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Abstract— Unsupervised Domain adaptation (UDA) aims to
transfer knowledge from the labeled source domain to the
unlabeled target domain. Most existing domain adaptation meth-
ods are based on convolutional neural networks (CNNs) to
learn cross-domain invariant features. Inspired by the success
of transformer architectures and their superiority to CNNs,
we propose to combine the transformer with UDA to improve
their generalization properties. In this paper, we present a novel
model named Transferable Vector Quantization Alignment for
Unsupervised Domain Adaptation (TransVQA), which integrates
the Transferable transformer-based feature extractor (Trans),
vector quantization domain alignment (VQA), and mutual infor-
mation weighted maximization confusion matrix (MIMC) of
intra-class discrimination into a unified domain adaptation
framework. First, TransVQA uses the transformer to extract
more accurate features in different domains for classification.
Second, TransVQA, based on the vector quantization alignment
module, uses a two-step alignment method to align the extracted
cross-domain features and solve the domain shift problem.
The two-step alignment includes global alignment via vector
quantization and intra-class local alignment via pseudo-labels.
Third, for intra-class feature discrimination problem caused by
the fuzzy alignment of different domains, we use the MIMC
module to constrain the target domain output and increase the
accuracy of pseudo-labels. The experiments on several datasets
of domain adaptation show that TransVQA can achieve excellent
performance and outperform existing state-of-the-art methods.

Index Terms— Transferable transformer feature extractor,
vector quantization alignment, two-step alignment, mutual infor-
mation weighted, unsupervised domain adaptation.

I. INTRODUCTION

THE convolutional neural networks (CNNs) [1], [2], [3]
and transformer architectures [4], [5] have achieved high

accuracy in supervised image classification. However, collect-
ing label samples on a large scale is often expensive [6], [7].
Meanwhile, the effects of light, color, background, location,
and style can lead to domain shift problems, affecting the
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generalization property of deep models [8], [9] and resulting
in decreased accuracy [6], [8]. To solve the above problem,
Unsupervised Domain Adaptation (UDA) methods are pro-
posed to move the knowledge learned from the labeled source
domain to the unlabeled target domain [10], [11], [12], [13],
[14] based on the assumption that both domains share the same
label set [15].

Existing UDA methods can be roughly classified into
aligned discrepancy-based methods [12], [16], [17], [18] and
adversarial learning-based methods [11], [19], [20]. The for-
mer (discrepancy-based methods) seek to address the domain
shift issue by carefully designing the alignment loss - e.g., the
loss of Correlation Alignment (CORAL) [21], the maximum
mean discrepancy (MMD) [16], local maximum mean discrep-
ancy (LMMD) [22], etc. The latter (adversarial learning-based
methods) use a domain discriminator to distinguish features
in the source and target domains. With a deep network
trained to extract features that the domain discriminator cannot
recognize [14], [19], the domain shift problem is solved
under the adversarial learning framework. In addition, some
UDA methods extract useful information from the unlabeled
target domain, such as Minimum Class Confusion (MCC)
[15], which uses hidden knowledge to minimize the confu-
sion matrix of the target domain; Bi-Classifier Determinacy
Maximization (BCDM) [23] exploits the dark knowledge of
bi-classifiers for domain adaptation.

Regardless of the type of UDA methods, feature extrac-
tion is at the foundation of these methods. Existing feature
extraction modules for UDA can be divided into CNN-based
and transformer-based. CNN-based methods usually use pre-
trained ResNet [2] networks as feature extractors [15], [18],
[19], [23], [24], [25]. Transformer-based methods usually use
pre-trained Vision Transformer (ViT) [4] and Swin transformer
(Swin) [5] networks as feature extractors [26], [27], [28].
Transformer-based on the self-attention mechanism can build
long-range dependencies between visual features in the image.
Thus, Transformers can often perform better than CNNs on
domain-adaptation tasks [28]. Most domain adaptive methods
use CNNs to learn cross-domain invariant features, even
though transformer architectures have shown better perfor-
mance [4], [5].

Several transformer-based UDA methods have been pro-
posed in the open literature in recent years [12], [15], [18],
[27], [28], [29]. However, they suffer from the following
limitations. First, most are multi-branch structures, requiring
more training resources [27], [28] than the single-branch
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counterpart. Second, only the global distribution alignment of
cross-domain features is considered, while the benefit of local
alignment is ignored [12], [18]. Last but not least, the method
of using target domain pseudo-labeling usually introduces
more confusing information by ignoring the post-processing
of the target domain [15], [29]. In summary, the overall per-
formance of these existing transformer-based UDA methods
has not been optimized.

To solve the above problems, we propose a method named
Transferable Vector Quantization Alignment for Unsuper-
vised Domain Adaptation (TransVQA) in this work. First,
Our TransVQA method uses the visual transformer for
cross-domain feature extraction with the self-attention mecha-
nism. Moreover, our transformer is easier to train without the
multi-branch structure. Second, our method introduces a latent
space (codebook) that provides a priori information through
vector quantization (VQ) and uses this codebook for two-
step cross-domain feature alignment based on the MSE metric.
In the first step, we use the global alignment in the latent space,
which can remove the feature distribution gaps across different
domains. In the second step, we propose a local alignment
strategy using codebook and target domain pseudo-labels,
which removes the domain shift within the same class. Third,
to solve the feature confusion problem caused by incorrect
pseudo-labels, we proposed a Mutual Information-weighted
Maximization Confusion (MIMC) matrix module to enhance
the pseudo-label confidence of the target domain. Mutual
information weighting can bring the pseudo-labels in the target
domain closer to the one-hot code. Our contributions are
summarized as follows:

• A novel Transferable Vector Quantization Alignment for
Unsupervised Domain Adaptation (TransVQA) method
was proposed. Our TransVQA method learns deep trans-
former features and introduces a latent space (codebook)
to provide a priori information for two-step domain
feature alignment based on MSE metrics.

• The TransVQA method performs global and local fea-
tures alignment of the cross-domain by a two-step
alignment method based on vector quantization and trans-
former feature. Thus, we can obtain more discriminative
features and remove the cross-domain gap.

• The TransVQA method uses MIMC matrix loss in the
target domain to enhance the intra-class discriminabil-
ity of alignment features and pseudo-label confidence.
Mutual information weight makes the classifier output
closer to one-hot encoding, improving the discriminative
performance.

• We experiment on DomainNet, VisDA-2017, Office-
Home, and Office-31 datasets, and show that Our
TransVQA method outperforms the state-of-the-art meth-
ods in different UDA scenarios.

II. RELATED WORK

A. Domain Adaptation

In the literature, many UDA methods have been pro-
posed. The DANN [11] and CDAN [19] propose domain
discriminators for networks that use domain discriminators to

discriminate source and target samples. Maximum classifier
discrepancy (MCD) [13] employs adversarial between feature
extractors and classifiers. Collaborative and adversarial net-
work (CAN) [30] uses pseudo-labels directly as regularization.
Semantic concentration for domain adaptation (SCDA) [14]
based on pseudo-labels encourages models to focus on the
most dominant features by predicting pairwise adversarial
alignments of distributions. Deep adaptation network (DAN)
[16] minimizes the maximum mean discrepancy (MMD) in
selected layers to reduce cross-domain gaps. Joint adaptation
networks (JAN) [12] uses the joint MMD and pseudo-labels to
enhance the alignment of the joint distribution across domains.
Margin disparity discrepancy (MDD) [18] introduced margin
disparity discrepancy that reduces distributional discrepancy
by strict generalization bounds. Source HypOthesis Transfer
(SHOT) [31] learns the features of the target domain by
fitting the frozen source classification module. FixBi [32] adds
multiple intermediate domains between the source and target
domains by introducing a fixed ratio-based mixup.

B. Transformer for Vision

The Transformer [33] is proposed for the first time in
the NLP application. Vision transformer (ViT) [4] first
applied Transformer to image classification. Then, several
variants of ViT [5], [34] were proposed and achieved com-
parable performance over CNN on computer vision tasks.
Swin Transformer [5] proposes to use a shift window to
compute the feature representation. Based on the excel-
lent performance of the transformer in vision tasks, some
vision transformer-based UDA schemes have been presented.
Transferable vision transformer (TVT) [26] is based on the
ViT network, which captures transferable and discriminative
features via transferable self-attention blocks. Cross-domain
transformer (CDtrans) [27] combines pseudo-labels to pro-
pose a weight-shared three-branch transformer framework
for aligning cross-attention across domains. Bidirectional
cross-attention transformer (BCAT) [28] is a weight-shared
quadruple-branch transformer network. It uses the mechanism
of bidirectional cross-attention to learn domain-invariant repre-
sentations. Domain-oriented transformer (DOT) [35] proposed
two individual classifiers based on ViT to maintain domain-
wise discriminability.

C. Vector Quantization

The Variational Autoencoder (VAE) is an unsupervised
learning method that contains an encoder and a decoder [36].
The encoder projects a high-dimensional input x into a
low-dimensional latent variable z. The decoder reconstructs
z to x . Many training discrete VAE methods have been pro-
posed [37], [38]. Vector Quantized-Variational AutoEncoder
(VQ-VAE) [37] integrates the VAE scheme with discrete latent
representations via a codebook of a given prior distribu-
tion. Li et al. [39] proposed VAE, adversarial learning, and
pseudo-label are applied to domain adaptation tasks. JVA2E
[40] proposed a Joint Adversarial Variational AutoEncoder for
unsupervised domain adaptation tasks. In contrast, our model
introduces vector quantization alignment techniques to domain
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Fig. 1. Overview of TransVQA for unsupervised domain adaptation (UDA). The transformer feature extractor G is used for feature extraction. The two-step
vector quantization alignment module for cross-domain feature global and local alignment. Classifier C for classification. LC E is the cross-entropy loss on
the source domain. LM I MC is the mutual information weighted maximization confusion matrix loss on the target domain. LV Q A is the two-step alignment
method to align the extracted cross-domain features. E is the codebook with K items for vector quantization (VQ).

adaptation and uses the codebook to achieve global and local
alignment of features across different domains.

III. THE TRANSVQA METHOD

This section describes the proposed Transferable
Transformer-based Vector Quantization Alignment method
(TransVQA). In UDA, a labeled source domain data with
Ns samples are denoted by S =

{(
x s

i , ys
i
)}Ns

i=1, where
ys

i ∈ {1, 2, . . . , C} is the class label of a sample x s
i .

An unlabeled target domain data with Nt samples are denoted

by T =

{(
x t

j

)}Nt

j=1
. Due to the domain shift issue, the

source and target domains have different data probability
distributions i.e., ps (x s) ̸= pt

(
x t), but share the same class

label space, i.e., Ys = Yt . Domain adaptation aims to solve
the domain shift issue and improve the recognition accuracy
of unlabeled target domain data using labeled source domain
data.

A. Motivation and Preliminaries

The UDA method mainly solves domain shift issues for
different domains [6], [8], [9]. Most existing domain adapta-
tion methods are based on CNN networks and pseudo-label
supervision for data distribution alignment across-domain,
expecting to solve the domain shift problem [15], [18], [19],
[23], [24], [25]. However, with the excellent performance of
the transformer network in various tasks, it can be found that
the transformer network is more efficient than CNN in extract-
ing features as a backbone network [26], [27], [28], [41].
To take full advantage of the transformer network and pseudo-
label, we proposed a domain adaptation method (TransVQA)
as shown in Fig. 1. Our TransVQA method uses a transformer
as the backbone network to extract more accurate features.
Then the VQ technique is applied to the Two-step Vector
Quantization Alignment module [36], [37]. Finally, TransVQA
uses the mutual information weighted maximization confusion
matrix loss module [14], [15] to enhance the confidence of the

target domain pseudo label and solve the problem of confusion
of cross-domain aligned features.

In this paper, we represent our TransVQA framework by
F , which consists of a deep transformer feature extractor G,
a vector quantization alignment module with codebook E and
bottleneck layer B, and a head classifier C. Our TransVQA
method will input both labeled source domain data and unla-
beled target domain data, thus moving the source knowledge
to the target and enhancing the recognition performance of the
target domain.

B. Transformer Feature Extraction Module

Deep transformer networks with self-attention mechanisms
have surpassed the performance of CNN networks in image
classification, detection, and segmentation [4], [5]. Therefore,
deep transformer networks are quickly becoming the backbone
for feature extraction in domain adaptation [26], [27], [28],
[41]. In our TransVQA framework, the backbone G for feature
extraction will use ViT-transformer [4] or Swin-transformer
[5]. For batch samples (x s, ys) and

(
x t) in the source domain

and target domain. First, build the input images via the patch +
position embedding module (where Swin-transformer has no
class token) to retain information about content and position
and get zs

0 and zt
0. Second, the extracted features G (x s), G

(
x t)

can be obtained via the backbone G consisting of a series of
Multi-Head self Attention (MHSA), MLP, layer normalization
(LN), and residual connections [4], [5].

We can obtain the correspondent features G (x s) ∈ Rb×D

and G
(
x t)

∈ Rb×D through the feature extraction network G
(for ViT network only use the class token feature). Where D
is the dimension of the feature, and b is the batch size of the
network.

C. Two-Step Vector Quantization Alignment Module

After obtaining the source domain feature G (x s) and the
target domain feature G

(
x t), we want to remove the domain

Authorized licensed use limited to: West Virginia University. Downloaded on May 02,2024 at 13:01:18 UTC from IEEE Xplore.  Restrictions apply. 



SUN et al.: TransVQA: TRANSFERABLE VECTOR QUANTIZATION ALIGNMENT FOR UDA 859

Fig. 2. Overview of Two-step Vector Quantization Alignment. Global
alignment is used to align the overall distribution of features across domains.
Local alignment is used for cross-domain feature alignment within the same
class.

shift issue between the source and target domains. To achieve
this, First, we use the Select Vector from the Codebook
procedure for updating and selecting vector items. Then we
use the selection and learned codebook in two steps: Global
Alignment via Vector Quantization (VQ) and Local Alignment
via Pseudo label. Vector quantization uses nearest neighbors
to select the items in the codebook that are closest to the
feature. Global alignment is used to align the overall distribu-
tion of features across domains. Local alignment is used for
cross-domain feature alignment of data of the same class. This
two-step alignment process is illustrated in Fig. 2.

Vector Select From the Codebook: As shown in overview
Fig. 1, the codebook E ∈ RK×D is compared with features
from both the source and target domains and then updates
the items in the codebook. Therefore codebook provided a
cross-domain shared latent space that contains the shared
information in the source and target domains. For example,
domain shift features such as size, illumination, angle, back-
ground, location, etc. are ignored, and discriminable semantic
features such as the contour and shape of the object are
included. Therefore the learnable codebook E ∈ RK×D

provides more prior information for cross-domain alignment.
Where D is the dimension of the codebook item vector ei ,
and K is the number of the codebook items. The codebook
item of G (xi ) is using the nearest neighbor item in the shared
embedding space E , as shown in Eq. (1).

Gq (xi ) = ek, k = argmin j
∥∥G (xi ) − e j

∥∥
2 (1)

where G (xi ) is the output of the feature extractor G.
We approximate the gradient by copying the gradient from the
classifier input Gq (x) to the feature extractor output G (x) [37].
ei is initialized using uniform distribution. We can find that
the process of selecting items from the codebook is similar to
the VQ-VAE method, but the direct use of item Gq (x) instead
of G (x) will lead to information distortion issues. Therefore,
we apply the a priori information provided by the codebook
by concatenating G (x) and Gq (x). The G (x) similar elements
selected from the codebook will help the features to perform
a better cross-domain alignment.

First-Step Alignment: Global Alignment via Vector Quan-
tization: For features G (x s) and G

(
x t) of the source and

target domains, the corresponding items Gq (x s) and Gq
(
x t)

can be obtained after the vector select from Codebook process.
To reduce the domain shift of the source and target domains,
we can do it by reducing the distance between G (x s) and
Gq

(
x t), G

(
x t) and Gq (x s) at the same time. This process is a

global alignment for cross-domain, and the loss function can
be expressed as:

LV Q A1 = α
(∥∥Gq

(
x s)

− sg
⌊
G

(
x t)⌋∥∥

2

+
∥∥Gq

(
x t)

− sg
⌊
G

(
x s)⌋∥∥

2

)
(2)

where sg ⌊·⌋ denotes the stop gradient operation, ∥·∥2 denotes
the Mean Squared Error (MSE, or Euclidean Distance), and α

is a scalar parameter.
∥∥Gq (x s) − sg

⌊
G

(
x t)⌋∥∥

2 denotes align-
ing the target domain feature with the prior information of the
source domain in the codebook, and

∥∥Gq
(
x t)

− sg ⌊G (x s)⌋
∥∥

2
denotes aligning the source domain feature with the prior
information of the target domain in the codebook. In this
indirect cross-domain global alignment with the help of a pri-
ori codebook, the learnable hidden space can be used as a
bridge between the source and target domains, reducing the
alignment difficulty. For example, for an “Art” scene and a
“Painting” scene, the learnable codebook in the hidden space
can contain information for both scenes. For cross-domain
global alignment, we only need to minimize LV Q A1 to align
the global feature distribution.

Second-Step Alignment: Local Alignment via Pseudo Label:
Since the First-step Alignment focuses more on the overall
distribution and ignores inter-class differences, this may lead
to confusion about the features of different classes. To solve
the problem, Second-step Alignment is used for cross-domain
feature alignment within the same class. After the vector
selects from the codebook, the concatenating G (x) and Gq (x)

will go through a bottleneck layer (a linear layer, an activa-
tion layer, and a batch-norm layer) to obtain new features,
with source and target domain bottleneck features B (x s) and
B

(
x t), respectively. These can be expressed as:

B
(
x s)

= bottleneck
([
G

(
x s) ,Gq

(
x s)])

B
(
x t)

= bottleneck
([
G

(
x t) ,Gq

(
x t)]) (3)

In Eq. (3), the parameters of bottleneck are shared for the
source and target domains. As seen on overview Fig. 1, differ-
ent domain samples with the same class label can form sample
pairs. For a sample pair, we can make local cross-domain
alignment by reducing the distance between the source domain
samples and the target domain samples. Since the class label of
the target domain is unknown, a pseudo-label is needed. For
the C classes cross-domain bottleneck features, the Second-
step Alignment: Local Alignment via Pseudo label loss can
be expressed as follows.

LV Q A2 = β
∑C

c=1
∥∥B

(
x s

c
)
− B

(
x t

c
)∥∥

2 (4)

where β is a scalar parameter, c is the class label for source
and target domains.

∥∥B
(
x s

c
)
− B

(
x t

c
)∥∥

2 denotes the Euclidean
distance of the cross-domain sample pairs of class c. We only
need to minimize LV Q A2 to align the cross-domain feature
representation of the same class. The local alignment loss
needs to use the pseudo label of the target domain, but
the pseudo label obtained by cross-entropy is inefficient.
Therefore, for the output of classifier C on the target domain,
a post-processing method combining mutual information and
confusion matrix is proposed to obtain the pseudo label of the
target domain.
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In summary, the Two-step vector quantization alignment
loss can be expressed as follows:

LV Q A = αLV Q A1 + βLV Q A2

= α
(∥∥Gq

(
x s)

− sg
⌊
G

(
x t)⌋∥∥

2

+
∥∥Gq

(
x t)

− sg
⌊
G

(
x s)⌋∥∥

2

)
+ β

∑C
c=1

∥∥B
(
x s

c
)
− B

(
x t

c
)∥∥

2 (5)

where α and β are positive trade-off parameters for global and
local alignment.

D. Mutual Information Weighted Maximization Confusion
Matrix Module

Addressing the domain shift issue to classify unlabeled
target domain data is a challenging task. If only cross-domain
feature alignment is used, it will instead reduce the ability
of the classifier to discriminate the target domain. To solve
this problem, we propose the Mutual Information weighted
Maximization Confusion matrix (MIMC) module obtain more
accurate pseudo labels in the target domain. In the MIMC
module, we can use LM I MC loss to constrain the target domain
output Z t

= F
(
x t)

∈ Rb×C of the classifier. Where C is the
number of classes for the source domain, b is the batch size
of the target domain. To enhance the robustness of LM I MC
loss, First, we normalize the probability for Z t via Eq. (6).

Y t
i, j =

exp
(

Z t
i, j/T

)
∑C

j=1exp
(

Z t
i, j/T

) (6)

where Y t
i, j is the i-th sample belongs to the j-th class on

target source, Z t
i, j is the output of classifier C, and T is the

probability normalized scale parameter. We use T = 2.5 in all
our experiments [15].

To retain more variation between samples and to enforce the
prediction of the target domain close to the one-hot code [26].
We introduce the mutual information I

(
Y t

; x t
i
)

of each sample
x t

i , which defined as:

I
(
Y t

; x t
i
)

= H
(

Y
t
)

− H
(
Y t

i
)

(7)

where, Y
t

= Ex t
[
Y t ], H denotes entropy. In addition, the

larger value of I
(
Y t

; x t
i
)

denotes that sample x t
i is more

important for the classification of the target domain. Therefore,
the mutual information weight of sample i can be defined as.

Wi,i =
I

(
Y t

; x t
i
)∑b

i=1I
(
Y t ; x t

i
) (8)

where W is a diagonal matrix to denote the importance
of each sample in a batch for the target domain. For the
probability normalized Y t and mutual information weight,
we can compute the class weighted confusion matrix by Eq.
(9):

Rt
j, j ′ = Y t

., j
T W Y t

., j ′ (9)

where, Rt
j, j ′ denotes the correlation between class j and

class j ′ on the target domain. For C class data Rt
j, j ′ on

the target domain, we need to normalize it as R̃ j, j ′ =

R j, j ′/
∑C

j ′′=1 R j, j ′′ . We only need to maximize the confusion

matrix trace [15]. Finally, the mutual information weighted
maximization confusion matrix (MIMC) loss is denoted as:

LM I MC =
1
C

C∑
j=1

C∑
j ′ ̸= j

∣∣R̃ j, j ′
∣∣ (10)

Note that the loss LM I MC only works on the target domain.
We only need to maximize LM I MC to enhance the confidence
of the pseudo labels. In addition, we set a threshold = 0.8 to
select the target domain samples which are relatively correctly
classified, i.e., only

{
x t

j |Z
t
j,(c) > 0.8

}
are involved in the

calculation of local alignment loss LV Q A2.

E. Overall Formulation

As shown in Fig. 1, the loss function has three terms, the
standard cross-entropy loss LC E only works on the source
domain, the mutual information weighted maximization con-
fusion matrix loss LM I MC only works on the target domain,
and the Two-step vector quantization alignment loss LV Q A.
The loss LV Q A consists of two parts, global alignment loss
LV Q A1 and local alignment loss LV Q A2. The aggregate loss
function is defined as follows:

L = LC E + LV Q A − γLM I MC

= LC E + αLV Q A1 + βLV Q A2 − γLM I MC (11)

where α, β, and γ are positive trade-off parameter. With this
joint loss, feature extractor G, codebook E and the classifier C
of the deep domain adaption network F can be trained end-
to-end by back-propagation.

IV. EXPERIMENT

A. Experimental Setting

a) Datasets. We use four classic datasets: DomainNet
[42], VisDA-2017 [43], Office-Home [44], and Office-31 [45].
Some sample images of each domain in these datasets are
shown in Fig. 3.

(1) DomainNet is the most challenging UDA large dataset.
It contains 0.6 million images in 345 classes and six domains:
Clipart (clp), Infograph (inf), Painting (pnt), Quickdraw (qdr),
Real (rel), and Sketches (skt). We build 30 UDA tasks to
evaluate our model, i.e., clp→inf, . . . , skt→rel.

(2) VisDA-2017 includes 12 classes and two domains:
synthetic and realistic. We build adaptation task is synthetic
(155K images) → realistic (55K images).

(3) Office-Home contains 15,500 images in 65 classes and
four domains: Art (Ar), Clipart (Cl), Product(Pr), and Real
World (Rw). We build 12 UDA tasks, i.e., Ar → Cl, . . . , Rw
→ Pr.

(4) Office-31 contains 4,110 images in 31 classes and
3 domains: Amazon (A), Webcam (W) and Dslr (D). We build
6 adaptation tasks, i.e., A → W, . . . , D → W.

b) Implementation details. For a fair comparison with the
existing UDA methods, we use the same backbone network
(ViT-B and Swin-B) pre-trained on ImageNet [46] (ImageNet
1K and ImageNet 21K). We use source and target domains
trained for all UDA tasks and predict the unlabeled target
domain. The input image size in experiments is resized to
224 × 224. For the ViT-B-based TransVQA method, we use
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TABLE I
ACCURACY (%) ON DOMAINNET FOR UDA. COLUMNS ARE THE SOURCE DOMAIN AND ROWS ARE THE TARGET DOMAIN

Fig. 3. Some sample images of each domain in Domainnet, VisDA-2017,
Office-Home, and Office-31 datasets, respectively.

the SGD optimizer [47] with a momentum of 0.9 and weight
decay of 5×10−4. For all databases, the batch size is 100. For
DomainNet, the hyper-parameter K = 4096, α = 1, β = 1,
and γ = 10 for all UDA tasks. For VisDA-2017, OfficeHome,
and Office-31, the hyper-parameter K = 2048, α = 1, β =

1, and γ = 1 for all UDA tasks. For the TransVQA method
built on the Swin-B, we employ AdamW [48] optimizer with
a momentum of 0.9 and weight decay of 5 × 10−3. For all
databases, the batch size is 64. For VisDA-2017, OfficeHome,
and Office-31, the hyper-parameter K = 2048, α = 0.8, β

= 1.2, and γ = 1 for all UDA tasks. We implemented all
simulations on a PC with Intel Xeon (R) CPU E5-2620 v4
@2.1 GHz×32 128G and four NVIDIA 2080Ti.

B. Over All Results

We compare the recognition accuracy of the TransVQA
method with existing UDA methods, especially transformer-
based methods. The Transformer-based methods are Transfer-
able vision transformer (TVT) [26], Cross-domain transformer
(CDtrans) [27], Bidirectional cross-attention transformer
(BCAT) [28], and Domain-oriented transformer (DOT) [35].
“Source only” means the baseline model trained on the source
data using the backbone network.

The results on DomainNet dataset are shown in Table I.
Using the same backbone network (ViT-B) our TransVQA
method achieves higher performance. The average accuracy
of our TransVQA method is 11.2% higher than ViT-B and
2.0% higher than DOT-B. Our method achieves high accuracy
in most UDA tasks, e.g., clp → rel, skt → clp, pnt → rel, inf
→ pnt, rel → skt, and inf → skt, etc.

The results on VisDA-2017 dataset are shown in Table II.
Compared with other UDA methods, our TransVQA obtains
a higher average accuracy with the same backbone network
and pre-trained weights. Specifically, TransVQA (ViT-B, IN-
1K) outperforms the DOT (ViT-B, IN-1K) by 1.0% average
accuracy, TransVQA (ViT-B, IN-21K) outperforms the TVT
(ViT-B, IN-21K) by 5.5% average accuracy, and TransVQA
(Swin-B, IN-1K) outperforms BCAT (Swin-B, IN-1K) by
3.3% average accuracy. In difficult categories, such as knife
and truck, our method outperforms other existing methods by
achieving an accuracy of 98.8% and 76.4%.

Results on Office-Home dataset are shown in Table III.
Our TransVQA obtained the highest average accuracy rates,
84.6% (ViT-B, IN-1K), 86.4% (ViT-B, IN-21K), and 87.6%
(Swin-B, IN-1K). And the highest accuracy is obtained on
eight UDA tasks in Ar → Cl, Ar → Pr, Cl → Pr, Pr → Cl,
Pr → Rw, Rw → Ar, Rw → Cl, and Rw → Pr.

Results on Office-31 dataset are shown in Table IV. Our
TransVQA outperforms other baselines and obtains the highest
average accuracy, 95.2% (ViT-B, IN-21K) and 95.6% (Swin-
B, IN-1K).

These outstanding results demonstrate the effectiveness of
our proposed TransVQA method in UDA tasks.

C. Indepth Analysis

Ablation Study: To study the capabilities of the different
parts of TransVQA, we performed an ablation analysis based
on ViT-B and Swin-B (IN-1K) of VisDA-2017, Office-Home,
and Office-31. (1) Source only means to use LC E only on
the source domain. (2) +LV Q A1 denotes the addition of the
global alignment via vector quantization loss term to Source
only. (3) +LV Q A2 denotes the addition of the local alignment
via pseudo label loss term to Source only. (4) +LV Q A denotes
the addition of the Two-step vector quantization alignment
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Fig. 4. Visualization of the feature representation learned by different partial losses on task W → A of Office-31. The red and blue points mean source and
target domain features, respectively. Note the improved alignment between red and blue over other competing methods by the proposed TransVQA.

Fig. 5. Visualization of the feature representation learned by different partial losses on task Ar → Cl of Office-Home. The red and blue points mean source
and target domain features, respectively. Note the improved alignment between red and blue over other competing methods by the proposed TransVQA.

Fig. 6. Decision boundaries on twin Moons datasets. Green and red points denote different classes in the source domain. The blue points represent the target
domain, generated by rotating the source domain 30 degrees. The solid black line is the decision boundary.

TABLE II
ACCURACY (%) ON VISDA-2017 FOR UDA. (IN-1K/21K DENOTES THE PRETRAINNED MODEL ON IMAGENET-1K/21K)

loss term to Source only. (5) +LM I MC means the addition
of the mutual information weighted maximization confusion
matrix loss term to Source only. (6) TransVQA denotes the
complete method we proposed. The results are shown in
Table V. We can find that the full TransVQA outperforms
other components. The average accuracy with LV Q A loss is
7.8% and 8.1% higher than the Source Only. It shows that the
two-step vector quantization alignment module based on the
codebook is significantly effective in cross-domain alignment.

Based on the VIT-B backbone network, the average accuracy
with LV Q A1 loss and LV Q A2 loss are 6.4% and 6.6% higher
than the Source Only. It shows that each part of the two-step
vector quantization alignment module is effective in cross-
domain alignment. The average accuracy with LM I MC loss is
6.3% and 6.2% higher than the Source Only. It shows that the
MIMC module can effectively improve pseudo-label accuracy.

Training Efficient Study: We computed average Accuracy
(%), occupied GPU memory, and FPS (Frames Per Second)
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TABLE III
ACCURACY (%) ON OFFICE-HOME FOR UDA

TABLE IV
ACCURACY (%) ON OFFICE-31 FOR UDA

TABLE V
ABLATION STUDY OF TRANSVQA BASED ON VIT-B AND SWIN-B

(PRETRAINED ON IMAGENET-1K)

based on ViT-B and Swin-B (IN-1K) of Office-Home to
study the training efficiency compared with the multi-branch
solution (BCAT method). The results are shown in Table VI.
We can find that: the proposed TransVQA method occupies
less memory and processes images faster than BCAT with
better performance. Those results show that the proposed
model is both effective and efficient.

t-SNE Visualization: In this section, we study the effective-
ness of each module in the proposed TrandVQA method for
eliminating the domain shift issue. We take the W → A task
for Office-31 and Ar → Cl task for Office-Home as examples.
The t-SNE [49] was used to visualize the distribution of
features obtained by each module loss. The distribution of
feature learned by Source only (ViT-B), LM I MC loss (Source
only + Mutual Information weighted Maximization Confusion
matrix loss), LV Q A1 loss (Source only + Global Alignment via
Vector Quantization loss), LV Q A2 loss (Source only + Local

TABLE VI
AVERAGE ACCURACY (%), OCCUPIED GPU MEMORY, AND FPS

ON THE OFFICE-HOME

Alignment via pseudo label loss), and our complete TransVQA
results are shown in Fig. 4 and Fig. 5. From the results,
we can find that: (1) Mutual Information weighted Maximiza-
tion Confusion matrix module can enhance the classification
performance of the target domain; (2) Global Alignment via
Vector Quantization module can reduce across-domain global
shift; (3) Local Alignment via Vector Quantization module can
reduce the cross-domain intra-class shift; (4) Our TransVQA
method can effectively solve the domain shift issue.

Decision Boundaries on Twin Moons Datasets: To better
demonstrate the effectiveness of each part of our TransVQA
method for UDA, we conducted comparison experiments with
source-only, LM I MC loss, LV Q A1 loss, LV Q A2 loss, and our
TransVQA on 2D twin moon datasets [50]. The backbone
network uses a shallow MLP network and visualizes the
decision boundaries for the different parts of the loss decisions.
The results are shown in Figure 6. From the results, we can
find: (1) Due to the domain shift issue, the Source-only method
cannot completely and correctly classify the target domain.
(2) The LM I MC loss post-processes the target domain output,
which can improve the recognition accuracy of the target
domain. (3) LV Q A1 loss and LV Q A2 loss can enhance the
recognition accuracy of the target domain by cross-domain
alignment. (4) Our TransVQA decision boundary correctly
classifies all samples in the source and target domains.

Visualization of Attention Maps: In this study, attention
maps will be visualized with the W → A task of the Office-31
dataset and the Cl → Rw task of the Office-Home dataset as
examples. The results are shown in Fig. 7. The results show
that: the proposed TransVQA method pays more attention to
important regions more accurately than the source-only (ViT-
B) method. For example, in the “Mouse” image on Office-31,
the Source-only method focuses more on the background,
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Fig. 7. Attention maps of images. “Head Phone”, “Computer”, and “Mouse” in the Office-31 dataset; “Fan”, “Flower”, and “Alarm Clock” in the Office-Home
dataset.

Fig. 8. Parameter sensitivity of TransVQA on task W → A of Office-31, where (a) the effects of tuning β and λ on the performance by fixing α = 1;
(b) the effects of tuning α and λ on the performance by fixing β = 1; (c) the effects of tuning α and β on the performance by fixing λ = 1.

Fig. 9. Parameter sensitivity of TransVQA on task Pr → Rw of Office-Home, where (a) the effects of tuning β and λ on the performance by fixing α = 1;
(b) the effects of tuning α and λ on the performance by fixing β = 1; (c) the effects of tuning α and β on the performance by fixing λ = 1.

such as the computer and desktop, while our TransVQA main
attention is focused on the mouse. In the “Fan” image on
Office-Home, the Source-only method pays more attention to
the “table lamp”, while our TransVQA method pays more
attention to the “Fan”.

Parameter Sensitivity: In this study, we check the sensitivity
of our TransVQA to hyper-parameters with several experi-
ments. Note that our TransVQA has three parameters α, β,
and γ in the loss function. We take the W → A task of
Office-31 and Pr → Rw task of Office-Home as examples.

We will fix one of the parameters and analyze the other two
parameters by grid search. The results are shown in Fig. 8 and
Fig. 9. The results show that: (1) For the parameter α and β,
the higher accuracy is between [0.5, 1.5]. For the parameter
γ , the higher accuracy is between [0.8, 2]. (2) Our TransVQA
method maintains robust performance over a wide range of
parameter choices.

Codebook Size Sensitivity: In this study, we only change
the codebook size parameter K to analyze its recognition
accuracy in tasks A → W and W → A of Office-31. We use
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Fig. 10. Codebook size sensitivity of TransVQA on Office31, where (a) the
task A → W; (b) the task W → A.

the backbone network (ViT-B and Swin-B) pre-trained on
ImageNet (ImageNet 1K). The codebook contains 1200, 1400,
1600, 1800, 2000, 2200, and 2400 items. The results are shown
in Fig. 10. The results show that: For the codebook size K ,
the higher accuracy is between [1800, 2400].

V. CONCLUSION

In this paper, we proposed a novel UDA method named
Transferable Vector Quantization Alignment for Unsuper-
vised Domain Adaptation (TransVQA), which integrates
the Transformer-Net feature extract (Trans), The two-step
vector quantization domain alignment (VQA) module, and
mutual information weighted maximization confusion matrix
of intra-class discrimination (MIMC) into a unified domain
adaptation framework. The two-step alignment module solves
the domain shift issue by vector quantization for global
alignment and pseudo-labels for intra-class local alignment.
Experiments on the DomainNet, Office-31, Office-Home, and
VisDA-2017 datasets of the UDA task show that TransVQA
outperforms state-of-the-art methods.
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