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Near-wall regions in wall-bounded turbulent flows experience intermittent ejection of
slow-moving fluid packets away from the wall and sweeps of faster moving fluid towards
the wall. These extreme events play a central role in regulating the energy budget of the
boundary layer and are analyzed here with the help of a three-dimensional convolutional
neural network (CNN). A CNN is trained on direct numerical simulation data from a
periodic channel flow to deduce the intensity of such extreme events and, more importantly,
to reveal contiguous three-dimensional salient structures in the flow that are determined au-
tonomously by the network to be critical to the formation and evolution of ejection events.
These salient regions, reconstructed using a multilayer gradient-weighted class activation
mapping technique proposed here, correlate well with bursting streaks and coherent fluid
packets being ejected away from the wall. The focus on explainable interpretation of the
network’s learned associations also reveals that ejections are not associated with regions
where turbulent kinetic energy (TKE) production reaches a maximum, but instead with
regions that entail extremely low dissipation and a significantly higher tendency for positive
TKE production than negative production. This is a key finding of the study and indicates
that CNNs can help reveal dynamically important three-dimensional salient regions using
a single scalar-valued metric provided as the quantity of interest, which in the present case
is the ejection intensity. While the current work presents an alternate means of analyzing
nonlinear spatial correlations associated with near-wall bursts, the framework presented is
sufficiently general so as to be extendable to other scenarios where the underlying spatial
dynamics are not known a priori.
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I. INTRODUCTION

The dynamics of wall-bounded turbulent flows are linked closely to processes that regulate flow
behavior close to the wall. One of the prominent characteristics of the near-wall region is the
presence of slow moving wavy streaks of fluid, which intermittently and abruptly lift away from
the wall and eject slow moving fluid towards the faster core [1,2]. These bursts of slow moving
streaks have been identified in various experiments using hydrogen bubble visualization [1], dye
visualization [3], and by observing neutrally buoyant colloidal particles [4]. The ejections usually
accompany sweeps of faster moving fluid towards the wall [4], completing the cycle of momentum
exchange between the low speed near-wall region and the high speed core.
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Importantly, these intermittent bursts influence the generation and dissipation of turbulent ki-
netic energy within boundary layers. Moreover, they control important transport phenomena and
contribute significantly to turbulent drag acting on the wall [1,3–7]. Although the existence of
intermittent bursts in wall-bounded turbulence is well established, there has been some ambivalence
regarding the role they play in near-wall dynamics. Robinson [8], Moin and Mahesh [9], and
Schoppa and Hussain [10] suggested that bursts may not play as crucial a role in turbulence
generation as previously thought. The main argument for this viewpoint was that the intermittent
events observed by Kline et al. [1] may have been caused by the passage of streamwise vortices over
static measurement locations. However, other studies have remarked that these strong intermittent
events are not merely artifacts of vortices passing by, but should instead be viewed as intrinsic
components of near-wall dynamics [7,11]. Lumley and Blossey [6] considered bursts to be integral
to the formation and evolution of coherent structures and proposed that the inhibition of bursts
should be viewed as a critical component of flow-control strategies. Moreover, Jiménez [11] found
that frictional drag on the wall increased abruptly and substantially during bursting events. Other
studies have proposed that instabilities and ejections associated with low-speed streaks may give
rise to coherent hairpin vortices [12,13]. A different viewpoint by Schlatter et al. [14] proposed
that hairpin vortices may be artifacts of the relatively moderate Reynolds numbers that prior
DNSs (direct numerical simulations) had been restricted to due to computational limitations. It is
evident that the exact nature of near-wall dynamics is the subject of some debate, which highlights
the need for tools that can help better interpret the underlying nonlinear spatial and temporal
correlations.

Experimental diagnostics and simulation capabilities have undergone steady progress since some
of the early studies discussed above. However, a comprehensive understanding of fundamental
processes in near-wall turbulence and, more importantly, effective means of influencing them are
still being sought actively [15]. A variety of analytical techniques have been explored in this
pursuit, with the goal of identifying reduced order phenomena that can accurately describe the
dynamical behavior of turbulent flows. Proper orthogonal decomposition (POD), also known as
principal component analysis (PCA) [16], is one such dimensionality-reduction technique used
in the analysis of turbulent flows [17]. Dynamic mode decomposition (DMD) [18–20] is another
technique, which is used to extract low order spatiotemporal modes primarily in oscillatory flows.
Both these techniques have contributed significantly to our understanding of coherent structures
in fluid flows; however, they pose certain limitations when analyzing nonlinear spatiotemporal
correlations.

Artificial neural networks (ANNs) have helped address some of these limitations, such as by
extending POD to identify nonlinear correlations using autoencoder networks embedded with
nonlinear activation functions [21]. Milano and Koumoutsakos [22] followed this approach to
compare the prediction and reconstruction capabilities of standard POD and nonlinear autoencoders
using turbulent channel flow simulations. They determined that ANN-based nonlinear POD pro-
vided improved compression ability, as well as better reconstruction of near-wall velocity data
that was not included in the training set. In a similar approach, Murata et al. [23] employed
convolutional neural network (CNN) -based autoencoders to decompose low Reynolds number
two-dimensional (2D) flow around a cylinder into its constituent modes. They demonstrated that
the use of nonlinear activation functions, which allows neural networks to represent nonlinear
functions, resulted in lower reconstruction error compared to the use of standard POD modes. Apart
from flow reconstruction and low-order mode identification, ANNs have also found use in flow
control and turbulence modeling. Early adoption by Fan et al. [24] explored active control using
ANNs to suppress artificial wavelike disturbances in laminar flow using wall-based actuators. Lee
et al. [25] used a turbulent channel flow to train ANNs that employed wall shear measurements to
estimate the wall-normal velocity at a normalized distance of y+ = 10. The predicted wall-normal
velocity was then used to implement blowing-suction control to minimize the skin-friction drag.
Upon successfully training the ANN to achieve close to 20% drag reduction, they examined the
weight distribution within the trained network to deduce a simplified control law, which performed
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comparably well to the ANN-supported actuation for a lower computational cost. Lorang et al. [26]
followed a similar approach to Lee et al. [25], but in the Fourier domain instead of physical space.
In another extension of the study by Lee et al. [25], Park and Choi [27] trained a 2D CNN to predict
the wall-normal velocity required to perform opposition control, using pressure and shear stresses
at the wall as inputs to the CNN. In other work involving subgrid scale modeling and predicting
macroscale behavior, Sarghini et al. [28] explored the ability of ANNs to determine the value of
the pointwise eddy viscosity coefficient in large eddy simulation (LES) of a turbulent channel flow.
Hack and Zaki [29] employed ANNs to predict transition to turbulence in a spatially developing
boundary layer by identifying near-wall streaks that were most likely to break down and generate
turbulent spots. More recently, Bae and Koumoutsakos [30] have explored the use of ANNs coupled
with reinforcement learning to discover LES wall models.

We remark that a majority of the studies discussed here have relied on ANN architectures that
“flatten” the input data into 1D arrays. This poses a significant disadvantage when considering
flow data that may contain 2D or 3D spatial features, such as near-wall coherent structures or
contiguous regions of high energy production and dissipation. Any such spatial correlations inherent
in the data are lost upon flattening the input array. Convolutional neural networks provide a
unique strength in this regard compared to 1D ANNs since they focus primarily on learning local
patterns and structures present in the data, as opposed to 1D ANNs which learn overall global
characteristics. This suggests that “vanilla” ANN architectures (also referred to as MLPs, i.e.,
multilayer perceptrons) may not be ideal for analyzing turbulent data sets, and especially bursts,
since these extreme events are localized in both space and in time [31,32]; the velocity at any given
point within a burst is strongly correlated to the flow state within a finite neighborhood in 3D space,
which makes 3D CNNs more suitable for analyzing the spatiotemporal evolution of such extreme
events. As opposed to vanilla ANNs, the specialized architecture of CNNs [33] helps preserve
spatial correlations inherent in the input data and thus they have been employed in studies of steady
[34,35] and unsteady 2D [36] laminar flows. 2D CNNs have also been used to predict unsteady force
coefficients for bluff bodies [37], the pressure distribution on a cylinder [38], and drag for arbitrary
2D shapes in laminar flows [39]. Furthermore, Fukami et al. [40], Liu et al. [41], and various others
have explored deconvolution to reconstruct subfilter scales using CNNs in 2D flow sections based
on the super-resolution technique of Dong et al. [42].

Despite various advantages presented by CNN-based architectures, there are no studies at present
that explore the possibility of utilizing them to reveal three-dimensional dynamics in the context of
flow physics. The existence of coherent 3D spatial interactions is known to be a key feature of
turbulent flows; however, it is often difficult to interpret the evolution of, and at times even the
existence of, such salient structures using traditional analytical techniques. The main aim of the
current work is to demonstrate that CNN-based architectures are able to learn nonlinear relationships
in fully turbulent flows, which in turn is shown to depend on their ability to autonomously identify
3D cohesive structures responsible for extreme velocity fluctuations, without being provided with
a priori knowledge of the underlying dynamics. This capability is especially valuable in scenarios
where 3D spatial structures driving a certain physical process may not be known a priori due to
inherent nonlinearities, but can be revealed using the general framework outlined here.

The remainder of the paper is organized as follows. Details regarding the numerical methods
and training procedure for the CNN are provided in Sec. II. Results demonstrating the inference
and flow-feature identification capabilities of the CNN, as well as correlations of the autonomously
identified salient regions with energy production and dissipation, are examined in Sec. III. This is
followed by concluding remarks in Sec. IV.

II. METHODS

A. Direct numerical simulation

The turbulent flow data used in this work was generated using direct numerical simulation
(DNS) of a periodic channel flow. The incompressible Navier-Stokes equations were solved using
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FIG. 1. Snapshot of the flow field from the lower half of a turbulent channel flow simulation at Reτ = 300.
The horizontal plane shows an isocontour of the streamwise velocity u, colored using the wall-normal velocity
v. Brighter shades indicate motion of the fluid away from the wall and darker shades indicate motion towards
the wall. Low-speed streaks manifest as sinuous ridges and bright spots mark regions where the flow is being
ejected away from the wall. The pink coherent structures denote high intensity ejection packets where positive
fluctuations of v exceed two standard deviations, i.e., v > v̄ + 2σv . The white box in the bottom left corner
depicts minimal flow unit-sized sections that the full-domain snapshots were divided into for training the 3D
CNN.

a second order finite difference scheme on a staggered grid and the second order semi-implicit
Crank-Nicolson scheme [43]. The flow was driven in the channel by imposing a constant pressure
gradient in the streamwise direction. The simulation domain and its dimensions are shown in Fig. 1
for friction Reynolds number Reτ = uτ (Ly/2)/ν ≈ 300, where uτ =

√
τ/ρ is the friction velocity

and τ = µ∂u/∂y is the surface shear stress.
Periodic boundary conditions were used in the streamwise and spanwise directions and the

no-slip boundary condition was enforced at the top and bottom walls. A stretched Cartesian grid
was used in the wall-normal direction to resolve the viscous length scales close to the wall. The
minimum grid cell height &y was 0.03δ+ next to the wall and the maximum &y was 2.4δ+ in the
core region, with the cell height stretched using a hyperbolic tangent function. Here, δ+ = ν/uτ

is the viscous length scale, ν = µ/ρ is the kinematic viscosity, µ is the dynamic viscosity, and
ρ is the fluid density. The grid cell sizes were kept uniform in the streamwise and spanwise
directions (&x = &z = 3.5δ+). The mean velocity and rms (root mean square) velocity profiles
for two distinct channel flow simulations at Reτ = 300 and 670 are shown in Fig. 2 and compare
well with benchmark results from Moser et al. [44].
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FIG. 2. Simulation validation of the DNS data used. (a) Mean streamwise velocity profiles and (b) rms
velocity profiles shown in wall units for Reτ = 300 (blue) and Reτ = 670 (red). The symbols in (b) correspond
to data from [44] for Reτ = 395 (©) and 590 ($).
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Upon reaching a statistically stationary state, time snapshots were recorded at regular intervals
with sufficient separation (approximately 13t+) to ensure temporal decorrelation. Here, t+ = δ+/uτ

is the viscous time scale. Each full-channel snapshot was then divided into minimal flow unit-sized
(MFU) sections [45], as indicated by the white box in the bottom left corner of Fig. 1. Similarly,
MFU-sized samples were extracted from the upper channel wall after rotating the wall-normal and
spanwise velocities appropriately, so as to maintain a comparable orientation to the lower wall
samples. This procedure resulted in 450 three-dimensional sections (i.e., velocity samples) on each
wall from every snapshot, for a total of 10 800 velocity samples from 12 time-decorrelated snapshots
recorded from the DNS.

B. Convolutional neural network

A brief description of the operations involved in a basic CNN architecture is provided in this
section. In a vanilla feedforward ANN with a single layer [46], the input vector I may be used to
determine a scalar-valued output O as follows:

O = A(b + (iwiIi ). (1)

Here, w is the weight vector, b is the bias, and A is the activation function. Using nonlinear functions
for A, e.g., a hyperbolic tangent or the sigmoid function 1/(1 + e−x ), allows neural networks to
encode nonlinear relationships between the input and output values. The weights and biases are
unknown in the beginning and are initialized to random values. To determine the appropriate values
of w and b that correctly encode the functional relationship between I and O, the ANN is trained
via gradient descent by adjusting the network weights iteratively as follows:

&wi = −η
∂E
∂wi

. (2)

Here, E is the defined network error function (e.g., the mean squared error between the true output
and the ANN’s predicted output), η is the learning rate, and &w is the weight adjustment. Every
training iteration, the values of &wi are updated using the chain rule for each neuron within each
hidden layer in the ANN. This process is usually referred to as “backpropagation.” As the ANN
improves in its ability to correctly predict the output O via iterative training, the network error
decreases and the neuron weights asymptote to their “correct” value. The bias values for the neurons
are determined in a similar manner.

Differently from a vanilla feedforward ANN, a CNN [33,47] consists of a series of convolutional
layers, pooling layers, and fully connected or dense layers as depicted in Fig. 3(a). Figure 3(b) shows
a simplified 2D example of a convolutional layer, where a 2D weight matrix known as a filter kernel
is convolved with the input data, resulting in a 2D filtered output called a feature map:

F k = f k ∗ I. (3)

Here, the filter f k is convolved with the 2D input I to yield the feature map F k , i.e., the filtered data
corresponding to the “k” th filtering kernel. Usually, several distinct filter kernels are associated
with a single convolutional layer and each of these kernels is determined during training via the
backpropagation process described previously. As depicted in Fig. 3(b), zero padding allows each
layer’s filtered output to retain the same dimensions as its 2D or 3D input.

In a CNN, pooling layers usually follow convolutional layers and downsample the information
passed on to subsequent convolutional layers. These pooling operations have been shown to improve
a CNN’s ability to encode translational invariance of the most important spatial features present in
the input data [48]. In a 2D CNN, a max-pooling layer with a 2:1 ratio will only pass along the
highest value from every 2 × 2 square. This would reduce the dimensionality of two-dimensional
data by a factor of four after every pooling operation.

The 3D CNN architecture used in the current work is shown in Fig. 4, with four alternating
convolutional and pooling layers. Following these, the data is flattened into two dense layers which
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FIG. 3. (a) Simplified schematic of a modified 2D CNN architecture showing a convolutional layer
followed by a fully connected layer that leads to a scalar-valued output. (b) Within a convolutional layer,
the filter kernel is convolved across a padded 2D input array and the Frobenius inner product of these two
tensors determines the corresponding values in the “feature map” (i.e., the filtered matrix) of the same size
as the input. The appropriate kernel matrices that correctly map the input data to the output value are learned
iteratively during training of the CNN.

are connected to the final output value. The primary function of the convolutional and pooling
layers here is to extract 3D features from the flow data, whereas the fully connected layers towards
the end associate the resulting assortment of feature maps with the corresponding ejection intensity
value. In the first convolutional layer, a 3D input matrix of size [30 × 40 × 30] (which represents
data from a single MFU-sized sample) is convolved with 32 distinct 3D filter kernels each of size
[3 × 3 × 3]. This is followed by a max-pooling layer, resulting in 32 distinct three-dimensional
feature maps, each of size [15 × 20 × 15]. The convolution-pool operation is repeated over the
subsequent convolutional layers, leading to a final assortment of 256 feature maps, each of size
[1 × 2 × 1]. These are flattened and directed into a dense layer of size 128, which connects to
another dense layer of size 24, finally leading to the scalar-valued output denoting the input sample’s
ejection intensity.

FIG. 4. 3D convolutional neural network architecture. The convolutional neural network used in the present
work takes a 3D sample of the wall-normal velocity component as input and infers the ejection intensity
as the output. The architecture consists of four convolution-pooling layers, which identify and extract the
most important spatial flow features present in the data. The 3D data is then flattened, followed by two
fully connected layers terminating in the output node. The number of distinct filtering kernels used at each
convolution layer (×32, ×64, . . .), and the layer sizes [(30, 40, 30), . . .], are shown in the figure. Altogether,
there are approximately 1.2 million unknown parameters (weights and biases) that are learned during training.
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C. Preparation of 3D velocity samples

To train the CNN to infer ejection intensity values, each of the 10 800 MFU-sized samples were
“labeled” by calculating their corresponding intensities a priori. This was done by computing the
percentage of grid cells within the sample where the wall-normal velocity v exceeded two standard
deviations at each cell’s corresponding wall height, i.e., v(x,y,z) > v̄(y) + 2σv(y). This metric provides
a useful indication of overall ejection activity within each velocity sample and can be used to identify
regions associated with strong velocity fluctuations without having to rely on adjustable parameters.
We emphasize that while there are several widely used methods for classifying bursts and sweeps,
for instance the quadrant method introduced by Wallace et al. [5] and Lu and Willmarth [49], the aim
of the current work is not just to employ CNNs for burst identification. Instead, the main goal here
is to explore whether CNNs can autonomously identify coherent 3D regions which most influence
the specified quantity of interest, without providing a priori knowledge of the underlying dynamics.
This capability can prove to be especially valuable in scenarios where the spatial structures related
to a physical process may not be known due to inherent nonlinearities.

The physical approach proposed here considers ejections to be associated with large deviations in
the wall-normal velocity v, which conforms to the viewpoint by Kline et al. [1] of associating bursts
with strong intermittent events. After labeling with the computed ejection intensity, each velocity
sample was interpolated down from its original size of 64 × 40 × 64 cells onto a uniform grid of
size 30 × 40 × 30 and then converted to half-precision floating-point numbers to reduce the total
memory required during training.

D. Training the CNN

After labeling and interpolation, the 10 800 MFU-sized velocity samples were split randomly into
85% training (9,180 samples), 7.5% validation (810 samples), and 7.5% test sets (810 samples). The
validation set is used to determine the neural network’s training progress, for instance by calculating
the network error E , whereas the test set is not provided to the neural network at all during the
training process. All the quantitative analyses presented in this paper are conducted on samples
taken from the test data set or from a temporally decorrelated snapshot, which were not seen by the
CNN during training. The training samples were fed in batches of five to the CNN as input, along
with their corresponding labels, i.e., the precalculated ejection intensities. We note that only the
wall-normal velocity v was used as input for training, as it is the component most closely related
to ejection events. The CNN architecture and training processes were implemented using the open-
source library Keras, with TensorFlow as its backend [50,51]. The relevant source code is provided
as part of the Supplemental Material [52]. The loss function (i.e., network error function E ) was
defined as the percentage error between the output value calculated by the CNN and the actual label
for each sample. The weights and biases were updated using the Adam optimizer [53] to minimize
this loss value during training.

To achieve the best possible accuracy for an ANN, it is often necessary to conduct multiple
training runs to determine the ideal set of hyperparameter values which determine the network’s
architecture and training process. In the present work, the CNN architecture and training procedure
were optimized through a series of hyperparameter sweeps, where several combinations of hyper-
parameter values were tested. The first sweep was conducted to determine the appropriate number
of layers and filters as well as the layer sizes and filter sizes that resulted in the highest training
accuracy. The training accuracy was determined by comparing the CNN-computed output to actual
labels, i.e., the ground truth, for velocity samples taken from a separate full-channel snapshot which
was time decorrelated from the training data. A second sweep was then conducted through the rest
of the hyperparameters, i.e., the learning rate, number of epochs, batch size, and other relevant
parameters. The resulting combination of hyperparameters that yielded the highest accuracy is
shown in Table I. A detailed description of each of these parameters and hyperparameters may
be found in Goodfellow et al. [48].
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TABLE I. Parameters and hyperparameters
related to the CNN architecture and training.

Hyperparameters Parameters/Values

Kernel size 3 × 3 × 3
Pooling size 2 × 2 × 2
Weight initialization He uniform
Bias initialization Zeros
Loss function Percent error
Optimization Adam
Batch size 5
Epochs 57
Dropout 0.5
Learning rate 0.0001
Decay 0.0001
Activation function ReLU

E. Average turbulent kinetic energy

Ejections are known to have a significant influence on the energy budget in the near-wall region.
Thus a few crucial terms in the average turbulent kinetic energy equation, namely, production,
dissipation, and nonlinear transfer among length scales, can be examined further. These terms
are part of the average TKE equation, which can be obtained from the momentum equation using
Reynolds decomposition. The velocity is decomposed as u = ū + u′, where ū denotes an averaging
operation in space or time and u′ is the fluctuating part. The momentum equation for the mean
velocity can then be obtained as follows:

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂ p
∂xi

+ 2νSi j, j, (4a)

∂ ūi

∂t
+ ū j

∂ ūi

∂x j
+ u′

j
∂u′

i

∂x j
= − 1

ρ

∂ p̄
∂xi

+ 2νS̄i j, j . (4b)

Here, Si j is the strain rate tensor, p is the pressure, and ρ is the density. Subtracting Eq. (4b) from
(4a) gives

∂u′
i

∂t
+ u′

j
∂u′

i

∂x j
+ ū j

∂u′
i

∂x j
+ u′

j
∂ ūi

∂x j
−

∂ (u′
iu

′
j )

∂x j
= − 1

ρ

∂ p′

∂xi
+ 2νS′

i j, j . (5)

Multiplying Eq. (5) by u′
i yields the TKE equation:

∂u′
iu

′
i/2

∂t
+ u′

j
∂u′

iu
′
i/2

∂x j
+ ū j

∂u′
iu

′
i/2

∂x j
+ u′

iu
′
j
∂ ūi

∂x j
= − 1

ρ

∂ (p′u′
i )

∂xi
+ 2ν(u′

iS
′
i j ), j − 2νS′

i jS
′
i j + u′

i

∂u′
iu

′
j

∂x j
.

(6)

The transport equation for the average TKE can be obtained by taking the mean of Eq. (6):

∂k
∂t

+ ū j
∂k
∂x j

+ ∂

∂x j

[
1
2

(u′
iu

′
iu

′
j ) − 2νu′

iS
′
i j

]
+ 1

ρ

∂ (p′u′
i )

∂xi
= −u′

iu
′
j
∂ ūi

∂x j
− 2νS′

i jS
′
i j . (7)

Here k = u′
iu

′
i/2, the −u′

iu
′
j∂ ūi/∂x j term contributes to the production of average TKE by extracting

energy from the mean flow, and −2νS′
i jS

′
i j represents viscous dissipation. The three divergence

terms on the left hand side are responsible for the transfer of energy among different scales, with no
overall production or destruction of energy.
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FIG. 5. (a), (b) Visualization of two MFU-sized velocity samples of dimensions 230δ+ × 100δ+ × 230δ+,
where the first sample corresponds to low ejection intensity (0.284%) as indicated by the presence of a few
small cohesive structures, while the second sample corresponds to high ejection intensity (4.751%) as indicated
by a large prominent cohesive structure. (c) Comparison of the ground-truth labels (blue dots) and the CNN-
inferred ejection intensities (red dots) at Reτ = 300. The data shown is from a snapshot which was not used
during training and is time decorrelated from the training data set. (d) Accuracy of the CNN-inferred ejection
intensities (red dots), where the black dashed line indicates the average accuracy (approximately 91%).

III. RESULTS

A. Inference accuracy of the trained CNN

With the hyperparameter values provided in Table I, the loss error E computed on the validation
set decreased from over 100% at the onset of training to under 10% within 60 epochs (i.e., iterations
over the training set). This computation took approximately one hour on an Nvidia Titan RTX
graphics card with 4608 CUDA cores and 24 GB of GDDR6 VRAM. The CNN was then provided
with 3D velocity samples from a time-decorrelated snapshot as input, i.e., a full-channel snapshot
separated by at least 13t+ from the data sets used during training. The resulting CNN-inferred
ejection intensities for MFU-sized sections taken from this time-decorrelated snapshot are shown in
Fig. 5. Two such velocity samples are visualized in Figs. 5(a) and 5(b), whose ejection intensities
(i.e., ground-truth labels) computed using the procedure described in Sec. II C are 0.284% and
4.751%, respectively. When the low-intensity sample was provided as input to the CNN, the output
ejection intensity inferred by the trained network was 0.282%. Similarly, the high-intensity sample
resulted in a network inferred ejection intensity of 4.749%. Both these values correspond very well
with their respective ground-truth labels. This indicates that the CNN is able to accurately predict
ejection intensity using 3D wall-normal velocity samples provided as input. Overall, for a total of
800 distinct time-decorrelated MFU-sized velocity samples tested [Fig. 5(c)], the mean percent error
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FIG. 6. (a) Inference for Reτ = 670 data using a CNN trained on the Reτ = 300 database. The blue dots
represent ground-truth labels and the red dots represent the CNN’s output value, for data not used during
training. We observe good agreement despite a difference in the Reynolds number. (b) Accuracy of the ejection
intensities (red dots) for Reτ = 670, using the CNN trained at Reτ = 300, with the black dashed line indicating
an average accuracy of approximately 82%. (c) Inference for artificially generated samples with the same first-
and second-order statistics as the DNS samples used in Fig. 5. The disagreement between the CNN’s output
values and the ground-truth labels of the artificially generated samples indicates that the network does not
merely rely on the samples’ statistics for learning the underlying associations between the 3D input data and
the scalar-valued output.

computed using the absolute difference between the ground-truth labels and the network-inferred
values was less than 10%. Figure 5(d) shows a plot of the CNN’s inference accuracy for all the
samples from Fig. 5(c) and indicates that for these samples, which were not seen by the CNN
during training, the average accuracy is approximately 91% and the accuracy for the majority of
samples remains above 70%.

To determine how well the CNN trained with data from the simulation at Reτ = 300 generalizes
to a different flow condition, we examine the network’s inference ability using velocity samples
from a separate channel flow simulation at Reτ = 670. The characteristics of near-wall coherent
structures (e.g., their size) are known to scale in viscous units [54]. Thus the physical dimensions of
the new velocity samples were kept identical to those of the Reτ = 300 samples in wall units and the
velocity components were rescaled by multiplying with uτ300/uτ670, which are the respective friction
velocities from the two channel flow simulations. The resulting comparison between precomputed
labels and network-inferred values are shown in Fig. 6(a), where we observe good agreement despite
a difference in the Reynolds number. The network is able to make inferences with a mean absolute
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percent error of approximately 18%, despite having been trained on a lower Reτ data set. Figure 6(b)
shows a plot of the CNN’s inference accuracy for all the samples from Fig. 6(a) and indicates
that for these samples, which were not seen by the CNN during training, the average accuracy is
approximately 82% and the accuracy for the majority of samples remains above 60%. While the
agreement between the network’s inferred ejection intensities and the ground-truth labels is not as
close as that observed in Fig. 5(c), it still highlights the potential ability of CNNs to identify and
extract critical physical processes that may persist across dissimilar flow conditions.

To get an indication of whether the CNN focuses its attention on cohesive 3D spatial structures
associated with ejection events or whether it merely learns to compute the flow statistics associated
with bursts, the following control test was devised. We recall that the ground-truth labels used
during training were determined by computing the first and second order statistics of the wall
normal velocity, i.e., v̄y and σv (y). To determine whether the trained network relies on these
specific statistical characteristics for inferring the ejection intensity, the network’s performance
was evaluated on artificially generated velocity samples. These artificial samples were generated
using Gaussian noise with the same mean and variance [v̄y, σv (y)] at each wall-parallel plane
as that of the DNS samples used in Fig. 5(c). After processing the artificial samples using the
CNN, the network-inferred output values were compared to the precomputed ground-truth labels
and the resulting comparison is shown in Fig. 6(c). Overall, the mean absolute percent error
for these artificially generated samples was over 130%, demonstrating that the network does not
merely rely on the samples’ statistics, but instead likely relates ejection intensities to cohesive local
spatial features present in the data. This critical aspect of the trained CNN is explored further in
Sec. III B. Spatial feature extraction is an important capability of CNNs, which makes them distinct
from traditional statistical approaches and provides an opportunity for autonomously identifying
dynamically important coherent structures that may be present in the flow.

B. Autonomous pattern interpretation techniques for CNNs

Certain studies have determined that the flow structures that govern near-wall momentum transfer
are transient in time and localized in space [12,32]. It is often necessary to use some form of
user-prescribed spatial filtering when studying the coupled energetics of such structures, which
often form at disparate length scales. CNNs can provide an alternative means of extracting these
spatial structures without the need for user-prescribed fine-tuning, by virtue of their autonomous
feature identification capability. Such autonomous identification of the most critical flow regions
and cohesive structures can prove to be especially useful when considering scenarios where the
underlying spatial and temporal dynamics are not known a priori.

There are various techniques that have been developed for interpreting how trained networks
correctly relate inputs to the corresponding outputs [55–58]. These techniques help overcome the
black-box nature of neural networks, which on their own provide no indication of the underlying
physics. Exploring these techniques can yield valuable insight into whether the CNN used here
learns to correlate dynamically significant cohesive regions with the inferred ejection intensity
and whether they can help reveal previously unknown dynamics. Some common methods for
interpreting a trained CNN involve inspecting the filter kernels associated with every convolutional
layer or examining the feature maps, i.e., the convolved data obtained after each filtering operation.
We note that both these approaches can result in hundreds of outputs to analyze and yet provide
little insight into the trained CNN’s input-output correlation. Simonyan et al. [55] formulated the
concept of saliency maps to address this shortcoming, which provide a visual representation of the
inferred output’s sensitivity to slight shifts in the input data. Such maps are generated by measuring
the change in the output value due to small perturbations introduced at each element in the input
data matrix. The normalized gradient of the output with respect to each input data point is calculated
as follows:

S(l,m,n) = ∂O/∂I(l,m,n)

max(∂O/∂I )
. (8)
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Here, O represents the inferred output which in our case is the scalar-valued ejection intensity, I is
the input matrix, i.e., a 3D velocity sample, and S is the saliency value computed for each element
of the input matrix.

Class activation map (CAM) [56] is another interpretation technique, which was developed to
improve pattern localization compared to saliency maps. CAM takes all the feature maps from
the final convolutional layer obtained using the k distinct filtering kernels [Eq. (3)] and “flattens”
the data by averaging each feature map to a single number. This creates a dense layer of size k,
referred to as a global average pooling (GAP) layer. This GAP layer is connected to the output layer
and the corresponding weights between the two layers act as “importance scores” relating each
feature map to the output. The CAM activation map is then generated by summing up the feature
maps by weighting them with their respective importance scores. Two major drawbacks associated
with using the CAM approach are that it requires the network architecture to include a specifically
tailored GAP layer after the final convolutional layer and that it only allows for one dense layer
in order to use its learned weights as the importance scores. These limitations allow only specific
network architectures to be compatible with CAM, making it a less generalizable technique.

Gradient-weighted class activation map, or GradCAM [57], is another interpretation technique
which attempts to address the issues encountered by both saliency maps and CAM. A schematic
overview of the steps involved in computing the GradCAM output G is shown in Fig. 7(a).
GradCAM averages the gradients of the output with respect to each feature map of the final
convolutional layer and calculates the corresponding filter’s importance score ak to determine how
much each filter influences the output:

ak = 1
nl nmnn

∑

l

∑

m

∑

n

∂O
∂F k

(l,m,n)

. (9)

Here, F k
l,m,n is the feature map produced by filter k in the final convolutional layer, ak is the neuron

importance weight, and nl , nm, nn correspond to the size of the 3D matrix. This importance score is
then used to weight and sum the feature maps of the final convolutional layer:

G(l,m,n) = ReLU

(
∑

k

akF k
(l,m,n)

)

. (10)

Here, G is the gradient importance score, i.e., the GradCAM value computed for every 3D matrix
element at the corresponding index locations (l, m, n). The weighted sum is transformed using a
rectified linear unit (ReLU), which zeros out negative argument values. This operation selectively
retains information that positively influences the inferred output. In our case, this implies that a
greater emphasis is placed on grid cells that contribute to higher ejection intensity for the sample
under consideration.

As a simplified visual example of how these interpretation techniques compare to one another,
Figs. 7(b)–7(d) show an input image, the corresponding saliency map, and the GradCAM map for
an image-classification CNN that has been trained to discern between images of cats and dogs. Both
the saliency map and the GradCAM focus on the ears, eyes, and the collar in order to identify the
picture as that of a dog. But, as observed in Fig. 7(c), the saliency map resembles a scattered set of
points, whereas the GradCAM map in Fig. 7(d) clearly highlights cohesive features present in the
input image. This demonstrates the difference between the two interpretation methods and serves
as the reason for using GradCAM in the present work to identify 3D salient structures in near-wall
flow regions.

C. Multilayer GradCAM to interpret nonlinear associations learned by the CNN

One limitation of GradCAM is that the resulting activation map is the same size as the feature
maps from the final convolutional layer. In most CNNs, there are pooling layers in between the
convolutional layers that successively downsample the data. Thus the feature maps from the final
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FIG. 7. Multilayer GradCAM for explainable interpretation of the CNN’s learned associations. (a) A
simplified 2D example of the multilayer GradCAM interpretation technique proposed here for producing visual
explanations of a CNN’s decisions. A test image was input into the network, which was trained to discern
images of cats and dogs, to obtain the final output and the feature maps at each layer. These feature maps were
used to determine the filter importance score and subsequently to generate the GradCAM for each convolutional
layer. In the multilayer GradCAM method developed here, the maps from each of the convolutional layers were
interpolated to match the dimensions of the input sample and summed together. (b) An example input image and
the corresponding (c) saliency map and (d) GradCAM map from a CNN trained to discern between arbitrary
images of a cat or a dog. The green, yellow, and red areas depict the salient regions which most influence the
CNN’s inference ability, namely, the ears, the eyes, and the collar.

convolutional layer, as well as the resulting GradCAMs, are significantly smaller in size than the in-
put data and may suffer from reduced granularity for the salient flow features detected. Furthermore,
considering only the final convolutional layer to determine the sensitivity of the output with respect
to the input loses a significant amount of information present in the intermediate convolutional
layers. To address these issues, GradCAM maps were computed for each of the convolutional layers
shown in Fig. 4, with each of the maps upsampled to match the input size. The interpolation was
done using a cubic spline, which provides a good balance between accuracy and cost; lower order
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FIG. 8. (a) Velocity input sample showing high-intensity ejection packets in pink near the top-right and
bottom-left edges. A bursting streak is evident as a bright ridge in the horizontal u isocontour. (b) The
corresponding GradCAM image obtained upon applying the procedure outlined in Fig. 7(a) to the trained
CNN. The images shown in both (a) and (b) correspond to the size of the minimal flow unit (MFU), with
physical dimensions 230δ+ × 100δ+ × 230δ+. The golden structures in (b) were identified autonomously by
the CNN and depict localized salient regions in the flow with the most significant influence on the ejection
intensity. These salient structures correspond well with the ejection packet and bursting streak visible in (a). A
small section of the horizontal plane has been made transparent to observe the salient structure that identifies
the bursting streak.

interpolation schemes can be dissipative and can fail to capture small-scale features, whereas higher
order schemes can lead to “ringing artifacts” unless special care is taken to preserve monotonicity.
This multilayer approach is not commonly used in conventional image-classification applications
and was devised here specifically for adapting the GradCAM technique for analyzing flow physics.
A comparable approach was adopted independently by Meng et al. [59] for image classification. As
depicted in Fig. 7(a), the GradCAMs computed for each of the convolutional layers were summed
after being interpolated to the resolution of the input data matrix. This helps address some of
the issues associated with differences in resolution between the input data and the GradCAM and
incorporates information from all of the intermediate convolutional layers.

We note that generating data using the DNS is substantially more computationally intensive
than training the CNN and the multilayer GradCAM analysis. Once the CNN is trained, the
computational effort required for calculating derivatives and interpolation for the multilayer Grad-
CAM is minimal. Moreover, the time difference between the original GradCAM technique and the
multilayer GradCAM technique proposed here is negligible.

D. Three-dimensional salient structures identified autonomously by the CNN

The modified multilayer GradCAM technique described in Sec. III C was employed to extract
localized 3D flow features, which were determined autonomously by the trained CNN to have
the most critical contribution to a sample’s ejection intensity. Figure 8(a) shows a velocity sample
that was provided as input to the trained CNN and Fig. 8(b) shows the corresponding multilayer
GradCAM obtained from the CNN for this sample. The cohesive pink structures in Fig. 8(a)
represent precomputed regions of high ejection intensity, where positive fluctuation in v exceeds
two standard deviations (similar to Fig. 1). We also observe a bursting streak which is visible as
a brightly colored ridge in the streamwise velocity contour plane. Two distinct ejection packets
are observed in Fig. 8(a): one on the right edge indicating a large cohesive region of fluid moving
away from the wall, just above the streak on the right edge that has already burst, and a smaller
cohesive region on the left edge, close to the streak liftup that has just started forming. From the
corresponding GradCAM image shown in Fig. 8(b), we observe the golden GradCAM structures
occupying the same cohesive regions as the pink ejection packet and the streak lifting up on the left
edge of the contour plane. This indicates that the CNN has autonomously determined that ejection
packets and bursting streaks are crucial features that have the strongest influence on a sample’s
ejection intensity. Although qualitative in nature, this is a notable outcome especially since the
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FIG. 9. Four successive time instances showing an overlay of the salient regions with the corresponding
flow field (animation provided in Supplemental Movie 1 [52]). All the images correspond to the size of the
minimal flow unit (MFU), with physical dimensions 230δ+ × 100δ+ × 230δ+. The cohesive pink structures
represent precomputed regions that contribute to high ejection intensity, whereas the golden structures represent
salient regions identified autonomously by the CNN. (a) The CNN focuses its attention on ejection packets that
are already well formed, as well as on the streak that is undergoing bursting in the bottom right corner. (b) Two
viscous time units (2t+) later, a new ejection packet enters the field of view from the left and the CNN includes
it as part of the salient regions. (c) 4t+ and (d) 6t+ viscous time units later, as the bursting streak and ejection
packets move out of the field of view, the CNN autonomously switches its attention to the large ejection packet
that has developed near the left edge.

CNN was provided with no a priori knowledge of the cohesive flow regions that regulate near-wall
bursts. Instead, this ability was gained autonomously by the CNN by training on velocity samples
that were assigned a single scalar metric as the label, i.e., the ejection intensity.

We now examine the ability of the CNN to track the salient regions as the flow evolves in time.
Figure 9 shows successive snapshots at a fixed spatial location within the channel, with ejection
packets and bursting streaks superimposed with the GradCAM structures. At t0, the GradCAM
structures focus on three distinct ejection packets, as well as two bursting streaks towards the left
(upstream) and right (downstream) edges. Two viscous time units later, i.e., at t0 + 2t+ in Fig. 9(b),
the CNN considers the larger ejection packet entering the field of view from the center-left to be
more important to its inference of ejection intensity and focuses less on the outgoing ejection packet
that has started dissipating near the bottom right edge. At this instant, the ejection packet towards
the top right and the bursting streak near the bottom right edge are still influential to the CNN’s
inference. At t0 + 4t+ and t0 + 6t+ [Figs. 9(c) and 9(d)], the large ejection packet that has entered
the field of view is considered by the CNN to be the most dominant structure for inferring the
sample’s ejection intensity. As mentioned previously, the GradCAM focuses on regions of input
data that contribute most to the trained CNN’s accurate inference of the ejection intensity. The
smaller pink ejection packets in Figs. 9(c) and 9(d) are no longer enveloped by GradCAM structures,
which indicates that their contribution to the overall ejection intensity for these two time instances
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FIG. 10. (a) Complementary cumulative distribution function (CCDF) for the GradCAM value G in MFU-
sized samples, averaged across several time-decorrelated snapshots. (b) Conditional probability for energy
dissipation ($) and for (c) negative (©) and positive (!) contributions to TKE production. The symbols denote
the average value across four time-decorrelated samples and the error bars denote the corresponding standard
deviation.

is smaller compared to the contribution from the large ejection packet. These qualitative results
indicate that the CNN is able to continuously adapt its focus on the most crucial spatial features that
regulate the ejection intensity as the flow evolves in time. We note that the first snapshot shown in
Fig. 9(a) is from the training data set. However, the subsequent snapshots that are separated by 2t+

viscous time units were not seen by the CNN during training and they identify salient structures
that are markedly distinct from those revealed in the first snapshot. To ensure that the tracking
ability is generalizable to salient structures found outside of the training data set, a different set of
snapshots separated by several hundred viscous time units was also analyzed and confirmed that
salient structures were still identified correctly.

E. Sparse distribution of GradCAM, TKE production, and dissipation

To provide a quantitative indication of the spatial distribution of the GradCAM value G within
the sample volumes, we examine its complementary cumulative distribution function (CCDF) in
Fig. 10(a). The CCDF has been computed by determining the volume fraction occupied by values
of G greater than or equal to a given value (averaged across 900 samples) and it is related to the
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cumulative distribution function (CDF) as follows:

CCDF (G) = Pr(G ! G) = 1 − CDF(G). (11)

Here, G represents the random variable for G. We note that higher values of G correspond to spatial
regions that are more critical to the overall accuracy of the final output of the CNN, i.e., the inferred
ejection intensity. Figure 10(a) indicates that approximately 30% of a sample’s volume on average
is occupied by values of G greater than or equal to 1 and there is a steep drop for even larger values;
only approximately 4% of the sample volume on average is occupied by values of G ! 2 and 0.5%
is occupied by G ! 3. This suggests that large values of GradCAM are sparsely distributed within
the sample volumes, which in turn implies that the CNN is able to limit its focus to very localized
3D spatial regions to make an accurate inference of the ejection intensity. We note that the values
of G discussed here have not been normalized in any way and the absolute value may vary when
certain parameters such as the Reynolds number or the CNN architecture are changed.

To determine what proportion of a specific quantity of interest “P ,” e.g., energy production or
dissipation, is found within high-G regions in a sample, the conditional probability of P conditioned
on the event G ! G is defined as follows:

Pr(P|G ! G) = (P (G ! G)
(P

. (12)

The numerator represents the summation of P in grid cells where the GradCAM exceeds a specified
value, whereas the denominator represents summation over the entire sample. Figure 10(b) shows
the conditional probability of energy dissipation and indicates that the proportion of dissipation
decreases rapidly for higher values of G; regions with G ! 1 account for approximately 34% of
the total dissipation within a sample, whereas regions with G ! 2 account for merely 5% of the
total dissipation. Figure 10(c) shows the conditional probability for the positive (P+) and negative
(P−) components of the average TKE production term. These contributions are shown separately
to distinguish between the direction of energy transfer between the mean flow and velocity fluc-
tuations; positive local production corresponds to the generation of turbulent fluctuations, whereas
negative local production acts as a source for the mean flow at the expense of the fluctuating velocity.
We observe from Figs. 10(a) and 10(c) that while regions with G ! 1 constitute less than 30% of
the domain volume, they account for approximately 60% of the total positive production within a
sample and nearly the same percentage of negative production. Furthermore, regions with G ! 2
constitute roughly 4% of the domain volume but they account for nearly 18% of the total positive
production and approximately 11% of negative production. This indicates that the regions which are
the most consequential for the CNN’s accurate inference of the ejection intensity, although found
sparsely distributed in the domain, account for a significant proportion of the total TKE production
within a sample. Moreover, the overall higher proportion of production in Fig. 10(c) compared to
the proportion of dissipation in Fig. 10(b), as well as the higher contribution of P+ compared to P−,
indicates that these salient regions favor the creation of turbulent fluctuations. This is a notable result
which implies a strong relationship between positive production of TKE and the CNN’s training
metric (i.e., the ejection intensity) and also indicates a physical link between ejections and the
transfer of energy from the mean flow to the velocity fluctuations.

F. Correlation between GradCAM, energy production, and dissipation

To investigate the relationship between the GradCAM value G and various parameters of interest,
the corresponding spatial cross correlations were calculated as follows:

Rαβ (r) =
〈α(x)β(x + r)〉

σασβ

. (13)

Here, α and β represent any two selected parameters of interest with the corresponding means
subtracted, r represents radial distance in space, and 〈·〉 denotes the expectation. The cross
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FIG. 11. Relationship between velocity fluctuations, energy production and dissipation, and the multilayer
GradCAM value. Cross correlation between (a) TKE production and the fluctuating velocity components,
(b) between the GradCAM value G and the velocity fluctuations, (c) between G and TKE production and
its positive and negative contributions, and (d) between G and TKE and viscous dissipation. Overall, the
figures indicate that higher GradCAM values are spatially correlated with higher wall-normal and lower
streamwise velocity fluctuations, both of which are associated with ejection events. Moreover, positive TKE
production shows a notable correlation with the GradCAM value, suggesting that regions of high positive
production are critical to the CNN’s accurate inference of the ejection intensity.

correlation has been normalized with the respective standard deviations for the two parameters,
i.e., σα and σβ . Figure 11 shows the resulting cross-correlation curves, computed over 450 samples
for various parameter pairs. We observe that all of the correlations tend to zero beyond a radial
distance of approximately 100δ+, which indicates that the selected parameters are correlated within
a limited three-dimensional volume. Figure 11(a) depicts the cross correlation between average
TKE production and the three fluctuating velocity components. We observe that production shows a
strong correlation with u′ and v′ at short distances (i.e., for small values of r+ = r/δ+), whereas
the correlation with w′ is close to zero at all possible radial distances. The observed positive
correlation with v′ and negative correlation with u′ is expected, since higher values of production
can be associated with slow moving streaks that are undergoing liftup, i.e., with negative values
of u′ and positive values of v′. The spanwise fluctuations, on the other hand, are not known to be
involved directly with the production term, which simplifies to −u′v′∂u/∂y for the channel flow
since only the mean streamwise velocity can vary in the wall-normal direction (due to periodic
boundary conditions in the streamwise and spanwise directions). This is reflected as zero correlation
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observed throughout the samples. Figure 11(b) shows the cross correlation between the GradCAM
values and the fluctuating velocity components and displays a similar relationship; the GradCAM
values shows a strong positive correlation with v′, a strong negative correlation with u′, and no
correlation with w′. This indicates that higher GradCAM values are spatially correlated with higher
wall-normal and lower streamwise velocity fluctuations, both of which are associated with ejection
events. Thus Fig. 11(b) provides a quantitative measure for the qualitative observations from Figs. 8
and 9, where the salient GradCAM structures show considerable overlap with ejection packets and
streaks lifting up away from the wall.

Figure 11(c) shows the cross correlation between the GradCAM value and TKE production, as
well as the positive and negative contributions to average TKE production shown separately. We
observe that negative production, i.e., energy transfer from the velocity fluctuations to the mean
flow, shows a small correlation with the GradCAM value. This indicates that the CNN does not
deem regions of negative production to be critical to the accuracy of its output ejection intensity. On
the other hand, positive production shows a notable positive correlation with the GradCAM value,
suggesting that regions of high positive production are critical to the accuracy of the CNN’s output.
Finally, Fig. 11(d) indicates that higher GradCAM values also correlate well with higher TKE and
energy dissipation.

The relationship between G and energy production and dissipation is further analyzed with the
help of joint probability density functions (PDF) and conditional PDFs. Figure 12(a) shows the joint
PDF of the GradCAM value and production computed over 3600 samples. We observe a greater
occurrence of positive production values in the samples, as indicated by the notable asymmetry in
the joint PDF. The maximum in both positive and negative production occurs at approximately
G = 0.5, with both values decreasing in magnitude with increasing G. However, there is an
increasing skewness towards positive production compared to negative production for higher values
of G, which becomes more evident in the conditional PDFs shown in Fig. 12(c). Figure 12(b)
shows the joint PDF of the GradCAM value and dissipation, where we also observe a peak at
approximately G = 0.5 and a decrease in D for increasing values of G. Importantly, the probability
density for D drops below 5 × 10−5 for G ! 2.5 in Fig. 12(b), whereas that for P stays above
this level up to G = 3 in Fig. 12(a). These observations indicate that the spatial regions attracting
the most intense focus by the CNN, corresponding to higher values of G, have a notably higher
contribution towards production than towards dissipation. To further examine the skew in positive
and negative production, and its dependence on G, PDFs of production P conditioned by G = 1.0,
2.0, and 3.0 are shown in Fig. 12(c). We observe that for G = 1 there is little skewness in the
distribution of P and the probability density of encountering very large negative or positive values
decreases rapidly. However, for higher values of G there is a marked increase in the probability
density for encountering extreme values of P, in addition to a noticeable skewness towards P > 0.
Overall, the results from Fig. 12 indicate that the spatial regions attracting the highest attention
from the CNN are not those corresponding to the highest magnitude of positive and negative
production (which occur at G ≈ 0.5), but those that entail extremely low dissipation and a noticeably
higher tendency for positive production than negative production. Importantly, this observation also
translates into physical insight regarding the energetics associated with ejections; the salient regions
identified autonomously by the 3D CNN indicate that ejections correlate strongly with cohesive
spatial regions (Fig. 9) where a combination of low dissipation, high positive production, and low
negative production occurs simultaneously. We note that the statistical analysis presented here does
not provide a quantitative indication of the cohesive nature of the underlying geometric structures.
A geometric procedure for quantifying the size and proximity of the salient regions to structures
associated with energy production and dissipation is devised in Sec. III G.

We note that a few studies have used POD (PCA) in wall-bounded flows to examine turbulent
bursts [60]. One primary limitation when using techniques like POD and DMD is the inherent
assumption of linearity, which may pose difficulties when analyzing nonlinear relationships [61].
Furthermore, conventional POD is global in the sense that it aims to maximize variance in the data
across all the time snapshots being analyzed. However, the coherent structures shown in Fig. 9
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FIG. 12. Dependence of near-wall ejections on high positive TKE production and low dissipation. Joint
probability density function of the GradCAM value G with (a) energy production and (b) dissipation.
(c) Conditional probability density function for TKE production, conditioned by the GradCAM value. The
figures indicate that the spatial regions attracting the strongest attention from the CNN (i.e., with large values
of G) are not those corresponding to the highest magnitude of positive and negative production (which occur
at G ≈ 0.5), but those that entail extremely low dissipation and a noticeably higher tendency for positive
production than negative production. These observations translate into the physical insight that ejections are
driven primarily by cohesive spatial regions where a combination of low dissipation, high positive production,
and low negative production exists.

indicate that the bursting process is local in both space and time. The DMD technique is known
to work well for time periodic and quasiperiodic linear systems. However, the extreme events
associated with near-wall bursts are nonlinear, intermittent, and nonstationary, and can be difficult
to analyze using DMD. Additionally, both POD and DMD require user-prescribed judgment for
determining how many modes should be retained. However, the GradCAM-based analysis presented
in Fig. 12 is entirely data driven, requiring no subjective user input. Nonetheless, one of the
major disadvantages of using deep learning techniques is that the choice of network parameters
is somewhat arbitrary and discovering a suitable combination of hyperparameters requires some
trial-and-error experimentation.

With regard to computational cost, it is difficult to do a direct comparison since techniques like
POD and DMD are primarily memory limited (memory bound) since they require the formation
of large matrices, whereas deep learning techniques tend to be compute limited (compute bound)
due to the iterative training process. Moreover, once the network parameters, such as number of
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layers, nodes, etc., have been decided, the memory cost of training the network is more or less fixed
and the compute cost usually increases steadily with the number of time snapshots being examined.
However, including additional snapshots in POD and DMD can entail a substantial cost increase
in terms of both memory and compute requirements. Another notable point is that the majority
of the computational cost associated with the deep learning approach presented here is related to
training the CNN and hyperparameter tuning; once the network is reasonably trained, calculating
the multilayer GradCAM for inverse identification is nearly instantaneous.

G. Determining the size and location of the cohesive geometric structures

It is difficult to determine the sizes and locations of cohesive geometric structures associated with
the salient regions, as well as those associated with ejection, energy production, and dissipation. It
can be observed in Fig. 9 that the spatial distribution and shapes of such geometric structures tend
to be highly irregular. Thus a two-step process based on the use of radial basis functions (RBF) was
devised for characterizing these structures. The first step involves identifying the potential centers of
such structures as the “center of mass” of the RBF sphere, followed by a second step to determine the
structures’ spatial extent in three dimensions. These geometric structures were examined specifically
in the log-law region of the flow, i.e., between y+ = 30 and 100. In the first step, all grid points in a
sample that exceeded 2σP , where σP represents the standard deviation of the parameter of interest
which may be v, G, or any other quantity of interest P , were identified as potential geometric
centers. The center of mass for P was then calculated within a spherical region of radius 15δ+

and the geometric center was shifted to this point. The sphere’s radius was then increased to 45δ+

and the resulting center of mass was calculated. If the center of mass changed between the two
calculations then the process was continued iteratively using the two radii until either there was no
further change or if the same point had been visited at least three times.

After the potential geometric centers were established, the next step involved determining the
structures’ spatial extent, both to distinguish between neighboring structures and to determine
whether the structure identified was large enough to be considered significant. Starting with a radius
of 15δ+, a Gaussian weighted average based on radial distance from the RBF sphere’s center was
calculated using the following weights:

wP = e−r2/2σ 2
. (14)

Here, r is the radial distance from the center of mass, σ = R/3 where R is the radius of the RBF
sphere (e.g., 15 δ+ for the initial sphere), and wP is the resulting weight used to calculate the
Gaussian weighted average. The radius was then increased by 50% and the Gaussian weighted
average was calculated again. This process of expanding the radius was continued until the weighted
average decreased by over 25% between consecutive iterations, indicating that the expanded region
had exceeded the extent of the cohesive structure. If the radius increased at least three times during
the iterative expansion, then the region being examined was considered to be large enough to
potentially constitute a geometric feature of interest. After one pass of this procedure was conducted,
the parameter “density” for each geometric structure was computed and the overall average density
was used as an additional criterion to reject sparse regions. A second pass of the same procedure
was conducted using 75% of the average density as an additional cutoff within the expansion step,
to ensure that only geometric features of a sufficiently high parameter density were retained.

This procedure was used to identify geometric centers and sizes of prominent structures associ-
ated with wall-normal velocity fluctuations v, the GradCAM value G, and other relevant physical
quantities such as energy production and dissipation. Figure 13 shows an example of the geometric
centers identified for a prominent v structure and a neighboring G structure, with the corresponding
RBF spheres overlayed. The Euclidean distance between these geometric centers can be used to
quantify how well the three-dimensional structures for v, G, and any other relevant parameters P
correlate with each other spatially.
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FIG. 13. Cohesive geometric structures associated with the GradCAM value G (golden) and wall-normal
velocity v (pink). The outermost contour shows the spherical RBF bounds determined by the procedure
described in Sec. III G, whereas the two inner contours correspond to 2σP and 3σP for the respective
parameters. The centers of mass for the two structures, identified using the procedure outlined in Sec. III G, are
shown using the “+” symbol and the Euclidean distance between the centers is denoted as rc.m..

H. Euclidean distance between cohesive geometric structures

After determining the geometric centers for cohesive structures related to ejections, energy
production, dissipation, and the GradCAM-based salient regions, the Euclidean distances (rc.m.)
between these structures were computed to assess their spatial proximity to each other. The resulting
probability density functions (PDF) of rc.m. for a few selected parameter pairs of interest are
shown in Fig. 14. Figure 14(a) provides an indication of the spatial distance between cohesive
structures related to ejection, energy production, and dissipation. We observe a tendency for the
energy-associated structures to be found in close proximity to the ejection-related structures, as
indicated by high PDF values for smaller rc.m. values. The most notable correspondence is that
between clusters of TKE production and strong wall-normal velocity fluctuations, for which the
PDF peaks at rc.m. = 16δ+. This value is indicative of the most probable Euclidean distance
between cohesive structures for these two selected quantities. The observed correspondence is
expected, since the energy production term has a direct dependence on wall-normal velocity
fluctuations for the channel flow scenario. Due to periodic boundary conditions in the streamwise
and spanwise directions, only the mean streamwise velocity can vary in the wall-normal direction.
Thus the TKE production term in Eq. (6) simplifies to P = −u′v′∂ ū/∂y. The cohesive geometric
structures identified for both production and wall-normal velocity fluctuations highlight regions
of extreme positive values (due to the threshold of 2σP , as described in Sec. III G). Thus the
close proximity between v and P structures (rc.m. = 16δ+) indicates that positive TKE production
corresponds closely to ejection regions. The PDFs of rc.m. computed between dissipation-velocity
and production-dissipation structures show smaller peaks at a Euclidean distance of approximately
27δ+, indicating an overlap between structures related to high energy dissipation and ejections and
between high energy production and dissipation.

Figure 14(b) provides an indication of the spatial proximity of cohesive regions associated with
high TKE production and dissipation to the salient structures reconstructed using the GradCAM
value. The strongest spatial relationship is evident between the GradCAM structures and velocity
structures, with a probability peak at a Euclidean distance of approximately 39δ+. The PDF curves
for GradCAM versus production and GradCAM versus dissipation show peaks at distances of
approximately 53δ+ and 58δ+, respectively. These results suggest that there is notable spatial
overlap between the cohesive salient regions identified autonomously by the CNN (G structures)
and the structures related to ejections, as well as overlap with cohesive regions of high energy
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(a)

(b)

FIG. 14. Distribution of geometric distances between cohesive structures for velocity fluctuations, energy
production and dissipation, and the GradCAM value. Probability density function (PDF) of the Euclidean
distance r+

c.m. = rc.m./δ
+ between the closest cohesive structures for various physical quantities and GradCAM

structures. (a) The three curves relate energy production to wall-normal velocity fluctuations, energy dissipation
to velocity fluctuations, and energy production to energy dissipation. (b) The curves relate GradCAM to wall-
normal velocity fluctuations, GradCAM to energy production, and GradCAM to energy dissipation. The data
indicate that cohesive structures associated with ejections (v′) and those associated with the salient regions (G)
frequently occur in close proximity to one another.

production and dissipation, although the center of mass locations are farther apart than for the
velocity structures. Such an overlap between GradCAM structures and v′ structures is also observed
qualitatively in Fig. 9. The PDF curves indicate a smaller overlap of GradCAM structures with
cohesive structures of high energy production and dissipation and the center of mass locations are
farther apart than for the v′ structures. It is difficult to separate the positive and negative contributions
to TKE production when identifying the cohesive geometric structures; however, the discussion
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related to Fig. 12 suggests a strong correlation between the GradCAM value and positive TKE
production.

IV. CONCLUSION

Here, we have presented a general framework that leverages a combination of three-dimensional
convolutional neural networks and the GradCAM technique, which provides an explainable inter-
pretation of a CNN’s learned associations, to identify salient structures related to ejection events
in wall-bounded turbulent flows. Several modifications have been proposed to both the CNN
architecture and the GradCAM technique, which were originally developed for image-recognition
and -classification tasks, to make them more suited to analyzing turbulent flow structures. The
modified CNN-GradCAM framework is used to examine intermittent ejection events, which are
known to influence the generation of turbulent kinetic energy within boundary layers. Upon training
with data from a turbulent channel flow simulation, a 3D CNN is able to accurately infer ejection
intensity levels in velocity samples that are temporally decorrelated from the training data set. The
multilayer GradCAM technique formulated here is then used to identify 3D flow features that have
the most critical contribution to the CNN’s output value. In a physical context, these salient features,
identified autonomously by the CNN with no a priori knowledge of the underlying dynamics,
represent localized spatial regions that have a dominant influence on the sample’s overall ejection
intensity. These salient structures are shown to correlate well with high intensity ejection packets,
as well as with low-speed streaks undergoing bursting.

Further analysis indicates that the spatial regions attracting the strongest attention from the CNN
are not those corresponding to the highest magnitude of positive and negative production, but those
that entail extremely low dissipation and a noticeably higher tendency for positive production than
negative production. The corresponding physical insight that can be gleaned is that ejections are
driven primarily by cohesive spatial regions where a combination of low dissipation, high positive
production, and low negative production exists. A geometric reconstruction procedure is devised
to quantify the sizes and locations of the underlying contiguous three-dimensional structures and
indicates that structures associated with ejections occur in close proximity to those associated with
the salient regions. Overall, the results indicate that, with the specific modifications presented here,
3D CNNs coupled with the modified multilayer GradCAM technique can prove to be immensely
useful for analyzing nonlinear correlations and for revealing salient spatial features present in
turbulent flow data.
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