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Abstract: This work systematically examines the interactions between a single argon atom and the
edges and faces of cyclic HyO clusters containing three—five water molecules (Ar(H>0);—35). Full ge-
ometry optimizations and subsequent harmonic vibrational frequency computations were performed
using MP2 with a triple-{ correlation consistent basis set augmented with diffuse functions on the
heavy atoms (cc-pVTZ for H and aug-cc-pVTZ for O and Ar; denoted as haTZ). Optimized structures
and harmonic vibrational frequencies were also obtained with the two-body-many-body (2b:Mb)
and three-body-many-body (3b:Mb) techniques; here, high-level CCSD(T) computations capture up
through the two-body or three-body contributions from the many-body expansion, respectively, while
less demanding MP2 computations recover all higher-order contributions. Five unique stationary
points have been identified in which Ar binds to the cyclic water trimer, along with four for (HyO)4
and three for (H,O)s. To the best of our knowledge, eleven of these twelve structures have been
characterized here for the first time. Ar consistently binds more strongly to the faces than the edges of
the cyclic (H,O),, clusters, by as much as a factor of two. The 3b:Mb electronic energies computed with
the haTZ basis set indicate that Ar binds to the faces of the water clusters by at least 3 k] mol~! and by
nearly 6 kJ mol~! for one Ar(H;0)5 complex. An analysis of the interaction energies for the different
binding motifs based on symmetry-adapted perturbation theory (SAPT) indicates that dispersion
interactions are primarily responsible for the observed trends. The binding of a single Ar atom to a
face of these cyclic water clusters can induce perturbations to the harmonic vibrational frequencies on
the order of 5 cm ™! for some hydrogen-bonded OH stretching frequencies.

Keywords: water clusters; argon tagging; vibrational frequencies; interaction energies; binding energies

1. Introduction

Noble gases are frequently used as carrier gases and as inert environments in a broad range
of spectroscopic techniques. Supersonic expansions [1-12], cryogenic matrices [13-35], and
helium nanodroplets [36—42] are specific examples that continue to play important roles in
the experimental characterization of weakly bound molecular complexes. Spectroscopic
studies of neutral hydrogen-bonded clusters, including H,O clusters, sometimes utilize one
or more noble gas atoms (typically Ar) as an experimental tag to probe structural features,
enhance experimental signals and even examine the hydrophobic effect [43-71].

Although the noble gases are inert under these types of experimental conditions, they
can still perturb the molecules and complexes being studied [3,7,31,51,55,72-77]. Several
studies involving Ar-tagged complexes demonstrate the potential of Ar to engage in
favorable intermolecular dispersion and induction interactions when utilized as an isotropic
probe of electron density to provide insight into regions of a molecule or molecular cluster
of interest [51,53,54,58,59,62-65,68,78].

The interaction between an Ar atom and a single H,O molecule has been studied in
great detail [69,79-93], but relatively few studies have looked at the interactions of Ar with
the water dimer [69,87,94] or larger water clusters [95,96]. The present study systemati-
cally identifies the energetically favorable binding sites of a single Ar atom to the well-
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characterized structures of cyclic (H,0),—3_5 clusters [6,10,24,30,31,37,42,97-136] while also
tracking structural and vibrational perturbations that occur. Symmetry-adapted perturba-
tion theory is used to analyze the interaction energies for the different binding motifs.

2. Computational Details

The lowest-energy binding sites of a single Ar atom around small water clusters with
three—five water molecules (Ar(HO),—35) were identified via full geometry optimiza-
tions and harmonic vibrational frequency computations using MP2 [137] and Dunning’s
correlation-consistent cc-pVTZ [138] basis set for H atoms and aug-cc-pVTZ [139,140] for
the “heavy atoms” (O and Ar), hereafter denoted as haTZ. A subsequent set of haTZ ge-
ometry optimizations and harmonic vibrational frequency computations were performed
on the MP2/haTZ-identified stationary points with the highly efficient and accurate N-
body-many-body (Nb:Mb) technique [134,141-143] that captures all leading dominant
N-body contributions to the many-body expansion (MBE) of the interactions in a cluster
using an accurate high-level method, whereas the remaining higher-order contributions are
recovered with a less demanding low-level method. For this study, we have selected the
2b:Mb [142-147] and 3b:Mb [141,143] versions of the Nb:Mb procedure. In this implemen-
tation, CCSD(T) [148] is used as the high-level method to describe the one- and two-body
terms in the MBE of the cluster energy for 2b:Mb (as well as the three-body interactions
for 3b:Mb) while MP2 is used as the low-level method to recover the higher-order > three-
body contributions to the MBE (or >4-body for 3b:Mb) by means of a computation on the
entire cluster. Analytic gradients were used for all geometry optimizations along with
analytic Hessians for all harmonic vibrational frequency computations. MP2 computations
were carried out using Gaussian16 while all CCSD(T) computations were performed with
CFQOUR [149,150].

The relative electronic energies (AE) of the various complexes were calculated by
comparing the total energies at each level of theory. The supramolecular approach was
used to determine the MP2, 2b:Mb, and 3b:Mb binding energies (Ey;;,;) and interaction
energies (Ej;;) of the Ar atom to various water cluster isomers as shown in Equation (1).

Epind/int = E[Ar(H0),] — E[(H20),,)] — E[Ar] 1)

Eping is obtained when E[(H,0),, ] is evaluated using the fully optimized geometry of the
isolated water cluster, whereas use of the geometry adopted in the full complex yields
Eint. The effects of the harmonic zero-point vibrational energy (ZPVE) were also assessed
for all minima, and the ZPVE-inclusive relative and binding energies are denoted AE°
and Ej. . respectively.

By comparing the total energy of a complex to the sum of fragment energies computed
with finite basis sets, Equation (1) introduces an inconsistency commonly referred to as basis
set superposition error (BSSE) [151,152]. To assess the potential effects of this inconsistency,
the Boys—Bernardi counterpoise (CP) procedure [153,154] was employed to compute for
the MP2/haTZ-optimized Ar(H,O),=3-5 structures. This analysis utilized the protocol
outlined elsewhere [155], which corresponds to the default CP scheme in Gaussiani16,
where the energies of the last two terms in Equation (1) are evaluated in the basis set of the
entire cluster.

An additional analysis of the total interaction energies based on symmetry-adapted
perturbation theory (SAPT) [156—-158] was carried out on the 3b:Mb-optimized Ar(H,0),—3-5
structures. We used the higher-order SAPT2+3(CCD) method that includes a treatment of
dispersion based on coupled-cluster doubles and has been shown to provide improvements
for challenging cases such as the PCCP dimer [159,160]. The SAPT2+3(CCD) computa-
tions were carried out with the haTZ basis set using the efficient implementation in the
PSI4 [161,162] quantum chemistry software package that employs natural orbital trunca-
tion [163]. Rather than just calculating the total interaction energies as described above,
SAPT provides additional insight into how Ar interacts with the small water clusters by
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identifying the individual contributions from exchange repulsion, electrostatics, induction,
and dispersion.

3. Results and Discussion

Twelve low-lying stationary points were identified for the Ar(HO),—_3 5 systems
via full geometry optimizations using the haTZ basis set in conjunction with the MP2,
2b:Mb, and 3b:Mb methods, and these structures are shown in Figure 1. Both the faces
and edges of small, cyclic water clusters were identified as favorable binding sites for
a single Ar atom. These H,O stationary points include the well-characterized C; and
C;3 trimers, S4, C; and C4 tetramers, and C; pentamer. The distance between the Ar
atom and the corresponding face or edge binding site ranges from approximately 3.4 to
3.7 A across the various Ar(Hy0),,—3_5 binding motifs. Harmonic vibrational frequency
computations confirm that these Ar(H,0),—3_5 stationary points are minima at all levels of
theory presented in this work. Cartesian coordinates and harmonic vibrational frequencies
for all identified structures are reported in the Supporting Information (Tables S1-536).
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Figure 1. Minima identified for the Ar(HpO), =35 complexes (H white; O red; Ar cyan).

The naming scheme shown in Figure 1 beneath each structure includes the point
group symmetry of the Ar(H,O), cluster, the binding site of the Ar atom on the (H,0),
cluster (face or edge) and the number of free hydrogens pointing towards the Ar atom
when additional distinction is needed. For example, the first two structures listed at the top
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left of Figure 1 for Ar(H,O)3 (C; Face; and C; Facey, respectively) both have C; symmetry
and Ar bound to the face of the water trimer. A subscript of 1 is added to the first structure
name to indicate one free hydrogen pointing towards the Ar atom, while a subscript of 2 is
added to the second structure name to indicate two free hydrogens pointing toward the Ar
atom. This distinction is only necessary for some of the Ar(H;0O)3 and Ar(H,O)s clusters.

3.1. Structures, Harmonic Vibrational Frequencies, and Relative Energies

Table 1 reports the relative electronic and ZPVE-inclusive energies (AE and AE’,
respectively) obtained with the haTZ basis set and the MP2, 2b:Mb, and 3b:Mb methods
for all Ar(H70O),,=3-5 minima depicted in Figure 1. The reference values of 0.00 k] mol !
correspond to the lowest-energy structure for each Ar(H,O), (n =3, 4 and 5) cluster, each
of which is depicted in the leftmost image of each row in Figure 1). The first five rows of
Table 1 also include AE and AEY values for the bare C; and C3 water trimers and Sy, C;
and C4 water tetramers for reference. The haTZ relative electronic and ZPVE-inclusive
energies reported in Table 1 are remarkably consistent between all three methods utilized
in this work. The 2b:Mb values differ only slightly from the 3b:Mb results (average absolute
deviation of 0.06 k] mol~! and never by more than +0.32 k] mol~!). The deviations from
the 3b:Mb AE and AE? values tend to be slightly larger for the MP2 method, but they
always fall within +0.43 k] mol 1.

Table 1. Relative electronic and ZPVE-inclusive energies (AE and AE?, respectively) in k] mol~!
obtained for the haTZ-optimized (H,O),,—34 and Ar(H,O),,—3_5 structures using the MP2, 2b:Mb,
and 3b:Mb methods.

MP2 2b:Mb 3b:Mb
Complex Label AE AE° AE AE® AE AE°?
(H,0)3 C 0.00 0.00 0.00 0.00 0.00 0.00
(H,0)3 Cs3 3.24 1.72 3.45 1.97 3.43 1.95
(H,0), S, 0.00 0.00 0.00 0.00 0.00 0.00
(H,0),4 G 3.88 2.96 3.92 3.00 3.91 2.98
(H,0)4 Cyt 9.11 . h 9.34 a 9.31 L
Ar(H,0)3 C; Face; 0.00 0.00 0.00 0.00 0.00 0.00
Ar(H,0)3 C; Face, 0.36 0.23 0.27 0.17 0.27 0.17
Ar(H,0)3 C; Edge 1.34 0.90 1.39 0.98 1.26 0.87
Ar(H,0)3 C3 Facey 3.10 1.75 3.40 2.00 3.37 1.98
Ar(H,0)3 C3 Faces 417 2.28 4.18 241 4.16 2.39
Ar(H,0), C, Face? 0.00 0.00 0.00 0.00 0.00 0.00
Ar(H,0), C; Face © 3.50 2.70 3.55 2.73 3.56 2.74
Ar(H,0),4 C; Edge © 5.70 4.50 5.88 4.65 5.63 4.43
Ar(H,0), C,4 Face 8.30 5.50 8.75 5.82 8.73 5.77
Ar(H,0)s5 C; Face, 0.00 0.00 0.00 0.00 0.00 0.00
Ar(H,0)s C; Face3 0.49 0.30 0.36 0.22 0.36 0.22
Ar(H,0)s5 C; Edge 2.90 2.44 3.03 2.58 2.71 2.31

# Cyt (H,0), is a transition state (harmonic vibrational frequencies in Supporting Information); * Ar bound to Sy
(Hp0)4; ¢ Ar bound to C; (Hy0)y.

Note that AE? values are not provided for the C4 bare (H,O)4 tetramer because it
is a transition state (denoted by the superscript + symbol) with 1 imaginary vibrational
frequency at all three levels of theory. The MP2, 2b:Mb, and 3b:Mb harmonic vibrational
frequency computations with the haTZ basis set confirm that all of the other (H,O),,—3_5
and Ar(H,0O),—3_5 stationary points listed in Table 1 are minima. Shifts in the harmonic OH
stretching frequencies induced by the binding of an Ar atom to a water trimer, tetramer, or
pentamer (Ar(H;O),—3_5) relative to the OH stretching frequencies of the isolated water
cluster ((H20),,—3-5) were also analyzed. The formation of the Ar(H;0O),,—3 5 complexes
induces small shifts to lower energy (typically just 1 or 2 cm~1) for every intramolecular
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vibrational mode relative to the isolated water clusters. However, the shifts grow as large
as —5to —7 cm ™! for some of the hydrogen-bonded OH stretching frequencies when a
single Ar atom binds to the face of these cyclic (H,O),—3 5 clusters. For comparison, the
analogous experimental shifts induced by cryogenic Ar matrices and Ar nanocoatings
range from approximately —15 to —35 cm~!. (see Table II from Ref. [96]). The shifts
predicted with the haTZ basis set are quite consistent across the MP2, 2b:Mb, and 3b:Mb
CCSD(T):MP2 methods, and the harmonic vibrational frequencies are reported in the
Supporting Information for all Ar(H,O),—35 complexes identified in this work.

3.1.1. A]T(HzO)g

Five structures were identified as minima for the Ar(H;O)3 system in which Ar binds
to either a face or an edge of the C; and C3 water trimer isomers. All unique faces and edges
were tested as potential binding sites for a single Ar atom, but the subsequent geometry
optimizations always collapsed to one of the five structures reported here. The five binding
motifs are shown in the first row of Figure 1; to the best of our knowledge, the rightmost C3
Faces configuration is the only one that has been previously reported in the literature [95].

Ar binds to both unique faces of the C; water trimer, as well as the edge in which both
free hydrogens are oriented in the same direction. Ar also binds to both unique faces of
the C3 water trimer, but does not bind to an edge. All five identified minima are separated
by only a few k] mol ! at all three levels of theory, as can be seen from the AE and AE°
data near the middle of Table 1. The structure with the lowest energy has the single Ar
on the face of the C; trimer with only one free hydrogen oriented towards the Ar atom
(leftmost image in Figure 1). However, the structure with Ar bound to the other face (C;
Facey) is only higher in energy by a few tenths of a k] mol~!. The energy increases more
significantly when Ar binds to an edge of the cyclic water trimer in the C; Edge structure,
where AE grows to more than 1.2 k] mol~!. The C3 Facey and C3 Faces structures also have
the largest relative energies, but this difference does not necessarily indicate weak binding
(which will be discussed in greater detail in Section 3.2). It is almost entirely due to the
underlying energy difference between the C; and C3 isomers of the water trimer as shown
in the first two rows of Table 1.

3.1.2. A]T(H20)4

The second row of Figure 1 depicts the four minima identified for the Ar(H,O),
system in which Ar binds to the S4, C; and Cy4 cyclic structures of (H,O)4. To the best of
our knowledge, none of these complexes have been previously reported. The structure
with the lowest energy has the Ar atom on the face of the S4 global minimum of (H,O)y,
which results in an Ar(H,0O)4 complex with C; symmetry (leftmost image in the second
row of Figure 1). No minima were identified with Ar binding to the edge of the S4 water
tetramer at the levels of theory used in this work. However, when Ar is in the presence
of the C; (H,O), structure, minima were identified with Ar bound not only to the face
but also to the edge with both free hydrogens oriented in the same direction (analogous
to the situation for the Ar(H,O)3 system). The resulting C; Face and C; Edge Ar(H,O)4
complexes have electronic energies higher than the C; Face minimum by at least 3.5 and
5.6 k] mol~!, respectively.

The highest-energy minimum identified (rightmost image in the second row of
Figure 1) involves Ar binding to the face of the C4 water tetramer structure with all free hy-
drogens on the opposite side of the ring, which gives an Ar(H,0O); complex that maintains
C4 symmetry. Interestingly, the C4 structure of the isolated (H,O)4 cluster is a transition
state even though the corresponding complex with an Ar atom is a minimum at each
level of theory reported here. Furthermore, scans of the Ar atom moving along the Cy4
axis on the side of the ring with the four free H atoms yielded repulsive potential energy
curves. As can be seen from the C4 Face Ar(H,0O)4 row of data in in Table 1, the 2b:Mb
and 3b:Mb AE results grow beyond 8.7 k] mol 1. As noted for the water trimer systems,
however, large AE and AE values do not necessarily indicate weak interactions between
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the Ar atom and the water cluster. (see Section 3.2). The large relative energies for Cy
Face Ar(H,O), primarily reflect that the Cy4 transition state of (HO)4 has an electronic
energy approximately 9 k] mol~! higher than the S; global minimum structure of the water
tetramer (fifth row of data in Table 1).

3.1.3. Ar(H,0)5

The last row of Figure 1 shows the three Ar(H>O)s minima identified with the MP2,
2b:Mb, and 3b:Mb methods in conjunction with the haTZ basis set. The two unique faces of
the cyclic water pentamer provide similar binding sites for the Ar atom, but the electronic
energy is slightly lower when it binds to the side with two free hydrogens (leftmost image
in bottom row of Figure 1) rather than three (middle image in bottom row of Figure 1). The
3b:Mb AE for the latter (Ar(H;O)s C; Faces) is only 0.36 kJ mol~!. A minimum with Ar
bound to an edge was also identified. As with the water trimer and tetramer clusters, a
minimum for this motif was only found along the edge with both free hydrogens pointing
to the same side of the (H,O),, ring. To the best of our knowledge, all three binding motifs
are reported here for the first time. The last row of Table 1 shows the C; Edge Ar(H,O)s5
structure is noticeably higher in energy compared to the C; Face, minimum, with both AE
and AE? growing larger than 2.3 k] mol 1. Binding sites on the cyclic Cs (H,0)s pentamer,
analogous to those for the C3 trimer and Cy4 tetramer, were also investigated. However, all
attempts to identify minima on the corresponding faces and edges collapsed to one of the
C; structures shown in the bottom of row of Figure 1.

3.2. Binding and Interaction Energies
3.2.1. Binding Energies

The electronic and ZPVE-inclusive binding energies (Ep;,; and Egin 2 of the haTZ
optimized Ar(H,0O),—3_5 minima are reported in Table 2 for the MP2, 2b:Mb, and 3b:Mb
methods. Note that Egin ; values are not provided for the C4 Ar(H,0)4 complex as the
bare (HyO), tetramer fragment is a transition state at the associated levels of theory. All
three methods are in remarkably good agreement for both quantities. The MP2 and
2b:Mb values (left and middle columns of Table 2) deviate by less than 0.3 k] mol~! from
the corresponding 3b:Mb E;,,; and El?in ; data in the last two columns of Table 2. For
comparison, the electronic binding energy of the ArH,O dimer computed with the same
procedures is approximately —1.2 k] mol 1.

Overall, the tabulated E;,,; and Egi .4 data show that Ar binds more strongly to the
cyclic water clusters as the size increases from n = 3 (top 3 rows of data in Table 2) ton = 5
(bottom 3 rows of data in Table 2). Although the enhancement is quite modest when Ar
binds to the edge of the cluster (less than 0.5 k] mol 1), the binding of Ar to a face of C;
(H,0)s is approximately 2 k] mol~! stronger than to a face of C; (H,0O)3. The 3b:Mb Ej;g
values in Table 2 clearly show that Ar binds more strongly to the faces of the water clusters
than the edges, and due to the aforementioned trends, the energetic advantage of binding
to a face becomes more pronounced as the cluster size increases (from 1.26 k] mol ! (or
41%) for n = 3 to 2.07 and 2.71 k] mol~! (or 50% and 56%) for n = 4 and 5). The C;
Ar(H;O)5 Face; and Face; complexes exhibit the strongest binding energies out of all of
the Ar(H,0),—3_5 minima identified in this work with Ej;,; exceeding —5.3 k] mol~! and
approaching —5.8 k] mol~!. The electronic binding energies indicate that Ar binds slightly
more strongly to faces that have fewer free hydrogens oriented towards the Ar atom (by
approximately 0.3 kJ mol~! for C; Face; vs. Face; Ar(H,0)s3, 0.8 k] mol~! for C3 Facey vs.
Faces Ar(H,0)3, and 0.4 k] mol~! for C; Face, vs. Faces Ar(H,0)s).

When the CP procedure was employed to evaluate the potential impact of the BSSE on
the binding energies for the Ar(H,0),,—3_5 minima identified in this work, the MP2/haTZ
binding energies were found to decrease in magnitude by approximately 1.1 k] mol~! on
average and never by more than 1.5 k] mol~! for all 12 configurations. These relatively
small differences suggest that the results presented in Table 2 are only slightly larger in
magnitude that the corresponding values evaluated at the complete basis set limit, where
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by definition, the BSSE vanishes. All binding energies obtained with the CP procedure can
be found in the Supporting Information (Tables S37-539).

Table 2. Electronic and ZPVE-inclusive binding energies (Ej;,; and Egm 4 respectively) in kJ mol~!
for the haTZ-optimized Ar(H;0),—3_5 complexes with the MP2, 2b:Mb, and 3b:Mb methods.

MP2 2b:Mb 3b:Mb

Label Epind Epina Epina Epina Epina Epina
Binding Process: C; (HpO)3 + Ar — C; Ar(H,0O)3

Cq Faceq —3.88 -3.10 -3.99 -3.21 —3.84 —3.09

C Facep —3.52 —2.87 -3.73 —-3.04 —3.57 —2.92

C; Edge —2.54 —2.20 —2.60 —2.23 —2.58 —2.23
Binding Process: C3 (H20)3 + Ar — C3 Ar(H,0)3

C; Facep —4.02 -3.07 —4.04 -3.18 —-3.90 —3.06

C;3 Faces —2.95 —2.53 —3.26 —2.77 -3.11 —2.65
Binding Process: Sy (Hy0)4 + Ar — Cy Ar(H,O)4

C, Face —4.65 —-3.92 —4.84 —4.08 —4.62 —-3.90
Binding Process: C; (HyO)s + Ar — C; Ar(H,O0)4

C; Face —5.03 —4.18 —5.21 —4.34 —4.98 —4.16

C; Edge —2.82 —2.39 —2.88 —2.42 —291 —2.46
Binding Process: Cit (H,0)4 + Ar — C4 Ar(HyO)y

C4 Face —5.46 L —5.43 L —5.20 L
Binding Process: C; (H20)5 + Ar — C; Ar(H,0)s5

C; Facep —5.85 —4.92 —6.03 —5.09 —5.75 —4.86

C, Faces —5.36 —4.61 —5.67 —4.87 —5.39 —4.64

C; Edge —2.95 —2.47 -3.01 —2.51 —3.04 —2.55

@ C,t (Hy0), is a transition state (harmonic vibrational frequencies in Supporting Information).

3.2.2. Interaction Energies

The first three columns of Table 3 report the interaction energies (E;;; in kJ mol 1)
calculated for the haTZ optimized Ar(HyO),—3-5 minima depicted in Figure 1 using the
MP2, 2b:Mb and 3b:Mb methods, respectively. The remaining columns report the individ-
ual energy components of and the total interaction energy (in k] mol~!) obtained from
SAPT2+3(CCD) computations with the haTZ basis set for the 3b:Mb/haTZ-optimized
Ar(HyO),—3_5 minima. Utilizing SAPT to compute the total interaction energy directly
provides the physical contributions from exchange repulsion, electrostatics, induction and
dispersion, which are reported in the last four columns of Table 3, respectively.

The MP2, 2b:Mb, and 3b:Mb E;,;; values reported in the left half of Table 3 are in
remarkably good agreement with the corresponding binding energies reported in Table 2,
with differences never exceeding 0.14 k] mol ! across all of the different structures exam-
ined and methods utilized in this study. The consistency between E;;;; and Ey;,,; values
suggest that the binding of an Ar atom to a cyclic water trimer, tetramer or pentamer does
not induce any significant geometric changes to the (H,O),, cluster itself. This observation
is consistent with the small perturbations to the intramolecular vibrational frequencies that
occur upon binding as noted in Section 3.1.

While the SAPT2+3(CCD) interaction energy values in Table 3 are somewhat smaller in
magnitude than the MP2, 2b:Mb, and 3b:Mb E;;; values, they are also slightly larger than
the corresponding MP2 results obtained with the CP procedure that are tabulated in the
Supporting Information (Tables S37-539) which is to be expected because SAPT does not
suffer from the BSSE issues introduced via Equation (1). All computations reveal stronger
interactions for complexes in which Ar is bound to a face of the water cluster rather than
an edge, and the SAPT analysis provides some insight into the underlying factors. The
penultimate column of data in Table 3, for example, shows that induction consistently has
the smallest contribution to E;;;;. Additionally, the attractive induction component is only
slightly smaller in magnitude for the C; Edge structures than the analogous C; Face minima
(by ca. 0.1to0 0.3 k] mol~1). The electrostatic contributions, which include short-range terms
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from the overlap of the electron cloud of Ar with that of the water cluster, are larger than
those from induction and also favor the face-binding motifs over the edge-binding ones by
approximately 0.6 to 1.3 k] mol~!. In all cases, dispersion (last column of Table 3) is the
dominant attractive contribution to E;;;; for these systems in which Ar binds to the edge
or face of a cyclic water trimer, tetramer or pentamer. The dispersion components from
the SAPT2+3(CCD) computations also exhibit the largest energetic differences between the
C; Edge and corresponding C; Face structures, being more attractive in the latter by ca. 2
to 5 k] mol 1. Although all attractive contributions from the SAPT analysis (electrostatics,
induction and dispersion) favor the face-binding motifs, the situation is reversed for exchange
repulsion, which is smaller for the C; Edge structures than the corresponding C; Face motifs
by approximately 2 to 4 k] mol~!. Nevertheless, the contributions from exchange repulsion
are not enough to offset the attractive components, and the total SAPT2+3(CCD) E;;,; values
are larger in magnitude for the lowest-energy C; Face minima of the Ar(H,O), clusters than
the C; Edge structures by 1.09, 1.80 and 2.41 kJ mol~! forn = 3,4,5, respectively.

Table 3. Interaction energies (E;;; in kJ mol 1) calculated for the Ar(H,O),,—3_5 minima using the MP2,
2b:Mb, and 3b:Mb methods with the haTZ basis set as well as the SAPT2+3(CCD) total interaction
energies computed with the haTZ basis set for the 3b:Mb/haTZ optimized structures followed by the
individual contributions from exchange repulsion, electrostatics, induction, and dispersion (in kJ mol ~!).

Eint SAPT Components

Label MP2 2b:Mb 3b:Mb SAPT Exch Elect Ind Disp
Binding Process: C1 (HpO)3 + Ar — C; Ar(H,O)3

Cq Faceq —-3.90 —4.00 —3.85 -3.13 +5.62 —-1.73 —0.66 —6.37

C; Facep —3.53 —3.74 —3.58 —2.92 +5.42 -1.71 —0.55 —6.08

C; Edge —2.54 —2.60 —2.58 —2.04 +3.66 —-1.09 —0.40 —4.22
Binding Process: C3 (H20)3 + Ar — C3 Ar(H,0)3

C; Facep —4.03 —4.04 —3.90 —3.08 +5.41 —1.63 —0.53 —6.33

C;3 Faces —2.95 —3.26 -3.11 —2.43 +4.96 —1.60 —0.20 —5.59
Binding Process: Sy (H0)4 + Ar — Cy Ar(H,O)4

C, Face —4.71 —4.90 —4.66 -3.71 +6.94 —-2.17 —-0.39 —8.08
Binding Process: C; (HyO)s + Ar — C; Ar(H,O0)4

C; Face —5.05 —5.23 —4.99 —4.08 +7.20 —2.23 —-0.77 —8.28

C; Edge —2.83 —2.89 —291 —2.28 +4.05 —1.23 —0.44 —4.65
Binding Process: Cit (H,0)4 + Ar — C4 Ar(HyO)y

C4 Face —5.48 —5.44 —5.20 —4.09 +7.30 —2.16 —0.53 —8.69
Binding Process: C; (H20)5 + Ar — C; Ar(H,0)s5

C; Facep —5.97 —6.15 —5.84 —4.79 +8.51 —2.64 —0.57 —10.01

C; Faces —5.50 —5.81 —5.50 —4.42 +8.29 —2.63 —0.45 —-9.62

C; Edge —2.96 -3.01 —3.05 —2.38 +4.28 —-1.31 —0.49 —4.86

4. Conclusions

This work systematically identifies the energetically favorable binding sites of a single
Ar atom to the well-characterized structures of the cyclic (H,0),—35 trimer, tetramer and
pentamer clusters using the haTZ basis set and a variety of methods including MP2 and
the highly efficient and accurate 2b:Mb and 3b:Mb methods. Twelve unique Ar(HyO),—3-5
stationary points have been identified in which Ar binds to either a face or an edge on
the water cluster via full geometry optimizations and have been confirmed as minima by
harmonic vibrational frequency computations at all three levels of theory. Five, four and
three unique stationary points have been identified in which Ar binds to the C; and Cs
water trimers, S4, C; and C4 water tetramers and C; water pentamer, respectively. To the
best of our knowledge, all of these structures are characterized here for the first time with
the exception of the C3 Face; complex. [95]

Although multiple minima were identified with the Ar bound to a face of each water
cluster (9 total), only a single minimum was identified for each value of n with Ar bound
to an edge (3 total). In every case, a face provided a more energetically favorable binding
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site for the Ar atom than an edge of the same (H;O),, cluster. Relative electronic energies
(with and without ZPVE correction) ranged from approximately 1 to 3 kJ mol ! higher in
energy for the latter complexes. The binding energies (Ey;;,; and Egin ;) also show that Ar
consistently binds more strongly to the faces of the water clusters than the edges (by ca. 1
to 3 k] mol™1).

The MP2, 2b:Mb, and 3b:Mb electronic interaction energies (E;;;;) computed with the
haTZ basis set are nearly identical to the corresponding Ey;,; values, suggesting that the
binding of an Ar atom has no significant effect on the geometries of the bare (H,O),,—35
clusters. The small differences between Ep;,; and E;;; are also consistent with the very
small changes to (nearly) all intramolecular harmonic vibrational frequencies of the water
clusters after Ar binds to an edge or face. However, the frequency shifts can be on the order
of —5 cm ™! for some of the hydrogen-bonded OH stretching frequencies when a single Ar
atom binds to a face of these small cyclic water clusters.

The haTZ total interaction energies computed with SAPT2+3(CCD) qualitatively sup-
port these findings, resulting in stronger interaction energies for complexes with Ar bound
to a face rather than an edge, with the differences between the SAPT2+3(CCD) values
exceeding 2 k] mol~! between the two potential binding sites. Notably, using SAPT to com-
pute the total interaction energy provides further insight into the nature of these favorable
interactions between Ar and small cyclic water clusters by providing a breakdown of the
total interaction energy into physically meaningful components (electrostatics, exchange
repulsion, induction and dispersion).

SAPT2+3(CCD) computations with the haTZ basis set indicate that dispersion over-
whelmingly provides the dominant attractive component to E;;;; in all cases. It also exhibited
the greatest difference between the edge- and face-binding motifs, favoring the latter by
just over 2 k] mol~! for the trimer and growing to more than 5 k] mol~! for the pentamer.

The results presented here for 2-dimensional hydrogen-bonded networks provide some
guidelines for the expected binding patterns that Ar will exhibit in larger 3-dimensional
water clusters. In the case of (H,O)g, for example, an Ar atom is expected to preferentially
bind to the faces rather than the edges edges of the low-lying minima (prism, cage, etc.).
Additionally, the interaction strength should increase with the size of the face (from triangu-
lar to rectangular and pentagonal), but the overall perturbations to the relative energetics
and vibrational frequencies of the hexamer isomers will likely remain quite small and
similar in magnitude to those reported here.
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