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Abstract—Proper inference of semantics is necessary for real-
istic image inpainting. Most image inpainting methods use deep
generative models, which require large image datasets to predict
and generate content. However, limited control makes predicting
the missing regions and generating coherent content difficult.
Existing approaches include image-guided or text-guided image
inpainting, but none of them has taken both image and text
as the guidance signals, as far as we know. We propose a
multi-modality guided (MMG) image inpainting approach based
on the diffusion model to fill this gap. This MMGInpainting
method uses image and text as guidance for generating content
within the target area for inpainting, effectively integrating
the semantic information conveyed by the guiding image or
text into the content of the inpainted region. To construct
MMGInpainting, we start by enhancing the U-Net backbone
with a customized Nonlinear Activation Free Network (NAFNet).
This adapted NAFNet incorporates an Anchored Stripe Attention
mechanism, which utilizes anchor points to model global con-
textual dependencies effectively. To regulate inpainting, we use
a Semantic Fusion Encoder to guide the inverse process of the
diffusion model. The process is iteratively executed to denoise and
generate the desired inpainting result. Additionally, we explore
how different modes of meaning interact and coordinate to
offer users helpful guidance for a more manageable inpainting
procedure. Experimental results demonstrate that our approach
produces faithful results adhering to the guiding information
while significantly improving computational efficiency. Github
Repository: https://github.com/skipper-zc/MMGInpainting/

Index Terms—Image inpainting, multi-modality guidance, dif-
fusion models, NAFNet, controllable inpainting.

I. INTRODUCTION

IMAGE inpainting is a computer vision technique that
aims to intelligently fill in the missing parts of an image

seamlessly and coherently. Its primary objective is to generate
visually plausible content with reasonable semantics that har-
monizes with the surrounding regions, which not only focuses
on the image’s appearance but also considers the semantic
content to ensure that the inpainted areas make sense within
the overall image. At present, the most advanced methods are
mainly based on Generative Adversarial Networks(GANS) [1]
[2] [3], or diffusion models [4] [5] [6] [7] [8]. Among them,
GAN-based inpainting models typically involve the construc-
tion of a generator that takes incomplete images as input.
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The generator is then trained to produce reasonable content
for the missing regions, while concurrently, the discriminator
is trained to differentiate between the generated images and
the ground truth images. This approach guides the generator
toward generating progressively more realistic and persuasive
content.

In contrast, inpainting methods based on diffusion mod-
els operate by generating images from noise and iteratively
removing noise to approximate the data distribution of nat-
ural images. These models seek to predict the content of
missing regions and generate completed images through the
assimilation of knowledge from an extensive dataset [5] [9]
[10]. Pioneering diffusion-based generative models, such as
Denoising Diffusion Probabilistic Models (DDPM) [9], De-
noising Diffusion Implicit Models (DDIM) [11], and Latent
Diffusion Models (LDM) [6], have demonstrated their su-
periority over state-of-the-art GAN-based methods in image
synthesis [4]. Consequently, they have found widespread ap-
plication in various vision tasks, including image editing [12]
[13], image translation [14], and text-to-image synthesis [15].
DDPM progressively introduces noise into an image until it
reaches a state of pure noise. Subsequently, it samples from
this stochastic noise distribution and applies a predetermined
number of denoising steps iteratively, culminating in the final
image sample [16]. DDPM employs the U-Net architecture to
predict the noise added in the forward process, allowing the
model to learn the potential distribution of target image data.
By gradual denoising, it generates image samples that conform
to the distribution of the target image [17] [18].

As a classical inverse problem, one challenge in image
inpainting is that the outcomes often lack diversity, and visual
quality can significantly degrade when missing regions are
large [19]. LaMa [20] perceives that both the inpainting
network and the loss function lack effective receptive fields;
it introduces a novel inpainting network architecture that em-
ploys Fast Fourier Convolution (FFC) with a fully optimized
graph receptive field, guided by a high-receptive field-aware
loss. FT-TRD [21] aims to detect corrupted areas in face
images and generate visually reasonable content within the
masked regions. For the joint inpainting task with other tasks
(such as mosaic removal), the staged training often performs
better [22] [23].

Another major challenge is the lack of guidance and
controllability over results, which restricts the practicality of
image inpainting in achieving desired outcomes [24] [25]. To
address this, several methods attempt to introduce additional
prompts [26] [6] for fine-grained control over generated im-
ages. Previous work typically incorporated text [27] [28] [29],
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scene graphs [30] [31], sketches [32] or doodles [33] [34].
The fundamental idea involves extracting semantic information
from this guidance and embedding it into diffusion generation
with reference information [35].

Despite the above improvements, most existing methods
are often confined to a single modality. When dealing with
complex semantics, such as images containing multiple objects
or scenes, depending solely on image or text information may
limit the feasibility of leveraging multiple modalities for more
robust completions. The advantages of image-based guidance
are evident, as images provide intuitive reference information
such as human facial features, postures, expressions, and
makeup styles, to name a few. Meanwhile, text-based guidance
offers greater flexibility, given its convenience in providing
concise and precise textual descriptions. When used together,
the interaction between text and image guidance can supply
richer prompt clues, helping better understand the missing
regions’ semantics and structures. In particular, cross-domain
guidance enriches the diversity and enhances the consistency
and controllability of the inpainting outcome.

To fully harness the advantages of both text and image
guidance and their interaction, we present MMGInpainting,
a multi-modality guided image inpainting model. MMGIn-
painting supports image-guided or text-guided inpainting in-
dependently and facilitates a hybrid guidance approach that
combines both modalities for improved robustness and fine-
granularity control. We use the diffusion model to fill in the
missing regions and integrate the inverse diffusion process
with CLIP [36] to encode semantic information. Additionally,
to make the results more realistic, we design a cyclic iter-
ative denoising strategy to incorporate reference information
effectively. Furthermore, to enhance the generation of realis-
tic inpainting results while incorporating reference semantic
information, we modify the original U-Net architecture [37]
with an improved NAFNet [38]. This modification streamlines
the model parameters and significantly improves the inpainting
outcomes. The new architecture enhances model performance
by introducing the Anchor Strip Attention mechanism(ASA),
which leverages anchor points to model global image structural
features, leading to a higher quality of image inpainting. To
our knowledge, MMGInpainting is the first inpainting model
capable of simultaneously integrating image and text guidance
during the inpainting process. Our extensive qualitative and
quantitative experiments demonstrate that, compared to single-
modality guidance or unconditional inpainting approaches,
MMGInpainting excels in achieving fine texture details while
providing desirable controllability.

The contributions of this paper are summarized as follows.

• We propose MMGInpainting, a comprehensive frame-
work for guided image inpainting that accommodates
the guidance of text, image, or a combination of both
modalities. This unified approach provides versatility in
inpainting tasks, especially for large regions.

• We enhance the baseline U-Net architecture by replacing
it with a modified NAFNet within the diffusion model.
We further incorporate a stripe self-attention mechanism
centered on anchor points. This addition facilitates global

dependency modeling, improving inpainting results and
computational efficiency.

• We thoroughly analyze the semantic relationship between
images and texts used in inpainting guidance. We con-
clude with a general recommendation on effective strate-
gies for combining these modalities for multi-modality
guidance.

• The experimental results conducted on CelebA-HQ [39]
and Places2 [40] datasets demonstrate the remarkable
guidance performance of our proposed model MMGIn-
painting. A closed-loop process with image captioning
was designed to validate the semantic consistency of
inpainting results.

The remaining part of this article is organized as follows.
Section II introduces the related work, including image in-
painting based on GANs, the Diffusion Model, and guided
image synthesis. Section III provides a detailed description of
the proposed method. Section IV presents the experimental
results and analysis. Finally, Section V concludes with the
results and discussions.

II. RELATED WORK

Image Inpainting based on GANs. GAN-based image
inpainting approaches have demonstrated significant advance-
ments in generating meaningful content within masked holes.
A typical pipeline involves employing deep neural networks
to create semantically reasonable content and subsequently
using this content to fill the corrupted regions. Context En-
coder(CE) [3] first adopts an encoder-decoder architecture with
adversarial learning to generate new content for masked areas.
Early improvements focus on refining network designs and
learning strategies, including Partial Convolutions [2], Gated
Convolutions [41], and Contextual Attention [42]. Liu et al.
[43] focuses on improving the quality of image inpainting by
detecting and preserving dominant linear structures, defined
as a set of lines. To generate finer details of the structure
within the filled regions, EdgeConnect [44] and CTSDG
[45] use edge information to guide the reconstruction of
image structures. However, these methods require additional
networks to extract the corresponding edge for each dataset
image, and the performance is sensitive to the quality of the
edge images. Prior-guided GAN [46] introduces a data-driven
parametric network to predict the matching prior directly for
an occluded image. To enable scene inpainting, Zhang et al.
[47] proposed a general framework for facade inpainting and
automatic object removal using object detection and image
inpainting. Multi-GAN [48] uses a LBP(Local-binary-patterns
[49])-based loss function to minimize differences between
generated and natural textures. BSN [50] introduces an im-
proved objective function for deep style transfer (DST) and
an enhanced Shift-Net with multiscale feature connectivity
and depthwise separable convolution (DSC) to capture local
details and global semantics effectively. With the increasing
applications of transformer models [51], MAT [52] tailors a
transformer block for inpainting, where the attention module
aggregates non-local information exclusively from partially
valid tokens indicated by dynamic masks. These methods
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Fig. 1: Overview of MMGInpainting. Semantic Fusion Encoder encodes the reference image/text into a latent space. It
jointly combines the inverse diffusion process to generate the mask region for inpainting. Simultaneously, it achieves the final
semantically consistent result through repeated iteration denoising.

achieve visually realistic results. However, their inpainting
capabilities are limited in generating specific targets or desired
facial attributes, primarily due to the absence of guidance
during the inpainting process.

Image Inpainting based on Diffusion Models. Diffusion
models have shown remarkable performance across diverse
domains [53], including image generation, image inpainting,
image-to-image translation and image editing, etc. [54] [55].
For inpainting tasks, addressing issues like edge artifacts
and the lack of complete contextual information provided
to the model has been a research focus. Palette [14] trains
the inpainting model on freely generated masks and en-
hances it using simple rectangular masks. Repaint [5] uses
a pre-trained unconditional Denoising Diffusion Probabilistic
Model (DDPM) as the generative prior. Unmasked regions
are extracted from the forward records during the backward
denoising process, while masked areas are filled with noise.
Repaint also incorporates resampling, which involves adding
noise to the denoised spliced result during each denoising
step. By repeating this process multiple times, a semantically
consistent output is obtained. DiffEdit [7] utilizes a text-
conditioned diffusion model for semantic image editing tasks,
enabling image edits based on textual queries. To address
fidelity and realism concerns, SDEdit [8] introduces a novel
image synthesis and editing method based on the diffusion
model. It synthesizes realistic images by iterative denoising
using a stochastic differential equation. By fine-tuning Im-
agen [56] into a text-conditioned image editor on a base
image, UniTune [57] synthesizes images using simple prompts
while maintaining fidelity to the input image. While these
methods for editing images can be adapted for inpainting
tasks, they often rely on random generation for filling or
are constrained to single-modality guidance. Unlike previous
approaches, we propose the adoption of image-text blended
guidance to produce results that are more controllable with
the desired outcomes.

Image Synthesis with Guidance. Image synthesis aims
to create content that is not only realistic but also diverse
and visually distinctive. Several innovative approaches have
emerged to enhance the quality and details of synthetic con-
tent. Ren et al. [58] propose a mask embedding mechanism
to facilitate efficient initial feature projection in the gener-
ator. TediGAN [59] propose a novel framework for multi-
modality image generation and manipulation based on text
descriptions. Dhariwal et al. [4] demonstrate that diffusion
models outperform current state-of-the-art generative models
in the quality of generated images. By incorporating a cross-
attention layer into the model architecture, the Latent Diffusion
Model (LDM) [6] transforms the diffusion model into a flex-
ible generator capable of handling various conditional inputs,
such as text or bounding boxes, enabling guided synthesis
through convolution. SDG [35] introduces a novel unified
framework for semantic diffusion guidance, allowing for text
or image guidance, or both. The pretraining-based image-to-
image translation (PITI) [60] framework adjusts a pre-trained
diffusion model to accommodate various types of image-to-
image translation by using a pre-trained neural network to
capture the natural image manifold. Singh et al. [34] propose
a novel guided image synthesis framework that models the
generated image to solve a constrained optimization problem,
aiming to generate an image with more vivid details. It is
important to note that these methods are primarily geared to
enhance the overall fineness and naturalness of synthesized
images, which often involve global changes in the synthe-
sized images. This differs from the purpose of the proposed
MMGInpainting, which aims to introduce guided semantics
exclusively within specific regions designated for inpainting.

III. PROPOSED METHOD

The pipeline of MMGInpainting is shown in Figure 1. This
section begins with a concise overview of guided image-
generation methods based on explicit classifiers. Since this
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paper will use some notation, we will also introduce the guided
image synthesis method based on a fine-tuned CLIP model.
Then, we will present the enhanced Nonlinear Activation-Free
Blocks (NAFBlocks) bolstered with attention mechanisms.
Finally, we elaborate on the MMGInpainting model that can
accommodate mixed guidance from textual descriptions and
images.

A. Class-guided synthesis

In diffusion models, the forward process is to add noise to
the initial input image x0 via a Markov Chain over T time
steps, ultimately resulting in pure noise,

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where {βt=1:T } denotes a fixed or learned variance schedule
that regulates the size of the noise step. The reparameterization
trick is then used to sample xt directly,

q (xt | x0) =
√
ᾱtx0 +

√
1− ᾱtε, ε ∼ N(0, 1), (2)

where αt = 1− βt and ᾱt = Πt
s=1αs.

The reverse process of diffusion models is designed to
reconstruct the original data from Gaussian noise. It is rea-
sonable to assume that the reverse process follows a series of
Gaussian distributions. However, it is not feasible to gradually
fit the distribution. Consequently, a parametric distribution
must be constructed for estimation [61],

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) . (3)

To learn the reverse process, neural networks are trained to
predict µθ and Σθ can be fixed or trained as a neural network.

If an extra guidance signal y is introduced, the conditioned
sampling distribution becomes:

pθ,ϕ (xt−1 | xt, y) = Zpθ (xt−1 | xt) pϕ (y | xt) , (4)

where Z is a normalization constant. It has been proven
[4] that after incorporating the guidance, the new sampling
distribution in the reverse process can be approximated by a
Gaussian distribution with shifted mean [62]:

pθ (xt−1 | xt) pϕ (y | xt) = N (µ+Σg,Σ), (5)

where µ = µθ, Σ = σ2
θI, g = ∇xt

log pϕ(y|xt).

B. Improved NAFBlocks based Anchored Stripe Attention

The predominant architecture framework in diffusion mod-
els is U-Net based on residual blocks and attention mech-
anisms. While this architecture performs well on numerous
downstream tasks, fine-tuning the U-Net architecture is often
required. For image inpainting tasks, efficient modeling of
global contextual dependencies in high-dimensional images is
crucial due to the anisotropy of the regions to be inpainted
[63]. To achieve this goal, we first introduce an Anchor-
based Stripe self-attention mechanism (ASA) [64] to capture
global-scale dependencies. Currently, to reduce parameters and
enhance model performance, we replace U-Net with NAFNet
and incorporate ASA into modified nonlinear activation-free
blocks (NAFBlocks), as illustrated in Figure 2. ASA first

Fig. 2: Modified NAFBlock. The NAFBlock has an additional
attention module. Here, “simple channel attention” aggre-
gates global information and channel-wise interaction, while
“Anchored Stripe Attention” models global image structural
features.

introduces Anchors as an intermediary to reduce the number of
tokens. When the image is summarized in a low-dimensional
space using anchors, the overall image structure is preserved.
The specific operations of ASA can be expressed as [64]

Y = Me · Z = Me · (Md ·V) , (6)

Md = Softmax
(
A ·KT /

√
d
)
, (7)

Me = Softmax
(
Q ·AT /

√
d
)
, (8)

where A ∈ RM×d denotes the anchor, Me ∈ RN×M and
Md ∈ RM×N denote the attention maps of query-anchor and
anchor-key, respectively.

By introducing anchors to capture the spatial relation of
image features, ASA can adaptively model features separately
within vertical and horizontal stripes and automatically adjust
attention weights based on the content of images, thus captur-
ing the local structure and contextual information in images.
Since the masks in inpainting are typically anisotropic because
they vary significantly in different directions, the anisotropic
image features offered by ASA make it more efficient to
exploit the anisotropic property of the inpainting domain.

To reduce the parameter count, we replace all nonlinear
activation functions with “SimpleGate” in NAFNet, which
involves splitting the feature map into two parts along the
channel dimension and applying multiplication. LayerNorm
is used instead of BatchNorm because small batches may
introduce unstable statistical data that hamper image details
inpainting [38]. By introducing ASA, our network can capture
the image structural features from local and global regions
while effectively modeling the local features using a simplified
channel attention mechanism. As shown later in our ablation
study, the introduction of ASA to NAFNet can improve both
image fidelity and computational efficiency of MMGInpaint-
ing.
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C. Multi-modality Guided Inpainting

In this paper, the ground truth image is denoted by x, and
the mask is a binary matrix m where 0 indicates the known
regions and 1 indicates the missing pixels to be inpainted.
Thus, (1 − m) ⊙ x denotes the known pixels, m ⊙ x is the
masked unknown pixels, and ⊙ is the Hadamard product. The
inpainted result at the t− 1 step is obtained by

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 . (9)

Our inpainting method is built on a diffusion model.
Specifically, the diffusion model generates the missing part
and seamlessly combines it with the noisy original image.
Then, iterative denoising is performed to ultimately inpaint the
complete result. The primary objective is to control the reverse
diffusion process to achieve multimodality-guided inpainting.

The optimization goal of diffusion models is essentially
to fit an optimal gradient direction ∇ logP (xt) towards the
target data distribution in the data space [65] [18]. To facilitate
the guided generation, the Bayesian theorem can be applied
to decompose the gradient for conditional generation into
two components, including a regular, unconditional generation
gradient and a gradient based on an explicit classifier [54] [66]:

∇ log p (xt | y) = ∇ log p (xt)︸ ︷︷ ︸
unconditional score

+∇ log p (y | xt)︸ ︷︷ ︸
adversarial gradient

,
(10)

Among them, y can be text, image, or multi-modality
guidance. For clarity, we refer to the classifier as:

Fϕ (xt, y, t) = logPϕ (y | xt) . (11)

Next, we utilize the alignment representation between texts
and images in the Contrastive Language-Image Pre-Training
(CLIP) model [36] to compute specific loss values. During
each step of text-guided image generation, the distance be-
tween the current image representation and the text represen-
tation is calculated, typically using the inner product distance
[57] or cosine similarity (a.k.a. CLIPScore [67]):

F (xt, l, t) = E′
I (xt, t) · EL(l), (12)

where E′
I denotes the image encoder trained on noisy images

with an additional time step input [35], and EL denotes the
text encoder. In the case of image-guided image generation,
inner distance does not account for spatial information. To
incorporate spatial context information, we consider the L2
norm difference at the corresponding positions in the feature
maps. By considering the spatial layout, we obtain the follow-
ing accumulation for an entire image:

F (xt, x
′
t, t) = −

∑
j

1

CjHjWj

∥∥∥E′
I (xt, t)j − E′

I (x
′
t, t)j

∥∥∥2
2
,

(13)

Algorithm 1 Multi-Modality Guided Inpainting
Input : Guidance y, Editing strength tedit, scaling factor s
Given: diffusion model(µθ(xt, t),Σθ(xt, t)), Guidance func-

tion Fϕ(xt, y, t)

xT ∼ N(0, I)
for t = T, ..., 1 do

for u = 1, ..., U do
xknown
t−1 ∼ N(

√
ᾱtx0, (1− ᾱt)I)

µ,Σ← µθ(xt, t),Σθ(xt, t)
if t > tedit then

xunknown
t−1 ∼ N(µ+ sΣ∇xtFϕ(xt, y, t),Σ)

else
xunknown
t−1 ∼ N(µ,Σ)

end
xt−1 = m⊙ xknown

t−1 + (1−m)⊙ xunknown
t−1

if u < U and t > 1 then
xt ∼ N(

√
1− βt−1xt−1, βt−1I)

end
end

end
return x0

where E′
I()j ∈ RCj×Hj×Wj denotes the spatial feature

maps of E′
I . As for multi-modality guided synthesis, we assign

specific weights s1 and s2 (s1 + s2 = 1) to the image-guided
and text-guided functions, respectively.

Fϕ0
(xt, y, t) = s1Fϕ1

(xt, y, t) + s2Fϕ2
(xt, y, t) (14)

where Fϕ1
, Fϕ2

denote the loss functions corresponding to
image-guided and text-guided inpainting, respectively.

To integrate the high-level semantic information of the
reference image (or text) into the reverse generation process,
in each denoising step, we extract the noisy image from the
forward process and concatenate it with the missing region
generated with reference information guidance, followed by
a reverse denoising step. To prolong the sampling process to
generate overall semantically consistent content, the denoised
image is subjected to noise addition repeatedly. Inpainting
results can be obtained with reference semantics when this
process is repeated multiple times. The Semantic Fusion En-
coder is a fine-tuned CLIP model that can accept noisy images
as input, which encodes supplementary reference information
into the latent semantic space and iteratively integrates the
reference semantics into every inpainting process.

Inspired by Wang et al. [60], we adopt a pre-trained
image-to-image translation framework with an encoder that
transforms the input into a task-independent latent space and
a decoder that performs diffusion modeling. The main idea
is to fix the pretrained decoder, update only the encoder,
and then jointly fine-tune the entire network. This staged
training approach maximizes the utilization of pre-trained
knowledge while ensuring practical guidance for inpainting.
Unlike [60], our pretext condition involves text and image
guidance. The two hyperparameters in Eq. (14) control the
weight adjustment between text and image guidance. This way,
our conditional fine-tuning works in the pre-trained semantic
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space of multi-modality. Algorithm 1 summarizes the proposed
multi-modality guided inpainting model. Our model can also
operate without guidance(guidance-free case), with the signal
y being empty in such cases.

IV. EXPERIMENTAL RESULTS

A. Dataset and Implementation Details

We conducted guided image inpainting experiments on
CelebA-HQ [39] and Places2 [40] datasets, using the same
experimental setup as NAFNet [38] with the image size
256×256, and the batch size 8. We use the AdamW [68]
optimizer, with β1 = 0.9 and β2 = 0.9. The initial learning
rate was set to 3 × 10−3, which was decayed to 1e-7 using
a cosine scheduler. The weight parameters s1 and s2 in
Eq.(14) were set at 0.4 and 0.6 by the experiment discussed
in section IV, part D. The Semantic Fusion Encoder is CLIP
ResNet50x16 fine-tuned on the noisy images of each dataset,
with the initial learning rate set to 10−4, weight decay to
10−3, and the batch size to 64. The denoising steps of the
diffusion model were set to T = 250, with the resampling
setting consistent with Repaint [5]. It was trained on a single
3090 GPU for approximately five days. To ensure semantic
consistency throughout the image, the injection procedure of
guiding semantics was confined within a predefined range of
steps, denoted as [T, tedit], without being introduced into the
resampling loop. The hyperparameter tedit was set to 75 by
experiment.

B. Experimental Result Analysis

1) Experimental settings and Quantitative Comparisons:
To evaluate the performance of our model, we first conducted
quantitative experiments on CelebA-HQ and Places2. We
compared the proposed MMGInpainting with five state-of-
the-art image-inpainting models from the literature, including
LAMA [20], LDM [6], RePaint [5], MAT [52], and BLD [69].
Among them, LDM can accept either image or text guidance,
BLD only supports text-driven, while LAMA, Repaint, and
MAT are guidance-free. For fairness, we use the official pre-
trained models provided by the corresponding authors.

The experiment was conducted on 100 images selected from
the test sets of CelebA-HQ and Places2, respectively. We
masked the most critical components for each image using
a 64×64 center mask. Because the text or image used for
inpainting guidance can be diverse, the experimental setup was
as follows: for CelebA-HQ, if the model is image-guided, the
ground-truth image is used as guidance; if it is text-guided, the
text is generated using the labels corresponding to the ground-
truth image. For example, if the attribute labels of the original
image indicate “Smiling = 1” and “Male = -1”, the text used
for guidance would be “a smiling woman”. In Places2, we
use additional object cues to guide different scenes, such as
outdoors, buildings, and vegetation, as labeled in the dataset.
In this way, the semantic information of the text and image is
consistent with the original image. This setup was designed to
ensure uniformity in the guidance semantics for different mod-
els when conducting experiments on many samples, thereby
making the comparison of experimental results meaningful.

Since our proposed MMGInpainting supports text guidance,
image guidance, and simultaneous guidance from both, we
conducted three sets of experiments, obtaining results with no
guidance, guided solely by text, solely by images, and by both
simultaneously.

Six evaluation metrics, namely Fréchet Inception Dis-
tance (FID) [70], Learned Perceptual Image Patch Simi-
larity (LPIPS) [71], Peak Signal to Noise Ratio (PSNR),
Paired/Unpaired Inception Discriminative Score (P/U-IDS)
[72], and CLIP-based scoring function(PickScore) [73] are
calculated. Among them, FID serves as a quantitative metric
to assess the similarity between the statistical distributions
of real images and generated images, and P/U-IDS reflects
the fidelity of the generated images by calculating the linear
separability between the generated images and the real images
in the feature space of the perceptron. The P/U-IDS is given
by

P-IDS(X) = Pr
(x,x′)∈X

{f (I (x′)) > f(I(x))} , (15)

U-IDS (X,X ′) =
1

2
Pr
x∈X
{f(I(x)) < 0}+

1

2
Pr

x′∈X′
{f (I (x′)) > 0}

, (16)

where x denotes the real image and x′ denotes the correspond-
ing generated fake image. I(·) is the pre-trained Inception
v3 model that maps the input images to the output features
of 2048 dimensions. And f(·) denotes the (linear) decision
function of the SVM. Compared to CLIPScore [67], PickScore
is a text-to-image metric that measures the fidelity of the
generated content based on learned human preferences. The
matching score between text x and image y is calculated as:

s(x, y) = Etxt(x) · Eimg(y) · T (17)

where T denotes the learned scalar temperature parameter
of CLIP. The objective function Lpref aims to optimize the
parameters of the scoring function by minimizing the KL-
divergence between the preference distribution p and the
softmax-normalized scores of y1 and y2:

p̂i =
exp s (x, yi)∑2
j=1 exp s (x, yj)

Lpref =
2∑

i=1

pi (log pi − log p̂i)

(18)

Table I presents a quantitative comparison of MMGIn-
painting with other methods on Celeb-HQ and Place2 test
sets containing 100 images, respectively. For CelebA-HQ, our
primary focus is on the fidelity of the inpainted facial results
and the presence of additional semantic information. We use
the FID, LPIPS, PSNR and PickScore metrics to assess this.
On the other hand, for Place2, given the complexity of scene
data, our emphasis lies on the overall cohesiveness of the
images. Therefore, we use the FID, LPIPS, PSNR, and P/U-
IDS metrics for evaluation. As shown in Table I, our model
performs favorably regarding image fidelity compared to the
unconditional inpainting model. The fidelity of our model’s
inpainting results guided by the original image exhibits the
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Fig. 3: Qualitative Results on CelebA-HQ. Comparison of MMGInpainting against other state-of-the-art face inpainting
models, where the semantics of the guiding texts and images are consistent.

Method #Params[M] CelebA-HQ Place2

FID ↓ LPIPS ↓ PSNR ↑ PickScore ↑ /% FID ↓ LPIPS ↓ PSNR ↑ U-IDS ↑ /% P-IDS ↑ /%

RePaint 55 10.32 0.219 22.82 26.75 15.38 0.231 21.64 18.67 7.56
LaMa 51/27 9.87 0.207 23.45 29.97 13.82 0.198 23.81 23.03 8.57
MAT 62 12.72 0.231 19.27 25.53 17.04 0.252 20.36 19.89 7.20

LDM(image) 387 10.24 0.185 23.71 29.63 13.47 0.227 23.42 22.98 9.28
LDM(text) 387 11.48 0.192 23.62 28.75 14.23 0.238 22.31 22.54 8.97
BLD(text) 160 10.12 0.201 21.48 28.62 14.72 0.246 22.02 23.79 9.02

Ours(guidance-free) 52 9.21±0.08 0.211 21.58 27.32±0.11 14.74±0.05 0.229 21.85 19.82±0.25 8.17±0.19
Ours(image) 67 8.47±0.12 0.187 23.62 36.14±0.09 11.93±0.02 0.218 23.25 23.63±0.23 9.74±0.24
Ours(text) 67 9.03±0.13 0.190 22.79 35.93±0.12 13.02±0.09 0.231 22.69 23.87±0.24 9.36±0.26

Ours(hybrid) 67 8.73±0.15 0.186 24.31 36.41±0.08 12.06±0.04 0.196 24.17 25.93±0.17 10.85±0.18

TABLE I: CelebA-HQ and Place2 Quantitative Results. ↓ indicates that a smaller value is better.

lowest FID, even slightly surpassing the state-of-the-art LaMa.
LDM achieves the optimal LPIPS, but its PSNR is somewhat
lower than our model. Furthermore, our model, guided by a
combination of image and text, generates inpainting results
with a higher PickScore than the guided inpainting model.
This indicates that our inpainting results share more semantic
similarities with the reference information. Regarding model
parameters, our parameter count is lower than other guided
methods and slightly higher than unguided methods. This
difference is attributed to incorporating an additional feature
extraction module and an attention mechanism to enhance the
final guided inpainting effect.

2) Qualitative results and Comparisons: We further exper-
imented with various texts and images to assess different mod-
els’ guiding effects and inpainting quality. In this experiment,
the guiding image is entirely different from the ground truth,

and the semantics of the text used for guidance are set to be
consistent with the semantics of the guiding image. Figure
3 illustrates some examples of CelebA-HQ. We purposely
masked some critical facial features such as eyes, overall facial
features, hair, or chins to verify whether the inpainted images
contained additional guidance information.

Visual inspection of Figure 3(a)-(h) reveals that all uncon-
ditional inpainting methods like RePaint, LaMa, MAT, and
our guidance-free case successfully obtain good texture details
with natural facial expressions, despite there may be some
color discrepancies around the borders in MAT. Nevertheless,
there are comparatively noticeable flaws and blurred details
in inpainting the hair details in Figure3(f). In Figure 3(c)-
(e), MAT may generate shadows when there are occlusions of
prominent facial features. LaMa generates content with overall
semantic consistency but lacks guidance during the generation
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Fig. 4: Qualitative Results on Place2. Comparison against state-of-the-art methods over different mask settings.

Fig. 5: Inpainting results when the guiding semantics complement each other. The combination of image and language
guidance provides complementary information, and our model inpaints images that match both sources of guidance.

process. LDM and BLD exhibit inadequate coherence in
overall semantics for guided inpainting models. In contrast,
our model efficiently models global feature information in the
images to be inpainted, considering both the unmasked regions
and the guidance information. Specifically, our model excels in
inpainting texture details of hair and beard in Figure 3(f) and
(b), highlighting its advantages in preserving texture details
and conducting guided region inpainting.

We observed that LDM performs well in image-guided gen-
eration, while our model achieves the best results with mixed
guidance. Therefore, for the Place2 dataset, we use image
guidance for LDM and composite guidance for our model. As
shown in Figure 4, for object-guided generation, our model
effectively inpaints the details of the reference object and
integrates it into the target image without producing artifacts
like BLD. LDM successfully incorporates the reference object
but loses some details. Regarding unrestricted inpainting, the
focus is on maintaining overall semantic consistency, where

LaMa performs the best.
To further evaluate the effectiveness of text guidance, we

conducted a closed-loop experiment. Specifically, we used
an off-the-shelf image captioning API [74] to generate the
descriptions for the inpainted results. In Figure 3 and Figure
4, we have highlighted the identical words found in both
the guiding texts and the generated captions. The semantic
information from the text guidance is well embedded into the
inpainted regions. Additionally, we observed that the surplus
text obtained after image captioning captures semantic details
related to the guiding image. This closed-loop experiment
shows the effectiveness of semantic guidance through text and
image elements.

C. Analysis of the relationship of the semantics between text
and image guidance

In the preceding subsections, we demonstrate that our model
can achieve richer details and more desirable visual outcomes
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Fig. 6: Inpainting Results with contradictory semantics of guiding image and text . When there is a semantic conflict, it
may cause the inpainting results to uncertain directions.

when the semantics of the text and image used for inpainting
guidance are consistent. However, what happens when the
two semantics are contradictory or complementary? In this
section, we conduct experiments to explore these scenarios.
Semantic complementary guidance involves using an image
while providing textual descriptions of significant attributes
absent in the guiding image. Figure 5 illustrates some results
for each image; it can be observed that although the inpainted
images are diverse, the texts of image captioning have subtle
differences. Furthermore, we make the following observations:

(I) For face inpainting, when guided by semantic comple-
mentary information, the overall appearance is determined
by the guiding image. In contrast, the complementary text
introduces diversity and finer details into the inpainting results,
such as attributes like “short hair” or “glasses.”

(II) For Scene Inpainting, image guidance ensures that the
inpainting result contains objects guided by the input image. In
contrast, text guidance allows for specifying object layouts and
the number of objects, adding extra content, and introducing
variations.

We argue that complementary semantics enhance diversity
and boost finer details in inpainting results. When the seman-
tics are identical, more precise guidance is provided, empha-
sizing specific semantics through repetition. However, when
semantics are opposed or in apparent contradiction with the
original image, conflicting information can lead to randomly
generated results, some of which are visually unreasonable.
This may produce misleading and even ethically concerning
results, as shown in Figure 6. Therefore, we conclude with
the following recommendations. For face inpainting, prioritize
image guidance with text as a supplementary source. For
Place2 inpainting, consider using a specific object as the
guiding image, ideally with a structure similar to the original
image. Text guidance can be employed for object layout and
specific morphological changes.

D. Analysis of the weights s1 and s2

In Eq.(14), the ratio of weights s1 and s2 signifies the
proportion of semantics embedded by the guiding image and
text during the inpainting, respectively. When the guiding
image and text semantics are consistent enough, their ratio has
little impact on the results. However, when the semantics of
the image and text complement each other, different settings of
s1 and s2 significantly influence the results. In this section, we
experimented to explore the impact of varying weight settings.

Fig. 7: Selection of weights for s1 and s2. Where s1 and s2
are the weights of image and text guidance respectively.

As shown in Figure 7, when the text weight is smaller,
although the results still contain the semantics guided by
the text, the probability is much lower. In contrast, facial
appearances or animal postures in the results are more similar
to those of the guiding images, as illustrated in Figure 7(b), (d),
and (f). On the contrary, when the text weight is increased, the
probability of combining complementary semantics increases
significantly, obtaining results with more semantics indicated
by the text, such as “eyeglasses” in Figure 7(a), “smiling”
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Fig. 8: Impact of different tedit on the inpainting results. When tedit is too small, the “excessive guidance” problem will
occur with excessive guiding semantics embedded, leading to inconsistent skin color. Conversely, when tedit is too large, it
can cause “insufficient guidance”. Setting tedit to be 75 achieves a relatively proper balance.

in Figure7(c), and “Two horses” in Figure7(e). Based on the
experiment, we set s1 = 0.4 and s2 = 0.6 in this paper.

E. Discussion on the setting of tedit
The editing strength tedit is a user-controllable hyperpa-

rameter that regulates guidance strength. If the guidance steps
are excessively long, it may disrupt the global semantics of the
image, leading to an inconsistent result. Conversely, additional
prompt injection may be insufficient if the steps are too short.
In Figure 8, we investigate the impact of varying tedit on
the inpainting results. We used the weighted combination
of FID and PickScore, PS-FID (PickScore-based FID), to
strike a balance between the global semantic coherence of the
inpainted image and its similarity to the guiding semantics.
PS-FID is calculated by :

PS-FID = αFID− βPickScore (19)

In this case, a smaller PS-FID represents a better inpainting
result. We select images from Figure 3 in the CelebA-HQ
dataset with α = 5, β = 1 and vary tedit with an interval
length of 25. Then, we obtain the polyline graph of the mean
PS-FID as a function of tedit, as shown in Figure 9. Notably,
when tedit is too large, it leads to “insufficient guidance”,
which means that the guiding semantics are subtly embedded
into the inpainting procedure, and when tedit is too small,
the “excessive guidance” effect will cause overall semantic
incoherence such as inconsistent skin color. Both scenarios
increase the PS-FID. Therefore, we recommend that a tedit =
75 strikes an acceptable balance.

F. Ablation Study

To assess the effectiveness of our proposed modified
NAFNet and ASA module, we conducted ablation studies
on the CelebA-HQ dataset. In comparison, we evaluated our
approach against the diffusion model based on U-Net. We used
an extra evaluation metric termed Runtime [63] to quantify
the time required for computing the inpainting of a single

Fig. 9: Changing trend of PS-FID with respect to tedit. The
relatively optimal value of tedit is around 75.

image. Runtime measures the computational efficiency gains
achieved by our method relative to the baseline. The exper-
imental results are presented in Table II and Figure 10. The
results show that replacing the U-Net backbone with NAFNet
significantly reduces the inference time and slightly improves
image quality. Our MMGInpainting, combined with ASA,
showcases exceptional performance in terms of image fidelity
and guiding content measurement, surpassing the baseline in
computational efficiency.

NAFBlocks ASA Method FID↓ PickScore↑ Params↓ Runtime↓

U-Net baseline 10.12 32.62 70M 296s
✓ NAFNet 9.86 28.75 66M 160s
✓ ✓ MMGInpainting 8.45 36.5 67M 171s

TABLE II: The quantitative results of different models in
ablation study.
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Fig. 10: The inpainting results of different models in
ablation study. NAFNet and ASA, in combination, show the
best performance.

V. CONCLUSION AND DISCUSSIONS

In this paper, we present a multi-modality guided image
inpainting method aimed at enhancing the controllability
of the inpainting process. Specifically, we replace the U-
Net backbone with a modified NAFNet to achieve superior
inpainting results and boost computational efficiency. This
modified architecture incorporates an Anchored Stripe At-
tention mechanism, leveraging anchor points for comprehen-
sive global contextual modeling. Then, we design a novel
inpainting method capable of intelligently filling in image
regions through a hybrid-guided approach. Experimental re-
sults demonstrate that our method significantly improves the
controllability of inpainting, resulting in higher-quality in-
painting results and faster computational efficiency. Our model
seamlessly integrates text and image guidance within a unified
framework, offering flexibility for diverse applications. While
the long sampling steps are designed to generate detailed and
high-quality inpainting results, their time-consuming nature
hinders practical applications, especially for large-scale image
inpainting tasks or real-time scenarios. In future work, we
plan to explore methods to divide large-scale image inpainting
tasks into multiple sub-tasks, enabling parallel processing and
acceleration of the overall speed. Cross-modal alignment [75]
is an underresearched topic in MMGInpainting, especially
when text and image guidances are inconsistent. How to
control the multi-modality guided diffusion in a collaborative
manner (e.g., using bilateral connections [76]) deserves a more
systematic study.
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