Unexpected softening of a fibrous matrix by contracting inclusions
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Abstract

Cells respond to the stiffness of their surrounding environment, but quantifying the stiffness of a fibrous
matrix at the scale of a cell is complicated, due to the effects of nonlinearity and complex force transmission
pathways resulting from randomness in fiber density and connections. While it is known that forces pro-
duced by individual contractile cells can stiffen the matrix, it remains unclear how simultaneous contraction
of multiple cells in a fibrous matrix alters the stiffness at the scale of a cell. Here, we used computational
modeling and experiments to quantify the stiffness of a random fibrous matrix embedded with multiple con-
tracting inclusions, which mimicked the contractile forces of a cell. The results showed that when the matrix
was free to contract as a result of the forces produced by the inclusions, the matrix softened rather than stiff-
ened, which was surprising given that the contracting inclusions applied tensile forces to the matrix. Using
the computational model, we identified that the underlying cause of the softening was that the majority of
the fibers were under a local state of axial compression, causing buckling. We verified that this buckling-
induced matrix softening was sufficient for cells to sense and respond by altering their morphology and force
generation. Our findings reveal that the localized forces induced by cells do not always stiffen the matrix;
rather, softening can occur in instances wherein the matrix can contract in response to the cell-generated
forces. This study opens up new possibilities to investigate whether cell-induced softening contributes to
maintenance of homeostatic conditions or progression of disease.

Keywords

Extracellular Matrix, Fiber Network, Stiffness, Cell-Matrix Interaction, Buckling



1. Introduction

Many tissues are composed of cells encapsulated in a three-dimensional fibrous extracellular matrix [1].
Cells remodel the matrix, either biochemically by synthesis and degradation of the matrix, or mechanically
by virtue of their contractility [2-5]. The cell-matrix interaction is bidirectional [6], meaning that cellular
contractility is tuned by the stiffness of the matrix surrounding the cell [7-10], while cell forces can also
modify matrix stiffness, for example, by mechanically stiffening the matrix at the scale of the bulk mate-
rial [11, 12]. Cells sample the matrix not at the bulk scale, but rather at scales of tens of microns, which
renders knowledge of the bulk matrix stiffness insufficient to predict cell sensing at the microscale. Several
studies deciphered that individual contracting cells can mechanically stiffen the matrix at these small length
scales [13—15], but tissues rarely contain solitary cells; rather, it is common for multiple contracting cells
to be interspersed within the same matrix. Due to the effects of nonlinearity and complex force transmis-
sion pathways within the matrix, it remains unclear how collective contraction by multiple cells affects the
mechanics and whether those collective effects are sufficiently large for cells to sense and respond.

We focus here on the question of how multiple contracting cells within a random fibrous matrix alter
the stiffness. Despite the common understanding that an individual contractile cell stiffens the matrix, a few
recent reports studying multi-cellular matrices, wherein cells were either seeded on decellularized matrices
[16] or embedded inside collagen matrices [17, 18], described a contradicting observation, that contracting
cells soften the matrix at the scale of tens of microns. This softening is often thought to be a consequence
of matrix degradation due to cell-secreted metalloproteinases [17, 18]. The role of mechanical cell-matrix
interactions, if any, in instrumenting such softening is not yet clear. In this light, prior studies on multi-
cellular interactions in fibrous matrices observed the existence of complex mechanical coupling between
contracting cells [19, 20], which results in cell-mediated global contraction of the matrix [2, 21], however,
the current literature lacks a clear quantification of the changes in fiber structure and mechanical stiffness
resulting from the contraction of multiple cells.

Here, we combined experiments and simulations to study how multiple contracting cells mechanically
alter the stiffness of the matrix. Focusing solely on the mechanical interactions between the cells and
the matrix is challenging given the potential of cells to biochemically remodel the matrix. To mitigate
this challenge, we studied an analogous system wherein cells were replaced with contracting inclusions
made of poly(N-isopropylacrylamide) (PNIPAAm), which could not degrade or synthesize the matrix as
cells do. In parallel, we used mechanics-based computational models of inclusion-matrix systems, wherein
the inclusions contracted, and we studied the resulting matrix fiber deformations and mapped them to the
matrix stiffness. We validated the model results by performing microscopic indentation experiments on
PNIPA Am-embedded collagen matrices. Finally, we verified that the changes in matrix stiffness caused by
local contraction of PNIPAAm microspheres could be sensed by cells by measuring cellular morphology
and cell-induced matrix displacements.

2. Methods

2.1. Preparation of Collagen Matrix with Embedded Contracting Microspheres

Thermosensitive microspheres of poly(N-isopropylacrylamide) (PNIPA Am) with average diameter ~ 65
um were prepared as described in our prior work [22]. These microspheres were treated to covalently bind
to the collagen fibers using sulfo-SANPAH as previously described [22]. Treated microspheres were mixed
with neutralized rat tail collagen I (Corning, Inc.) to make matrices with random fibrous structure having
a final collagen concentration of 3 mg/mL, as previously described [22]. As these collagen matrices were
heated from 22°C to 39°C, the embedded PNIPAAm microspheres contracted by = 40% [23], thereby
applying microscale displacements in the matrices mimicking the displacements induced by contracting



cells.

2.2. Rheometry of the Bulk Matrix

A commercial rheometer (Kinexus Ultra+, Malvern Pananlytical) was used to quantify the global shear
modulus of the PNIPAAm-embedded collagen matrices. To grip the collagen matrices to the rheometer, two
functionalized glass coverslips (treated with 0.5% (3-aminopropyl)triethoxysilane and 0.5% gluteraldehyde)
were adhered to the flat plate geometries of the rheometer by double sided acrylic adhesives (3M Inc.).
Cylindrical collagen matrices with a radius of 9 mm, and a height of 1.77 mm were polymerized between
these two coverslips on the rheometer at 22°C for 90 min. A schematic of the test setup is depicted in
Fig. 1a. Small shear strains were induced by twisting the matrix about its axis. The maximum shear strain
applied was 0.36% to remain in the linear regime of deformation. To ensure that the loading was quasi-
static, we kept the maximum strain rate below 0.02% /s. The angular acceleration was below 1.17 x 107>
rad/s?, meaning that inertial loads were negligible. To measure the shear modulus (Gy), we fitted a line to
the data of torque versus angle and applied the standard equation for torsion. For each matrix, the shear
modulus was first measured at 22°C, and then the temperature of the matrix was increased to 39°C (chosen
to be substantially above the phase transition temperature of PNIPAAm, to induce maximal contraction).
We waited for 1 hr for the temperature of the matrix to equilibrate, and the shear modulus at 39°C was
measured.

2.3. Experiments Quantifying the Mechanics of Collagen Matrices at Scales of a Cell
2.3.1. Matrix Preparation

Treated PNIPAAm microspheres were mixed with neutralized collagen labeled with Alexa Fluor 488,
as described in our prior work [22]. The collagen concentration was 3 mg/mL, and collagen matrices were
polymerized into disks of 20 mm diameter and 1.6 mm thickness in glass-bottom dishes at 26°C for 45 min,
resulting in a random network of fibers (Supplemental Fig. S10). To ensure that the collagen fibers did not
adhere to the glass, the surfaces of the glass bottom dishes were pre-treated with a solution of 4% pluronic
acid (Sigma-Aldrich) for at least 24 hr. The PNIPAAm microspheres were observed to sink to the bottom
of the collagen matrices during polymerization. Upon heating to 37°C, the collagen matrices contracted
globally. The concentration of PNIPAAm microspheres in the collagen matrices produced a global matrix
contraction of ~ 27% at 37°C (Supplemental Fig. S10b). Additional collagen matrices were made without
the PNIPA Am microspheres; these matrices were unaffected by temperature changes and served as controls.

2.3.2.  Microscopic Indentation

We measured the stiffness of the top surfaces of the collagen matrices using microscopic indentation
experiments, as elaborated in the following three steps.

First, glass microspheres with nominal diameter 138 um and density 2.5 g/cm® (Cospheric) were used
as spherical indenters. These micro-indenters were mixed with 1x phosphate buffered saline (PBS) and
sparsely spread on the top surfaces of the collagen matrices just before imaging. Since the actual diameters
of these indenters were not constant and varied between 120 um and 160 um, the diameter of each indenter
was measured by manual image analysis.

Second, the matrices were fully submerged in 1x PBS, and image stacks of their top surfaces were col-
lected on a Nikon upright FN1 confocal microscope. These stacks contained images of Alexa-488 labelled
collagen fibers which were excited by the 488 nm laser, with emission collected by high sensitivity GaAsP
detectors and recorded in Nikon NIS-Elements software. A 25x water immersion objective with numerical
aperture 1.1 (Nikon) was used, and the lens of the objective remained submerged inside the PBS and above
the surface of the matrix as depicted schematically in Supplemental Fig. S11a. Image stacks were collected



with a step size of 1 um. Images were scanned at 1024 x 1024 pixels with a pixel size of 0.499 x 0.499 um?.

Third, we analyzed the images to determine the actual diameter of each indenter and the corresponding
indentation depth. Briefly, the z cross-section of the image stack through an indenter was imported into
a vector graphics editor (Adobe Illustrator) and a circle was manually fitted to match the profile of the
indented regime. The diameter of this circle was the actual diameter of the spherical indenter, and the
indentation depth (8) was determined by measuring the depth of penetration in a direction perpendicular
from the surface of the matrix. Knowing the diameter of the indenter and considering its buoyancy in PBS,
we calculated the component of the effective weight of the indenter along the direction of the indentation
depth. The ratio of the effective weight of the indenter and the indentation depth was computed to determine
the secant stiffness of the matrix at the location of each indenter.

2.3.3. Experiments with Cells

MDA-MB-231 cells and MDA-MB-231 cells expressing Lifeact-GFP were cultured in high glucose
Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum at 37°C and 5% CO,. Medium
from cell culture was collected, centrifuged, and the supernatant was used as conditioned medium in later
experiments.

Both control and PNIPAAm-embedded collagen matrices were floated in 1x PBS at 37°C for 45 min,
during which time the PNIPAAm-embedded matrices radially contracted. After warming the matrices, the
PBS was removed and the matrices were washed with DMEM, which was pre-warmed at 37°C. Then the
medium was removed and ~ 20,000 MDA-MB-231 cells were seeded near the center of the matrices. The
cells were allowed to adhere to the collagen matrix for 45 min at 37°C before adding DMEM supple-
mented with conditioned medium at a 1:5 ratio. The cells were allowed to spread for 18 hr. For assessing
morphological features, we used matrices with unlabelled collagen fibers; these matrices were fixed with
paraformaldehyde, and the cells were stained with Alexa-488 phalloidin (Invitrogen, R37110). For assessing
the cell-induced displacements, we used Alexa-594 labelled collagen and cells expressing Lifeact-GFP.

The cells and the matrix fibers were imaged on a Bruker Ultima Multiphoton microscope equipped with
a Coherent Charmeleon Ti-Sapphire laser and Hamamatsu multi-alkali photomultipliers. The matrices were
excited at 890 nm and a 20X air objective with numerical aperture 0.45 (Nikon) was used for imaging. A
445 /40 nm filter was used to capture the second harmonic generation (SHG), while a 525/70 nm and 565
nm long-pass filters were used to capture the green and red fluorescence, respectively. For assessing cellular
morphology, stacks of images were collected with a step size of 5 pm and the images were scanned at
1024 x 1024 pixels with a pixel size of 0.347 x 0.347 um?. For studying cell-mediated matrix deformation,
time lapse image-stacks were collected over a period of 48 min and the stacks had a step size of 2.5 pm;
these images were scanned at 1024 x 1024 pixels with a pixel size of 0.293 x 0.293 um?. During the time
lapse acquisitions, the matrices with live cells were placed in a commercial stage top incubator (Okolab),
which was maintained at 37°C and 5% CO..

For evaluating cell morphology, images were analyzed in ImageJ to identify the boundaries of each cell.
For each cell, we quantified shape by measuring the length of its longest axis (feret’s diameter) and the
ratio of the square of the cell perimeter to the cell area. For evaluating cell-induced matrix displacements,
displacement fields were computed with Fast Iterative Digital Image Correlation [24] using a subset size of
64 x 64 pixels (18.75 x 18.75 um?) and a subset spacing of 16 pixels (4.69 um), to correlate pairs of images
separated by 48 min, similar to our prior work [22, 25-28]. Considering each cell to act like a dipole, we
identified the center and the alignment of this analogous dipole by inspecting the displacement fields in
the matrix. To identify the regions in the matrix most affected by cellular forces, we used the continuum
mechanics solution for the displacement field due to a force dipole, which defined a dumbell-shaped region
of large cell-induced displacements. Finally, for each cell, the 80th percentile of the magnitude of the matrix



displacement inside the dumbell-shaped region was computed as a measure of displacement induced by that
cell.

24. Computational Modeling
2.4.1. Finite Element Model of Inclusion-Matrix Systems

To model fibrous matrices with fully embedded inclusions, we constructed two-dimensional (2D) net-
works of randomly oriented fibers; see Supplemental Note 1 for justification of the use of 2D models. The
fiber networks were designed to match the architecture of type I collagen using a modified version of a previ-
ously developed algorithm [29-31]. Firstly, this algorithm randomly deposits a set of nodes in a 2D domain
and connects them with fibers. Then it uses a simulated annealing-based optimization technique to move the
nodes and swap the fibers connecting at different nodes until a desired average fiber length (L¢) and connec-
tivity (defined as the number of fibers connecting each node) is achieved. Noting that collagen matrices have
nodal connectivity less than Maxwell’s isostatic threshold (which is twice the system dimension) [29, 32],
we developed sub-isostatic 2D matrices with a connectivity of 3.4, which matches that of collagen [29, 30]
and is below the 2D isostatic threshold of 4. Our matrix models had regions where fibers crossed but did not
connect, similar to observations from images of collagen matrices [26, 33]. The matrix generation algorithm
is available in a public repository at https://github.com/jknotbohm/fiber_network_model.

The fibers in the matrix were modeled as linear elastic Timoshenko beams whose shearing stiffness
was half of the axial stiffness. The fibers were soft in bending and had the ratio of bending stiffness to
axial stiffness, k = 1 x 107%, which is a value typically reported for type I collagen fibers [34-37]. In
the finite element software, we used two three-node quadratic beam elements for each fiber, and the fibers
were “welded” at the connections to transmit both forces and moments. Circular inclusions were introduced
inside the domain of the matrix, and their diameters matched the relative sizes of PNIPAAm microspheres in
experimental matrices (diameters > 2Lr). To add the inclusions to the fiber network, fibers with end nodes
inside the region of an inclusion were trimmed at their intersection with the periphery of the inclusion. Fibers
crossing the inclusions were kept. The circular inclusions were filled with three-node continuum triangle
elements which underwent isotropic thermal contraction. Additional cross-links connected the matrix fibers
to the inclusions to obtain a fully connected system. These cross-links were two-node linear beams which
transferred forces and moments between the matrix and the inclusions. These cross-links and inclusions had
the same Young’s modulus as that of the matrix fibers. The size of the matrix models was always > 30L,
and the models contained two or more embedded inclusions.

2.4.2.  Boundary Conditions and Finite Element Simulations

All simulations were performed with multiple load steps, wherein one load step was used to induce
contraction of the inclusions and separate load steps were used to measure the matrix stiffness. When
inducing contraction of the inclusions, both free and fixed external boundaries were used, as described in
the Results section. To characterize how the contracting inclusions influenced the global shear modulus of
the matrices, two load steps were used, the first being contraction of the inclusions, and the second being a
simple shear boundary condition. To measure the stiffness of the matrix at length scales that would be sensed
by cells, stiffness was measured by contracting dipoles of different orientations introduced in the matrix at
various locations as described in the Results. The dipoles were two-node truss elements of length 2L, and
their end points were connected to nodes in the matrix. Each dipole underwent thermal contraction such
that the dipole was under a state of local equilibrium. The Young’s modulus of the dipoles was six orders
of magnitude larger than that of the matrix fibers to ensure that the thermal strain of the dipoles was the
same as the actual strain. The internal force in the dipole at 10% axial contraction was extracted. The ratio
of this internal force and the dipole displacement gave the secant stiffness of the matrix microenvironment
sensed by the dipole. All finite element simulations were performed on Abaqus (Dassault Systemes). Given
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that large local deformations were produced inside the matrix, we used the implicit dynamic quasistatic
solver with the option of nonlinear geometry, as in our prior work [27, 38, 39]. During post-processing, we
characterized the local matrix mechanics at the level of the fibers by identifying force chains and quantifying
fiber excess lengths (difference between the fiber’s contour length and the node-to-node distance), similar to
our prior work [39].

2.5. Statistical analysis

Statistical analysis was performed in MATLAB R2020a. Statistical tests used were the sign test, Wilcoxon
rank sum test, and Kruskal-Wallis test for, respectively, one, two, more than two groups of data, as indicated
in the figure captions. To define the level of significance of the correlation between two different parameters,
a Pearson’s test was used. Values of p < 0.05 were considered statistically significant. For binary events,
we used a bootstrapping approach (with 10,000 iterations) to obtain the 95% confidence interval.

3. Results
3.1. PNIPAAm-Matrix System Behaves Analogously to the Cell-Matrix System

To begin our study on the effects of multiple contracting cells on the mechanics of fibrous matrices, we
considered the global shear modulus, which has been commonly studied. For example, the presence of uni-
axial global pretension increases the global shear modulus of the fibrous extracellular matrix [35, 37, 40, 41].
Similarly, contracting cells or contracting inclusions induce local pretensions inside the matrix resulting in
an increase in the global shear modulus of the matrix [11, 12, 42]. Here, we began by verifying these find-
ings using contracting PNIPAAm microspheres, which produce well-controlled forces and do not degrade
or synthesize matrix as cells do. We cast collagen matrices embedded with PNIPAAm microspheres and,
using a shear rheometer, measured their shear moduli (Gy) at the global scale at low strains before and after
contraction of the embedded microspheres (Fig. 1a), expecting to observe stiffening caused by contraction,
similar to a recent study [42]. For nine independent PNIPAAm-—matrix systems, the average value of Gy
was 65.7 Pa when the microspheres were in the uncontracted state (at 22°C, Fig. 1b). When the system
temperature was raised from 22°C to 39°C to induce contraction of the embedded microspheres, the modu-
lus G increased to an average value of 206 Pa (Fig. 1b), which was 3.1 times the global shear modulus at
22°C. To verify that the contracting microspheres alone altered modulus, and that the change of temperature
had no mechanical effect on the collagen matrix, we conducted control experiments on collagen matrices in
the absence of PNIPAAm microspheres. Results from eight independent control collagen matrices showed
no clear effect of the temperature change on the global shear modulus of the control matrices (Fig. 1c¢),
similar to our prior studies [22, 28]. The factor of 3.1 stiffening caused by contraction of the PNIPAAm
microspheres is similar to the typical extent of the macroscale stiffening exhibited by cell-matrix systems
due to cellular contractions [11, 12].

Given that the contracting inclusions only interact mechanically with the surrounding collagen matrix,
the experimentally observed macroscale stiffening of the system is a mechanical phenomenon, which we fur-
ther validated by simulating these boundary conditions with mechanics-based models of the fibrous matrices
(Fig. 1d). These models contained a cluster of inclusions embedded in a fiber matrix and, the inclusions
were radially contracted by 40%. Next, we imitated the boundary condition of the shear rheometer (Fig.
1d,e) and computed the small-strain global shear modulus of the models before and after the contraction of
inclusions, G| and G, respectively. For six independent inclusion-matrix models, contracted inclusions in-
creased the global shear modulus by an average factor of G, /G = 3.1 (Fig. 1f), similar to the bulk stiffening
exhibited by PNIPA Am-matrix systems.
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Figure 1: Experiments and simulations characterizing the global modulus of fibrous matrix with contracting inclusions. (a) Dia-
gram of experiments with the rheometer. A collagen matrix with embedded PNIPAAm microspheres was polymerized between the
two coverslips attached to the parallel plates of the rheometer, and the top plate was axially rotated to twist the sample. (b) Small
strain shear modulus (Gg) of nine independent PNIPAAm-embedded matrices measured before and after the contraction of embed-
ded PNIPA Am microspheres, respectively at temperatures 22°C and 39°C. The increase in the shear modulus from 22°C to 39°C is
statistically significant (p = 0.0039, sign test). (c) Small strain shear modulus (Gg) of eight independent control collagen matrices
at temperatures 22°C and 39°C. The temperature change had no significant effect on the modulus (p = 1, sign test). (d) Simulation
on an equivalent 2D matrix model with multiple inclusions and simple shear boundary conditions. Prior to the contraction of these
inclusions, the shear modulus at 0.5% shear strain was quantified and defined as Gy. (e) The deformed model after the contraction
of inclusions by 40%, with the shear modulus at 0.5% shear strain called G;. (f) Ratios G,/G for six independent models were
always greater than unity, indicating global stiffening of the matrix due to contracted inclusions.

3.2. Simulations on Fiber Matrix with Contracting Inclusions

We observed in the previous section that the contracting microspheres stiffened the matrix under con-
ditions of simple shear. These contracting microspheres mimicked cell contraction in cell-matrix systems
studied in prior work, wherein cell contraction induced similar stiffening of the matrix under the same con-
ditions of simple shear [11, 12]. Similarly, single contracting cells can increase the matrix stiffness at scales
of tens of microns [13-15]. However, for the case of multiple cells contracting in a random fibrous ma-
trix, it is not clear that the changes in matrix stiffness could be sensed by a cell, because at this scale, the
matrix exhibits spatial heterogeneity in which the stiffness can vary by more than an order of magnitude
[23, 28, 43—46]. Thus, the influence of multiple contracting cells on the matrix stiffness at the length scale
of a cell remains an open question.

To determine how multiple contracting cells could alter the matrix stiffness at scales sensed by a cell, we
began with computational modeling of the contracting inclusions and fibrous matrix. The models consisted
of multiple inclusions, each of diameter D = 2L, randomly embedded inside the fibrous matrix at an average
inter-inclusion spacing ~ 1.5L; (Fig. 2a). Without constraining the outer boundaries of the matrix, the em-
bedded inclusions were radially contracted by 40%, causing them to locally pull on the surrounding matrix
fibers, mimicking forces produced by cells. In response to these tensile forces, fibers oriented perpendicular
to the periphery of each inclusion were axially stretched, constituting force chains (Fig. 2b). These tensile
force chains are expected to be associated with stiffening of the matrix [39, 47, 48].
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Figure 2: Effect of a group of contracting inclusions on stiffness at the scale of a cell. (a) A representative undeformed state of
the matrix containing a cluster of inclusions. The inclusions had a diameter of D = 2L and were randomly embedded inside the
matrix at an average inter-inclusion spacing of ~ 1.5L¢. (b) After inclusions contracted by 40%, the network globally contracted
(uncontracted matrix size shown by the dashed box). Force transmission is shown by force chains constituting the top 20% highly
stretched fibers in the matrix (red). These force chains emanated radially from the periphery of the inclusions. (c, d) The deformed
matrix (of panel b) with a contracting dipole in the inter-inclusion space as depicted by the black line. Panels ¢ and d depict
two different representative orientations of the dipole. Insets depict the enlarged views of the respective dipole. The fibers of
the deformed matrix are color coded based on the normalized values of their excess lengths (§ /L¢). The dipoles contracted and
registered the stiffness of the matrix inside the inter-inclusion space. (e) For differently aligned dipoles and for six independent
matrices, the ratio of the values of matrix stiffness sensed by the dipole after and before the contraction of inclusions (ks/ kg ret)
were recorded. ks /kg ref < 1 indicates matrix softening due to contracting inclusions. Each marker indicates a different dipole; each
marker shape indicates a different independent fiber network.

To determine how the contracting inclusions altered the matrix stiffness, we measured the stiffness
at different locations and in different directions, using contracting dipoles, each of which mimicked the
contraction of a cell, as shown in Figs. 2c,d. The dipoles contracted and sensed the stiffness, similar to the
way a cell senses its microenvironment. Each dipole axially contracted by 10%, and the ratio of internal
force and the contracted displacement was computed to quantify the secant stiffness. Surprisingly, the values
of stiffness measured after the contraction of the inclusions, ks, were always less than those measured before
the contraction of the inclusions, K rf, meaning that the contracting inclusions mechanically changed the
microenvironment of the dipole. This mechanical change, as indicated by the values of k,/k; ref < 1 indicated
matrix softening (Fig. 2e). Dipoles aligned in various different directions across six independent fiber
network models all showed softening, indicating the softening was consistent and occurred in all directions
(Fig. 2e). To investigate why the contracting inclusions caused the matrix to soften, we investigated the
deformed microstructure of the matrix at the level of fibers. Despite the fact that the contracting inclusions
induced tensile force chains (Fig. 2b), the majority of the matrix fibers (= 60%) were not stretched, but
rather in a state of axial compression, potentially causing buckling. To quantify buckling of the fibers, we
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Figure 3: Simulations on inclusion-matrix models relate fiber buckling to matrix softening. (a, b) Enlarged views of the dipoles of
Fig. 2c and d, respectively, along with nearby matrix fibers before (I) and after (II) the contraction of the inclusions. Fibers are color
coded by normalized excess length & /L. After contraction of the inclusions, the fibers are highly buckled, as indicated by the large
excess lengths. The fibers constituting the microenvironment of the dipole were defined using circles of radius r = 0.25L¢ at the end
points of the dipole. (c) Scatter plot of normalized stiffness (ks /ks ref) sensed by each dipole against average excess length (/L)
in the vicinity of that dipole. The values of ks /ks ref Were always less than one, indicating that the matrix softened at the scale of
the dipoles. The correlation between the reduction in matrix stiffness and excess lengths was statistically significant (p = 0.0076,
Pearson). Each marker type indicates a dipole from an independent model.

computed and mapped each fiber’s excess length, defined as the difference between the contour length of the
fiber and its node-to-node distance [49] (Fig. 2¢,d). Fibers circumferential to the periphery of the inclusions
had large excess lengths, indicating buckling.

To establish if the fiber excess lengths were the cause of the softening, we focused in detail on the excess
lengths of the fibers near to each contracting dipole. Considering that the fibers closest to each dipole’s
end points have the largest effect on the mechanics sensed by that dipole, we defined circular regions of
radius 0.25L¢ surrounding the end points of each dipole; all fibers passing through these circular regions
defined the microenvironment of that dipole (e.g., Fig. 3a, I and Fig. 3b, I). In the microenvironment
of the dipole, the initially undeformed fibers (Fig. 3a, I and Fig. 3b, I) buckled after the contraction of
the inclusions, and accumulated excess lengths (Fig. 3a, II and Fig. 3b, II). These observations remained
consistent across multiple independent inclusion-matrix models, and an additional representative example is
depicted in Supplemental Fig. S1. Measurements from several independent dipoles in six different models
revealed a statistically significant correlation between the extent of matrix softening and the average excess
length of the fibers in the microenvironment of the dipoles (p = 0.0076, Pearson) (Fig. 3c). Therefore, the
multiple contracting inclusions buckled the majority of the matrix fibers, thereby triggering softening in the
matrix in all directions.

To consider other loading conditions, we repeated the simulations after replacing the contracting circular
inclusions with contracting dipoles, which might more closely resemble contracting cells. As above, the
dipoles contracted in the first load step with free boundaries, and another dipole was used to measure the
stiftness before and after contraction. In these simulations, the trends were the same, namely that the matrix
softened in all directions and the degree of softening was correlated to the amount of fiber buckling present
(Supplemental Fig. S2). Next, we designed a simulation to measure stiffness at a different length scale,



namely at the scale of the global material. To this end, we embedded inclusions in the fibrous matrix,
and, after inducing contraction of the inclusions under free boundary conditions, we applied simple shear,
observing global softening caused by the contracting inclusions (Supplemental Fig. S3). Lastly, to verify
that fiber buckling is essential for the softening, we repeated the simulations with the contracting circular
inclusions in matrices having fixed boundaries. Compared to free boundaries, the fixed boundaries had
greatly reduced excess lengths, indicating the fixed boundaries suppressed fiber buckling (Supplemental
Fig. S4a—h). In turn, the matrix softening was largely eliminated, with some dipoles sensing a stiffer local
environment caused by the contracting inclusions and some sensing approximately the same stiffness as
before contraction of the inclusions (Supplemental Fig. S4i). Together, these findings indicate that when the
boundary conditions allow the matrix to contract, the localized forces produced by contracting inclusions
induce fiber buckling that leads to matrix softening.

3.3. Simulations on Fiber Matrix with Two Contracting Inclusions

We noted in the prior section that multiple contracting inclusions softened the matrix. To better under-
stand the mechanics and the role of underlying system length scales that tuned this unexpected softening,
we studied simplified inclusion-matrix models with only two embedded inclusions. To this end, two inclu-
sions, each of diameter D = 2L and separated by a variable inter-inclusion spacing d, were embedded inside
matrices with free boundaries (Fig. 4a). Prior models showed substantial fiber alignment and densification
between the pairs of contracting inclusions in fibrous materials [40, 50-53], but such alignment and densi-
fication was not present here, which is due to the fact that the inclusions were simulated by elastic elements
that are able to move closer together upon contraction, which is required to maintain force equilibrium (see
Supplemental Fig. S5 and Supplemental Note 2 for more details).

A dipole of length 2L¢ was introduced in the matrix between the two inclusions (Fig. 4a), and the dipole
was initially oriented perpendicular to the common center line of the inclusions. As in the previous section,
we identified the microenvironment of the dipole by defining threshold circles of radius 0.25L; at the end
points of the dipole, and the excess lengths of all the fibers passing through these circular regions were
quantified (Fig. 4b). The contracting dipoles were again used to measure the matrix stiffness. Similar to
the results with the multi-inclusion systems, the values of stiffness after the contraction of the inclusions, ks,
were smaller than those measured prior to the contraction of the inclusions, ks ret for all inter-inclusion spac-
ing d, in four independent models, again indicating softening (Fig. 4c). To investigate how the contracting
inclusions softened the matrix, we again characterized force chains and excess lengths. Each contracting
inclusion pulled the radially aligned fibers, and similar to Fig. 2b, we mapped the force chains, which were
perpendicular to the periphery of the inclusions (Fig. 4d,g,j). Again similar to Fig. 2c,d, matrix fibers
aligned parallel to the periphery of the contracting inclusions had large excess lengths (Fig. 4e,h,k). We ver-
ified that the excess lengths appropriately indicated fiber buckling by noting the positive correlation between
excess length and normalized curvature of the fibers (Supplemental Fig. S6). We also tested the effect of
magnitude of contraction on matrix softening, observing that both excess lengths and the extent of softening
were correlated to the amount of radial contraction (Supplemental Fig. S7).

Next, we studied how the ratio of the two system length scales, the inter-inclusion spacing (d) and
the inclusion diameter (D), tuned the geometric proximity of the dipole from the contracted inclusions to
influence the matrix in the dipole microenvironment. To this end, the excess lengths of the fibers (&) in
the vicinity of the dipole, as identified in Fig. 4b, were calculated and mapped (Fig. 4f). We conducted
a parametric study by varying the inter-inclusion spacing (d) alone (e.g., Figs. 4g.h,j,k), and mapped the
fibers in the dipole microenvironment based on their excess lengths (e.g., Figs. 4i,1), similar to Fig. 4f. From
a qualitative evaluation of Figs. 4f,i,], when inter-inclusion spacing d decreased, there was an increase in
the number of highly buckled fibers in the dipole microenvironment. At each value of the parameter d/D,
we quantified the average excess length of fibers in the microenvironment of the dipole (§/L¢). Results
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Figure 4: Simulations on matrix models containing two contracting inclusions. (a) A representative model containing two inclu-
sions of diameter D = 2Ly, separated by inter-inclusion spacing d. The central dipole of length 2Ly is transverse to the imaginary
line joining the centers of the inclusions. The inclusions were radially contracted by 40%. (b) Enlarged view of the central dipole
which samples fibers passing through the circular regions of radius 0.25L¢ centered at the dipole’s end points. (c) For four indepen-
dent matrices, the ratio of the values of matrix stiffness sensed by the dipole after and before the contraction of inclusions (ks /k ref)
were recorded, with kg /k rof < 1 indicating softening. Each marker color indicates an independent model. (d) A representative
deformed state of the matrix with d = 8.5D, where the force chains consisting of top 5% most stretched fibers are shown in red.
(e) The deformed matrix of panel d, where the top 5% most buckled fibers are shown blue. (f) The dipole of the system described
in panels d and e. The matrix fibers in its microenvironment are colored based on the values of their excess lengths. (g, h, i) A
representative deformed state of the matrix with d = 4.5D, where the force chains, buckled fibers, and dipole are shown, similar to
panels d—f. (j, k, 1) A representative deformed state of the matrix with d = 0.5D, where the force chains, buckled fibers, and dipole
are shown, similar to panels d—f. (m) Plot showing the dependence of the average excess length of fibers in the microenvironment
of the dipole to the model parameter d/D. (n) The normalized matrix stiffness in the vicinity of the transverse dipole (ks /ks ref < 1)
was negatively correlated to the average excess length of fibers in the microenvironment of the dipole. (o) The normalized matrix
stiffness (ks/ks re) against the model parameter d/D. Panels a—o considered the transversely aligned dipole of panel a. (p) The
matrix stiffness in the direction longitudinal to the imaginary center-line of the inclusions (inset) was plotted against the model
parameter d/D. More than half (18 out of 28 instances, 95% confidence interval [13, 23]) of the data points exhibited ks /kq rer < 1,
indicating softening. In panels m—p, each marker color indicates an independent model. In panels ¢ & n—p, the black dashed line at
ks ks rer = 1 indicates no matrix softening.

from four independent matrix models consistently revealed a negative correlation between & /Ls and d/D
(Fig. 4m). A second parametric study considering variable inclusion diameter D (Supplemental Fig. S8a—k)
exhibited similar dependence between & /Ly and d /D (Supplemental Fig. S81).

Interestingly, as the average excess length of the fibers in the microenvironment of the dipole increased,
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so did the extent of softening in the matrix (Fig. 4n and Supplemental Fig. S8m), meaning that the pres-
ence of soft buckled fibers mechanically softened the matrix microenvironment. As noted in Fig. 4m and
Supplemental Fig. S8l, the parameter d/D governed the extent of fiber buckling, and these soft buckled
fibers modified the stiffness of the matrix in the microenvironment of the dipole (Fig. 4n and Supplemental
Fig. S8m). Consequently, the softening of the inclusion-matrix systems could be tuned by changing the
value of the system parameter d/D (Fig. 40 and Supplemental Fig. S8n). This observation remains valid
as long as the inter-inclusion spacing and the inclusion diameter exceeds the fiber length. Therefore, the
microenvironment over which a cell (or an analogous dipole) samples the matrix is independently tuned not
by the fiber length, but by the ratio of the inter-inclusion spacing and the inclusion diameter.

The analysis thus far depicted softening in the direction transverse to the center-line of the inclusions,
and notably the matrix fibers predominantly buckled in this direction as well (Figs. 4e,h,k and Supplemen-
tal Figs. S8d,g,j). Recalling our observations on matrices with many contracting inclusions that dipoles
oriented in all directions sensed matrix softening (Fig. 2e), we wanted to investigate how the contracted
inclusions altered the mechanics sensed by dipoles in other orientations, in particular in the orientation lon-
gitudinal to the center-line of the inclusions, where we would expect the fibers to be predominantly under
a state of tension. In this case, one would expect the matrix to stiffen in the region between the inclusions,
because tensile force chains exist along this axis (Fig. 4d,g,j). We modeled longitudinal dipoles between
the inclusions and repeated the parametric study of Fig. 40. Contrary to our expectation, results from four
independent matrices frequently showed softening (Fig. 4p). Specifically, 18 out of 28 data points (95%
confidence interval, [13,23] out of 28 data points) in Fig. 4p exhibited softening with kg /k; rer < 1.

To investigate further, we considered that buckling-induced softening would likely result from negative
(contractile) normal strain. Thus, we computed the normal strain along the dipole axis, €. We first analyzed
the case of dipoles oriented transverse to the axis connecting the inclusions, for which the normal strain was
negative, with both excess lengths and softening strongly correlated with —g; (Supplemental Fig. S9a,b).
We also compared —g| against the distance between contracting inclusions, d /D, wherein there was a clear
monotonic trend (Supplemental Fig. S9c). Next, we analyzed the surprising case of the dipole aligned along
the axis connecting the contracting inclusions, for which the stiffness ratio ks/ ks ret Was correlated to the
strain along the dipole axis €| (Supplemental Fig. S9d). Importantly, for all cases of softening (ks /ks ref < 1),
€| was negative. A negative value of € may seem unexpected but is consistent with the observation that the
contracting inclusions are able to move closer together (Supplemental Fig. S5). Finally, we computed g for
the case of many contracting inclusions (Supplemental Fig. S9e-g), observing that £ was always negative,
consistent with the fact that softening was always observed for the case of multiple contracting inclusions
with free external boundaries (Figs. 2-3).

3.4. Experimental Assessment of the Mechanics of PNIPAAm-Embedded Matrices

Next, we designed an experiment to test the model prediction that contractile inclusions lead to softening
of matrices having free boundaries. The need for free boundaries mean that experimental testing using a
rheometer, as in Fig. 1, was not possible, because gripping the matrices with the rheometer would prevent
the global contraction of the matrix. Therefore, we designed an experiment that would measure matrix
stiffness in a matrix that was free to contract. To this end, we used an indentation experiment (similar to
Ref. [54]). We cast collagen matrices embedded with PNIPAAm microspheres, used glass microspheres as
indenters, and imaged them with a confocal microscope to quantify the indentation depths (&), which were
typically in the tens of microns. Before inducing contraction of the PNIPAAm microspheres (i.e., at 22°C),
the microscale indentation depth 0 was typically = 45 um, both in the absence and presence of PNIPAAm
microspheres (e.g., Fig. 5a,b and Fig. 5c,d). Similarly, at 37°C, the indentation & for control matrices
without the PNIPAAm microspheres was near 45 um, suggesting that the matrix stiffness was unaffected by
the temperature change (Fig. Se,f), similar to our earlier macroscale observation (Fig. 1c). When heated to

12



37°C, thereby inducing contraction of the PNIPAAm microspheres, global matrix shrinking occurred with
in-plane stretch ratios of ~ 0.73 and an associated increase in fiber density (Supplemental Fig. S10). The
indentation depth 6 was larger than before matrix shrinking, typically ~ 76 um (e.g., Fig. 5g-1), indicating
the occurrence of a mechanically soft microenvironment below the indenters.

The indentation depths O resulted from the weight of the indenter alone, as there was negligible adhe-
sion between the indenters and the matrix, as verified from the obtuse contact angles between indenters and
matrix (Supplemental Fig. S11b). We further noted that in a region below the indenters, the fibrous matrix
was always densified (Supplemental Fig. S11c—e). Such densification was expected from the predictions of
a recent numerical study [55], which identified that this densification results from nonlinearity in the fibrous
matrix, and highlights that the force—displacement relationship for indentation of a fibrous matrix is strongly
different than that for a linear elastic matrix. To quantify the stiffness of the matrices, we computed the ratio
of indenter weight and indentation depth. The values of stiffness in control and PNIPAAm-embedded ma-
trices at multiple independent locations were quantified. For matrices at 22°C with and without PNIPAAm
microspheres, there was no significant difference in stiffness, indicating no effect of the PNIPAAm micro-
spheres themselves. Additionally, control matrices without microspheres that were heated to 37°C had no
significant difference in stiffness, indicating no effect of the temperature change on stiffness. Compared to
these controls, matrices with contracted PNIPAAm microspheres exhibited a statistically smaller stiffness
(ks), by factor of > 2 (Fig. 5Sm). Therefore, even though the multiple contracting microspheres increased the
local fiber density, the buckling enabled by contraction of these unrestrained matrices outweighed the local
increase in density, in turn leading to mechanical softening, confirming our model predictions.
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Figure 5: Micro-indentation experiments. (a) A representative cross-section of a control collagen matrix without the PNIPAAm
microspheres at room temperature (22°C), when indented by a spherical micro-indenter at its surface. (b) The fitted circle represents
the indenter, and its measured diameter (148 um) was used to compute its weight. The slight inclination of the surface of the matrix
(dashed yellow line) with the horizontal (0.66°) was taken into account to calculate the component of the weight perpendicular to
the matrix surface. The depth of indentation was the perpendicular indentation depth (6 = 46.2 um) from the matrix surface. (c,d)
A representative cross-section and fitted circle of a collagen matrix with the PNIPAAm microspheres at room temperature (22°C),
when these PNIPAAm microspheres did not contract. (e,f) A representative cross-section and fitted circle of a control collagen
matrix without the PNIPAAm microspheres at elevated temperature (37°C). (g-1) Representative cross-sections and fitted circles of
collagen matrices with the PNIPAAm microspheres at elevated temperature (37°C), when the PNIPA Am microspheres contracted.
(m) The values of secant stiffness (ks) measured by multiple different indenters are plotted. The values of stiffness of the control
matrices and PNIPAAm-matrices were plotted at 22°C and 37°C, and they were segregated in four groups. Notably, the matrices
with PNIPAAm microspheres at the elevated temperature (37°C) exhibited significant decrease in stiffness in contrast to the other
three groups (p = 9.7 x 10—, Kruskal-Wallis test). Markers with an identical shape and color indicate independent indenters from
one sample. The black lines represent mean values of the respective data set.
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3.5. Cells Sense and Respond to the Mechanics of PNIPAAm-Embedded Matrices

Finally, we questioned whether the reduction in matrix stiffness caused by local contraction of PNI-
PAAm microspheres could be sensed by cells. To this end, we prepared additional collagen matrices and
seeded MDA-MB-231 breast carcinoma cells onto them with the goal of observing cellular functions on both
the contracted PNIPA Am-embedded matrices and on the matrices of pure collagen, which served as controls.
Before seeding cells, PNIPAAm-embedded matrices exhibited global radial contraction by ~ 27%, and as
the micro-indentation experiments revealed, these contracted matrices were more compliant than control at
scales of tens of microns. Matrix stiffness affects the morphology of breast cancer cells [56, 57], with softer
matrices generally inducing the cells to become more rounded and less elongated. In this light, we assessed
the cellular morphology in control and contracted matrices to determine whether the cells sensed the soft
contracted matrices. The cells were more elongated in the stiff control matrices, whereas their morphology
was more rounded in the soft contracted matrices (Fig. 6a,b and Supplemental Fig. S12). We quantified
the morphology of each cell in the control and contracted matrices by calculating their feret’s diameter (the
longest cell axis) and the ratio of the square of the cell perimeter P to the cell area A. In contrast to the cells
on the control matrices, cells on the softer contracted matrices had significantly smaller feret’s diameters
(Fig. 6¢). Also, the cells on the contracted matrices were more circular with significantly smaller values of
P?/A (Fig. 6d). As it is unlikely that the change in local fiber density due to microsphere contraction caused
these effects on cell morphology (see Supplemental Note 3), these data suggest that the contraction-induced
matrix softening was sufficient for the cells to sense it.

With this evidence that the cells sensed the softening induced by the contracting PNIPAAm micro-
spheres, we further investigated whether those cells responded by producing different displacement fields
within the matrix, as the forces produced by the cells typically increase with an increase in matrix stiffness
[7-10]. To this end, we collected time-lapse images of the single cells and the matrix (Fig. 6e and Fig.
6g) and applied image correlation to matrix images separated by 48 min to quantify the cell-induced ma-
trix displacement fields. Considering that the PNIPAAm-embedded matrices were softer than the control
matrices, displacements in PNIPAAm-embedded matrices of magnitude equal to or less than those in the
stiffer control matrices would indicate smaller cell contractility in PNIPAAm-embedded matrices compared
to control. Representative results showed that the cell-induced matrix displacements appeared far smaller
in the PNIPAAm-embedded matrices compared to control (Fig. 6e-h). Considering that the cell sampled
the fibrous matrix analogously to a contracting dipole, we identified the regions in the matrix most affected
by cell forces by using the continuum mechanics solution for the displacement field produced by a dipole
to define a dumbell-shaped region within which the displacements were expected to be largest (Fig. 6e—
h). The 80th percentile of the magnitude of the matrix displacement within these regions was computed
as a measure of the cellular response in the control and PNIPAAm-embedded matrices. Compared to con-
trol matrices, the cell-induced matrix displacement was nearly a factor of three smaller in the contracted
PNIPAAm-embedded matrices (Fig. 6i). This observation, combined with the fact that the stiffness of
PNIPA Am-embedded matrices is smaller than control by a factor > 2 indicates a drastic reduction in cell-
generated forces in the PNIPAAm-embedded matrices, which further confirms cell sensing and response to
the altered matrix stiffness.

4. Discussion

While the matrix near an individual contractile cell is known to stiffen, the effect of multiple contracting
cells on the matrix stiffness at the scale of a cell has not been quantified. Here, using both modeling and
experiments of matrices with random fiber organization, we mimicked cell contraction using contracting
inclusions and quantified the effects on the stiffness of the matrix, both at the global scale and at the scale of
a cell. Upon contraction of the embedded inclusions, matrices with free boundaries consistently softened,
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Figure 6: Experiments depicting stiffness sensing and response by MDA-MB-231 cells. (a) Representative elongated morphology
of a cell in a control matrix of collagen, with no embedded PNIPAAm microspheres at 37°C. (b) Representative rounded morphol-
ogy of a cell in a PNIPAAm-embedded collagen matrix, when the embedded PNIPAAm microspheres contracted at 37°C. (c) For
many independent cells in control and PNIPA Am-matrices, the length of the longest axis (feret’s diameter) was measured. In the
contracted PNIPAAm-matrices, the cells had significantly smaller feret’s diameter (p = 8 x 10721, rank sum). (d) For many inde-
pendent cells in control and PNIPA Am-matrices, the ratio of the square of the cell perimeter (P) to the cell area (A) was computed.
In the contracted PNIPAAm-matrices, P2/A was significantly smaller (p = 4 x 10~!°, rank sum). (e) A representative image of a
cell in a control matrix of collagen, with no embedded PNIPAAm microspheres at 37°C. (f) Cell-induced displacement (|U|) of the
matrix shown in panel e. (g) A representative image of a cell in a PNIPAAm-embedded matrix of collagen at 37°C. (h) Cell-induced
displacement (|U|) of the matrix shown in panel g. (i) The 80th percentile of the magnitude of displacement |U| inside the dumbell-
shaped regions (specified regions in panels e-h) were plotted for cells on control and contracted matrices. PNIPAAm-embedded
matrices had significantly less deformation (p = 0.0076, rank sum), meaning that cellular activities (cell generated forces) were
drastically reduced due to the softening of the contracted PNIPAAm-matrices. In panels c, d, and i, dots represent independent
cells; lines indicate medians.

which was unexpected given that the contracting inclusions pull on the matrix fibers with tensile forces.
We investigated the underlying mechanism behind the softening by studying the deformations undergone
by the fibers, noting that the contracting inclusions also induced compressive strains, which led to buckling
of the majority of the fibers within the matrix. By mapping the amount of fiber buckling to the extent of
softening, we found that a greater extent of fiber buckling resulted in stronger softening. Lastly, we verified
that this buckling-induced matrix softening was sufficient for cells to sense and respond with less elongated
morphology and dramatically reduced force generation on the soft PNIPAAm-embedded matrices.

Prior work on the stiffness of collagen matrices typically used boundary conditions different than those
in our study. Perhaps the most common are the boundary conditions of the commercial rheometer, which
applies shear while simultaneously imposing additional constraints on the height and diameter of the ma-
trices. Our rheometer experiments imposed these constraints with the additional condition of contracting
inclusions, which produced local tensile forces within the matrix, thereby causing stiffening (Fig. 1). Our
observation of stiffening induced by tensile forces is conceptually similar to observations of prior studies in
which tensile forces were generated by uniaxial pretension [35, 37, 41] or via cell contraction [11, 12]. It is
important to note that our experiments differed fundamentally from recent studies that introduced inclusions
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in fibrous matrices and observed stiffening under uniaxial global compression [58, 59], because our study
used inclusions at a lower concentration that contracted rather than being inert. Our findings are also distinct
from the rheometer experiments showing that uniaxial global compression of a fibrous matrix leads to soft-
ening in shear [35, 37]. Although our simulations and experiments showed softening as well, they differed
from the prior rheometer experiments, because the prior experiments applied only compressive forces to the
matrix when observing softening. In our study, the contracting inclusions produced both tension and com-
pression. Although tension would be expected to lead to strain stiffening, compression-induced buckling
outweighed effects of stiffening for matrices with free boundaries, as evidenced by the matrix softening in
both our model and experiments.

In both our modeling and experiments, the softening was observed when the external boundaries were
free, allowing the matrix to shrink as a result of the contracting inclusions. Similar to our simulations and
experiments, numerous prior experiments observing contraction of cell-embedded matrices used matrices
with free boundaries, in which cell contraction caused global matrix shrinking [2, 20, 21]. Our findings
would suggest that in the common experiment quantifying contraction of cell-embedded matrices, the stiff-
ness decreases during contraction. Beyond these experiments, we expect our findings to apply to numerous
other scenarios wherein the matrix is able to contract. In considering other applications of our findings,
it is important to emphasize that most systems have boundaries that are neither fully free nor fully fixed
but rather somewhere in between. Following our findings that the softening results from buckling which
in turn results from contractile (negative) strain, our findings suggest softening would occur whenever the
embedded inclusions (or cells) cause the matrix to shrink.

Our study elucidated that the buckled fibers played the pivotal role in softening the contracted PNIPAAm-
embedded matrices at the scale of a cell. Over the last decade, fiber buckling has been found to have im-
portant effects on other mechanical phenomena. For example, buckling induced by the contractile forces
of a cell dominantly contribute to long range transmission of cell-induced displacements within the matrix
[22, 31, 50, 60, 61]. Interestingly, in long range displacement propagation, effects of fiber buckling super-
sede those of strain stiffening, which was initially thought to be the key contributor [62] and later found to
be insufficient [63]. Fiber buckling also mediates a severe form of nonlinearity in the matrix that induces
instabilities at the scale of the fibers leading to strong local densification, akin to a phase transition [5, 28].
Direct evidence for fiber buckling has been obtained from images in matrices under global uniaxial compres-
sion [59, 64], global shear [65], and local contraction of a single inclusion [22]. Here, substantial buckling
occurred in a system with many contracting inclusions, which is interesting, given that the multiple inclu-
sions supported tensile force chains connecting them, whereas buckling is an instability that occurs under
compression. Our results pointed to a new role of fiber buckling, wherein the multiple contracting inclusions
buckled the majority of fibers in the matrix. We directly related fiber buckling to softening in the 2D model
by quantifying excess lengths as an indicator for buckling and showing that they correlated strongly with the
amount of softening. The model predictions were confirmed by experiments, though the extent of softening
in the experiments was less than in the 2D model (see Supplemental Note 1 for further discussion). In sum-
mary, the effects of buckling of fibers under compression outweighed the effects of stiffening of fibers under
tension, causing softening in all directions. In future work, it would be interesting to study the effects of
buckling in more complicated systems, such as composites of collagen fibers and hyaluronic acid, wherein
fiber buckling is reduced [28].

Prior studies showed that individual contractile cells can locally pull on the matrix fibers, stiffening the
matrix at scales of tens of microns. Experiments have measured stiffening near contracting cells in fibrous
matrices to be as large as a factor of 10 [13—15]. However, a few recent nanoindentation and microrheome-
try experiments observed softening of matrices containing multiple contracting cells [16—18, 66], which is
an apparent contradiction. The common resolution for this contradiction was to assume that the softening
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was a consequence of matrix degradation due to cell-secreted metalloproteinases [17, 18]. It is important to
identify other potential explanations for softening, however, because clinical trials using metalloproteinase
inhibitors in the tumor microenvironment have so far been ineffective [67-69]. Our PNIPAAm-embedded
matrices with contracting PNIPAAm microspheres mimicked the forces in these systems and exhibited sim-
ilar matrix softening at cellular length scales with no chemical degradation present. Together, our exper-
iments and simulations show that fiber buckling induced by the contractile forces of a cell is a potential
mechanics-based explanation for the softening.

Our finding of contraction-induced softening raises new questions for investigation in future research.
As an example, in wound healing, inflammatory response activates myofibroblast contraction and secretion
of new matrix, but overly active myofibroblasts are undesirable as they create stiff fibrotic scars [70]. As
myofibroblast activation is correlated to the matrix stiffness [71], it could be desirable for there to be matrix
softening to suppress excessive myofibroblast activation, thereby minimizing excessive matrix production
and contraction, and reducing the likelihood of scar formation. It would be interesting to determine whether
the cell-induced softening found in our study plays a role in achieving homeostatic conditions following
wounding. If cell-induced matrix softening has such an effect, a subsequent question is why such a mecha-
nism is ineffective in other situations, such as the tumor microenvironment or progression of fibrotic disease,
wherein it is commonly observed that the matrix stiffens rather than softens. These questions, which are en-
abled by our findings of contraction-induced softening, provide insightful new directions for investigation.
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Figure S1. Simulations on a second independent matrix model with a group of contracting inclusions. (a)
The undeformed state of the matrix. The inclusions had a diameter of D = 2L¢ and were randomly embedded
inside the matrix at an average inter-inclusion spacing of ~ 1.5Ls. (b) After inclusions contracted by 40%,
force transmission is mapped by force chains constituting the top 20% highly stretched fibers in the matrix
(red). These force chains emanated radially from the periphery of the inclusions. (c) The fibers of the
deformed matrix are color coded based on their values of normalized excess length (& /L¢). The contracting
dipole (black line in the inter-inclusion space) registers the stiffness of the matrix. (d) Enlarged view of the
dipole with the matrix fibers in its close vicinity before (I) and after (II) contraction of the inclusions. In I,
the fibers are highly buckled with large excess lengths. The fibers constituting the microenvironment of the
dipole were identified using the technique described in Figs. 3 & 4. (e, f) A differently aligned dipole was
considered in the matrix (e) and the excess lengths of fibers in the dipole’s microenvironment were mapped
(f) before and after the contraction of inclusions, similar to panels ¢ and d.
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Figure S2. Softening in fibrous matrix due to contracting dipoles. (a) Uncontracted matrix with randomly
embedded dipoles instead of circular inclusions. The central dipole highlighted in blue measured the stiff-
ness of the uncontracted matrix (ks rer). (b) Contracted matrix due to the axial contraction of the embedded
dipoles. The dipoles were axially contracted by 40%. The central dipole highlighted in blue measured the
stiffness of the contracted matrix (ks). (c) The ratios ks /k; rer for differently aligned dipoles in six indepen-
dent matrices were consistently less than one, indicating softening in the matrix in all directions, similar to
the results of the inclusion-matrix system shown in Fig. 2. (d) Scatter plot of normalized stiffness (ks /kg rer)
sensed by each dipole against average excess length (& /Ly) in the vicinity of that dipole. The correlation
between the reduction in matrix stiffness and excess lengths was statistically significant (p = 0.03, Pearson).
In panels ¢ and d, each marker type indicates a dipole from an independent fiber network model.
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Figure S3. Effect of contracting inclusions on matrix softening in simple shear. (a) Matrix with uncon-
tracted inclusions subjected to global simple shear ¥ = 0.5%. The small strain linear shear modulus of the
uncontracted matrix was defined as G;. The simple shear boundary condition was applied to the nodes at
the top and bottom of the matrix (highlighted in blue). (b) Matrix with contracted inclusions subjected to
global simple shear ¥ = 0.5%. The simulation was performed in two steps. In the first step, the inclusions
contracted with free boundary conditions allowing the matrix to globally contract from its reference state
(dashed rectangle shows the initial size of the matrix). In the second step, the positions of the nodes at the
top and bottom boundaries (highlighted in blue) were used as the reference state for imposing simple shear.
The small strain linear shear modulus of the contracted matrix was defined as G3. (c) The ratios G3/G| for
six independent matrices were less than one indicating global softening of the contracted matrices.
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Figure S4. Effect of contracting inclusions in matrices with fixed boundaries. (a) Image of an uncontracted
matrix with multiple inclusions, with the outer boundaries of the matrix free. The dipole used to measure
stiffness is marked by the black solid line. (b) Excess lengths of the fibers in the close vicinity of the dipole
in the uncontracted matrix of panel a. The fibers were straight before the contraction of inclusions. (c)
Image of the matrix from panel a after contraction of the inclusions. The matrix was allowed to contract
without constraining the outer boundaries. The dipole used to measure stiffness is marked by the black solid
line. (d) The fibers near the dipole of the contracted matrix of panel ¢ showed strong buckling, as indicated
by large values of the normalized fiber excess lengths (§/L¢). (e) Image of an uncontracted matrix with
multiple inclusions, with the nodes near the outer boundaries of the matrix fixed (highlighted in blue). The
dipole used to measure stiffness is marked by the black solid line. (f) Excess lengths of the fibers near the
dipole of the uncontracted matrix of panel e. (g) Image of the matrix from panel e after contraction of the
inclusions. As in panel e, nodes at the outer boundaries (highlighted in blue) were fixed. The dipole used
to measure stiffness is marked by the black solid line. (h) Excess lengths of the fibers near the dipole of
the deformed matrix of panel g. The fibers showed modest buckling compared to panel d, indicating the
boundaries largely suppressed buckling. (i) For differently aligned dipoles and for six independent matrices
with fixed boundaries, the ratio of the values of stiffness of the matrix sensed by the dipole after and before
contraction of inclusions (ks/k rr) Was recorded. Each marker indicates a different dipole; each marker
shape indicates a different matrix.
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Figure S5. Subtle intricacies in modeling a matrix with contracting inclusions. (a) Deformed matrix with
two contracted inclusions, where the inclusions were elastic bodies subjected to thermal radial contraction
of 70%. In this system, both force equilibrium of the inclusions and kinematic compatibility of the matrix
are ensured. The matrix had free outer boundaries. (b) Zoomed-in view of the deformed matrix of panel a.
The separation distance between the inclusions, d;, decreased as the inclusions thermally contracted. (c, d)
Zoomed-in views of the deformed configurations of two other random matrices, with similar values of the
shortened separation distance d; as that of panel b. In panels a—d, the inclusions were subjected to thermal
boundary conditions. (e) Deformed matrix with two contracted inclusions, where the nodes at the boundary
of each inclusion were subjected to inward radial displacement to impose a radial contraction of 70%. In
this system, force equilibrium of the inclusions is not required. The matrix had free outer boundaries. (f)
Zoomed-in view of the deformed matrix of panel e. The fibers were strongly densified and aligned between
the inclusions. Note that the separation distance between the inclusions (d>) did not decrease as the inclu-
sions contracted, i.e., d» > d,. (g, h) Zoomed-in views of the deformed configurations of two other random
matrices, similarly depicting densification between the inclusions, as in panel f. In panels e-h, the inclu-
sions were subjected to radial displacement boundary conditions. (i) For four independent matrix models,
the normal strains were quantified in the region between the contracting inclusions in directions parallel
to and transverse to the axis connecting the inclusions, &, and &,,, respectively. When the inclusions were
thermally contracted, &, was close to zero (occasionally negative) and €,, had small negative values. In con-
trast, when the inclusions were subjected to displacement boundary conditions, &, > 0 and &,, was strongly
negative, indicating strong fiber alignment and densification. Each marker shape indicates an independent
fiber network model.
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Figure S6. Correlation between curvature and excess length of fibers in a deformed matrix. (a) A represen-
tative deformed matrix with two contracted inclusions. (b) The values of the normalized curvature of all of
the fibers in the matrix were plotted against their normalized excess lengths (& /L), with the data exhibiting
a clear positive correlation.
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Figure S7. Effect of magnitude of radial contraction on softening. Models were embedded with two in-
clusions of diameter D = 2L¢, separated by inter-inclusion spacing d, with d/D = 4.5. Nominal radial
contractile strain of the inclusions, &, ranged from 8% to 48%. (a) Image showing the deformed matrix
where the inclusions were radially contracted by & = 8%. The central dipole of length 2L is perpendicular
to the imaginary line joining the centers of the inclusions. (b) Enlarged view of the central dipole of panel
a with fibers in its vicinity color coded by the values of their excess lengths. (c) Image showing the de-
formed matrix where the inclusions were radially contracted by & = 48%. The central dipole of length 2L¢
is perpendicular to the imaginary line joining the centers of the inclusions. (d) Enlarged view of the central
dipole of panel ¢ with fibers in its vicinity color coded by the values of their excess lengths. A comparison
of panels b and d indicates considerable increase in fiber buckling in panel d due to the increase in the radial



contraction of the inclusions from & = 8% to & = 48%. (e) Plot showing the dependence of the average ex-
cess length of fibers (§ /L) in the microenvironment of the dipole on the radial contraction of the inclusions
&. (f) The normalized stiffness of the matrix in the vicinity of the transverse dipole (ks /ksrer) decreased
approximately linearly with the radial contraction of the inclusions €. In panels e and f, each marker color
indicates an independent fiber network model.
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Figure S8. Simulations on matrix models containing two contracting inclusions of varying diameter. (a) A
representative matrix model containing two inclusions of diameter D, separated by d = 17L¢. The central
dipole of length 2Ly is transverse to the imaginary line joining the centers of the inclusions. The inclusions



were radially contracted by 40%. (b) Enlarged view of the central dipole, which contracts to sense the
stiffness of the matrix. Fibers shown pass through the circular regions of radius 0.25L¢ centered at the fiber’s
end points and define the microenvironment of the dipole. (c) A representative deformed state of the matrix
with inclusion diameter D = 2L, with force chains highlighted red. These force chains consisted of the
5% most stretched fibers, and they emanated radially from the periphery of the contracted inclusions. (d)
A representative deformed state of the matrix with inclusion diameter D = 2Ly, with the 5% most buckled
fibers highlighted blue. Buckled fibers primarily remained circumferential to the contracted inclusions. (e)
The dipole of the system described in panels ¢ and d. The matrix fibers in its microenvironment are colored
based on the values of their excess lengths. (f, g, h) A representative deformed state of the matrix with
inclusion diameter D = 4L¢, showing 5% most stretched fibers (f), the 5% most buckled fibers (g), and the
zoomed-in view of the dipole with its microenvironment (h), similar to panels c—e. (i, j, k) A representative
deformed state of the matrix with inclusion diameter D = 6L¢, showing the 5% most stretched fibers (i), the
5% most buckled fibers (j), and the zoomed-in view of the dipole with its microenvironment (k), similar to
panels c—e. (1) Plot showing the dependence of the average excess length of fibers in the microenvironment
of the dipole to the model parameter d/D. (m) Normalized stiffness of the matrix (ks/ks ref) in the vicinity of
transversely-oriented dipoles after contraction of the inclusions are always < 1 indicating softening. These
data are also negatively correlated to the average excess length of fibers in the microenvironment of the
dipole. (n) As a consequence of relations in panels 1 and m, the normalized stiffness of the matrix (ks /ks ref)
monotonically increases with the model parameter d/D. In panels I-n, each marker color indicates an
independent fiber network model.
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Figure S9. The extent of fiber buckling and softening is related to the the normal strain parallel to the
dipole. (a) Plot showing dependence of average excess lengths of fibers in the microenvironment of each
dipole to the contractile normal strain in the matrix parallel to the dipole (—¢). (b) Dependence of the
normalized stiffness of the matrix (k/k; rer) in the vicinity of each dipole to the contractile normal strain in
the matrix parallel to the dipole (—¢). (c) Contractile normal strain (—g)) plotted against the dimensionless
inter-inclusion spacing d/D. Panels a—c correspond to models of matrices with two contracting inclusions
and transversely aligned dipoles. (d) For the dipoles aligned parallel to the center line joining the two



contracting inclusions (inset), the plot shows the dependence of the normalized matrix stiffness (ks /k; ref) in
the vicinity of each dipole to the normal strain in the matrix parallel to the dipole (g)). Note that the matrix
softens when €| < 0 and stiffens when & > 0. The stochasticity leading to the frequent (and surprising)
occurrence of softening in the matrix as described in Fig. 4p can be explained by the sign of the normal
strain parallel to the dipole, g|. In panels a-d, each marker indicates an independent dipole, and each color
indicates an independent fiber network model. (e) The matrix with many contracting inclusions considered
in our study, where differently aligned dipoles (highlighted blue) measured the stiffness of the matrix. (f)
For multi-inclusion matrices, as in panel e, plot of excess lengths of fibers in the microenvironment of each
dipole against the contractile normal strain in the matrix parallel to the dipole (—g)). (g) For multi-inclusion
matrices, plot of the stiffness ratio (ks /k; ref) against g The correlations in panels f and g are weaker than a
and b, which likely results from the complexity of the multi-inclusion matrices. Despite that the correlations
were less strong in panels f and g, the broad observation that negative strain occurred along with fiber
buckling and softening remained consistent. In panels f—g, each marker indicates a dipole at a different
location, and each color indicates an independent fiber network model.
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Figure S10. Representative collagen matrix with embedded PNIPAAm microspheres at different temper-
atures. (a) The disk-shaped collagen matrix with embedded PNIPAAm microspheres at room temperature
(22°C), before contraction of the microspheres. The periphery of the matrix is highlighted by a green dashed
circle. (b) When the temperature of the matrix was elevated to 37°C, the embedded PNIPA Am microspheres
contracted triggering a global radial contraction of the matrix by 27%. The periphery of the contracted ma-
trix is highlighted by a yellow dashed circle. (c) Representative confocal microscope image of matrix fibers
at the top surface of the matrix shown in panel a. (d) Representative confocal microscope image of matrix
fibers at the top surface of the contracted matrix of panel b. The spatial density of fibers is higher in panel d
compared to panel c.
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Figure S11. Some features of the microscopic indentation tests on collagen matrices. (a) The experimental
setup of the sample matrix on the upright confocal microscope equipped with a 25x water immersion
objective. Note that the surface of the collagen matrix had been indented with a spherical indenter and
the matrix remained entirely submerged inside 1x PBS, while the lens of the objective was dipped inside
the PBS above the indenter. (b) The obtuse contact angle (¢ > 90°) between the surfaces of the collagen
matrix and the spherical indenter depicting minimal adhesion between them. Contact angle ¢ is the angle
between the tangents drawn on the surface of the indenter (solid line) and the matrix (dashed line) at their
point of contact. (c) The xz-section of the surface of the matrix with the indenter. One x—y image plane
passing through the matrix just below the indenter was identified (A—A). (d) The matrix image at plane A—A
labeled in panel c. There exists a notable densification in the fibrous matrix just below the indenter. (e)
The fluorescence intensities of the collagen fibers (of panel d) were spatially averaged over small subsets
(32 x 32 pixels or 16 x 16 um?) across the image plane as an indicator of the local fiber density. The fiber
density is maximum just below the indenter. The mapped average intensity values were normalized (/;,orm)
by the average intensity of the periphery of the matrix far away from the indenter; that peripheral region is
highlighted by the dashed yellow boundaries near the edges of the image in panel d.
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Figure S12. Additional representative images of MDA-MB-231 cells in the experiments depicting stiffness
sensing by cells. (a) Elongated morphology of several independent cells in the control matrix of collagen,



with no embedded PNIPAAm microspheres at 37°C. (b) Rounded morphology of several independent cells
in the PNIPAAm-embedded collagen matrix, when the embedded PNIPAAm microspheres contracted at
37°C, thereby causing matrix softening.

Supplemental Note 1: Comparison between Two and Three Dimensions

Two-dimensional (2D) fiber network models are numerically efficient and they can qualitatively match
the nonlinear mechanics of three-dimensional (3D) biopolymer matrices made of collagen and fibrin. Prior
studies [1, 2] documented that 2D models can capture many salient features of global nonlinearity of 3D ma-
trices. Firstly, 2D models exhibit similar proportionality of the tangent modulus to the applied engineering
stress as observed in 3D matrices. Secondly, the phenomenon of strain-induced matrix stiffening exhibited
by 3D matrices is also well mimicked in 2D models. In addition to capturing global strain stiffening, 2D
models are also able to simulate the evolution of the local microstructure of a deforming 3D matrix. For
example, in a deforming matrix, fiber buckling has a large effect on the nonlinear mechanical response, and
as prior studies have noted, 2D models can simulate effects of fiber buckling, such as long range propagation
of displacements [3-5].

In this light, we used a 2D model in this study to make conceptually new predictions, followed by testing
those predictions experimentally. The 2D simulations and 3D experiments do not give an exact quantitative
match, however, which we describe further here. In the 2D simulations, the matrix globally contracted with
engineering strains of ~ 10% in both the x and y directions (Fig. 2b). Under these conditions, there was
substantial softening in the matrix, by a factor of nearly 5 on average (Fig. 2e). In the experiments with
contracted PNIPAAm-embedded matrices, the matrices exhibited higher global radial contraction (radial
strain of ~ 27%, Supplemental Fig. S10b), but the extent of softening was a factor of ~ 2 (Fig. 5m),
indicating a lesser extent of softening as compared to the 2D simulations. The reduction in softening in 3D
compared to 2D may be the result of less buckling in 3D matrices compared to 2D, which may come from
the fact that displacements due to contracting inclusion decay faster over space in 3D elasticity as compared
to 2D elasticity. Despite these differences between the 2D simulations and 3D experiments, the general
trends, namely contracting inclusions causing softening due to fiber buckling, were consistent in two and
three dimensions.

Supplemental Note 2: Comparison to Models Showing Fiber Alignment into
Dense Bands

Prior studies have shown that, between pairs of contracting cells, dense bands of aligned fibers often
form [3, 6-10]. These dense bands were not present in our model or experimental system, which may
seem surprising, given the large number of prior studies observing them. An important difference between
our modeling approach and that of prior studies is exactly how the contraction was simulated. Our model
simulated the inclusions as an elastic body undergoing thermal contraction while enforcing both force equi-
librium and kinematic compatibility in the system. By contrast, many prior studies implemented contraction
of inclusions by moving the nodes on the boundary of each inclusion [3, 11-14], which enforces kinematic
compatibility, but the inclusion itself is not necessarily in a state of equilibrium.

To demonstrate the effects of the different implementations, we used the system of two contracting inclu-
sions and compared the two methods of imposing contraction, namely a thermal strain and a displacement
boundary condition. External boundaries of the fiber network were left free. Results showed that under the
thermal boundary condition, the separation distance between contracting inclusions (which we refer to as
d; for the case of the thermal boundary condition) decreased, which was required to maintain force equilib-
rium within each contracting inclusion. By contrast, under the nodal displacement boundary condition, force
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equilibrium of the contracting inclusions is not required, and the imposed boundary conditions artificially
inhibit the distance between inclusions from decreasing. Consistent with this reasoning, when the nodal dis-
placement boundary condition was used with the exact same fiber network, the separation distance (which
we refer to as d, for the displacement boundary condition) did not decrease. This observation, d; < d,, was
consistent in multiple different fiber networks (Supplemental Fig. S5a-h). Additionally, for the case of the
displacement boundary condition, the fibers were strongly densified and aligned between the contracting
inclusions (Supplemental Fig. S5e-h). To quantify the changes in distance d; and d; and the fiber densifica-
tion, we computed the normal strains in the region between the contracting inclusions in directions parallel
to and transverse to the axis connecting the inclusions, &, and &,,, respectively (Supplemental Fig. S5i).
For the thermal boundary condition, the parallel strain &, was near zero and sometimes negative, consistent
with the inclusions moving closer together, whereas for the displacement boundary condition, &, was no-
tably larger. The transverse strain €,, was also notably different between the two cases, as it was strongly
negative for the displacement boundary condition and less negative for the thermal boundary condition. The
strongly negative strain for the displacement boundary condition is consistent with a substantial increase in
local density, which quantitatively confirms that dense bands of aligned fibers formed between contracting
inclusions in the displacement boundary condition case.

In summary, our model is able to capture the formation of dense fiber bands observed in prior models
when using the displacement boundary condition, as done by the prior models. However, we do not expect
substantial band formation to occur in a real material at these strains in a system with unconstrained external
boundaries, because the more accurate thermal boundary condition predicts no band formation at this level
of strain. For bands to form, a greater magnitude of contractile strain would be necessary.

Supplemental Note 3: Cell Morphology is Likely Invariant to the Collagen
Density

While the results described in Fig. 6a—d would seem to suggest that the cell morphology is affected by
the softening of the matrix due to the contractile PNIPAAm microspheres, it is important to also consider
another factor, which is that the contracted matrices also had a higher spatial density of fibers (Supplemental
Fig. S10). The relationship between cellular morphology and fiber density is complicated, as it is biphasic,
with the greatest cellular elongation occurring at a collagen concentration of ~ 1 mg/mL, and elongation di-
minishing with collagen concentration for concentrations in the range of 1-2 mg/mL, and elongation almost
invariant to collagen concentration for concentrations above 2 mg/mL [15-17]. As the collagen matrices we
prepared had a concentration of 3 mg/mL and the contraction caused by the PNIPAAm microspheres further
increased the concentration, our experiments were in the regime wherein collagen concentration would not
be expected to affect cell morphology, indicating that the different fiber concentrations in this experiment
were unlikely to have altered the cellular morphology. Therefore, the changes in cellular morphology in our
contracted matrices were most likely tuned by the decrease in the stiffness of the matrix.

References

[1] A.J. Licup, S. Miinster, A. Sharma, M. Sheinman, L. M. Jawerth, B. Fabry, D. A. Weitz, F. C. MacK-
intosh, Stress controls the mechanics of collagen networks, P Natl Acad Sci USA 112 (31) (2015)
9573-9578.

[2] M. Sarkar, J. Notbohm, Evolution of force chains explains the onset of strain stiffening in fiber net-
works, J Appl Mech 89 (11) (2022) 111008.

[3] J. Notbohm, A. Lesman, P. Rosakis, D. A. Tirrell, G. Ravichandran, Microbuckling of fibrin provides
a mechanism for cell mechanosensing, J R Soc Interface 12 (108) (2015) 20150320.

11



[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

P. Grimmer, J. Notbohm, Displacement propagation in fibrous networks due to local contraction, J
Biomech Eng—T ASME 140 (4) (2018) 041011.

S. Goren, Y. Koren, X. Xu, A. Lesman, Elastic anisotropy governs the range of cell-induced displace-
ments, Biophys J 118 (5) (2020) 1152-1164.

D. Stopak, A. K. Harris, Connective tissue morphogenesis by fibroblast traction: I. Tissue culture
observations, Dev Biol 90 (2) (1982) 383-398.

T. Korff, H. G. Augustin, Tensional forces in fibrillar extracellular matrices control directional capillary
sprouting, J Cell Sci 112 (19) (1999) 3249-3258.

D. Vader, A. Kabla, D. Weitz, L. Mahadevan, Strain-induced alignment in collagen gels, Plos One
4 (6) (2009) €5902.

Q. Shi, R. P. Ghosh, H. Engelke, C. H. Rycroft, L. Cassereau, J. A. Sethian, V. M. Weaver, J. T.
Liphardt, Rapid disorganization of mechanically interacting systems of mammary acini, P Natl Acad
Sci USA 111 (2) (2014) 658-663.

S. Natan, Y. Koren, O. Shelah, S. Goren, A. Lesman, Long-range mechanical coupling of cells in 3d
fibrin gels, Mol Biol Cell 31 (14) (2020) 1474-1485.

D. Humphries, J. Grogan, E. Gaffney, Mechanical cell-cell communication in fibrous networks: the
importance of network geometry, Bull Math Biol 79 (2017) 498-524.

R. S. Sopher, H. Tokash, S. Natan, M. Sharabi, O. Shelah, O. Tchaicheeyan, A. Lesman, Nonlinear
elasticity of the ecm fibers facilitates efficient intercellular communication, Biophys J 115 (7) (2018)
1357-1370.

E. Ban, J. M. Franklin, S. Nam, L. R. Smith, H. Wang, R. G. Wells, O. Chaudhuri, J. T. Liphardt, V. B.
Shenoy, Mechanisms of plastic deformation in collagen networks induced by cellular forces, Biophys
J 114 (2) (2018) 450—461.

E. Ban, H. Wang, J. M. Franklin, J. T. Liphardt, P. A. Janmey, V. B. Shenoy, Strong triaxial coupling
and anomalous poisson effect in collagen networks, P Natl Acad Sci USA 116 (14) (2019) 6790-6799.

Y. Wu, M. R. Zanotelli, J. Zhang, C. A. Reinhart-King, Matrix-driven changes in metabolism support
cytoskeletal activity to promote cell migration, Biophys J 120 (9) (2021) 1705-1717.

M. Baday, O. Ercal, A. Z. Sahan, A. Sahan, B. Ercal, H. Inan, U. Demirci, Density based characteri-
zation of mechanical cues on cancer cells using magnetic levitation, Adv Healthc Mater § (10) (2019)
1801517.

D. L. Matera, W. Y. Wang, M. R. Smith, A. Shikanov, B. M. Baker, Fiber density modulates cell
spreading in 3D interstitial matrix mimetics, ACS Biomater Sci Eng 5 (6) (2019) 2965-2975.

12



	maintext_revised_3
	Introduction
	Methods
	Preparation of Collagen Matrix with Embedded Contracting Microspheres
	Rheometry of the Bulk Matrix
	Experiments Quantifying the Mechanics of Collagen Matrices at Scales of a Cell
	Matrix Preparation
	Microscopic Indentation
	Experiments with Cells

	Computational Modeling
	Finite Element Model of Inclusion-Matrix Systems
	Boundary Conditions and Finite Element Simulations

	Statistical analysis

	Results
	PNIPAAm–Matrix System Behaves Analogously to the Cell–Matrix System
	Simulations on Fiber Matrix with Contracting Inclusions
	Simulations on Fiber Matrix with Two Contracting Inclusions
	Experimental Assessment of the Mechanics of PNIPAAm-Embedded Matrices
	Cells Sense and Respond to the Mechanics of PNIPAAm-Embedded Matrices

	Discussion

	supplemental

