt–Väisälä frequency features are
collocated with enhancements to the acoustic potential, V,
which also carries information about sound speed
discontinuities.
Analyses similar to the one done for the Brunt–Väisälä

frequency, applied to the sound speed or other structural
properties, will yield the same strong-degree-dependence
behavior in the frequency perturbations. More precise state-
ments concerning the exact frequency dependence and
amplitudes of the mode frequency differences would require
an analysis similar to Cunha & Metcalfe (2007), incorporating
structurally self-consistent perturbations to the relevant acous-
tic potentials. Perturbations to different quantities may yield
different power-law indices in the frequency that may differ
from that attributed to the Brunt–Väisälä frequency (if
derivatives or integrals of the wave functions enter into the
analogous kernel expressions to Equation (3)), while those
caused by different features will have the arguments of their
power laws be evaluated at different acoustic depths. Thus, the
overall frequency perturbation that we would expect from these
near-core features will take the form of a sum of various power-
law terms. However, we note that the argument and overall
amplitude of any one of these power-law terms are, in effect,
entirely degenerate. Thus, an unprivileged observer, given a
combination of power-law components resulting from near-
core perturbations to the stellar structure, will find it
mathematically impossible to distinguish the inner glitch depth
from its amplitude.

3.2. Empirical Diagnostics

In the absence of a more quantitative description of the
frequency dependence of the near-core glitch signatures, we
can illustrate the qualitative properties of these near-core glitch
signatures by computing the mode frequencies for each stellar
model along our 1.2 Me, 1.3 Me, 1.4 Me, and 1.5 Me tracks
using the stellar oscillation code GYRE (version 6.0, Town-
send & Teitler 2013). We calculate the radial (ℓ= 0) as well as
nonradial (ℓ= 1, 2, and 3) mode frequencies in a wide
frequency range, from a lower bound of Δν up to 2 maxn . We
use scaling relations to approximate the global asteroseismic
parameters of our stellar models based on the models’ mass,
radius, and temperature (see Kjeldsen & Bedding 1995), setting

( )M R Tmax max,
2

effn n= and  M R3n nD = D where M,
R, and Teff are in solar units.
In order to enhance the visibility of these glitch signatures

(oscillatory or otherwise), we take the second differences of the
mode frequencies with respect to the modes’ radial order np
(δ2νn,ℓ; see Gough 1990; Basu et al. 1994, 2004; Mazumdar
2005; Verma et al. 2014), given by

( )2 . 7n ℓ n ℓ n l n ℓ
2

, 1, , 1,d n n n n= - +- +

For illustration, we show these second differences in the top
panels of Figure 3 for the same two 1.4 Me models as in Figure
2 (before and after the discontinuous jump in the position of the
p-mode inner turning point). As discussed previously, these can
be seen to be dominated, for all ℓ shown, by the oscillatory
variability of the outer ionization zone/convective boundary
glitches, which should affect all ℓ equally, at least at these low
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degrees. We thus fit this overall oscillatory signal in the second
differences using a cubic spline, incorporating only second
differences of the ℓ= 1, 2, and 3 modes, as shown in the top
panels of Figure 3 as gray lines. We show the residuals to this fit
in the bottom panels of Figure 3. The residuals are such that the
ℓ= 0 mode are clearly systematically offset from the nonradial
mode frequencies. Thus, our analytic prediction for the
amplitude of the glitch signature decreasing with increasing
angular degree (Equation (6)) is borne out numerically. We note
that this systematic dependence of the residuals on ℓ stays
consistent between different choices for how the outer glitches
are detrended (e.g., fitting a high-order polynomial instead of a
spline, or also including ℓ= 0 modes in the fit). Moreover, no
obvious qualitative difference between the two stellar models
can be seen, despite their being in different JWKB regimes (as
described earlier).

To investigate the amplitude of the near-core glitch over the
course of the main-sequence evolution of our models, we
computed the average second-frequency-difference residuals
for each ℓ after subtracting a high-order polynomial fitted
against δ2ν for ℓ= 0, 1, 2, 3. For our 1.4 Me model track, we
plot this average residual as a function of the center hydrogen
fraction for each value of ℓ in the left panel of Figure 4. Overall,
the amplitude of the ℓ= 0 residuals is much larger than for the
nonradial orders, agreeing with the analytic prediction that the
amplitude of the frequency differences caused by the near-core
glitch will decrease with increasing ℓ (Equation (6)). The right
panel of Figure 4 shows the evolution of the average ℓ= 0
residuals for our 1.3, 1.4, and 1.5 Me model tracks. These
appear very similar for the 1.4 and 1.5 Me tracks, and they
remain approximately constant over the course of their main-
sequence evolution.

Figure 3. Top Panels: Plot of the second differences of the oscillation mode frequencies as a function of mode frequency for the same two 1.4 Me models as in Figure 2.
The frequency ranges between 800 μHz up to the acoustic cutoff frequency of the model ( c g

Pac
1

2
sn =

p
r ) where the sound speed (cs), density (ρ), and pressure (P) are taken

at the model surface (outermost grid point). The second differences are taken for each set of ℓ = 0, 1, 2, or 3 modes with respect to the radial order np. The gray line shows
a spline fit through the ℓ = 1, 2, and 3 modes. Bottom Panels: Corresponding residuals (second differences minus the spline fit) as a function of frequency.
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Our procedure for isolating the near-core glitch’s affect on
the second-difference residuals results in the radial-mode
residuals containing, but not necessarily completely isolating,
the near-core glitch signal. For example, for much of the main
sequence, the average ℓ= 0, δ2ν residual amplitudes for the
1.3Me track are overall smaller when compared with the
residual amplitudes for the 1.4 and 1.5 Me tracks, in keeping
with the smaller size of the 1.3 Me models’ convective cores.
While the 1.3 Me track residuals may be seen to vary much
more significantly after passing XH≈ 0.4, this is not a feature of
the near-core glitch, but rather a property of the outer glitches
contaminating the second-difference residual signal. In part-
icular, the convective envelope boundary of the 1.3 Me models
is much deeper (in relative acoustic depth) compared with those
of the 1.4 and 1.5Me models. At around XH≈ 0.4, the acoustic
depth of the 1.3 Me model’s convective envelope boundary
increases past τ= T/2 (where T is the acoustic radius of the
star). Interior to this, the glitch modulations affect not only the
degree-independent outer phase function αℓ, but also the
degree-dependent inner phase functions δℓ (see Figure 5 of
Roxburgh 2010); thus, the outer glitch may itself no longer be
simply described as a function of frequency alone. As such, in
this regime, the radial-mode residuals from such a fit will also
contain contributions originating from the outer glitch, and they
no longer serve to describe the near-core glitch well. Thus, we
cannot guarantee that this method necessarily uniquely isolates
the near-core glitch signal.

Cunha & Metcalfe (2007) have previously proposed an
alternative means of eliminating the outer phase function by
way of scaled separation ratios:

( )D D
, 8

n n

0,2

1,1

1,3

,0n nD
-

D-

where

( )D
ℓ4 6

9ℓ ℓ
n ℓ n ℓ

, 2
, 1, 2n n

º
-

+
+

- +

and

( ). 10n ℓ n ℓ n ℓ, 1, ,n n nD º -+

The unscaled separation ratios (rℓ,ℓ+2= dℓ,ℓ+2/Δνn,ℓ), consid-
ered as a function of frequency, were shown by Roxburgh
(2005) to be approximated well by differences of the interior
phase functions, δℓ+2(ν)− δℓ(ν). The difference of the scaled
ratios in Equation (8), which is the diagnostic of Cunha &
Metcalfe (2007), is thus equivalent to taking a linear
combination of the inner phase functions δ0, δ1, δ2, δ3,
evaluated at some notional inner matching point, which is
usually left underspecified. By contrast, in separating the
acoustic depth from the inner phase function, we evaluate the
inner phase function at the acoustic depth of the inner glitch. A
further, subtle difference between these inner phase functions δℓ
appearing here and in our expressions is that those we consider
above are of the “smooth” structure: they are therefore
completely uninformative regarding the inner glitches, with
all information about them contained instead in the ωt0 term
and the implicit constant of proportionality. By contrast, the δℓ
of the procedure of Cunha & Metcalfe (2007) are associated
with the actual mode frequencies, including the near-core
glitches. These differences render these two diagnostics not
immediately quantitatively commensurate to each other, and
deriving an explicit relationship between their diagnostic and
ours lies beyond the scope of this work; at best, we will be able
to perform only a qualitative comparison.
Plotting the diagnostic from Equation (8) as a function of

frequency (Figure 5(a)) for three 1.4Me stellar models of
different ages shows that this diagnostic, calculated for our
model frequencies, shows properties similar to those shown
Cunha & Metcalfe (2007), despite differences in the modeling
physics and global stellar properties. Comparing the residuals
of our outer glitch subtracting procedure (from Figure 3) for the
same three models (shown in Figure 5(b)) with the diagnostic
curves in Figure 5(a) shows the curvature is reversed between

Figure 4. Left Panel: The evolution of the 1.4 Me model track’s average second-frequency-difference residuals left over after subtracting a high-order polynomial fit
from the ℓ = 0, 1, 2, and 3 values of δ2ν. The evolution is shown as a function of the central hydrogen fraction, XH. Right Panel: The evolution of the ℓ = 0 values of
average δ2ν residuals as a function of XH for our 1.3, 1.4, and 1.5 Me tracks. Each curve is smoothed with a boxcar kernel with a size of five points.
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the two methods of displaying the inner, near-core glitch signal.
However, both methods show that subtracting the outer glitches
is necessary to reveal the small-amplitude seismic signatures of
the convective cores. In addition, both panels of Figure 5 show
that both methods of isolating the seismic signal of the near-
core glitch on the radial modes reveals that these signals are
age-dependent, meaning their glitch signature shape changes as
a main-sequence star evolves on the main sequence.

Practically speaking, an operational difference between the
diagnostic in Equation (8) and our method of subtracting a
spline fit from the nonradial modes detailed in Section 3 is that
octopole (ℓ= 3) modes are not explicitly required by our
construction. In principle, our proposed methodology accom-
modates data sets containing both fewer and more degrees than
ℓ ä {0, 1, 2, 3}. However, retrieving the asteroseismic signal of
the convective cores would still be difficult unless many
nonradial mode frequencies are available.

4. Discussion and Conclusion

Our analysis shows two distinct WKB regimes for the solar-
like oscillators in question. Throughout the first regime, before
the discontinuous increase in Rℓ=1, the realm that nonradial
p-mode oscillations probe includes the near-core regions of the
star, which is of particular importance for studies of convective
boundary mixing processes like convective overshoot. During
the second regime, after the sharp increase in Rℓ=1, the near-
core layers around the stellar core are no longer accessible to
nonradial p-mode oscillations with frequencies near maxn . This
suggested that the usefulness of these modes to study core
processes in main-sequence stars would depend on the exact
evolutionary history of that particular object, due to the sharp
boundary between the two regimes. Acoustic glitch fitting is
often used to determine the locations of particular stellar layers
of interest, such as the boundaries of convection zones and the
locations of ionization zones. In the first regime we discuss,
where the p-mode outer turning point is exterior to the
boundary of the well-mixed core, acoustic glitch fitting would
be used to study the different layers of the star down past the
boundary of the well-mixed core. In this case, glitch signatures
from the boundary of the convective core will impart
perturbations to the (near- maxn ) frequencies of both the radial
and nonradial oscillation modes of the star. On the other hand,
assuming the WKB approximation holds, after the

discontinuous jump in Rℓ=1, the near-core glitch signature
from the core convection zone boundary should be inaccessible
to acoustic glitch analysis.
However, because the well-mixed convective core boundary

exists sufficiently close to the center of the star such that the
inner boundary condition can no longer be neglected, and Rc

may not be inside the WKB-oscillatory region in any case, the
glitch signature pattern from the core boundary imprints instead
an ℓ-dependent signal onto the frequencies of the stellar
oscillation modes. We demonstrate this behavior in Figure 3;
after fitting out the dominant acoustic glitch signature from the
ℓ= 0, 1, 2, and 3 modes, an additional glitch signature is visible
in the radial-mode residuals in both cases, which in neither case
appears oscillatory. The results of this procedure can be seen to
qualitatively resemble those obtained from other prior proposed
diagnostics, such as that of Cunha & Metcalfe (2007)
(Figure 5).
In contrast to the oscillatory and degree-independent nature

of acoustic glitches in the outer parts of the star, we would
therefore expect observationally to ultimately obtain, from
isolating the inner glitch signal, some combination of
nonoscillatory components, each exhibiting some power-law
nature and strong angular degree dependence in their frequency
perturbations. Crucially for the outer glitches, it is precisely
their sinusoidal form that permits different components,
localized at and attributed to different physical features, to be
separately identified and characterized through their modula-
tion frequency and amplitude (Monteiro et al. 1998; Mazumdar
& Antia 2001; Houdek & Gough 2006). By contrast, because
the amplitude and argument of a power law are mathematically
indistinguishable, it is impossible to distinguish the amplitude
of the inner glitch from its argument (i.e., location, via acoustic
depth), let alone disentangle and assign interpretations to such
linear combinations of them as we should expect to obtain in
practice, without the imposition of further constraints from
stellar modeling. Thus, our key qualitative result in this work—
that inner glitches hold to power-law parameterizations—also
indicates that any quantitative signal, however isolated
observationally, will not be amenable to interpretation as
easily as those derived from the outer glitches. Unfortunately,
this means that any insights into the nature of near-core
convective boundary mixing must necessarily derive from
explicit reference to numerical models of stellar structure,

Figure 5. Left Panel: Frequency differences diagnostic defined by Equation (8) as a function of frequency for three 1.4Me models at different ages. The model
represented with the red dotted curve is the same as the model shown in the right panels of Figure 3. The model modes considered in this figure range in radial order
from n = 8 to n = 28. Right Panel: The second-difference (δ2ν) residuals obtained after subtracting the outer glitch signature from just the radial-mode values of δ2ν,
as a function of frequency. The curves are shown for the same three models shown in the left panel.
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unlike the model-independent diagnostic quantities returned
from the outer glitches.

We note that the aforementioned near-core glitch properties
we discuss in this work are only applicable to stars that are
massive enough to host convective cores, but with low enough
masses to have significant convective envelopes that drive
p-mode oscillations. Therefore, future searches for seismic
signatures of main-sequence small convective cores will need
to limit their consideration to stars within a narrow mass range
with good asteroseismic data.

Stellar structures like those discussed in this paper,
characterized by steep, localized variations in structure near
their cores, are not just present in intermediate-mass main-
sequence stars. As low- and intermediate-mass stars run out of
hydrogen in their cores and begin to evolve across the subgiant
branch and up the red giant branch, their convective envelopes
expand while their cores contract (see Hekker & Christensen-
Dalsgaard 2017). At this stage of evolution, the interior
boundary of the convective envelope reaches far into the core
of the giant star, depending on the amount of envelope
overshooting (see Section 4, Figure 4 of Lindsay et al. 2022).
The steep variation in sound speed at the interior boundary of
the envelope convection zone will induce a glitch component to
the mode frequencies of the giant star, and because the location
of the glitch would be near the core in this case, an ℓ-dependent
signature similar to that described in Section 3 will be likewise
present in the notional p-modes of these giants. Because the
observable modes in red giant stars are, in practice, modes of
mixed g- and p-like character, disentangling the deep envelope
convection zone glitch signature from the overall mixed mode
pattern of observed red giant oscillation modes would be
challenging—but rewarding. Such constraints on the location
of the envelope convective boundaries would define the correct
amount of envelope overshooting, which should be incorpo-
rated into evolved star stellar models. These would be
complementary to other constraints from “buoyancy” glitches,
derived from the g-mode cavity (e.g., Cunha et al. 2019; Vrard
et al. 2022). At the same time, the considerations we outline
here may be required to interpret such buoyancy glitches:
should they be localized near the g-mode turning points (as we
describe in Lindsay et al. 2022), the relevant wave functions
should be described with Airy functions of the first kind, as
also used in Cunha & Metcalfe (2007), which would yield
different behavior from the sinusoids considered in Cunha
et al. (2019).
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Appendix A
Spherical Bessel Functions

The usual expression for the mode frequency shifts
resulting from an acoustic glitch has the form dw ~

[ ( ) ]T tsin 2 0w f- + . However, in the case where the acoustic
glitch is located sufficiently close to the real (coordinate)
singularity at the center of the star, the usual expression for
acoustic glitches does not apply. In Section 3, we made use of
the converse expansion of Riccati–Bessel functions as power
laws at small argument. Here, we expand on this discussion of
spherical Bessel functions, drawing extensively from Section
11.7 of Arfken & Weber (2005).
Upon separation of variables of the wave equation, the radial

wave function R satisfies an ordinary differential equation that
is approximated well near the center of the star by an
expression of the form

[ ( )] ( )x
d R

dx
x
dR

dx
x ℓ ℓ R2 1 , A12

2

2
2+ ~ - - +

where ℓ(ℓ+ 1) is the separation constant from the angular
components (ℓ is a non-negative integer) and the dimensionless
argument x∼ krr enters from the coordinate transformation
required to put the original Helmholtz equation into this form.
If one makes the substitution ( ) ( )R x Z x

x
= , the radial equation

becomes
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which is Bessel’s equation with Z being a Bessel function of
order ℓ 1

2
+ . Defining
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and expressing Jℓ as a series (see Section 11.1 of Arfken &
Weber 2005):
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we apply the Legendre duplication formula,
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have a series form for jℓ(x),
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The expressions in Section 3 are then recovered with argument
x= ωt0− δℓ(ω, t0).

Our use of the Riccati–Bessel functions here requires also
that our inner boundary condition for δ differs from that of
Roxburgh (2010, 2016), who use a sinusoidal approximation,
such that the phase function required to approximate a wave
function ψ with a sinusoid as ( )A tsin w d+ can be found as

( )
d

d t
tarctand y

y
w

w~ -⎜ ⎟
⎛
⎝

⎞
⎠

. For illustration, we show this in

Figure 6 for Riccati–Bessel functions sℓ of various degree. This
is known to yield an offset of ℓπ/2 in the argument as t→ 0,
which is exactly equal to the inner boundary condition of
Roxburgh (2010, 2016). Thus, δℓ→ 0 as t→ 0 for all ℓ in our
description, for consistency with these works further into the
stellar interior.

Appendix B
Deviations to the Mode Frequencies

The displacement eigenfunctions ξ of normal modes with
angular frequency ω satisfy the constraint

( )gP , B12xrw r r- = - ¢ + ¢ + F¢

where P¢, r¢, and F¢ are the accompanying eigenfunctions in
the pressure, density, and gravitational potential perturbations
for that mode. These other eigenfunctions may be eliminated
with the use of other physical constraint equations to yield an
operator eigenvalue equation, customarily written in the
manifestly Hermitian form

( · · ) · ( )
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Small (and necessarily Hermitian) perturbations to the wave
operator, of the form ˆ ˆ ˆ l+   , then yield perturbations to
the mode frequencies as

( )
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, B3i ii
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where · ˆV d rij i j
3ò x xr= *  are the matrix elements of the

perturbing operator, and the Lagrangian displacement functions
are assumed to be unit normalized. For instance, ̂ may be
considered to be the difference between the wave operators of
two different stellar structures with identical global properties,
such that the matrix elements may be expressed as integrals
with respect to localized perturbations in the physical quantities
of the stellar structure (e.g., the inversion kernels of
Kosovichev 1999). In discussions of acoustic glitches, how-
ever, one instead supposes that the wave operator ̂ may be
notionally decomposed as ˆ ˆ

smooth sharp+  . The first term is, in
the abstract, the wave operator associated with a “smooth”
stellar structure, such that (by assumption) its eigenfunctions
are described well by asymptotic approximations such as the
JWKB construction, while the second term is associated with
localized, sharp, variations in the stellar structure. Because such
a decomposition is at best notional, we are free to consider
expressions for ˆ

sharp that might otherwise correspond to
unphysical structural perturbations in the traditional sense.
Moreover, by Equation (B3), we may restrict our attention to
the matrix elements of various operators, rather than the
operators themselves. In particular, we note that a subset of the
terms in Equation (B2), which we shall use to define an
operator ̂, have matrix elements

( ( · ) · ( ))

[ · · ( ) · · ( )
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g g
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that are Hermitian, by the divergence theorem (and because
both g and ∇ρ point strictly radially). Focusing on the first two
terms in particular, the constraints of adiabaticity

( · )e
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N

gs
r2

2
xr r¢ =

¢
+ and of continuity · ( )xr r¢ = -

allow us to rewrite this expression as
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Accordingly, if we were to consider a notional, unphysical
decomposition of ̂ as above, in which for ˆ

smooth only this
Brunt–Väisälä frequency term were to be modified as

N N N2
smooth
2 2d+ , the corresponding perturbation induced

into the mode frequencies, ceteris paribus, would then go as

( ) ˆ · ( )N dm, . B6r
2 2 2òx xd w d x d~ á ñ ~

More principled decompositions necessarily have a more
complicated form. For instance, one might prefer to consider
frequency differences arising from more traditional perturba-
tions to the equilibrium ρ, Γ1, P, etc., in a physically and
structurally self-consistent fashion, for which the frequency
differences arising from perturbations to specific quantities q
are associated with integral kernels of the form

( ) [ ] ( )/V q q K dm, . B7ij q i jò x xd=

Figure 6. The inner phase function δ required to approximate a Riccati–Bessel
function using a sinusoid.
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By inspection of Equation (B2), we find these structure kernels,
K, must necessarily be bilinear (and therefore quadratic, on the
diagonal) in the wave functions of the modes corresponding to
each matrix index, or potentially their (anti)derivatives with
respect to radial position, as ̂ is permitted to be a general
integro-differential operator. Because the asymptotic radial
dependence of the (appropriately scaled) wave functions is a
power law as r→ 0, as we describe above, the overall signature
of the near-core feature would then be a linear combination of
components, each satisfying a power-law description of the
kind we have provided. Our qualitative results would thus not
substantially changed were a different quantity to be primarily
responsible for producing the acoustic glitch (although each
component may have an incremented or decremented power-
law index, or a different constant of proportionality).
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