- 1 Characterisation of phreatic overgrowths on speleothems precipitated in the northern
- 2 Adriatic during a sea-level stillstand at ~2.8 ka

3 ABSTRACT

- 4 We examine a Late Holocene sea-level stillstand using phreatic overgrowth on speleothems
- 5 (POS) recovered from Medvjeđa špilja Cave (northern Adriatic Sea) from -1.28 ± 0.15 m
- 6 below present mean sea-level. Different mineralogical analysis were performed to
- 7 characterize the POS and better understand the mechanisms of their formation. Results reveals
- 8 that the fibrous overgrowth is formed of calcite and that the supporting soda straw and the
- 9 overgrowth have a very similar trace element composition. This suggests that the drip and
- 10 groundwater pool from which the POS formed have a similar chemical make-up. Four
- subsamples were dated by means of uranium-series. We find that ~2800 years ago, the
- relative sea-level was stable for about 300 years at a depth of $\sim -1.28 \pm 0.15$ m below the
- current MSL. This finding roughly corresponds with the end of a relatively stable sea-level
- period, between 3250 and 2800 cal BP, previously noted in the southern Adriatic. Our
- research attests the existence of POS in the Adriatic and demonstrated Medvjeđa špilja cave
- pool as an environment favorable for the precipitation of calcite POS what will allow further
- 17 research at the study site.

19 KEYWORDS: cave deposits, U-series dating, sea-level, Holocene, northern Adriatic, Croatia

21

22

23

20

18

INTRODUCTION

In paleo sea-level research sedimentological, geomorphological, archaeological and biological

indicators, and historical sources are used and often combined (e.g. Faivre et al., 2013; Shennan et al., 2015). In coastal caves, hiatuses in the speleothem growth signal the switch between vadose and phreatic conditions. Gascoyne et al. (1979) and Li et al. (1989) are among the first researchers who documented mineralogical changes on such hiatuses' surfaces. Furthermore, investigations on once submerged speleothems that contain marine biogenic overgrowths and marine boring organisms (e.g. Alessio et al., 1992, 1994; Antonioli and Oliverio, 1996), provide an additional tool to assess past sea-level positions in littoral caves (Onac et al., 2012; van Hengstum et al., 2015). The study of submerged speleothems in sea-level reconstructions has contributed significantly to the understanding of regional and global sea-level changes, especially for the western (Antonioli, 2002; Antonioli et al., 2004a, 2021; Bard et al., 2002; Stocchi et al., 2017) and the eastern Mediterranean basin (Surić et al., 2005, 2009; Surić and Juračić, 2010). Based on the age of marine overgrowth on speleothems, segments of the relative sea-level curve for the last 220 ka have been constructed for the eastern Adriatic coast (Surić and Juračić, 2010). This is in general agreement with the global sea-level curve. The early Holocene sea-level rise reached -41.5 m at ~9.2 ka and -10 m around 7.8 ka, and by ~3.4 ka, it rose to -1.5 m (Surić and Juračić, 2010).

Sea-level studies based on phreatic overgrowths on speleothems (POS) have been conducted since the early 1970s (Ginés and Ginés, 1974). Unlike the submerged speleothems and biogenic incrustations, POS allow precise sea-level reconstructions (Vesica et al., 2000; Tuccimei et al., 2010; Polyak et al., 2018; Onac et al., 2022). POS are secondary depositional structures (carbonate encrustations), which precipitate in coastal caves at the water table around pre-existing vadose speleothems in favorable geochemical conditions (Ginés et al., 1981; Fornós et al., 2002). They grow at sea-level and within the tidal range for as long as sea-level remains at the same elevation (Dumitru et al., 2021) (Fig. 1). These overgrowths are

composed of aragonite and calcite, with the latter being the most common. Each POS has an exact geographic location, its elevation can be measured with high precision, its morphology provides an indicative meaning (mean sea level), and it is datable by Uranium-series method. These characteristics make POS ideal sea-level index points (van de Plassche, 1986), and thus have the potential to provide reliable ages, and can be used as an excellent marker of sea-level change with local and global significance.

In Mediterranean littoral caves (within \sim 300 m from the coastline), the hydraulic gradient between location and the sea is insignificant, so the cave water table is coincident with sealevel, and was in the past (Dorale et al., 2010). Uranium-series (U-series) dating has shown that POS normally behave as closed systems, thus provides reliable ages (Dorale et al., 2010; Tuccimei et al., 2006, 2011). This allows precise constraint to be placed on the timing of sealevel change, assuming it remained at the same elevation for \sim 300 years or more (Polyak et al., 2018; Dumitru et al., 2021).

According to Ginés et al. (2012), the first description of POS refers to speleothems from Coves del Drac (Mallorca) by Rodés (1925) and Joly (1929), who assumed that their formation was related to drowning events associated with past water-table elevations. The first thorough studies of POS as sea-level indicators in littoral caves of Mallorca began in 1972 when Ginés and Ginés (1974) proposed to relate the subaqueous crystallizations of speleothems from Cova de sa Bassa Blanca with past Pleistocene sea stands. Besides Mallorca, POS have been used for sea-level reconstructions in Sardinia (Tuccimei et al., 2012), Japan (Miklavič et al., 2018), and Cuba (De Waele et al., 2017, 2018). POS have also been identified and described in Bermuda (Harmon et al., 1978), Australia (Grimes, 2001) and Mexico (Jenson, 2018). So far, POS-based research has contributed greatly to the study of sea

level, in particular to precisely characterize the Late Pleistocene highstands, and to improve the glacial isostatic adjustments for the Western Mediterranean (Tuccimei et al., 2012; Onac et al., 2022). However, some POS have also formed during the Late Holocene (Tuccimei et al., 2010, 2011; Miklavič et al., 2018), and in particular, during the last 4000 years showing stability during that time (Onac et al., 2022).

Considering the abundance of karst forms in Croatia, including anchialine caves (Surić et al. 2010), one of the goals of SEALeveL project (HRZZ IP-2019-04-9445) was to find POS in the Adriatic that would enable more robust relative sea-level change studies and to further combine these results with those from other markers. The research presented herein is based on mineralogical and U-series analyses of the first POS discovered in the Adriatic Sea. Our aim is to characterize the POS and the environment of its formation, and to define the period of relative the sea-level stability related to its growth.

STUDY SITE

POS were found in the Medvjeđa špilja Cave on the Lošinj Island (Kvarner region, northern Adriatic; Fig. 2), which is located in the complex contact zone between Adriatic foreland, Istrian Peninsula, and the external Dinarides (Korbar, 2009; Schmid et al., 2020; van Hinsbergen et al., 2020). According to Špelić et al. (2021) this area is dominated by an alternation of structural lows and highs, mainly oriented N-S, NNW-SSE and NW-SE (Fig. 2). A comprehensive overview of the eastern Adriatic tectonic setting is given in Korbar (2009). The area is mainly composed of carbonate rocks deposited in shallow marine environments stretching from Carboniferous to Eocene (Vlahović et al., 2005). Prevalent

strata on the Lošinj Island are carbonate deposits of Cretaceous age, as well as Eocene foraminiferal limestone and Quaternary loess deposits (Korbar, 2009).

Formation of caves in karst is predominantly controlled by structural characteristics of the area as is the case with Medvjeđa špilja Cave (Fig. 2b). Together with tectonics and favorable climatic conditions, Pliocene and Pleistocene sea-level fluctuations caused carbonate areas to emerge leading to the karstification of today's eastern Adriatic coast (Surić et al., 2010, 2014). Karst features including caves were submerged by the Late Pleistocene-Holocene marine transgression providing a potential record for reconstructing the Quaternary relative sea-level changes.

Medvjeđa špilja is an anchialine cave developed in Cretaceous limestone and situated in the central part of the Lošinj Island, ~55 m from the sea and 17.5 m a.s.l. (Fig. 1). The entrance to the cave is through a narrow opening formed along a vertical fissure that extends perpendicular to the coast (Malez and Božićević 1965). The entrance leads to a bell-shaped chamber with a lake at the bottom. The rest of the cave is a mostly submerged channel with a total length of 245 m stretching along a NNE-SSW trending fissure (Jalžić, 2007) parallel to the coast (Fig. 3) The cave is linked to the sea through karstified fractures. The connection between fresh groundwater and the sea is rather direct as often documented along the eastern Adriatic coast (Bonacci and Roje Bonacci, 2003). Short time in-situ measurements (see Methods) revealed a tidal range of 44 cm, whereas the long-term average in the area is 48 cm (Faivre et al., 2011b). The existence of cave bear (*Ursus spelaeus*) remnants (Malez et al., 1979) and collapse material in the seaward part of the cave as observed in recent diving explorations, suggest an open horizontal connection to the coast in the past. The cave is rich in speleothems, which are mostly submerged. Salinity increases with depth. During diving

prospection, the halocline is observed at a depth of ~-2 m, whereas marine conditions are fully established after ca.175 m from the entrance, i.e. from the Key Passage onward (Fig. 3). Subsequently, from that point on, all speleothems are dark-colored due to manganese coating (Miklavič et al., 2022) and pipeworms and sponges are present on the ceiling.

METHODOLOGY

Suitable speleothems for sampling, were recovered after several detailed cave diving explorations of all submerged parts of the cave in March and October 2021. Sample MLp1 was found at Little Lake passage rooftop (Fig. 3a) and collected at the uppermost part of the soda straw, at the depth of -1.28 ± 0.15 m. After collection, the sample was cut in half by diamond disc attached to a rotary drill mounted to a special constructed slider. Sampling depth was measured on several occasions with the pressure depth-meter built in Suunto EON steel diving computer with an accuracy of \pm 1% and resolution of \pm 0.1 m. All measurements revealed the same depth. To establish the depth of measurements, the uppermost part of the soda straw was chosen as reference point. The elevation of POS paleolevels presented here is the sum of the depth at which the sample was taken and length of the sample, referenced to the current mean sea level (MSL).

To confirm the connection between the groundwater and open sea, as well as the tidal induced oscillation within the cave pool, both sea-level and groundwater-level fluctuation were recorded using a HOBO U20-001-02 TI water level logger. The device measures pressure and converts it to water elevation using the HOBOware-Pro software package with a typical accuracy of 0.3 cm (Onset, 2022). The logger was deployed during the spring tide period between October 8th and 11th. One logger was placed inside the cave in Little Lake (Fig. 3),

whereas the second one was placed in the sea at same depth. A high resolution (10 min) recording was set in order to eliminate the possibility of a false signal caused by waves. The measurements record a spring tide range of 44 cm, which maximum occurred on Oct 9th 20:55, 2022 (CMHS, 2022). To account for atmospheric pressure, we used data from the Croatian Meteorological and Hydrological Service weather station of Mali Lošinj.

X-ray diffraction (XRD) analysis

The mineralogy of the phreatic overgrowth was determined by XRD. The analysis was performed at the Department of Geology, Faculty of Natural Sciences and Engineering in Ljubljana, Slovenia using a Philips X-ray diffractometer generator PW 3830 About 1 to 3 g of sample was drilled from the outer part of the POS (Fig. 4) with a dental drill and subsequently crushed in an agate mortar.

Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses

The analyses focused on characterizing the structural and chemical differences between the supporting soda straw and overgrowth at the macroscopically visible boundary between the two units. Analyses were performed by ThermoFisher Scientific Quattro S with Schottky effect field-emission gun SEM (FEG-SEM) with an Oxford Instruments UltimMax 65 energy-dispersive spectrometer (EDS) on the polished surface of the POS longitudinal section.

Structural etching (Herwegh, 2000) was used to reveal the fabric structure and helped distinguish this boundary on SEM images. Elemental mapping (spot and line analyses) were used for chemical characterization of the afore mentioned parts of the POS. Spot analyses targeted individual crystals on both sides of the boundary, whereas line analyses crossed the boundary and were 600 to 700 μm long.

X-ray fluorescence (XRF) analysis

XRF analysis aimed to geochemically characterize the POS and to determine if there is any difference in trace element composition between the support and the overgrowth. Special attention is paid to Mg since it was reported to be higher in overgrowths in previous studies (Vesica et al., 2000; Ginés et al., 2005; Csoma et al., 2006). MLp1 was analyzed with a Thermo Scientific Niton XL5+ XRF instrument having a 3-mm analyzing spot size. Nearly pure and partly dolomitized limestone standards (NIST-1d and NIST-88b, respectively) were used for calibration to obtain a good accuracy of trace elements in a CaCO₃ matrix. We conducted three spot analyses on the support (#1-3), and five on the overgrowth (#4-8); three on the cut surface (#4-6) and two on the outer surface (#7-8) where the natural surface was abraded off by a dental drill (the resulting powder was used for XRD analysis) (Fig. 4).

U-series dating

To obtain the deposition time of our POS, four subsamples were taken across the thickest part of the phreatic overgrowth. To document the age when the cave became submerged, the first subsample was drilled 1 mm away from the pre-existing soda straw. The second and third are located between the vadose soda straw and POS's external surface, whilst the last subsample comes from the outermost part of POS (Fig. 4). The preexisting soda straw was also dated. All subsamples were dated by means of U-series disequilibrium method a Thermo Neptune Multi-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS) at the Department of Earth and Planetary Sciences, University of New Mexico, USA. Details on this method are available in Asmerom et al. (2006).

To determine a more robust time of deposition for our POS we measured an isochron age based on all four samples. We interpret that because all four POS subsample dates are within

a few hundred years of each other (using the often-assumed atomic ratio value of initial ²³⁰Th/²³²Th to be 4.4 ppm based on the bulk Earth ²³²Th/²³⁸U value of 3.8 (Cheng et al., 2013)), that a ²³²Th/²³⁸U-²³⁴U/²³⁸U-²³⁰Th/²³⁸U isochron age can be calculated that would represent a more robust overall age for the POS. The isochron was constructed using IsoplotR (Vermeesch, 2018), which yielded a measured initial ²³⁰Th/²³²Th atomic ratio of 9.7 ± 0.86 ppm, double the value traditionally used in calculating U-series ages (4.4 ±2.2 ppm). With the measured initial ²³⁰Th/²³²Th atomic ratio value, we re-calculated all four POS ages (1 mm, 4 mm, 6 mm and 8 mm), each reported in years BP with absolute 2-sigma uncertainty (Table 1), and weight-average those ages and uncertainties to produce an overall robust time of deposition for the POS.

RESULTS

Diving expeditions resulted in discovery of the first POS located in the Adriatic Sea. The sample MLp-1 is an 8 cm long calcite soda straw with phreatic overgrowth (Fig. 4). The overgrowth is unequally deposited over a regularly shaped soda straw, enlarging downwards and ending with a rounded bottom (Fig. 4) as is commonly observed in Mallorcan caves (Ginés et al., 2012). An ~1 mm thick darker overgrowth layer immediately around the preexisting support is easily visible (Fig. 4).

XRD, XRF and SEM-EDS analyses

Calcite is the only mineral detected phase in the POS. The etched surface revealed the shape of the crystals. The support crystals tend to be smaller and etch differently than the overgrowth crystals giving them a fuzzier appearance (Fig. 6a). The overgrowth crystals often show epitaxial growth on top of the soda straw support crystals (Fig. 6b), which differs from

previously observed boundaries between the support and the overgrowth (Ginés et al., 2012; Miklavič, 2018). Zoning can be observed in both support and overgrowth crystals, although in overgrowth crystals it is more common. The ca. 1 mm thick dark overgrowth layer easily visible with the naked eye (Fig. 4) is much more difficult to identify on SEM images. The crystals are larger and more elongated with the long axis (c) being perpendicular to the support surface away from the boundary. Macroscopically, this gives a fibrous appearance to the crystals. The results of XRF analysis indicate that the concentration of Mg is equally low in the support and the overgrowth (Fig. 5) ranging between 44 and 62%. Other detected elements Si, Al, Fe, Sr and Ba, were also present in all sampled areas of the POS and just as Mg, they did not show any clear trend in their distribution across the POS (Fig. 6c).

EDS elemental mapping (line and spot analyses) showed the presence of Mg, Si, Al, Na, Cl, and S. Mg content has uniform distribution across the POS. The occurrence of Si in clusters or associated with Al as shown on elemental maps, indicates that these elements are related to quartz and clay particles incorporated in the POS (Fig. 6d); they are present in the support as well as the overgrowth. Na and Cl are always closely associated, suggesting the presence of halite (NaCl). They were detected along grain boundaries around a pore. In summary, the SEM-EDS analyses show there is no unequivocal difference in trace element content between the POS support and overgrowth and that the difference between the two parts of the POS is only structural.

U-series chronology

U-series data and ages were derived from five subsample powders of sample MLp1 (Fig. 4) which are provided in Table 1.. The soda straw stalactite, which represents growth above the

water table, has an age of 5948 ± 228 years before present (yr BP). The stalactite grew when sea level was lower. The U-series data for the four POS subsamples at 1, 4, 6, and 8 mm away from the stalactite (see Fig. 4) produce a 232 Th/ 238 U- 234 U/ 238 U- 230 Th/ 238 U isochron that yielded an age of 2795 ± 88 years BP. IsoplotR offers a routine we used that assumes analytical uncertainties are not representative of the true uncertainties and applies an overdispersion term that reduces the MSWD to unity (Vermeesch, 2018) with the interpretation that the larger uncertainties assigned by the program are due to geologic scatter. In our case, three of the four analyses produce an isochron age of 2852 ± 270 years BP (MSWD = 9) without any assumptions. Applying the 4-pt isochron-based detrital thorium correction, we use the weighted average age from the four U-series dates for the POS of 2759 \pm 140 years BP (Fig. 7).

DISCUSSION

POS formation

The morphology of the overgrowth depends on the tide-controlled daily groundwater level fluctuation ("cave tide"), substrate shape, length of growth, and the degree of immersion of the substrate at the time of formation (Vesica et al., 2000). The phreatic overgrowth (MLp1) that unequally developed around a regularly shaped pre-existing vadose soda straw is related to tidal fluctuations, as shown in Figure 1. The MLp1 overgrowth (Fig. 4 and 6) grew over a pre-existing soda straw that was not long enough to capture the lowest tidal range. In such case, POS deposition does not coincide with the full sea-level fluctuation range but likely records only the upper part of that range (Vesica et al., 2000; Ginés et al., 2012). Based on the morphology of the MLp1 overgrowth, it is apparent that the POS deposition records the fluctuations between the mean sea level (± 0.15 m) and the high tide, which is 24 cm above

current MSL given the average tidal range. We presume that the asymmetric, almost flat-bottomed shape of the POS indicates its closeness to the MSL, as described in Tuccimei et al. (2010) and Ginés et al. (2012).

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

270

271

272

The XRD analysis of MLp1 shows that the fibrous overgrowth is made of calcite. Such overgrowths are also known from Mallorca, although the majority of the POS with fibrous crystals on this island are aragonite (Ginés et al. 2012). The calcite overgrowths on Mallorca, however, showed higher Mg concentrations than the calcitic support, which was attributed to the Mg-richer brackish water from which the overgrowth calcite precipitated (Vesica et al., 2000; Ginés et al., 2005; Csoma et al., 2006). The absence of any distinct difference in trace elements content between the support and the overgrowth in MLp1, as revealed by XRF and SEM-EDS analyses, therefore indicates that the drip and pool water from which the calcite precipitated, must have had a similar composition. In other words, the top-most layer of the cave pool water column was probably pure fresh groundwater unmixed with marine water. The often-observed epitaxial growth of the crystals in POS over the supporting soda straw (Fig. 6b) indicates a transitional phase in which the crystals were growing in alternating conditions, i.e. as support (while emerged during low tide) and overgrowth crystals (when submerged during high tide). This may in turn explain the occurrence of the distinct dark overgrowth layer observed with the naked eye around the support (Fig. 4). This layer might have formed during this transitional period.

290

291

292

293

294

Time of deposition and regional relative sea-level context

Studies of Holocene relative sea-level (RSL) changes in the northern Adriatic have a long history, starting with the first evidence of submerged archaeological structures (e.g. Gnirs, 1908; Degrassi, 1955), followed by investigations in Istria (e.g. Antonioli et al., 2007; Faivre

et al., 2011a; Florido et al., 2011), where the RSL changes can be precisely followed from 1.6 ka (Figure 7) (Faivre et al., 2019), and up to recent high-resolution RSL studies (Faivre et al., 2019; Kaniewski et al., 2021). New paleoenvironmental reconstructions are now available from Cres Island covering the Late Pleistocene and Holocene periods (Brunović et al., 2019, 2020) and from the more distant island of Pag (Ilijanić et al., 2022). However, data during the period of POS formation reported here are sparse. Thus, POS can provide new evidence, which can supplement and improve existing data.

Previous studies of speleothem deposition in Medvjeđa špilja Cave, as well as in other Croatian coastal caves (e.g. Surić et al., 2007; Surić and Juračić, 2010) revealed hiatuses in submerged stalagmites which can be used in studies of relative sea-level change. According to those records, ~7000 yrs ago sea-level was ~10 m lower than present, while around 3350 yrs ago sea-level rose to around –1.5 m (Surić et al. 2007). Speleothem L-1 of Surić et al. (2007) is a stalactite broken off from the roof and found in upside-down position. Detailed analysis revealed that calcite deposition continued in the new position, in the form of needle-like deposits, around a previously deposited stalactite, indicating alternating freshwater/brackish conditions. Consequently, Surić et al. (2007) and Surić and Juračić (2010) proposed that the sea-level ~3350 years BP had not yet reached –1.5 m.

The supporting soda straw in the MLp1 sample is 5948 ± 228 yrs old, indicating vadose condition during its formation. The four ages of the POS are slightly reversed, but within their errors they are essentially the same. Brackish water has to remain stable for a length of time to become saturated with calcite enough for deposition that would be recognized as a POS (Polyak et al. 2018). Therefore, we estimate that around 2759 ± 140 yrs BP sea-level was

relatively stable for about 300 years at $-1.28 \text{ m} \pm 0.15 \text{ m}$ below current MSL. Based on our new findings of POS deposition, we can also presume that needle-like deposits of L-1 described by Surić and Juračić (2010) represent POS formed within the tidal range.

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

319

320

321

According to isotopic records of eastern Adriatic speleothems, the Holocene is characterized by many and sudden environmental changes, whereas the Late Holocene primarily refers to drier conditions (Surić et al., 2021), which were occasionally interrupted by wet stages (Lončar et al., 2017, 2019). Periods of relative sea-level stability have been documented along the eastern Adriatic coast using different RSL markers like tidal notches (e.g., Fouache et al., 2000; Antonioli et al., 2004b; Benac et al., 2004; Marriner et al., 2014) and algal rims (e.g., Faivre et al., 2019, 2021a, b). Accordingly, it is considered that eastern Adriatic tidal notches formed during two main periods (Late Antique Little Ice Age and Little Ice Age) of relative sea-level stability, similarly with findings in other parts in the eastern (e.g., Boulton and Stewart, 2015), central (e.g., Faivre et al., 2013, 2021b), and western Mediterranean (e.g., Vacchi et al., 2022). The northern Adriatic notches formed during the Late Antique Little Ice Age (Faivre et al., 2019), whereas central Adriatic notches formed during the Little Ice Age, about 500 years ago (Faivre et al., 2013, Faivre and Butorac, 2018). These periods of relative sea-level stability have also been observed in the southern Adriatic (Faivre et al., 2021a, b). Such intervals could be related to periods of drop in global mean sea level component connected to the Northern Hemisphere global mean cooling attested e.g. by Mann et al. (2008), Ljungqvist (2010), PAGES 2k Consortium (2013), and Neukom et al. (2019) which offset the glacial isostatic adjustment effects (Faivre et al., 2023).

A period of relative sea-level stability during the Late Bronze Age and the transition to the Iron Age between 3250 and 2800 cal BP was already documented in the southern Adriatic based on the presence of algal rims on Lopud Island (Faivre et al., 2021a). Thus, POS data from the Medvjeđa špilja Cave (formed around 2800 yr BP) provide possible indications of RSL stability in the Northern Adriatic Sea at the end of this period. Dry conditions during that period were inferred from different proxies all over the Mediterranean, including the SPD-1 stalagmite from the island of Dugi otok which showed that the entire period between ~3.3 and 2.7 ka was dry, interrupted by short wet events, and that wetter conditions followed only after 2.7 ka (Lončar et al., 2019). On the eastern Adriatic coast, particularly prominent dry conditions were also observed in lake sediments from Albania and Montenegro (Zanchetta et al., 2012) which occurred at around 3300 cal BP.

This dry period_can be also associated with the cooling phase in the Aegean Sea, around 3300 cal BP as well (Rohling et al., 2002) and with the severe long-term drought in the Eastern Mediterranean, which dramatically affected agriculture and triggered societal collapse in the Late Bronze and Iron Ages, generally between 3150-2800 cal BP (Kaniewski et al., 2010; Langgut et al., 2015; Kagan et al., 2015). Overall, the formation of our POS could be roughly related to the end of the longest Holocene cooling-phase in the Mediterranean associated to the 3.2 ka event characterized by cooling of -0.38 ± 0.19 °C, over \sim 320 years (Marriner et al., 2022).

The above studies directly indicate that relative sea-level change during the Late Holocene was not linear, and provide evidence for the existence of periods of relative sea-level stability that are likely related to climate conditions (Faivre et al., 2023). Overall, our new results from Mali Lošinj Island POS corresponds well to the nearby composite 5000 years relative sea-

level curve from Istria (Faivre et al., 2011a, 2019; Kaniewski et al., 2021) suggesting a similar trend of subsidence in Istria and along the eastern coast of Lošinj during last 2800 years of around ~0.46 mm/yr (Fig. 8). The general agreement of the results obtained from POS with previous local and regional results from the Adriatic and the eastern Mediterranean confirm POS as a reliable sea-level indicator.

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

367

368

369

370

371

CONCLUSION

Speleothem-based research on Pleistocene and Holocene relative sea-level changes along the eastern Adriatic relied up to now only on biogenic encrustations, hiatuses and mineralogical changes documented on submerged speleothems. Our research in the Medvjeđa špilja Cave (Lošinj Island, northern Adriatic) reveals that the cave hosts a pool environment favorable for POS precipitation during sea-level stillstand conditions. Performed mineralogical analyses confirmed that speleothem MLp-1 has a typical morphology of a phreatic overgrowth over a speleothem (POS) which makes it the first POS found in the Adriatic. XRD analysis showed that the fibrous overgrowth is formed of calcite, while both, XRF and SEM-EDS analysis showed that there is no difference in trace element composition between the support and the overgrowth. Obtained results suggests that the drip water from which the support (calcite soda straw) formed and the upper water column in the cave pool (from which the overgrowth precipitated), had the same chemical composition. Based on uranium-series dating, we conclude that ~2800 years ago the relative sea-level must have remained stable for ~ 300 years at a depth of $\sim -1.28 \pm 0.15$ m below the current MSL. We also observed that conditions of RSL change at the eastern coast of Lošinj island seem to be generally close to trends observed along the coastal Istria pointing to general subsidence at the study area of around 0.46 mm/yr during the Late Holocene. Further research of POS at this study site will enable

gathering more SLIPs which will enable the development of longer and more precise curves of relative sea-level change in the northern Adriatic.

Acknowledgements

The research is conducted within the SEALeveL project (HRZZ-IP- 2019-04-9445) funded by Croatian Science Foundation. We are grateful to cave divers Petra Kovač-Konrad and Marko Baričević for cave prospection and sampling assistance, safety cave diver Vladan Strigo; cavers from Rijeka and Lošinj Croatian Mountain Rescue Team: Dino Groznić, Marko Župančić, David Mitrović and Luka Petrinić; Anel Hasić, Zrinka Ettinger Starčić, Neno Starčić (Diving center Sub Season) and Mr. Velimir Milenović and his family for field assistance, and Ivica Rendulić for the help with illustrations. We would like to thank the guest editor Andrea Columbu, journal Senior Editor Derek Booth and the reviewers (Rieneke Weij and one anonymous) whose inputs have significantly improved our manuscript.

References

- 407 Alessio, M., Allegri, L., Antonioli, F., Belluomini, G., Ferranti, L., Importa, S., Manfra, L.,
- 408 Proposito, A., 1992. Risultati preliminari relativi alla datazione di speleotemi sommersi nelle
- fasce costiere del Tirreno centrale, Giornale di Geologia, ser. 3, 54 (2), 165-193.
- 410 Alessio, M., Allegri, L., Antonioli, F., Belluomini, G., Improta, S., Manfra, L., Preite Martinez,
- 411 M., 1994. La curva di risalita del mare Tirreno negli ultimi 43 ka ricavata da datazioni su
- speleotemi sommersi e dati archeologici, Memorie descrittive della carta geologica d'Italia, LII,
- 413 261-276.

- Antonioli, F., Oliverio, M., 1996. Holocene Sea-Level Rise Recorded by a Radiocarbon-Dated
- Mussel in a Submerged Speleothem beneath the Mediterranean Sea. *Quaternary Research* 45
- 416 (2), 241–244. https://doi.org/10.1006/qres.1996.0024
- 417 Antonioli, F., Cremona, G., Immordino, F., Puglisi, C., Romagnoli, C., Silenzi, S., Valpreda,
- 418 E., Verrubbi, V. Antonioli, F., 2002. New data on the Holocenic sea-level rise in NW Sicily
- 419 (Central Mediterranean Sea). Global and Planetary Change 34 (1-2), 121-140.
- 420 https://doi.org/10.1016/S0921-8181(02)00109-1
- Antonioli, F., Bard, E., Potter, E.-K., Silenzi, S., Improta, S., 2004a. 215-ka History of sea-level
- oscillations from marine and continental layers in Argentarola Cave speleothems (Italy). Global
- 423 and Planetary Change 43 (1), 57-78
- Antonioli, F., Carulli, G.B., Furlani, S., Auriemma, R., Marocco, R., 2004b. The enigma of the
- submerged marine notches in the northern Adriatic Sea. *Quaternaria Nova* 8, 263-275.
- 426 Antonioli, F., Anzidei, M., Lambeck, K., Auriemma, R., Gaddi, D., Furlani, S., Orru, P.,
- Solinas, E., Gaspari, A., Karinja, S., Kovačić, V., Surace, L., 2007. Sea level change during the
- 428 Holocene in Sardinia and in the northeastern Adriatic (central Mediterranean Sea) from
- archaeological and geomorphological data. *Quaternary Science Reviews* 26, 2463-2486.
- Antonioli, F., Furlani, S., Montagna, P., Stocchi, P. 2021. The Use of Submerged Speleothems
- for Sea Level Studies in the Mediterranean Sea: A New Perspective Using Glacial Isostatic
- 432 Adjustment (GIA). Geosciences 11 (2), 77. https://doi.org/10.3390/geosciences11020077
- 433 Asmerom, Y., Polyak, V.J. Burns, S.J., 2010. Variable winter moisture in the southwestern
- 434 United States linked to rapid glacial climate shifts. *Nature Geoscience* 3, 114-117.

- Bard, E., Antonioli, F., Silenzi, S., 2002. Sea-level during the penultimate interglacial period
- based on a submerged stalagmite from Argentarola Cave (Italy). Earth and Planetary Science
- 437 *Letters* 196 (3-4), 135-146.
- Benac, Č., Juračić, M., Bakran-Petricioli, T., 2004. Submerged tidal notches in the Rijeka Bay
- NE Adriatic Sea: indicators of relative sea-level change and of recent tectonic movements.
- 440 *Marine Geology* 212 (1-4), 21-33.
- Bonacci, O. Roje-Bonacci, T., 2003. Groundwater on small Adriatic islands. RMZ Materials
- *and Geoenvironment* 50 (1), 41-44.
- Boulton, S.J., Stewart, I.S., 2015. Holocene coastal notches in the Mediterranean region:
- 444 indicators of palaeoseismic clustering? Geomorphology 237, 29-37.
- 445 https://doi.org/10.1016/j.geomorph.2013.11.012
- Brunović, D., Miko, S., Hasan, O., Papatheodorou, G., Ilijanić, N., Miserocchi, S., Correggiari,
- 447 A., Geraga, M., 2020. Late Pleistocene and Holocene paleoenvironmental reconstruction of a
- 448 drowned karst isolation basin (Lošinj Channel, NE Adriatic Sea). Palaeogeography,
- 449 Palaeoclimatology, Palaeoecology 544, 109587. https://doi.org/10.1016/j.palaeo.2020.109587
- Brunović, D., Miko, S., Ilijanić, N., Peh, Z., Hasan, O., Kolar, T., Šparica Miko, M., Razum, I.,
- 451 2019. Holocene foraminiferal and geochemical records in the coastal karst dolines of Cres
- 452 Island, Croatia. *Geologia Croatica* 72 (1), 19–42. https://doi.org/10.4154/gc.2019.02
- 453 Csoma, A.É., Goldstein, R.H., Pomar, L., 2006. Pleistocene speleothems of Mallorca:
- 454 Implications for palaeoclimate and carbonate diagenesis in mixing zones. Sedimentology 53,
- 455 213–236. doi:10.1111/j.1365-3091.2005.00759.x
- 456 Cheng, H., Edwards, R. L., Shen, C. C., Polyak, V. J., Asmerom, Y., Woodhead, J., Hellstrome
- J. Wang, Y., Kong, X., Spötl, C., Wang, X., Alexander Jr, E. C. 2013. Improvements in 230Th

- dating, ²³⁰Th and ²³⁴U half-life values, and U-Th isotopic measurements by multi-collector
- 459 inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371, 82-
- 460 91.
- 461 CMHS (2022): Croatian Meteorological and Hydrological Service
- Degrassi, A., 1955. I Porti Romani Dell'Istria. Anthemon, Firenze, 169 pp.
- De Waele, J., D'Angeli, I. M., Bontognali, T., Tuccimei, P., Scholz, D., Jochum, K. P.,
- 464 Columbu, A., Bernasconi, S. M., Fornós, J. J., Grau González, E. R., Tisato, N., 2018.
- Speleothems in a north Cuban cave register sea-level changes and Pleistocene uplift rates: North
- Cuban cave registers sea level changes and Pleistocene uplift. Earth Surface Processes and
- 467 *Landforms* 43 (11), 2313–2326. https://doi.org/10.1002/esp.4393
- De Waele, J., D'Angeli, I. M., Tisato, N., Tuccimei, P., Soligo, M., Ginés, J., Ginés, A., Fornós,
- J. J., Villa, I. M., Grau González, E. R., Bernasconi, S. M., Bontognali, T. R. R., 2017. Coastal
- 470 uplift rate at Matanzas (Cuba) inferred from MIS5e phreatic overgrowths on speleothems. *Terra*
- 471 *Nova* 29 (2), 98–105. https://doi.org/10.1111/ter.12253
- Dorale, J. A., Onac, B. P., Fornós, J. J., Ginés, J., Ginés, A., Tuccimei, P., Peate, D. W.acci,
- 473 2010. Sea-Level Highstand 81,000 Years Ago in Mallorca. Science 327, 860-863.
- 474 <u>https://doi.org/10.1126/science.1181725</u>
- Dumitru, O.A., Austermann, J., Polyak, V.J., Fornós, J.J., Asmerom, Y., Ginés, J., Ginés, A.,
- Onac, B.P., 2019. Constraints on global mean sea level during Pliocene warmth. *Nature* 574,
- 477 233–236, https://doi.org/10.1038/s41586-019-1543-2
- Dumitru, O.A., Polyak, V.J., Asmerom, Y., Onac, B.P., 2021. Last interglacial sea-level
- 479 history from speleothems: A global standardized database. Earth System Science Data 13 (5),
- 480 2077–2094. https://doi.org/10.5194/essd-13-2077-2021

- Faivre, S., Fouache, E., 2003. Some tectonic influences on the Croatian shoreline evolution in
- 482 the last 2000 years. Zeitschrift für Geomorphologie 47 (4), 521-537. doi:
- 483 10.1127/zfg/47/2003/521
- 484 Faivre, S., Butorac, V., 2018. Recently submerged tidal notches in the wider Makarska area
- 485 (Central Adriatic, Croatia). *Quaternary International* 494, 225-235.
- 486 doi.org/10.1016/j.quaint.2017.07.020.
- 487 Faivre, S., Fouache, E., Ghilardi, M., Antonioli, F., Furlani, S., Kovačić, V., 2011a. Relative
- 488 sea level change in western Istria (Croatia) during the last millennium. Quaternary
- 489 *International* 232 (1–2), 132–143. https://doi.org/10.1016/j.quaint.2010.05.027
- 490 Faivre, S., Pahernik, M., Maradin, M., 2011b. The Gully of Potovošća on the Island of Krk -
- 491 The effects of a short-term event. Geologia Croatica 64 (1), 64-76.
- 492 https://doi.org/10.4154/GC.2011.07
- 493 Faivre, S., Bakran-Petricioli, T., Horvatinčić, N., Sironić, A., 2013. Distinct phases of relative
- sea level changes in the central Adriatic during the last 1500 years-influence of climatic
- 495 variations? Palaeogeography, Palaeoclimatology, Palaeoecology 369, 163-174.
- 496 doi.org/10.1016/j.palaeo.2012.10.016.
- 497 Faivre, S., Bakran-Petricioli, T., Barešić, J., Horvatić, D., Macario, K., 2019. Relative sea-level
- 498 change and climate change in the Northeastern Adriatic during the last 1.5 ka (Istria, Croatia).
- 499 *Quaternary Science Reviews* 222, 105909. https://doi.org/10.1016/j.quascirev.2019.105909
- 500 Faivre, S., Bakran-Petricioli, T., Barešić, J., Horvatić, D., 2021a. Lithophyllum rims as
- 501 biological markers for constraining palaeoseismic events and relative sea-level variations
- during the last 3.3 ka on Lopud Island, southern Adriatic, Croatia. Global and Planetary
- 503 *Change* 202, 103517. doi.org/10.1016/j.gloplacha.2021.103517.

- Faivre, S., Bakran-Petricioli, T., Herak, M., Barešić, J., Borković, D., 2021b. Late Holocene
- 505 interplay between coseismic uplift events and interseismic subsidence at Koločep island and
- Grebeni islets in the Dubrovnik archipelago (southern Adriatic, Croatia). *Quaternary Science*
- 507 Reviews 274, 107284, https://doi.org/10.1016/j.quascirev.2021.107284
- 508 Faivre, S., Bakran-Petricioli, Kaniewski, D., Marriner, N., Tomljenović, B., Sečanj, M.,
- Horvatić, D., Barešić, J., Morhange, C., Drysdale, R. N., 2023. Driving processes of relative
- sea-level change in the Adriatic during the past two millennia: From local tectonic movements
- 511 in the Dubrovnik archipelago (Jakljan and Šipan islands) to global mean sea level contributions
- 512 (Central Mediterranean). Global and Planetary Change 227, 104158
- 513 https://doi.org/10.1016/j.gloplacha.2023.104158
- 514 Florido, E., Auriemma, R., Faivre, S., Radić Rossi, I., Antonioli, F., Furlani, S., Spada, G.,
- 515 2011. Istrian and Dalmatian fishtanks as sea level markers. *Quaternary International* 232, 105-
- 516 113.
- 517 Fornós, J. J., Gelabert, B., Ginés, A., Ginés, J., Tuccimei, P., Vesica, P., 2002. Phreatic
- overgrowths on speleothems: A useful tool in structural geology in littoral karstic landscapes.
- 519 The example of eastern Mallorca (Balearic Islands). Geodinamica Acta 15 (2), 113–125.
- 520 https://doi.org/10.1016/S0985-3111(02)01083-5
- 521 Fouache, E., Faivre, S., Dufaure, J-J., Kovačić, V., Tassaux, F., 2000. New observations on the
- evolution of the Croatian shoreline between Poreč and Zadar over the past 2000 years,
- 523 Zeitschrift für Geomorphologie 122, 33-46.
- Gascoyne, M., Benjamin, G.J., Schwarcz, H.P., Ford, D.C., 1979. Sea-level lowering during
- the Illinoian Glaciation: evidence from a Bahama "Blue Hole". *Science* 205, 806–808.

- 526 Ginés, A., Ginés, J. 1974. Consideraciones sobre los mecanismos de fosilización de la Cova de
- 527 sa Bassa Blanca y su paralelismo con las formaciones marinas del Cuaternario. *Boletin de la*
- 528 Sociedad de Historia Natural de las Baleares 19, 11–28.
- 529 Ginés, J.; Ginés, A., Pomar, L., 1981. Morphological and mineralogical features of phreatic
- speleothems occurring in coastal caves of Majorca (Spain). Proceedings of the 8th International
- 531 *Congress of Speleology*, Bowling Green, 2, 529-532.
- Ginés, J., Fornós, J.J., Ginés, Á., 2005. Els espeleotemes freàtics del Quaternari de Mallorca:
- aspectes morfològics, mineralògics i cristalogràfics. In: Sanjaume, E., Mateu, J.F. (Eds.),
- 534 Geomorfologia Litoral i Quaternari. Homenatge al Professor Vicenç M. Rosselló i Verger.
- Universitat de València, València, pp. 151–165, (in Catalan).
- 536 Ginés, J., Ginés, A., Fornós, J.J., Tuccimei, P., Onac, B.P., Gràcia, F., 2012. Phreatic
- Overgrowths on Speleothems (POS) from Mallorca, Spain: Updating Forty Years of Research
- In: Ginés, A., Ginés, J., Gómez-Pujol, L., Onac, B.P., Fornós, J.J. (Eds.), Mallorca: A
- 539 Mediterranean Benchmark for Quaternary Studies, Monografies de La Societat d'Història
- Natural de Les Balears. Societat d'Història Natural de les Balears, Palma de Mallorca, pp.
- 541 111-146.
- 542 Grimes, K.G., 2001. Karst features of Christmas Island (Indian Ocean). *Helictite* 37, 41–58.
- 543 Gnirs, A., 1908. Beobachtungen über den Fortschritt einer säkularen Niveauschwankung des
- 544 Meeres während des letzten zwei Jahrtausende. Mitteilungen des k. u. k. geographische
- Gesellschaft in Wien 51, 1-56.
- Harmon, R.S., Schwarcz, H.P., Ford, D.C., 1978. Late Pleistocene sea level history of Bermuda.
- 547 Quaternary Research 9, 205–218.

- Herwegh, M., 2000. A new technique to automatically quantify microstructures of fine grained
- 549 carbonate mylonites: Two-step etching combined with SEM imaging and image analysis.
- *Journal of Structural Geology* 22 (4), 391–400. https://doi.org/10.1016/S0191-8141(99)00165-
- 551 0
- 552 Ilijanić, N., Miko, S., Ivkić Filipović, I., Hasan, O., Šparica Miko, M., Petrinec, B., Terzić, J.,
- Marković, T., 2022. A Holocene Sedimentary Record and the Impact of Sea-Level Rise in the
- Karst Lake Velo Blato and the Wetlands on Pag Island (Croatia). Water 14 (3), 342.
- 555 https://doi.org/10.3390/w14030342
- Jalžić, B., 2007. Medvjeđa špilja na otoku Lošinju. Speleolog 55 (1), 45-55
- 557 de Joly, R., 1929. Explorations spéléologiques à Majorque (1929). Revue de géographie
- 558 physique et de géologie dynamique., 2 (3): 233-245.
- Jenson, A. Schwartz, B., Li, Y., Gao, Y., 2018. The implications and limitations of phreatic
- overgrowths of speleothems as sea level indicators: Quintana Roo, Mexico. *Geological Society*
- of America Abstracts with Programs 50 (6), 147-6. doi: 10.1130/abs/2018AM-318501
- Kagan E, Langgut D, Boaretto E, Neumann FH, Stein M., 2015. Dead Sea levels during the
- 563 Bronze and Iron Ages. *Radiocarbon* 57 (2), 237–52. doi: 10.2458/azu rc.57.18560
- Kaniewski D, Paulissen E, Van Campo E, Weiss H, Otto T, Bretschneider J, Van Lerberghe K.
- 565 2010. Late second–early first millennium BC abrupt climate changes in coastal Syria and their
- possible signifi-cance for the history of the Eastern Mediterranean. Quaternary Research 74
- 567 (2), 207–15.
- Kaniewski, D., Marriner, N., Cheddadi, R., Morhange, C., Vacchi, M., Rovere, A., Faivre, S.,
- Otto, T., Lucek, F., Carre, M-B., Benčić, G., Van Campo, E., 2021. Coastal submersions in the

- 570 north-eastern Adriatic during the last 5200 years. *Global and Planetary Change* 204, 103570.
- 571 doi.org/10.1016/j.gloplacha.2021.103570.
- Korbar, T., 2009. Orogenic evolution of the External Dinarides in the NE Adriatic region: A
- 573 model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth-
- 574 Science Reviews 96(4), 296–312. https://doi.org/10.1016/j.earscirev.2009.07.004
- Langgut, D, Finkelstein, I., Litt, T., Neumann, F.H., Stein, M., 2015. Vegetation and climate
- 576 changes during the bronze and iron ages (~3600–600 BCE) in the southern Levant based on
- palynological records. *Radiocarbon* 57 (2), 217–235. DOI: 10.2458/azu_rc.57.18555
- Li, W.X., Lundberg, J., Dickin, A.P., Ford, D., Schwarcz, H.P., McNutt, R., and Williams, D.,
- 579 1989. High-precision mass-spectrometric uranium-series dating of cave deposits and
- implications for palaeoclimate studies. *Nature* 339, 534–536.
- Lončar, N., Bar-Matthews, M., Ayalon, A., Surić, M. & Faivre, S. 2017. Early and mid-
- Holocene environmental conditions in the eastern Adriatic recorded in speleothems from Mala
- 583 špilja Cave and Velika špilja cave (Mljet island, Croatia). *Acta Carsologica*, 46 (2/3), 229-249
- 584 doi:10.3986/ac.v46i2-3.4939.
- Lončar, N., Bar-Matthews, M., Ayalon, A., Faivre, S., Surić, M., 2019. Holocene climatic
- conditions in the eastern Adriatic recorded in stalagmites from Strašna peć Cave (Croatia).
- 587 Quaternary International 508, 98–106. https://doi.org/10.1016/j.quaint.2018.11.006
- Ljungqvist, F. C., 2010. A new reconstruction of temperature variability in the extratropical
- Northern Hemisphere during the last two millennia. *Geografiska Annaler* 92A (3), 339–351.
- 590 doi.org/10.1111/j.1468-0459.2010.00399.x

- Malez, M., Božičević, S., 1965. The Medvjeđa pećina (Bear Cave) on Lošinj Island, A rare case
- of submerged cave. International Speleological Conference, Brno, 1964, Problems of
- 593 Speleological Research, Prague, 211–216.
- Malez, M., Sliepčević, A., Srdoč, D., 1979. Određivanje starosti metodom radioaktivnog
- 595 ugljika kvartarnim naslagama na nekim lokalitetima u Dinarskom kršu [Radiocarbon dating of
- 596 Quaternary deposits on some localities in Dinaric karst in Croatian]. Rad JAZU, 383, Razred
- 597 za prirodne znanosti, 18, 227–271.
- Mann, M.E., Zhang, Z., Hughes, M.K., Bradley, R.S., Miller, S.K., Rutherford, S., Ni, F., 2008.
- 599 Proxy-based reconstructions of hemispheric and global surface temperature variations over the
- past two millennia. Proceedings of the National Academy of Sciences USA 105 (36), 13252-
- 601 13257. doi.org/10.1073/pnas.0805721105
- Marriner, N., Kaniewski, D., Pourkerman, M., Devillers, B., 2022. Anthropocene tipping point
- reverses long-term Holocene cooling of the Mediterranean Sea: a meta-analysis of the basin's
- Sea Surface Temperature records. *Earth-Science Reviews* 227, 103986.
- Marriner, N., Morhange, C., Faivre, S., Flaux, C., Vacchi, M., Miko, S., Boetto, G., Radić
- Rossi, I., 2014. Post-Roman sea-level changes on Pag Island (Adriatic Sea): dating Croatia's
- "enigmatic" coastal notch? Geomorphology 221, 83-94.
- Miklavič, B., Lončar, N., Onac. B.P., Faivre, S., 2022. Evaporite minerals suggesting multiple
- submergence of a stalagmite from Kvarner region (Croatia). In: Švara, A., Zupan Hajna, N.,
- 610 Gabrovšek, F. (eds.) Speleology. Postojna, Založba ZRC, pp. 117
- Miklavič, B., Yokoyama, Y., Urata, K., Miyairi, Y., Kan, H., 2018. Holocene relative sea level
- 612 history from phreatic overgrowths on speleothems (POS) on Minami Daito Island, Northern
- Philippine Sea. *Quaternary International* 471, 359–368.
- 614 https://doi.org/10.1016/j.quaint.2017.09.032

- Neukom, R., Barboza, L.A., Erb, M.P., Shi, F., Geay, J.E., Evans, M.N., Franke, J., Kaufman,
- D.S., Lücke, L., Rehfeld, K., Schurer, A., Zhu, F., Brönnimann, S., Hakim, G.J., Henley, B.J.,
- 617 Ljungqvist, F.C., McKay, N., Valler, V., von Gunten, L. (PAGES 2k Consortium), 2019.
- 618 Consistent multidecadal variability in global temperature reconstructions and simulations over
- the Common Era. *Nature Geoscience* 12, 643-649. doi.org/10.1038/s41561-019-0400-0
- Onac B.P., Mitrovica, J.X., Ginés, J., Asmerom, Y., Polyak, V.J., Tuccimei. P., Ashe, E.L.,
- 621 Fornós, J.J., Hoggard, M.J., Coulson, S., Ginés, A., Soligo, M., Villa, I.M., 2022. Exceptionally
- stable preindustrial sea level inferred from the western Mediterranean Sea. Science Advances
- 623 8(26), 6185. doi: 10.1126/sciadv.abm6185.
- Onac, B.P., Ginés, A., Ginés, J., Fornós, J.J., Dorale, J.A., 2012. Late Quaternary Sea-level
- 625 History: A Speleothem Perspective. In Ginés, A., Ginés, J., Gómez-Pujol, L., Onac, B.P.,
- 626 Fornós, J.J. (Eds.), Mallorca: A Mediterranean Benchmark for Quaternary Studies, pp. 147–
- 627 161. https://doi.org/10.1016/j.quaint.2017.09.032
- Onset, 2022., HOBO® U20 Water Level Logger (U20-001-0x and U20-001-0x-Ti) Manual,
- 629 https://www.onsetcomp.com/sites/default/files/resources-documents/12315-
- 630 J%20U20%20Manual.pdf
- PAGES 2k Consortium, 2013. Continental-scale temperature variability during the past two
- millennia. Nature Geoscience 6, 339-346. doi.org/10.1038/ngeo1797
- Polyak, V.J., Onac, B.P., Fornós, J.J., Hay, C., Asmerom, Y., Dorale, JA., Ginés, J., Tuccimei,
- P., Ginés, A. 2018. A highly resolved record of relative sea level in the western Mediterranean
- 635 Sea during the last interglacial period. *Nature Geoscience* 11 (11), 860–864.
- Rodés, L. 1925. Los cambios de nivel en las Cuevas del Drach (Manacor, Mallorca) y
- 637 suoscilación rítmica de 40 minutos. Memorias de la Real Academia de Ciencias y Artes de
- 638 Barcelona 19 (7), 207-221. ttps://doi.org/10.1038/s41561-018-0222-5

- Rohling, E.J., Mayewsky, P.A., Hayes, A., Abu-Zied, R.H., Casford, J.S.L., 2002. Holocene
- atmosphere-ocean interactions: records from Greenland and the Aegean Sea. *Climate Dynamics*
- 641 18, 587–593.
- 642 Schmid, S.M., Fügenschuh, B., Kounov, A., Matenco, L., Nievergelt, P., Oberhänsli, R.,
- Pleuger, J., Schefer, S., Schuster, R., Tomljenović, B., Ustaszewski, K., van Hinsbergen, D.J.J.,
- 2020. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey.
- 645 *Gondwana Research* 78, 308-374. https://doi.org/10.1016/j.gr.2019.07.005
- 646 Shennan, I., Long, A., Benjamin A., Horton, P. (Eds.), 2015. Introduction, Chapter 1, *Handbook*
- of Sea-level Research. John Wiley & Sons, Hoboken, NJ, pp. 1-25.
- 648 Stocchi, P., Antonioli, F., Montagna, P., Pepe, F., Lo Presti, V., Caruso, A., Corradino, M.,
- Dardanelli, G., Renda, P., Frank, N., Douville, E., Thil, F., de Boer, B., Ruggieri, R., Sciortino,
- R., Pierre, C., 2017. A stalactite record of four relative sea-level highstands during the Middle
- Pleistocene Transition. Quaternary Science Reviews 173, 92–100.
- 652 https://doi.org/10.1016/j.quascirev.2017.08.008
- 653 Surić, M., Juračić, M., Horvatinčić, N., Krajcar Bronić, I., 2005. Late Pleistocene-Holocene
- sea-level rise and the pattern of coastal karst inundation: Records from submerged speleothems
- along the Eastern Adriatic Coast (Croatia). Marine Geology 214 (1-3), 163-175.
- 656 https://doi.org/10.1016/j.margeo.2004.10.030
- 657 Surić, M., Jalžić, B. Petricioli, D., 2007. Submerged speleothems expect the unexpected.
- Examples from the Eastern Adriatic coast (Croatia). *Acta Carsologica* 36 (3), 389-396.
- 659 Surić, M., Richards, D. A., Hoffmann, D. L., Tibljaš, D., Juračić, M., 2009. Sea-level change
- during MIS 5a based on submerged speleothems from the eastern Adriatic Sea (Croatia).
- 661 Marine Geology 262 (1–4), 62–67. https://doi.org/10.1016/j.margeo.2009.03.005

- Surić, M., Juračić, M., 2010. Late Pleistocene-Holocene environmental changes records from
- submerged speleothems along the Eastern Adriatic coast (Croatia). Geologia Croatica 63 (2),
- 664 155-169. doi:10.4154/gc.2010.13.
- 665 Surić, M., Lončarić, R., Lončar, N., 2010. Submerged caves of Croatia: Distribution,
- 666 classification and origin. Environmental Earth Sciences 61 (7), 1473-1480.
- 667 https://doi.org/10.1007/s12665-010-0463-0
- 668 Surić, M., Korbar, T., Juračić, M., 2014. Tectonic constraints on the late Pleistocene-Holocene
- relative sea-level change along the north-eastern Adriatic coast (Croatia). Geomorphology 220,
- 670 93–103. https://doi.org/10.1016/j.geomorph.2014.06.001
- 671 Surić, M., Columbu, A., Lončarić, R., Bajo, P., Bočić, N., Lončar, N., Drysdale, R., Hellstrom,
- J.C., 2021 Holocene hydroclimate changes in continental Croatia recorded in speleothem δ^{13} C
- and $\delta^{18}O$ from Nova Grgosova Cave. The Holocene, 31(9) 1401–1416.
- 674 https://doi.org/10.1177/095968362110191
- Špelić, M., Del Ben, A., Petrinjak, K., 2021. Structural setting and geodynamics of the Kvarner
- 676 area (Northern Adriatic). Marine and Petroleum Geology 125, 104857.
- 677 https://doi.org/10.1016/j.marpetgeo.2020.104857
- Tuccimei, P., Ginés, J., Delitala, M. C., Ginés, A., Gràcia, F., Fornós, J. J., Taddeucci, A., 2006.
- 679 Last interglacial sea level changes in Mallorca island (Western Mediterranean). High precision
- 680 U-series data from phreatic overgrowths on speleothems. Zeitschrift für Geomorphologie 50
- 681 (1), 1–21. https://doi.org/10.1127/zfg/50/2006/1
- Tuccimei, P., Soligo, M., Ginés, J., Ginés, A., Fornós, J., Kramers, J., Villa, I. M., 2010.
- 683 Constraining Holocene sea levels using U-Th ages of phreatic overgrowths on speleothems
- 684 from coastal caves in Mallorca (Western Mediterranean). Earth Surface Processes and
- 685 *Landforms* 35 (7), 782-790. https://doi.org/10.1002/esp.1955

- Tuccimei, P., Van Strydonck, M., Ginés, A., Ginés, J., Soligo, M., Villa, I., Fornós, J., 2011.
- 687 Comparison of ¹⁴C and U-Th ages of two Holocene phreatic overgrowths on speleothems from
- 688 Mallorca (Western Mediterranean): Environmental implications. *International Journal of*
- 689 Speleology 40 (1), 1–8. https://doi.org/10.5038/1827-806X.40.1.1
- Tuccimei, P., Onac, B.P., Dorale, J.A., Ginés, J., Fornós, J.J., Ginés, A., Spada, G., Ruggieri,
- 691 G., Mucedda, M., 2012. Decoding last interglacial sea-level variations in the western
- Mediterranean using speleothem encrustations from coastal caves in Mallorca and Sardinia: A
- 693 field data model comparison. Quaternary International 262, 56-64.
- 694 https://doi.org/10.1016/j.quaint.2011.10.032
- Vacchi M., Gatti, G., Kulling B., Morhange C., Marriner, N., 2022. Climatic control on the
- 696 formation of marine-notches in microtidal settings: New data from the northwestern
- 697 Mediterranean Sea. *Marine Geology* 453, 106929
- van Hengstum, P.J., Richards, D.A., Onac, B.P., Dorale, J.A., 2015. Coastal caves and
- 699 sinkholes. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of Sea-Level Research.
- John Wiley & Sons, Ltd, Chichester, UK, pp. 83–103. doi:10.1002/9781118452547.ch6
- van Hinsbergen, D.J.J., Torsvik, T.H., Schmid, S.M., Matenco, L.C., Maffione, M., Vissers, R.
- 702 Gürer, D., Spakman, W., 2020. Orogenic architecture of the Mediterranean region and
- kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Research 81,
- 704 79-229. https://doi.org/10.1016/j.gr.2019.07.009
- van de Plassche, O. (Ed.). 1986. Sea-Level Research: A manual for the collection and
- evaluation of data. Springer Dordrecht, Netherlands.
- Vermeesch, P., 2018. IsoplotR: A free and open toolbox for geochronology, Geoscience
- 708 Frontiers 9 (5), 1479-1493, https://doi.org/10.1016/j.gsf.2018.04.001.

- Vesica, P. L., Tuccimei, P., Turi, B., Fornós, J. J., Ginés, A., Ginés, J., 2000. Late Pleistocene
- Paleoclimates and sea-level change in the Mediterranean as inferred from stable isotope and U-
- series studies of overgrowths on speleothems, Mallorca, Spain. *Quaternary Science Reviews* 19
- 712 (9), 865–879. https://doi.org/10.1016/S0277-3791(99)00026-8
- 713 Vlahović, I., Tišljar, J., Velić, I., Matičec, D., 2005. Evolution of the Adriatic Carbonate
- 714 Platform: Palaeogeography, main events and depositional dynamics. Palaeogeography,
- 715 Palaeoclimatology, Palaeoecology 220 (3–4), 333–360.
- 716 https://doi.org/10.1016/j.palaeo.2005.01.011
- 717 Zanchetta, G., Giraudi, C., Sulpizio, R., Magny, M., Sadori, L., Drysdale, R.N., 2012.
- 718 Constraining the onset of the Holocene "Neoglacial" over the central Italy using tephra layers.
- 719 *Quaternary Research* 78, 236–247.
- 720 Zanchetta, G., Van Welden, A., Baneschi, I., Drysdale, R., Sadori, L., Roberts, N., Giardini,
- M., Beck, C., Pascucci, V. and Sulpizio, R., 2012. Multiproxy record for the last 4500 years
- from Lake Shkodra (Albania/Montenegro), Journal of Quaternary Science, vol.27, no.8, pp.
- 723 780-789. doi:10.1002/jqs.2563

List of tables

724

725

727

726 Table 1. Results of U-series measurements and corrected ages

728 List of figures

- Figure 1. Conceptual model of POS formation after Dumitru et al. (2021)
- Figure 2. Study site and geologic setting (based on the Geological Map of the Republic of
- 731 Croatia; scale 1:300 000)

Figure 3. Medvjeđa špilja Cave longitudinal profile, plan map and position in relation to the sea.

Figure 4. Morphology and longitudinal section of the MLp1 with POS deposits and subsampling spots for U-series dating (black dots) and XRF analysed spots (red) on the cut and outer surface where the surface was sampled for XRD analysis. Note the ~1 mm thick overgrowth layer immediately around the support (a pre-existing soda straw).

Figure 5. Trace element content in the analysed spots indicated in Figure 4 (red circles).

Figure 6 (a) Analysed area of the POS by SEM. The picture to the left shows the lower part of the POS (compare with Fig. 3) with marks approximately delimitating boundaries between the support (dark overgrowth layer) and the overgrowth (dashed red lines) and the area of the SEM image shown on the right side. Note the fuzzier etched surface and smaller crystals of the support compared to the overgrowth. (b) The boundary between the support and the overgrowth with visible epitaxial crystal overgrowth (inset picture in the upper right corner). (c) EDS spot analysis along the support-overgrowth (the 1 mm dark layer) boundary (above) and the Mg content in these spots. Note the crystal zoning around the sampling spot #3. (d) EDS elemental map showing a uniform distribution of Mg across all three types of calcite, and localized concentration of Si and Al. The colour on each of the elemental maps represents the element labeled on top of them (i.e. Mg - blue; Si - orange; Al - cyan)

- Figure 7. The ²³²Th/²³⁸U-²³⁴U/²³⁸U-²³⁰Th/²³⁸U isochron age and weighted mean diagram of POS subsamples (#2 5 in Fig. 4)
- Figure 8. POS sample MLp1 and speleothem L-1 superimposed on the relative sea-level curve for the northern Adriatic Sea constructed for Istria (Faivre et al., 2011a, 2019)