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ABSTRACT
Blind face restoration aims to recover high-quality face images from
low-quality ones with complex and unknown degradation. Existing
approaches have achieved promising performance by leveraging
pre-trained dictionaries or generative priors. However, these meth-
odsmay fail to exploit the full potential of degraded inputs and facial
identity features due to complex degradation. To address this issue,
we propose a novel method that explores the correlation of degraded
spatial identity features by learning a general representation using
memory network. Specifically, our approach enhances degraded
features with more identity by leveraging similar facial features re-
trieved from memory network. We also propose a fusion approach
that fuses memorized spatial features with GAN prior features via
affine transformation and blending fusion to improve fidelity and
realism. Additionally, the memory network is updated online in an
unsupervised manner along with other modules, which obviates
the requirement for pre-training. Experimental results on synthetic
and popular real-world datasets demonstrate the effectiveness of
our proposed method, which achieves at least comparable and often
better performance than other state-of-the-art approaches.
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• Computing methodologies→ Image processing; Reconstruc-
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1 INTRODUCTION
Blind face restoration (BFR) aims to recover high-quality (HQ) face
images from low-quality (LQ) ones that are degraded by various
factors, such as blur [30], low-resolution [4, 21, 25], compression ar-
tifacts [5, 24], and noise [6], among others. To tackle the challenge of
BFR in real-world scenarios, many existing works [2, 19, 26, 32, 38]
are trained on synthetic datasets featuring various degradations. To
restore HQ face images with realistic details from degraded inputs,
several facial-related priors have been adopted, such as facial pars-
ing maps [3], facial component heatmaps [39], and 2D/3D facial
landmarks [4, 11, 11]. Additionally, pre-trained dictionaries or code-
books [19, 34, 41, 42] have been leveraged to enhance the restoration
quality. DFDNet [19] proposed to learn multi-scale dictionaries of
eyes, noses, and mouths for blind face restoration. By combining
degraded spatial identity features with previously learned dictio-
naries using Spatial Feature Transformer (SFT) [14, 33] modules,
promising results have been achieved.

Recently, GAN prior based methods utilizing pre-trained Gener-
ative Adversarial Networks (GANs) have gained attention in the
blind face restoration (BFR) or large-scale face super-resolution
task, with notable works such as PULSE [23], GPEN [38], GFP-
GAN [32], and GLEAN [2]. These methods leverage a pre-trained
StyleGAN2 network [18] to generate high-quality facial details
and achieve remarkable performance. PULSE [23] adopts a gradi-
ent descent algorithm to find the closest latent code of the high-
resolution face image to the given low-resolution input image, but
it is time-consuming and produces restored images with limited
fidelity. Following GAN prior based methods [2, 32, 38], an encoder
network with a multi-scale structure is used to map the degraded
facial image to a latent code, which is then decoded by StyleGAN
to produce a high-quality face image with fast inference time. To
preserve the identity of the restored image, these methods often
concatenate or fuse the degraded spatial identity features with the
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GAN prior features. TFRGAN [37] proposed to leverage the tex-
ture information to facilitate the restoration of extremely degraded
facial images by using the text and image encoders.

However, the degraded spatial identity features often contain
limited identity information of the corresponding high-quality im-
ages due to complex degradation. Simply relying on these features
that contain substantial degradation but less original identity in-
formation can compromise the final reconstruction performance,
resulting in undesirable artifacts and insufficient texture details.
Moreover, the strong correlation between these degraded spatial
identity features has long been overlooked. Furthermore, the fusion
of these spatial identity features with decoded GAN priors features
is insufficient, resulting in unfaithful facial details and poor fidelity
in the restored images.

To address these issues, we propose a method that learns a gen-
eral representation of degraded spatial identity features by extra
memory network to explore the correlation between these features.
The memory network is designed to store a comprehensive repre-
sentation of degraded spatial identity features, including specific
facial components such as eyes and noses, as well as auxiliary com-
ponents such as skin and hair texture at various scales. The memory
network aims to enhance the degraded spatial identity features ex-
tracted from encoding network, which may contain limited identity
information due to complex degradation effects. To achieve high
fidelity and realness simultaneously, we propose a coarse-to-fine
fusion of the decoded GAN prior features with the memorized spa-
tial features using affine transformation and blending fusion. Our
approach aims to fully utilize the information from both degraded
spatial identity features and GAN prior features for better restora-
tion performance. The main contributions of our proposed method
are summarized as follows.
• We propose a novel approach for blind face restoration that
leverages a multi-scale memory network to explore the cor-
relation of degraded spatial identity features extracted from
encoding modules. These degraded features can be enhanced
with more identity and facial details by adaptively fusing sim-
ilar facial representations retrieved from the learnedmemory
network. Importantly, our proposed memory network is up-
dated online in an unsupervised manner, obviating the need
for pre-training memory network.
• To improve fidelity and realness, we also introduce a coarse-
to-fine fusion strategy that merges the decoded GAN prior
features with memorized spatial identity features via affine
transformation and blending fusion.
• Experimental results on a synthetic dataset and three pop-
ular real-world datasets show that our proposed approach
achieves comparable or better performance than other state-
of-the-art methods for blind face restoration tasks.

2 RELATED WORKS
2.1 Face Restoration.
Since the face images belong to a very small subspace compared
to natural images, face restoration solutions can leverage many
specific facial priors such as geometry facial priors [4, 11, 11] and
pre-trained dictionaries or networks [19, 32, 34]. Face geometry
priors include but are not limited to 2D/3D facial landmark [4,

43], facial parsing maps [3], and facial component heatmaps [39].
Due to the geometry information having to be estimated from
degraded face images, the accuracy could be damaged. Besides,
geometry only provided position guidance for restoration while no
texture information was provided for a realistic reconstruction. A
pre-trained facial dictionaries [19, 34, 41, 42] or networks [2, 32, 38]
contain abundant details, including facial components and texture.
However, the dictionaries or networks are usually pre-trained on
HQ face images, and the decoded features from these dictionaries
or networks own less fidelity. Differently from motioned methods,
we propose a new storage module called memory, which explores
the correlation of encoded features and enhances them with less
degradation and more details.

2.2 GAN Priors.
Since StyleGAN2 [18] and the previous version [16] have achieved
extraordinary generating results with indistinguishable details com-
pared to real images. GAN inversion-based approaches [1, 8, 28, 44]
have been proposed to find the most suitable latent codes for given
images. More recently, GAN inversion technology has been ex-
ploited in face restoration since a pre-trained styleGAN2 has a
strong ability for face generation. PULSE [23] proposed to find
the latent code of an HQ face image from a given LQ one using a
gradient descent algorithm, which is costly and time-consuming.
Other GAN prior-based methods [2, 32, 38] use a multi-scale net-
work to encode degraded facial images into latent codes that will be
decoded by StyleGAN next. For fidelity, these methods [2, 32, 38]
usually simply fused the decoded GAN prior features with the de-
graded spatial identity features that usually contain a degree of
degradation [2, 38]. Deteriorated identity features would damage
the final restoration performance, causing unfaithful facial details
or poor fidelity. To address this issue, we propose multi-scale mem-
ory network to explore the correlation of degraded spatial identity
features extracted from encoding modules and enhance these de-
graded features with more identity via fusing the retrieved similar
facial representation from learned memory network.

2.3 Memory Networks.
Memory network is first proposed in [36] for the question-answering
system since RNN did not perform as well in long-term memory
when dealing with long sequences. More recently, memory net-
works have improved performance in many computer vision tasks,
such as video object segmentation [20, 27], image-to-image transla-
tion [15], and image deraining [13]. The use of memory network in
computer vision tasks can be roughly divided into two categories:
dealing with video sequences [20, 27] and storing regularized infor-
mation from specific datasets [13, 15]. Jeong et al proposed to store
class-aware information along with training for image-to-image
translation. [13] proposed to adopt memory items to leverage addi-
tional real rain data sets unsupervised. Unlike previous work, we
propose employing memory network to explore the correlation of
degraded spatial identity features encoded from degraded inputs
and to enhance these features with more realistic facial details and
less degradation. By fully fusing the memorized feature with the
decoded GAN prior features, more desirable face reconstruction
performance can be obtained.
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(a) (b)

Figure 1: (a)The overall framework of the proposed MemGAN network for real-world blind face restoration; (b)The inner
structure of the decoder block of proposed MemGAN in (a).

3 METHODOLOGY
In this section, we first illustrate the overall framework of the
proposed method MemGAN. Then, we present how the memory
network is updated and similar facial features are retrieved from it.
Additionally, we present the proposed coarse-to-fine fusion strategy
for integrating the features from memory network and GAN prior
in detail. Finally, we describe the training loss functions used in our
approach.

3.1 Overall Framework
Our proposed approach, called MemGAN, aims to recover high-
quality face images 𝒙̂ with high fidelity and realism from low-
quality face images 𝒚 with unknown degradation. The proposed
framework is illustrated in Fig. 1 (a), and consists of three main
components: Encode Blocks, Decoder Blocks, and Memory network.
The Encode Blocks are responsible for extracting spatial identity
features 𝑭𝐸

𝑙
from the degraded images. The encoding features at

smallest scale are used to obtain the latent code 𝝎 through an
eight-layer fully connected layers (Mapping Network in Fig. 1 (a)).
The Decoder Blocks comprise the basic block of StyleGAN2 [18]
and proposed fusion modules. StyleGAN2 is a state-of-the-art face
generative model that can produce highly realistic facial images that
may not exist in the real world with a given latent code. Therefore,
we leverage the pre-trained StyleGAN2 as a GAN prior to provide
high-quality facial features.

However, due to the difficulty in encoding degraded images into
the corresponding HQ latent codes, the recovered HQ images often
suffer from fidelity issues. Directly fusing the extracted spatial iden-
tity features 𝑭𝐸

𝑙
with the StyleGAN characteristics is an intuitive

choice [2, 32, 38]. Nevertheless, spatial identity features 𝑭𝐸
𝑙
contain

a certain degree of degradation and limited identity information,
such a direct fusion strategy may generate undesired results with
perceived artifacts.

To address this issue, we propose the Memory network and a
coarse-to-fine fusion strategy, which exploits the correlation be-
tween the degraded spatial identity features and stores the general
representation of these features, and enhances them with more
identity and facial details via fusing the retrieved similar facial rep-
resentation from learned memory storage. Specifically, the Memory

Network takes the degraded spatial identity features 𝑭𝐸
𝑙
as inputs

and outputs the memorized spatial identity feature 𝑭𝑀
𝑙

with less
degradation and more facial details than inputs 𝑭𝐸

𝑙
, as shown in

Fig. 2. Then, the output of memory network 𝑭𝑀
𝑙

along with the
latent code 𝝎 are fed into decoder blocks. The decoder blocks con-
tain the basic block of pre-trained StyleGAN2 [18] and two fusion
modules including affine transformation and blend fusion for bet-
ter identity reserve. By fully fusing the memorized spatial identity
features with the features of GAN prior, the HQ facial images with
high fidelity and verisimilitude can be recovered from degraded
ones. The retrieving and updating of the memory network will be
illustrated in the next section.

3.2 Retrieving and Online Updating of Memory
Network

As shown in Fig. 1 (a), a multi-scale memory network is adopted in
the MemGAN network. Let superscript 𝑙 correspond to the scale 𝑙
in the multi-scale encode-decode structure. The memory module at
scale 𝑙 is denoted as 𝑴𝑙 ∈ R𝐾,𝑐 , comprising 𝐾 memory slots, each
with 𝑴𝑙,𝑘 ∈ R𝑐 items, where 𝑐 is the same as the channel number
of the encoding features 𝑭𝐸

𝑙,𝑖
∈ R𝑐 (𝑖 = 1, · · · , 𝑛) and 𝑛 = ℎ × 𝑤 .

The number of memory slots can be varied as per the requirement.
In our implementation, we set 𝐾 = ℎ = 𝑤 . To enhance the de-
graded spatial identity features 𝑭𝐸

𝑙
, we fuse them with similar facial

features retrieved from the memory network using soft attention.
The memory network is updated in a self-supervised manner by
retrieving the most relevant memory network, as we will illustrate
next.

Retrieving from memory network. To retrieve similar facial
information and facial details stored in the memory network at
scale 𝑙 , we need to calculate the similarity between the degraded
spatial identity features 𝑭𝐸

𝑙,𝑖
and each memory slot 𝑴𝑙,𝑘 . In our

implementation, we adopt the cosine distance to measure similarity,
which can be formulated as follows:

sim(𝑭𝐸
𝑙,𝑖
,𝑴𝑙,𝑘 ) =

𝑭𝐸
𝑙,𝑖
𝑴𝑇
𝑙,𝑘

| |𝑭𝐸
𝑙,𝑖
| |2 | |𝑴𝑙,𝑘 | |2

. (1)
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The similarity is then normalized by a softmax function:

𝜶𝑙,𝑖,𝑘 =
exp(sim(𝑭𝐸

𝑙,𝑖
,𝑴𝑙,𝑘 ))∑𝐾

𝑘 ′ exp(sim(𝑭
𝐸
𝑙,𝑖
,𝑴𝑙,𝑘 ′ ))

, (2)

In the end, the spatial identity features are enhanced by a similarity-
weighted aggregation of memory network, which can be formulated
as:

𝑭𝑀
𝑙,𝑖

=
∑︁𝐾

𝑘 ′
𝜶𝑙,𝑖,𝑘 ′𝑴𝑙,𝑘 ′ . (3)

It is worth mentioning that each slot in the memory network is
updated online by spatial features in a self-supervised manner, and
no backpropagated gradients are passed into the memory network.

Online updating from spatial identity features. To explore
prototypical patterns from abundant degraded spatial identity fea-
tures, we update the memory network 𝑴 in a self-supervised man-
ner based on the current degraded spatial identity features 𝑭𝐸

𝑙,𝑖
and

the current memory network. We first calculate the cosine similar-
ity between the spatial identity features 𝑭𝐸

𝑙,𝑖
and each memory slot

𝑴𝑙,𝑘 using Eq. (1). Next, we find the most relevant memory item
𝑴𝑙,𝑘 using

index𝑙,𝑖 = argmax
𝑘

sim(𝑭𝐸
𝑙,𝑖
,𝑴𝑙,𝑘 ). (4)

Last, the memory network is updated by the degraded spatial fea-
tures 𝑭𝐸

𝑙,𝑖
that have the most relevant item index𝑙,𝑖 = 𝑘 , which can

be formulated as

𝑴𝑙
𝑘
← 𝜆𝑴𝑙

𝑘
+ (1 − 𝜆)

∑𝑛
𝑖=1 1(𝑖𝑛𝑑𝑒𝑥𝑙,𝑖 = 𝑘)𝑭𝐸𝑙,𝑖∑𝑛
𝑖=1 1(𝑖𝑛𝑑𝑒𝑥𝑙,𝑖 = 𝑘)

, (5)

where 𝜆 ∈ [0, 1] and we set 𝜆 = 0.999 in our implementation.
To demonstrate the effectiveness of learning memory network,

we have visualized the features before and after the memory net-
work in Fig. 2. The first row shows the features of the largest scale
and the second row shows the features of the middle scale. We can
observe that the enhanced features shown on the right side of Fig. 2
have less degradation and more facial details, which demonstrates
the importance of the memory network modules visually.

3.3 A Coarse-to-fine Fusion Strategy
After enhancing degraded features with more details and texture
through the memory network, the next crucial step is to take full
advantage of the memorized features. In our approach, we propose
a coarse-to-fine fusion strategy, illustrated in Fig.1 (b). This module
(referred to as the decoder block in Fig.1 (a)) takes three inputs:
the latent code 𝜔 , the former layer output 𝑭𝐷

𝑙
, and the same-scale

memorized facial identity features 𝑭𝑀
𝑙
. The latent code is encoded

from degraded images by multiple encode blocks with eight MLP
layers.

The features decoded from the first block of the decoder block
shown in Fig. 1 (b) are denoted as 𝑭𝐺𝐴𝑁 1

𝑙
, whose landmark is far

away from the landmark of corresponding HQ face images. To
address this, we propose coarsely deforming the features 𝑭𝐺𝐴𝑁 1

𝑙
through an affine transformation based on the memorized spatial
identity features. Then, to further enhance the details of the final
output of the decoder block 𝑭𝐷

𝑙+1, we blend the output of the second

Figure 2: Visual comparison of degraded spatial identity fea-
tures before and after enhancement with the proposed mem-
ory network. The left column shows the degraded features
before enhancement, while the right column shows the en-
hanced features. The first row displays the features at the
largest scale, and the second row shows the features at the
middle scale. Best viewed in color and zoomed in.

block in the decoder block, denoted as 𝑭𝐺𝐴𝑁 2
𝑙

, with the memo-
rized features using a simple convolution. For brevity, we omit the
subscript 𝑖 of the pixels’ position in the following.

Affine Transformation. As shown in Fig. 1 (a), the predicted
latent codes 𝜔 have been sent to the decoder blocks for decod-
ing. The inner structure of decoder blocks is shown in Fig. 1 (b).
However, the features 𝑭𝐺𝐴𝑁 1

𝑙
decoded by StyleGAN2 first block,

as shown in Fig. 1 (b), may not be very similar to the original faces.
To address this issue, we deform these features 𝑭𝐺𝐴𝑁 1

𝑙
via an affine

transformation based on the memorized spatial identity features
𝑭𝑀
𝑙
. Specifically, we first calculate the scale parameters 𝒔𝑙 and bias

parameters 𝒃𝑙 based on the memorized spatial identity features 𝑭𝑀
𝑙
,

which can be formulated by:

𝒔𝑙 , 𝒃𝑙 = conv(𝑭𝑀
𝑙
), (6)

where 𝑙 denotes the scale index. With the calculated scale and
bias parameters, we transform the features 𝑭𝐺𝐴𝑁 1

𝑙
encoded by

StyleGAN2 first block using the following affine transformation:

𝑭
𝐴𝑓 𝑓 𝑖𝑛𝑒

𝑙
= 𝒔𝑙 · 𝑭𝐺𝐴𝑁 1

𝑙
+ 𝒃𝑙 , (7)

where 𝒔𝑙 and 𝒃𝑙 have the same size as 𝑭𝐺𝐴𝑁 1
𝑙

. This operation scales
and shifts the GAN features 𝑭𝐺𝐴𝑁 1

𝑙
based on the memorized iden-

tity features 𝑭𝑀
𝑙
. However, this operation alone does not fully ad-

dress the identity problem of the recovered facial images since no
identity information is involved in the final reconstruction. To over-
come this limitation, we propose to blend the features decoded by
the StyleGAN2 second block with memorized features that contain
rich spatial identity information and facial details.

Blend. The blending fusion is a refinement process aimed at im-
proving fidelity by fusing the memorized features with the features
𝑭𝐺𝐴𝑁 2
𝑙

decoded by StyleGAN2 second block. We use a simple con-
volution operator to achieve this goal, which can be summarized
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as follows:

𝑭𝐷
𝑙+1 = conv(concat(𝑭𝑀

𝑙
, 𝑭𝐺𝐴𝑁 2
𝑙

)), (8)

In this way, the recovered facial images using our coarse-to-fine
fusion strategy are more faithful to the original ones.

3.4 Training Loss
Except for the StyleGAN2’s basic blocks in decoder blocks is pre-
trained, the other components are trained from scratch. Note that
the StyleGAN2 in decoder blocks is also trainable. The overall
training loss function consists of three parts: theL1 for maintaining
fidelity, perceptual loss L1 for improving perceived quality, and
adversarial loss for restoring realistic textures and realness.

L1 = | |𝒙̂ − 𝒙 | |1 (9)

L𝑝𝑒𝑟 = | |𝜙 (𝒙̂) − 𝜙 (𝒙) | |1, (10)
where 𝜙 (·) denotes the feature extractor. In our implementation,
we calculated the perceptual loss on VGG19 [29] features of the
{conv1, · · · , conv5} convolutional layers. Similar to StyleGAN2
[18], logistic loss [7] is adopted:

L𝐺
𝑎𝑑𝑣

= E𝒙̂ [log(exp(−𝐷 (𝒙̂) + 1)] (11)

L𝐷
𝑎𝑑𝑣

= E𝒙 [log(exp(𝐷 (𝒙̂) + 1) + log(exp(−𝐷 (𝒙) + 1)] (12)

The proposed network is trained by the combination of three
losses:

L = 𝛼1L1 + 𝛼2L𝑝𝑒𝑟 + 𝛼3L𝑎𝑑𝑣, (13)
where 𝛼1 = 0.1, 𝛼2 = 1, 𝛼3 = 0.1 in this paper.

4 EXPERIMENTS
4.1 Experimental Settings
Training Datasets. The FFHQ dataset [17] containing 70kHQ face
images of size 1024 × 1024, has been used to train BFR approaches
[3, 32, 34, 38]. In our implementation, the FFHQ images have been
bicubically resized to 512 × 512 resolution to train our model. The
low-quality images are synthesized from high-quality images of
FFHQ, and the degradation process can be summarized as:

𝒚 = {[(𝒙 ⊛ 𝒌𝛿 ) ↓𝑠 +𝒏𝜎 ] 𝐽 𝑃𝐸𝐺𝑞
} ↑𝑠 (14)

First, the HQ image 𝒙 is convolved with the Gaussian blur kernel
𝒌𝛿 , and 𝛿 denotes the parameter related to the degree of blur. Then,
a bilinear downsampling operator is adopted with 𝑠 scale. The JPEG
compression with quality 𝑞 is followed after adding the additive
white Gaussian noise with variance 𝜎 . Finally, to maintain the
consistent spatial resolution of the BFR, the degraded images will
be bilinearly upsampled to original size. Following [32, 34], the
degradation parameters 𝛿 , 𝑠 , 𝜎 , and 𝑞 are randomly selected from
{0.2 : 10}, {1 : 8}, {0 : 15}, {60 : 100}, respectively. Even though
our model is trained on the synthetic date, it has a generalization
ability to degrade face images in the real world during testing.

Testing Datasets. Following [32, 34], a synthetic data set called
CelebA-Test and three real-world data sets: LFW, CelebChild,
and WebPhoto, have been used to evaluate our approach. CelebA-
Test contains 2824 images from the CelebA-HQ [22] testing parti-
tion. The degraded images are synthesized by the same degradation

Methods FID↓ PSNR↑ SSIM↑ LPIPS↓
Input 99.09 24.61 0.6180 0.6276

DFDNet [19] 42.39 23.23 0.6351 0.4891
PULSE [23] 43.58 21.48 0.5791 0.4893
wan et al [31] 77.45 24.03 0.6065 0.5379
PSFRGAN[3] 21.03 24.19 0.6069 0.3960
GPEN [38] 14.41 24.14 0.6104 0.3593

GFP-GAN [32] 16.42 24.17 0.6403 0.3405
CodeFormer [42] 16.97 23.39 0.6110 0.3503

DiFace [40] 15.50 23.84 0.6275 0.3825
DR2 [35] 31.15 23.96 0.6352 0.4182

MemGAN(ours) 13.01 24.28 0.6249 0.3487

GT 2.27 ∞ 1 0
Table 1: Average FID, PSNR, SSIM, and LPIPS results on
CelebA-Test dataset [22]. The best results are shown in bold
and the second-best results are shown in underline.

process of training. LFW [12] contains 15,154 low quality images
from the wild that are all used for our evaluation. CelebChild [32] is
consist of 180 child faces of celebrities and WebPhoto [32] consists
of 188 low-quality photos in real life, which are collected by [32]
from Internet.

Evaluation Metrics. For the dataset CelebA-Test that provides
LQ-HQ pairs for evaluation, we employ PSNR, SSIM, and LPIPS
metrics to measure the restoration performance. For the datasets
without ground truth images, we adopt widely-used FID [10] met-
rics to measure the statistical distance between the restoration
results and an HQ reference face dataset. We choose the ground
truth images of CelebA-Test as the HQ reference face dataset. Be-
sides, the FID score of CelebA-Test is also provided for comparison.

ImplementationDetails. The pre-trained StyleGAN2 [18] with
512 × 512 is used as a pre-trained weight. We randomly select 12
RGB LR images sized by 512×512 as a batch input. The learning rate
is set as 0.002. We train the model for 300k iterations. Our network
is implemented under the Pytorch framework and the training time
takes less than 2 days using 4 NVIDIA 3090Ti GPUs.

4.2 Comparsion with SOTA Methods
We have compared our proposed approach MemGAN with several
state-of-the-art real-world blind face restoration methods, such
as DFDNet [19], PULSE [23], wan et al [31], PSFRGAN[3], GPEN
[38], GFP-GAN [32], VQFR [9], CodeFormer [42], DiFace [40] and
DR2 [35]. The comparison results mainly consist of two parts: the
synthetic dataset: CelebA-Test [22] and three Real-World Dataset:
LFW [12], CelebChild [32], and WebPhoto [32].

Synthetic Dataset: CelebA-Test. The quantitative comparison
on CelebA-Test is shown in Tab. 1, from which we can see that our
proposed approach has achieved the best performance compared
to other state-of-art methods in terms of FID and PSNR. It indicates
the distribution of our restored facial images is the closest to the
real ones and our restored facial images are the most similar to
ground truth facial images simultaneously. In terms of the perceived
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LQ PULSE [23] PSFRGAN [3] GFPGAN [32] CodeFormer [42] Ours GT

Figure 3: Visual quality comparison of CelebA-Test. Zoom in for better view.

quality assessment metric LPIPS, our proposed approach also has
comparable results.

Visual qualitative comparisons are shown in Fig. 3. The CelebA-
Test provides ground truth for reference, making it easier to com-
pare the performance of different SOTA methods. DFDNet [19]
restores faces with perceived degradation, resulting in low-quality
results. The facial images restored by PULSE [23] are visually pleas-
ant as shown in Fig. 3, but these images suffer from severe fidelity
problemwhich is not similar to the original ones. PSFRGAN [3] gen-
erates faces with obvious and unpleasant artifacts. The StyleGAN-
based method, GFPGAN has trouble restoring faithful facial images
to the original ones such as the color and shape of the pupil as
shown in Fig. 3. This may be caused by fusing degraded spatial
features with decoded StyleGAN features directly. Different from
GFPGAN, our approach enhances the degraded identity with less
degradation and more facial details via retrieving similar features
from memory network, achieving the best visual results with both
realness and identity. Taking the third row of Fig. 3 as an example,
our method recovers the hair more visually pleasant than GFPGAN.
In contrast, GFPGAN generates noticeable artifacts in the hair re-
gion, which negatively impacts the visual quality of the final output.

Real-World Datasets: LFW, CelebChild, and Web Photo.
The quantitative comparison results of three real-world datasets
are shown in Tab. 3. Since no ground truth faces of three real-world
datasets are available, we adopt FID as our metric. The calculation
of FID requires a high-quality facial dataset for reference, which
does not have to be paired with degraded facial images. In our
calculation, the ground truth images of CelebA-Test have been used
as a reference dataset. As shown in Tab. 3, our method achieved the
best performance in real-world huge testing set LFW and smaller
testing set WebPhoto, showing that the distribution of restored

facial images by our proposed method is closest to the real high-
quality ones. In the dataset CelebChild, we are only inferior to the
VQFR [9].

The visual comparisons are shown in Fig. 4. No ground truth
images of these three real-world datasets are available. Therefore,
the assessment in terms of identity of restored facial images relies
on the degraded inputs. In Fig. 4, the first four rows show the
comparisons from LFW [12]; the fifth rows show the comparisons
from CelebChild [32]; the sixth rows show the comparisons from
WebPhoto [32]. In particular, we show some zoomed-in images
of important components of the face images, such as mouth, hair,
eyes, and et al. As shown in the second row of Fig. 4, our method
recovers a very realistic hair while other competing methods fail
with unpleasant artifacts or blurring results, demonstrating the
superiority of our proposed method that achieves realness and
identity simultaneously. A similar phenomenon can also be found
in CelebChild dataset shown in the fifth row in the Fig. 4. Taking the
mouth as an example, the first, third, and fifth rows show the visual
comparison around the mouth. Compared with other methods, our
approach achieves the results of the most reasonable and fewest
artifacts.

4.3 Ablation Study
We have conducted some ablation study experiments to verify the
effectiveness of the proposed modules: Memory Network, Affine
Transformation, and Blend Fusion. The comparison of ablation
study experiments has been evaluated in the synthetic dataset:
CelebA-Test [22], which provides high-quality images for refer-
ence. The quantitative results of the ablation study in terms of
FID/PSNR/SSIM/LPIPS are shown in Tab. 2, and the visual compar-
isons are shown in Fig. 5. The investigation can be divided into
three parts:
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LQ PULSE [23] PSFRGAN [3] GFPGAN [32] VQFR [9] CodeFormer [42] Ours

Figure 4: Visual quality comparison of three real-world datasets. The first four rows show the comparisons from LFW [12]; the
fifth row shows the comparisons from CelebChild [32]; the sixth row shows the comparisons fromWebPhoto [32]. Zoom in for
better view.

Memory Network. This subsection analyzes the effect of the
Memory Network. The comparison experiments are shown in Case
2 (without Memory Network) and Case 5 (with Memory Network)
in Tab. 2. It can be observed that the Memory Network boosts the
reconstruction performance in all comparing metrics. The improve-
ment in FID and LPIPS metrics indicates that recovered images
with Memory Network are more similar to the real ones than those
without Memory Network. The visual comparison in Fig. 5 (c) and
(f) shows that in Case 2 without Memory Network, the teeth are not
restored at all. With Memory Network, the teeth are realistically

recovered. The Memory Network also helps general representa-
tions of degraded spatial identity features to contribute to the final
reconstruction. The visual comparison of features before and after
Memory Network is shown in Fig. 2. It can be observed that cleaner
features, shown on the right of Fig. 2, with less degradation and
more facial details can be obtained after being enhanced by the
Memory Network modules.

Affine Transformation. As shown in Fig. 1 (b), the affine trans-
formation operation is used as the first fusion between memorized
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(a) LQ (b) Case1 (c) Case2 (d) Case3 (e) Case4 (f) Case5 (MemGAN) (g) GT

Figure 5: Visual quality comparison of ablation study. Zoom in for better view. The Case ∗ responds to the situation in Tab. 2.

Memory Network Affine Transformation Blend Fusion FID ↓ PSNR↑ SSIM↑ LPIPS↓
Case1 34.94 15.25 0.4456 0.5210
Case2 ✓ ✓ 17.22 23.95 0.6154 0.3628
Case3 ✓ ✓ 16.34 24.04 0.6162 0.3626
Case4 ✓ ✓ 15.56 23.00 0.6101 0.3739
Case5 (MemGAN) ✓ ✓ ✓ 13.46 24.28 0.6249 0.3487

Table 2: The ablation study of proposed modules. The average FID, PSNR, SSIM, and LPIPS results are evaluated on CelebA-Test
dataset. The best results are shown in bold.

Methods LFW CelebChild WebPhoto

Input 122.58 136.44 176.53

DFDNet [19] 66.68 115.20 124.13
wan et al [31] 109.37 166.44 159.64
PSFRGAN [3] 67.08 136.46 111.87
GFP-GAN [32] 61.91 128.51 125.69

VQFR [9] 57.33 110.67 113.32
CodeFormer [42] 58.85 122.11 114.67
DifFace [40] 58.94 121.29 125.92
DR2 [35] 59.70 129.50 140.01

MemGAN(ours) 56.60 115.79 106.83

Table 3: Average FID (the lower, the better) on three real-
world datasets. The best results are shown in bold and the
second-best results are shown in underline.

features and decoded StyleGAN2 features, aiming to affine trans-
form the StyleGAN2 features based on memorized spatial identity
features. When comparing Case 3 and Case 5 in Tab. 2, the affine
transformation can improve all comparing metrics. The visual com-
parison is shown in Fig. 5 (d) and (f). With the affine transformation,
we can see that Case 5 (MemGAN) can recover amore correct spatial
position, such as mouth, teeth, and face contour. It can demonstrate
that the affine transformation fusion strategy can avoid or relieve
the distortion of important parts of the faces.

Blend Fusion. The Blend Fusion module is proposed to improve
the identity and facial details of the final construction. When com-
paring Case 4 and Case 5 in Tab. 2, adding a Blend Fusion operation
can improve the final recovered results in terms of all comparing
metrics. The visual comparison is shown in Fig. 5 (e) and (f). With
the second Blend Fusion strategy, the recovered face is more faithful
to the original face, with more details.

5 CONCLUSION
In this paper, we propose a novel approach called MemGAN, which
utilizes a multi-scale memory network to explore the correlation
of degraded spatial identity features and enhance their identity via
fusion with retrieved similar facial representations from the learned
memory network. Our proposed coarse-to-fine fusion strategy in-
tegrates the decoded GAN prior features and memorized spatial
identity features using affine transformation and blending fusion
to achieve both fidelity and realness. Additionally, our memory
network is updated unsupervised online along with other modules
of our approach. Our method demonstrates the effectiveness of
exploiting the correlation of degraded spatial identity features and
provides a promising solution for blind face restoration.
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