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Abstract
Video deblurring is one of the most challenging vision tasks because of the complex spatial-temporal relationship and a
number of uncertainty factors involved in video acquisition. As different moving objects in the video exhibit different motion
trajectories, it is difficult to accurately capture their spatial-temporal relationships. In this paper, we proposed a memory-based
temporal fusion network (TFN) to capture local spatial-temporal relationships across the input sequence for video deblurring.
Our temporal fusion network consists of a memory network and a temporal fusion block. The memory network stores the
extracted spatial-temporal relationships and guides the temporal fusion blocks to extract local spatial-temporal relationships
more accurately. In addition, in order to enable our model to more effectively fuse the multiscale features of the previous
frame, we propose a multiscale and multi-hop reconstruction memory network (RMN) based on the attention mechanism and
memory network. We constructed a feature extractor that integrates residual dense blocks with three downsample layers to
extract hierarchical spatial features. Finally, we feed these aggregated local features into a reconstruction module to restore
sharp video frames. Experimental results on public datasets show that our temporal fusion network has achieved a significant
performance improvement in terms of PSNR metrics (over 1dB) over existing state-of-the-art video deblurring methods.

Keywords Video deblurring · Temporal fusion network (TFN) · Memory network · Local spatial-temporal information ·
Reconstruction memory network (RMN)

1 Introduction

Videohas becomean importantmedium for people inmodern
society to communicate with each other. Social media plat-
forms such as TikTok and Kwai have become the dominant
mobile apps for video sharing. However, various uncer-

Communicated by Jian Sun.

B Weisheng Dong
wsdong@mail.xidian.edu.cn

Chaohua Wang
3267928656@qq.com

Xin Li
xin.li@ieee.org

Fangfang Wu
ffwu_xd@163.com

Jinjian Wu
jinjian.wu@mail.xidian.edu.cn

Guangming Shi
gmshi@xidian.edu.cn

1 Xidian University, Xián, China

2 West Virginia University, Morgantown, USA

tainty factors, from camera shakes to moving objects, can
cause serious quality degradation in video acquired by smart-
phones. Depending on the source of blurring (e.g., uniform
vs. nonuniform), the complex spatial-temporal relationship
of the blurred video is often difficult to capture accurately.
Additionally, how to develop computationally efficient video
deblurring methods to support energy-constrained applica-
tions is nontrivial. Despite decades of research, blind motion
deblurring has remained an open problem in video technol-
ogy.

Recently, a variety of deep learning-based video deblur-
ring methods have been proposed. These methods focus
mainly on how to combine useful information from adjacent
frames to predict the current frame. Models based on the
convolutional neural network (CNN) (Su et al., 2017; Wang
et al., 2019) make the current frame stacked with adjacent
frames as input for prediction. For reconstructing the target
frame more effectively, some CNN-based models (Zhang et
al., 2014, 2013, 2014) fuse the blurred prior information
extracted by an optical flow network or other preprocessing
methods with the input frames. However, the optimality of
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these fusion methods is often questionable due to the com-
plex spatial-temporal dependence of video frames.

The analogy between video data and time series has
inspired the class of models based on a recurrent neural net-
work (RNN) (Jiang et al., 2020; Kim et al., 2017; Zhou et al.,
2019; Nah et al., 2019) for video deblurring. When process-
ing the current frame, RNN-based approaches count only on
information from previous frames (i.e., assuming a causal
neighborhood in the temporal domain). This method of pro-
cessing frame sequences with causality constraint can not
capture the motion relationship that is often bidirectional.
Most recently, there has been a surge of work exploiting
self-attentionmechanisms to address the issueof blur nonuni-
formity (Zhong et al., 2020; Tsai et al., 2021;Wu et al., 2020).
These networks usually focus on extracting global features of
video frames in a coarse to fine manner by CNNs. However,
the coarse-grained attention mechanism cannot effectively
capture local motion-related features of the video, which is
considered a major weakness of existing video deblurring
methods.

The reconstruction of information in a video frame is
achieved by the multiscale features of the encoder and
decoder. For example, when a video frame is reconstructed,
two features at the same scale, one at the encoder and the
other at the decoder, contain a feature transformation rela-
tionship from blur frame to sharp frame. The two features of
this transformational relationship play different roles, so we
cannot treat them equally. However, most existing methods
(Zhu et al., 2021; Zamir et al., 2021; Park et al., 2020; Kim
et al., 2022; Chu et al., 2022) fuse them in the same way
through concatenation and addition, thus ignoring the recon-
struction process between the two features. In order to enable
the model to mine and utilize useful information of previous
video frames when reconstructing the current video frame,
we proposed a multihop and multiscale reconstruction mem-
ory network (RMN). Our RMNmaps the two features of the
previous video frame to a memory cell in a key-value pair.
When the current frame is reconstructed, the memory cell is
queried and read, thus achieving more effective mining and
utilization of the reconstructed frame.

For video deblurring, the spatial-temporal relationship of
video is difficult to accurately capture. Unlike other deblur-
ring models, we mainly capture and fuse spatial-temporal
information by mining local spatial features from input
video sequences during the reconstruction. We proposed a
memory-based temporal fusion network (TFN) to capture
local spatial-temporal relationships. In addition, to enable
our model to more effectively fuse the multiscale features
of the previous frame, we propose a multiscale and multi-
hop reconstruction memory network based on the attention

mechanism and memory network. The new insights brought
about by our model consist of the following four aspects.

Extraction of Local Spatial-Temporal Relationships. To
enable the model to capture local spatial and temporal rela-
tionships for video reconstruction, we propose a temporal
fusion block, which performs time-domain fusion and recon-
struction according to the correlation in the local feature
groups of the bottleneck layer.

Memory of the Local Spatial-Temporal Relationship. To
facilitate the extraction of local spatial-temporal relation-
ships more accurately, we add a memory network on the
basis of our temporal fusion block, which includes an updat-
ing mechanism and a memory cell. The memory cell stores
the spatial-temporal relationship that has been extracted. Our
model will use the update mechanism to read and update the
local spatial-temporal relationship stored in the memory cell
several times, to capture the local spatial-temporal relation-
ship more accurately.

Reconstruction Memory Network. To allow our model
to fuse the multiscale features of the previous frame more
effectively,we propose amultiscale andmultihop reconstruc-
tion memory network based on the attention mechanism and
memory network as Sukhbaatar et al. (2015).

Improved Performance. Because our model can focus on
video frames throughout the time domain, we can achieve an
improved trade-off between deblurring performance (mea-
sured by PSNR) and computational complexity (measured
by runtime), as shown in Fig. 1.

In the application of video deblurring, we focused on
the question of how to effectively capture the local spatial-
temporal relationship from all input video frames. Exper-
iments on standard datasets show that our model recovers
the details of blurred video frames more effectively for
video deblurring than other state-of-the-art (SOTA) deblur-
ring methods. As shown in Fig. 1, our model has achieved a
significant performance improvement in terms of PSNRmet-
rics (over 1d B) over existing state-of-the-art videodeblurring
methods, including the latest RNN-MBP (Zhu et al., 2021).

2 RelatedWorks

2.1 Video Delburring

Video deblurring tasks have become increasingly more
important in the field of computer vision. In addition to
improving video quality, video deblurring plays an important
role in other video processing tasks, such as visual tracking
(Wu et al., 2011; Lee et al., 2011), behavior recognition, etc.
Research on the video deblurring task has gradually evolved
from the single image deblurring algorithm (Kim & Lee,
2014; Xu& Jia, 2010; Pan et al., 2016) based on model guid-
ance to the more challenging video deblurring method based
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Fig. 1 PSNR versus running time of deblurring video frames compar-
ison of our model and other competing video deblurring methods on
GOPRO dataset

on deep learning. Conventional image deblurring methods
(Harmeling et al., 2010; Hirsch et al., 2011; Kohler, 2012;
Krishnan et al., 2011) focus on how to predict the blur kernel
based on different assumptions, such as nonblind or blind
blur prior. Nonblind image deblurring methods (Cho et al.,
2011; Schmidt et al., 2013; Schuler et al., 2013) rest on the
assumption that the blur kernel can be obtained in advance.
Due to blind deblurring being an ill-posed problem, these
methods (Gupta et al., 2010; Jin et al., 2017; Dong et al.,
2017; Park & Lee, 2017) often rely on different constraints
on hypothetical blur kernels or image statistics. All of these
methods rely on parametric prior models to predict the blur
kernel and sharp images.

In recent years, many achievements have been made in
the field of computer vision based on deep learning methods.
Therefore, researchers began to focus on video-deblurring
algorithms based on the deep learning network. In the spatial
domain, convolutional neural networks are usually used to
extract spatial features that are expressive ofmotion informa-
tion of video frames. CNN-based methods are usually used
to extract the interframe relationship of video frames by con-
catenating adjacent frames as input to the model. Su et al.
(2017) build an encoder-decoder network for video deblur-
ring composed of CNN layers and residual structures. To
estimate the motion state of real-world blur videos, some
methods (Sim & Kim, 2019) use the spatial features of adja-
cent frames to make predictions for per-pixel blur kernels.
Then, they are convoluted with the blur kernel on the cor-
responding blur frames to predict sharp images. In addition,
there are some networks that combine other prior informa-
tion, such as optical flow (Pérez et al., 2013) or traditional
image prior (Zhou et al., 2020), which can express the state of
motion for video deblurring. The method proposed in Wang
et al. (2019) uses the variation in the position of hidden fea-

tures between frames to build the alignment network and
then merges the aligned features into the temporal and spa-
tial domains.

More recently, in Brehm et al. (2020), video deblurring
task has been implemented in two stages. In the first stage of
single-image deblurring, dilated convolution is introduced
to improve the expression ability and reduce the parame-
ters of the deblurring model. In the video deblurring stage,
a multiscale feature mixing method is proposed to improve
performance. Yan et al. (2020) built a joint learning model
for optical flow and video deblurring. The two subtasks were
trained in turn and hidden features were integrated during
training to improve performance. In the temporal domain,
researchers tend to use recurrent neural network (RNN)-
based methods to extract temporal relationships from video
sequences. In Kim et al. (2017), Kim proposed an RNN
structure that merges dynamic temporal features from previ-
ous frames with the current frame. Then (Zhou et al., 2019;
Zhang et al., 2020b) improves the performance of deblurring
by iteratively updating the hidden state through RNN cells.
Nah et al. (2019) built a network based on the RNN structure
that simultaneously trains the alignment task and the deblur-
ring task. Zhong et al. (2020) extracts the spatial feature of
the current frame through the RDB cell and reuses the RDB
cell to process the next frame. Then, features that contain
temporal and spatial attributes are used to reconstruct the
sharp frame through a global attention model. Most recently,
multi-attentionCNN(Wanget al., 2021), deepdynamic scene
deblurring (Zhang et al., 2021a), and occlusion-aware net-
work (Xu et al., 2021) have also been proposed for video
deblurring.

2.2 AttentionMechanism

Attention mechanism in general is a learnable guide that can
make the network select only important information for pro-
cessing, to improve the efficiency of the neural network. It
originated from natural language processing (NLP) (Bah-
danau et al., 2015; Vaswani et al., 2017; Yang et al., 2015)
and has been successfully adopted in many fields, such as
object recognition (Ba et al., 2015), image generation (Zhang
et al., 2018a), and meta-learning (Cao et al., 2019). Mul-
tihead attention is proposed in (Vaswani et al., 2017) and
deals with NLP tasks such as machine translation through
self-attention and co-attention mechanisms. This attention
mechanism replaces the LSTM and CNN modules as the
feature extractor, allowing the model to process the time-
series data at the same time. In addition, it can allow parallel
computation, reduce training time, and reduce performance
degradation due to long-term dependencies.

Most recently, researchers have introduced this self-
attention mechanism into the field of computer vision. The
network proposed in Dosovitskiy et al. (2021) extracts the
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features of all the input images through the self-attention
layer. The memory requirement of this attention mecha-
nism is the quadratic power of the input image capacity,
which seriously hinders the applicability of self-attention to
long-sequence and multidimensional input data. To reduce
the parameters of the self-attention model, researchers have
proposed many improved methods. The presence of Lamb-
daNetworks (Bello, 2021) provides a way to solve this
problem by converting the context to a single linear function
(Lambda Layer), which allows the network to capture long-
range interactionswithout having to build expensive attention
maps. Recently, the self-attention model has been applied to
video deblurring tasks (Kim et al., 2018; Gast & Roth, 2019;
Purohit & Rajagopalan, 2020). In Purohit and Rajagopalan
(2020), the video deblurring method builds local connec-
tions in different spatial locations through the self-attention
layer. However, these methods based on self-attention mech-
anismonly focus on local features at different locations in one
image, which cannot effectively capture the spatial-temporal
relationships within the entire video sequence. In this paper,
we propose an efficient temporal fusion model to capture
blur information by focusing on local features throughout
the video sequence.

2.3 Memory Networks

Memory network is a learning model (Sukhbaatar et al.,
2015) that stores and uses additional information to solve
current tasks. In Sukhbaatar et al. (2015), the author thinks
that traditional deep learning models (RNN, LSTM, GRU,
etc.) (Cho et al., 2014b; Chung et al., 2014; Cho et al., 2014a)
use hidden states or the attention mechanism as their mem-
ory function, but the memory generated by this method is
too small to accurately record all the content expressed in a
paragraph. Much information is lost in encoding the input
into dense vectors. Therefore, the author proposed a reading
and writing external memory module and combined it with
an inference component to train, and finally obtained a flex-
ible memory module. Memory networks generally consist
of a memory cell and an update mechanism. The memory
cell stores information useful for solving the task at hand,
usually in the form of key-value pairs or vectors, such as
diagrams in Wikipedia or vector representations of text. The
memorynetworkwill query and read thememory cell accord-
ing to the update mechanism and update the contents of the
memory cell at the same time. Finally, the memory network
reads relevant information from the memory unit according
to the current problem.Memory networkswere proposed and
developed from NLP (Sukhbaatar et al., 2015; Kumar et al.,
2016; Liu & Perez, 2017). Because memory networks can
retain historical information, they are often combined with
RNN to solve temporal problems, such as video caption (Lin
& Zhang, 2021; Ai et al., 2020) or object tracking (Zhou et

al., 2022). Memory networks have also been used for low-
level enhancement tasks, such as image deblurring (Tai et
al., 2017; Zhang et al., 2020a). Tai et al. (2017) introduces a
memory block, consisting of a recursive unit and a gate unit,
to extract persistent memory through an adaptive learning
process.

In this paper, we store the local spatial-temporal informa-
tion learned by the temporal fusion model in the memory
cell. Furthermore, we designed a novel update mechanism.
In this way, our model can extract relevant information from
historical motion information saved in the memory cell for
video deblurring.

3 Proposed Approach

In this section, an overview of the proposed model will be
presented first. We will then discuss the details of each com-
ponent of the proposed model.

3.1 Overall Architecture

The blurred information between adjacent frames often
varies spatially and temporally. Additionally, the spatial-
temporal relationship among video sequences is spatially
local. Based on this observation, the key to the task of video
deblurring is how to adaptively capture and utilize the local
spatial-temporal relationship among input frames. Recently,
researchers have begun to use the attention mechanism to
exploit the spatial and temporal relationship in video frames
(Purohit & Rajagopalan, 2020; Lei et al., 2020). They focus
on the spatial-temporal features from video frames to extract
motion-related information. However, it is often difficult to
accurately extract the local motion state using coarse-grained
attention on the global feature.

In this paper, we build a hierarchical encoder to extract
high-level features fromvideo frames. Then, at the bottleneck
layer, we collect local features from the input frames at each
position to construct local feature groups. To capture and
exploit the local spatial-temporal informationwithin the local
feature groups, we designed a temporal fusion network that
can use the information stored in the memory cell to guide
the model to capture the local spatial-temporal information
more accurately. In addition, we proposed a multiscale and
multihop reconstruction memory network that can make full
use of the information on each scale of the previous video
frame to guide the reconstruction task.

The architecture of the proposedmodel is shown inFig. 2a.
It consists of three components: encoder-decoder, tempo-
ral fusion network, and reconstruction memory network.
Each encoder and decoder contains down-sampling or up-
sampling layers with R RDB (Zhang et al., 2018b, 2021)
layers, as shown in Fig. 2b (the encoder architecture). And R
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Fig. 2 a The architecture of the proposed network. Our model consists
of encoder-decoder, temporal fusion network (TFN), and reconstruc-
tion memory network (RMN). b The architecture of the encoder. ft
refers to the t th input frame, where t ∈ {1 · · · T }, and T is the number
of input frames. We make T = 3 to facilitate the presentation of the

model structure. For details of each convolution layer and each RDB
layer, k, s, and c denote the size, stride, and channels of the kernel,
respectively. ht refers to the output feature extracted by the encoder.
And ht is mapped to h

′
t by the TFN module

Fig. 3 The architecture of the temporal fusion module. ht ∈ Rh×w×c,
t ∈ {1 · · · T } refers to the final output feature of the encoder, where h,w
and c represent the height, width, and number of channels, respectively.
L p ∈ RT ×c, p ∈ {1 · · · h ∗ w} refers to the local feature at position p
collected in the form {ht }

is the number of RDB layers. We denote the t th input frame
as ft , where t ∈ {1 · · · T }, and T is the number of input
frames. And we make T = 3 to facilitate the presentation of
themodel structure, which is shown in Fig. 2a. ht refers to the
output feature extracted by the encoder. Then the temporal
fusion network will extract the local spatial-temporal rela-
tionship from ht . h

′
t , the output of the temporal fusionmodule

will contain the extracted spatial-temporal relationship and
will be input to the decoder, which has a symmetrical struc-
ture with the encoder. During the decoding stage, our RMN
will guide the decoder to reconstruct the current frame with
the multiscale information of the previous video frame.

Fig. 4 The detailed architecture of our local spatial-temporal memory-
based temporal fusion module. The input and output of the temporal
fusion module are L p and reconstructed L

′
p . It consists of B attention

layers and a memory cell Mp , which is initialized by L p . L p refers to
the local feature, and L

′
p is the output of our module. add(.) refers to

the elementary addition

3.2 Memory-Based Temporal Fusion

As mentioned above, a key contribution of this paper is the
design of the temporal fusion network. The detailed structure
of the temporal fusion network is shown in Figs. 3 and 4. The
key motivation behind this module is to extract and use the
spatial-temporal relationship to guide the video reconstruc-
tion task. First, the temporal fusion network will fuse local
features based on their correlations. To make their correla-
tions more accurate, we will use the information stored in
the memory cell to guide the calculation of the correlations.
Based on the calculated correlations, the relevant information
from the adjacent frames is extracted and fused adaptively,
as shown in Fig. 3. It should be noted that the proposed tem-
poral fusion module can simultaneously pay attention to the
local features of all input video frames, which is different

123



International Journal of Computer Vision (2023) 131:1840–1856 1845

from other video processing methods based on the attention
mechanism (Suin & Rajagopalan, 2021).

Our temporal fusion network (TFN) can solve two impor-
tant problems in existing video deblurring methods (Doso-
vitskiy et al., 2021; Zhong et al., 2020). First, some video
deblurring algorithms based on recurrent neural networks,
such as RNN or LSTM, can process the video in only one
direction. In contrast, our bidirectional model can work
in both directions (backward and forward), so the spatial-
temporal relationship can be captured completely. Second,
most existing video deblurring algorithms focus only on
the overall features of the video frame. Such a coarse-
grained attention mechanism cannot accurately capture the
spatial-temporal information of every object in the video.
In contrast, our temporal fusion network targets the local
spatial-temporal features of different positions in the video,
which can accurately capture and utilize the local spatial-
temporal information for video deblurring.

As shown in Fig. 3, ht represents the final output feature of
the encoder, where t ∈ {1 · · · T }, and T = 3 is the number of
input frames. Note that ht ∈ Rh×w×c is a high-level feature,
where h,w, and c represent the height, width, and number of
channels, respectively. First, we flatten {h1 · · · hT } and gather
the local feature L p ∈ RT ×c at the same position p as shown
by the dotted line in Fig. 3, where p ∈ {1 · · · h ∗ w}. The
local feature L p contains the local motion information of the
input video sequence that can be captured by our temporal
fusion model. Then, our model can store and use this motion
information for the reconstruction of images. After themodel
representation, the local feature L p will be restored to L

′
p ∈

RT ×c. And L
′
p, p ∈ {1 · · · h ∗ w}, will be reassigned to the

new feature map h
′
t , t ∈ {1 · · · T }, based on their position

p, which is shown in Fig. 2a. These new feature maps will
finally be used as input to the decoder to generate restored
video frames. The workflow of our model is shown in Fig. 3.

To further zoom in, we show the detailed design of our
temporal fusion block in Fig. 4. The local feature L p con-
tains a local spatial-temporal relationship at position p. And
Mp ∈ RT ×c is the local spatial-temporal memory at position
p, and is initialized by L p through a linear layer. First, we
map L p to key-value pairs (K and V ) through two different
linear layers. In this paper, our aim is to capture the local
spatial-temporal relationship by combining historical local
spatial-temporal information. Therefore, we make the query
(Q), mapped by another linear layer from L p, to query the
relevant information from the memory cell Mp and update
the memory cell at the same time. L p reads and updates the
memory cell through the update gate as the following formu-
las:

Ip
S = Mp

S−1 + L S
p (1)

Hp
S = tanh(Wh � Ip

S) (2)

Fp
S = σ(W f � Ip

S) (3)

STp
S = Fp

S � Hp
S (4)

LTp
S = (1 − Fp

S) � Mp
S−1 (5)

Mp
S = STp

S + LTp
S (6)

Q = Wq � Mp
S (7)

where L S
p ∈ RT ×c and M S−1

p ∈ RT ×c, T is the number
of input frames, S ∈ {1, 2, 3, · · · , B}, B is the number of
our temporal fusion layers, and c is the number of channels.
L S

p represents the local spatial-temporal feature extracted
by the (S − 1)th temporal fusion layer, and L1

p is the local

spatial-temporal feature L p. Mp
S stands for the local spatial-

temporal memory cell Mp after the Sth update. In particular,
M0

p is the initial memory cell that is initialized by L p through
a linear layer. Because the local feature L p contains the local
spatial-temporal information of all input video frames. So,
we can initialize the local spatial-temporal memory cell Mp

0

by L p using a simple linear layer or a convolution layer.
Note that Ip

S is the input information of the memory
update block in Sth temporal fusion layer, which is sim-
ply calculated by adding the current spatial-temporal feature
L S

p and the historical spatial-temporal feature Mp
S−1. The

function of Eq. (2) is to calculate the hidden memory state
Hp

S , which is simply calculated through the linear layer and
the activation function of tanh. Wh ∈ RT ×c represents the
parameter of the linear layer. Because the updated Mp

S can
be reached through some filtering operations in Hp

S , we call
Hp

S the hidden memory state. In fact, we can already use
Hp

S as our new memory cell Mp
S just as the RNN model

does. However, there will be serious problems in this way,
among which the most important is that the updated Mp

S is
easily affected by the current local spatial-temporal feature
L S

p, so it cannot maintain the long-term memory capacity of
historical information.

To ensure that our memory cell can contain both short-
term memory stored in Hp

S and long-term memory stored
in Mp

S−1. We design the operations as Eqs. (3)–(6). The
function of Eq. (3) is to construct a filter Fp

S for hidden
memory state Hp

S to obtain useful information STp
S that

we want to retain (we call it short-term memory). W f ∈
RT ×c represents the parameter of a linear layer. σ denotes
the activation function of the sigmoid. The function of Eq.
(5) is to obtain long-term memory LTp

S from the histori-
cal memory state Mp

S−1 based on the extracted short-term
memory. Therefore, we use 1− Fp

S as a filter here. Now, in
Eq. (6), we can get the updated memory state Mp

S , which
is calculated by adding short-term memory STp

S and long-
short memory LTp

S . Finally, we can get the updated Q from
the updatedmemory cell Mp

S for our temporal fusionmodel,
where Wq ∈ RT ×c represents the parameter of a linear layer.
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Fig. 5 The structure of the reconstruction network on the 1/2 scale.
a The overall structure of reconstruction memory network (RMN) in
the proposed deep network, where the RDB block is the feature extrac-
tor with a down/up-sample layer. b Single-hop reconstruction memory

network (SRMN). (c) Multi-hop reconstruction memory network (with
3 hops). ft refers to the t th input frame, where t ∈ {1 · · · T }, and T is
the number of input frames

In summary, the core of Eqs. (1)–(6) is to extract useful
long-termmemory LTp

S from historical information Mp
S−1

and useful short-termmemory STp
S from the current hidden

memory state Hp
S .

After we obtain the feature of Q, K , and V ∈ RT ×c, the
attention map can be computed as:

Ap
S = so f tmax(Q � K T ), (8)

where ai j , as the element of matrix Ap
S ∈ RT ×T , denotes

the attention score of the local feature in the i th frame to the
local feature in the j th frame at position p. This attentionmap
describes the temporal correlation of local spatial features in
the video. So, the attention map can well describe the local
spatial-temporal relationship of the video through training.
Finally, the restored local feature L

′
p can be obtained using

the following formula:

L
′
p = Ap

S � V (9)

Since L
′
p and L p have the same dimension, we can stack

the above temporal fusion layers to capture the local spatial-
temporal relationship of all video frames more effectively.

3.3 ReconstructionMemory Network

In the reconstruction of the current frame, some existing
methods (Zhu et al., 2021; Zamir et al., 2021; Park et al.,
2020; Kim et al., 2022; Chu et al., 2022) usually first add or
concatenate the features in the encoder and decoder of the
previous frame and then fuse with the features of the current
frame. However, this method ignores that the two features in
the encoder and decoder play different roles, since there is
a reconstruction process between the two features. In order
to further improve the feature fusion by taking the recon-
struction process into account, we propose a multiscale and

multihop reconstructionmemory network based on the atten-
tion mechanism and memory network as Sukhbaatar et al.
(2015), which is shown in Fig. 5a.

In Fig. 5a, ft refers to the t th input frame, where t ∈
{1 · · · T }, and T is the number of input frames. On the 1/2
scale, we first make K and V of the t th frame as the memory
cell. Then, in the decoding stage of the (t + 1)th frame, we
will read useful information from V based on the correlation
between Q and K . The query result O will be combined with
the feature at the corresponding scale in the decoding stage
to form a new feature. Similarly, we used RMN to extract
information across all scales, except for the bottleneck layer.
Of course, since there was no reconstruction process before
the first frame, we did not extract the information during the
reconstruction of the first frame.

Figure 5b and c show single-hop RMN (SRMN) and mul-
tihop RMN (MRMN). In Fig. 5b, on the 1/2 scale, we first
need to calculate the correlation between Q and K . So, we
first add Q and K after they are mapped by the convolution
layer and then extract the deep features through the feature
extraction block (including a layer norm, a convolution layer
and a depth convolution layer). Finally, a 1× 1 spatial pool-
ing layer is used to calculate the correlation of Q and K .
Then we can get useful information O

′
by multiplying the

correlation with V , which is mapped by a convolution layer
and a layer norm.

Figure 5c shows the structure of multihop RMN. For sim-
plicity, we set the hop number of the network as 3. After
calculating the single-hop query, the calculated result O

′
will

be added to the original Q as input to the next SRMN. The
final output of the MRMN is expressed as O , which contains
useful information about the previous frame.

So far, we have described single-hop andmulti-hop recon-
struction memory networks at 1/2 scale. Except for the
bottleneck layer, the multi-hop reconstruction memory net-
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work at other scales constitutes our proposed multi-hop and
multiscale reconstruction memory network.

4 Experiments

4.1 Dataset

First, we test our network on GOPRO dataset (Nah et al.,
2017), which is a public benchmark dataset for the video
deblurring task. GOPRO is synthesized by averaging high-
FPS videos. These videos consist of successive frames in a
variety of scenarios, which are captured by handheld devices
such as the GoPro Hero 4 black and the iPhone 6s. This
video deblurring dataset consists of a quantitative and quali-
tative subset. There are 71 videos that contain 6708 synthetic
blurry frames generated by averaging seven adjacent frames
in a quantitative subset. These video frames are 1280×720
in size. The videos in the qualitative subset consist of 22
different scenes without ground truth data. To reduce com-
putational requirements and facilitate comparisonswith other
video deblurring methods, we choose the subset used in Nah
et al. (2019). There are 22 training videos and 11 evaluation
videos in this subset. The beam-splitter dataset (BSD) gener-
ated by a beam splitter system is a real-world dataset built for
video deblurring. This beam splitter system consists of two
cameras with the same configurations but different exposure
schemes to generate blurry/sharp video pairs. The video has
a size of 1280×720. In our experiment, we use the subset
BSD_2ms16ms to test the deblurring performance of our
model in the real-world dataset, where 2ms and 16ms repre-
sent the exposure times of the two cameras, respectively.

4.2 Implementation Details

During the training stage, we train our model for 800 epochs
using the ADAMoptimizer (Kingma&Ba, 2015).We set the
initial learning rate to 10−4. We use the random patch of size
256×256 in 5 consecutive frames as input to train ourmodel.
For a fair comparison, we used the same data augmentation
processes for each model, such as image normalization, hor-
izontal, and vertical inversion. In the test stage, our model
could reconstruct five consecutive frames of images at a time.
And we will splice the 256 × 256 image blocks into a com-
plete image for testing. We implemented our network using
thePyTorch framework and4NVIDIARTX3090GPUcards.
The training batch is set to 4, and each card used about 17GB
memory. The test batch is set to 1, and each card used about
10GB memory. The total training time of the model under
these conditions is about 3 days. The loss function is defined

as L2 loss for our model as follows:

L2 = 1

T C H W

T∑

t

‖P
′
t − Pt‖2, (10)

where T , C , H , W refer to the number of input frames and
channels, as well as the height and width of each frame. P

′
t

refers to the t th generated sharp frame, and Pt denotes the
ground truth of the t th frame.

4.3 Model Analysis

First, we compare our network with other SOTA video
deblurring methods on the GOPRO dataset. There are many
variants of our model that can be adjusted by changing the
model parameters. For example, we name our model as
T9R3B6C96, where T# means the number of input frames
is # (such as 9), R# means the number of RDB layers is #,
B# means the number of temporal fusion layers is #, and C#

means that the number of feature channels in our model is
#. In general, the larger C# is, the higher computation cost
is required. We use PSNR and SSIM (Hore & Ziou, 2010)
as evaluation indicators to perform a quantitative analysis of
the video deblurring performance in Table 1. Apparently,
our model reached the highest PSNR, which means that
our model can effectively use the local motion relationship
between video frames to improve the deblurring performance
of the model. And our model has achieved a significant per-
formance improvement in terms of PSNRmetrics (over 1d B)
over existing state-of-the-art video deblurring methods. Fur-
thermore, we also tested the speed of the model in video
deblurring, and the experimental results showed that our
model achieved a good balance in the speed and performance
of video reconstruction. Because our model can reconstruct
all input video frames, unlike other models that need to rely
on multiple video frames to predict the middle frame. There-
fore, our model has obvious advantages in reconstruction
speed. Then we also compare our network with other SOTA
video deblurring methods on the BSD dataset, as shown in
Table 2. The experimental results show that our model can
also perform well on real-world datasets.

To further verify the effectiveness of our model in the
video deblurring task, we show the deblurred images gener-
ated by our model with other models in Fig. 6. The blurry
scenes displayed in the first row include the global motion
blur of camera movement and the local motion blur of char-
acter movement, while the second row shows only the local
motion blur of objectmovement.When comparing these gen-
erated deblurred images, we can see that our model has made
great progress in restoring the local details of the image in
these two blurry scenes. Similarly, visual comparisons were
made on the BSD testing dataset, as shown in Fig. 7. By
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Table 1 Quantitative results on
GOPRO

Networks PSNR SSIM Params (M) FLOPS (G) Time (s)

EDVR (Wang et al., 2019) 26.83 0.843 20.6 194.2 1.11

STFAN (Zhou et al., 2019) 28.59 0.861 5.37 35.4 0.15

ESTRNN (Zhong et al., 2020) 31.07 0.902 18.12 206.7 0.23

DMPHN (Zhang et al., 2019) 31.2 0.940 21.7 – 2.49

BANet (Tsai et al., 2021) 32.44 0.957 – – –

MPRNet (Zamir et al., 2021) 32.66 0.9590 20.1 760.1 2.50

HINet (Chen et al., 2021) 32.71 0.9590 88.7 170.7 2.18

RNN-MBP (Zhu et al., 2021) 33.32 0.9627 16.4 496.0 1.12

Ours 34.48 0.9573 69.86 353.05 0.69

Table 2 Quantitative results on BSD

Networks PSNR SSIM

STRCNN (Kim et al., 2017) 30.33 0.902

DBN (Su et al., 2017) 31.75 0.922

IFIRNN (Nah et al., 2019) 31.53 0.919

ESTRNN (Zhong et al., 2020) 31.95 0.925

Ours 33.18 0.957

comparing the quality of the generated images with the cor-
responding PSNR scores, it can be seen that our model can
not only accurately recover the global blur, but also be better
at recovering the details of the image, such as the scenes of
the license plate number and the text of the display board.

4.4 Ablation Study

4.4.1 Ablation Study of Hyperparameters

We are interested in the effect of some adjustable parame-
ters of the model on the video deblurring task. Therefore,
we vary T# (the number of input frames), R# (the number of
RDB layers) and B# (the number of temporal fusion layers) to
perform a comparative experiment. The comparison results
are shown in Table 3. The comparison result of the RDB
layers (T3R1B3, T3R2B3, T3R3B3 and T3R4B3 in Table 3)
shows thatmoreRDB layerswill achieve better performance.
The role of the RDB layer in our model is to enhance the
feature expression by increasing the receptive field. These
enhanced features provide expressive local information for
the temporal fusion layer. With the increase of RDB layers,
the PSNR score of the model increased by 0.88 dB, 0.62 dB,
and 0.56 dB, respectively. The comparison result of the tem-
poral fusion layers (T5R2B3,T5R2B6, T5R2B9 and T5R2B12

in Table 3) shows that with the increase of the temporal
fusion layers, the performance of our model also continues
to improve. This proves that our temporal fusion model can
achieve long-term memory capability with the help of the

memory cell and the update mechanism. The comparison
result of the number of input frames (T3R2B3, T5R2B3 and
T7R2B3 in Table 3) shows that when the number of input
video frames is 5, the maximum improvement of the PSNR
score is around 0.4 dB. Themore video frames are stored, the
higher computational cost is required for the model. There-
fore, the number of input videos for themodel is generally set
to 9 in our ablation experiments to maintain a good balance
between model performance and computational cost.

4.4.2 Ablation Study of Window Size in the Temporal and
Spatial Domain

Now we analyze the window size of our model in the spatial
and temporal domains, and the results are shown in Table 4.

1. Why global in the temporal domain. The experiment in
Table 3 has shown that our model will improve with
increasing input frames T , which indicates thatmore input
frames will provide more useful information for the video
reconstruction task. So, our temporal fusion model will
perform better by global fusion in the temporal domain.

2. Why local in the spatial domain. In general, in the bot-
tleneck layer, the resolution of the video frame is very
low in the spatial domain. Therefore, the spatial cor-
relation between the video frames decreases with the
distance of the pixels. If the spatial window of the tem-
poral fusion layer is amplified, irrelevant noise will be
introduced, which leads to the failure of the model to
accurately extract the spatial-temporal relationship of the
video, resulting in the deterioration of the model perfor-
mance. First, in our experiment, the frame feature ht has
the size of 32 × 32 × 768, where 32 is the spatial size
and 768 is the number of channels. The number of input
frames T is 5. In Table 4, we set different window sizes to
change the spatial size of the local spatial-temporal fea-
ture L p. Thus, we can find out which spatial window size
is more conducive to the video reconstruction task. For
example, we set the spatial window as 1×1 (local in the
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Fig. 6 Visual comparisons on the GOPRO test dataset. The PSNR score for each image is shown in the lower right corner of the image

spatial domain) and the time window as T (global in the
temporal domain). Therefore, our local spatial-temporal
feature L p has the size of 5×1×1×768 (simplified to
5×768). Therefore, our temporal fusion model is local
in the spatial domain and global in the temporal domain.
The first experiment in Table 4 shows that our spatial-
temporal memory M is helpful for our temporal fusion
model to obtain accurate spatial-temporal relationships.
Then we tried to gradually expand the spatial window
of L p, and this is the same strategy as the SwinTrans-
former (Liu et al., 2021) which removed the shift window
operation from it. Experiments with spatial size of 2×2

and 4×4 all showed that with increasing spatial window,
the attention model would fuse more irrelevant informa-
tion, resulting in degraded performance compared to the
model with 1×1 spatial window. Furthermore, if the spa-
tial window is expanded to the size of the image feature
32×32, which is the same approach as VIT (Dosovitskiy
et al., 2021) and is global in the spatial domain, the model
performance will be further reduced. These experiments
show that local spatial correlation is more conducive to
video restoration for our model.
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Fig. 7 Visual comparisons on the BSD test dataset. The PSNR score for each image is shown in the lower right corner of the image

4.4.3 Ablation Study of RMN and TFN

The experiments in Table 5 show the comparison results of
our proposed RMN and the common feature fusion method
Conv&Add . First, the experiment of our temporal fusion
model with the RMN block of 3 hops can improve our model
by 0.34 dB. And compared to the Conv&Add method used
in Zhu et al. (2021); Zamir et al. (2021); Park et al. (2020);
Kim et al. (2022); Chu et al. (2022), our RMN block with 3
hops can exceed it by 0.26 dB. Finally, it can be shown by

the experiments that our proposed RMN can extract useful
information more effectively than the Conv&Add method.

The effects of TFN and RMN on our model are shown
in Table 6. It can be found that TFN has the greatest influ-
ence on the model. Only using RMN cannot well reconstruct
a sharp video sequence because RMN can only mine the
useful information of the previous frame, while TFN can
simultaneously mine the local spatial-temporal relationships
of all input video frames. This also shows that our idea of
combining TFN with RMN is correct.
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Table 3 Performance
comparisons of the proposed
method by varying adjustable
parameters T# R# B# on
GOPRO dataset

Model PSNR SSIM

T3R1B3 29.77 0.891

T3R2B3 30.65 0.906

T3R3B3 31.27 0.923

T3R4B3 31.83 0.952

T5R2B3 31.05 0.901

T5R2B6 31.35 0.935

T5R2B9 31.52 0.947

T5R2B12 31.64 0.950

T7R2B3 31.23 0.923

Note that the number of feature
channels was cut in half to speed
up training

Table 4 The ablation study of the spatial window size in the temporal
fusion layer on GOPRO

Attention model Window size Memory cell PSNR

1 T×1 ×1 � 31.83

2 T×1×1 ✗ 31.49

3 T×2×2 ✗ 31.35

4 T×4×4 ✗ 31.21

5 T×32×32 ✗ 30.89

4.5 Discussions

To demonstrate the effectiveness of our memory-based tem-
poral fusion mechanism, we analyze whether the model can
correctly capture the spatial-temporal relationship according
to the relationships in the attentionmap Ap

S ∈ RT ×T , which
is extracted by our temporal fusion module. And ai j , as the
element of matrix Ap

S ∈ RT ×T , denotes the attention score
of the local feature in the i th frame to the local feature in the
j th frame at position p.
First, we calculate the average attention map Ap from all

temporal fusion layers as:

Ap = 1

B

B∑

S=1

AS
p (11)

where B is the number of temporal fusion layers, and
Ap ∈ RT ×T .

Table 6 Comparative analysis
of TFN and RMN on GOPRO

Model TFN RMN PSNR

1 � ✗ 31.83

2 ✗ � 31.58

3 � � 32.17

And then we use Ap(
T
2 , ) ∈ RT to represent the attention

map of the middle frame to other T frames (including the
middle frame) at position p.

All the above attentionmaps are obtained in the bottleneck
layer whose feature has the size of h × w and p ∈ {1 · · · h ∗
w}. Next, we combine all the attention maps Ap(

T
2 , ), p ∈

{1 · · · h∗w} from all the positions in the bottleneck layer into
the newattentionmap A( T

2 , ) ∈ Rh× w×T . The attentionmap
between the middle frame and t th frame can be represented
as A( T

2 , t) ∈ Rh× w×1.
Finally, A( T

2 , t) ∈ Rh× w×1 is expanded to the size of the
input image (the size is H × W × 3), and then each value
is normalized to 0 − 1. And A( T

2 , t) ∈ RH× W×1 will be
multiplied by the t th input image to get the visual attention
map, which has the size of H × W × 3 as shown in Fig. 8d.

Figure 8d shows the model’s attention map of the inter-
mediate frame to the other five frames when the intermediate
frame is reconstructed. In thesemaps, the brighter the region,
the more attention the model pays to the region. If the posi-
tion p is set at the center point, it represents the attention
scores of the center point in the third frame to the center
points in the other five frames. From these attention maps,
we can see that our model pays more attention to some
blurry areas, such as the contours of the different moving
objects. At the same time, these blurred areas represent the
trajectories of moving objects. These experimental findings
indicate that, with the help of our temporal fusion module,
our model can correctly capture the local spatial-temporal
information of different objects and solve the problem of
video reconstruction by using the motion relations of objects
across multiple frames. The frame restored by the proposed
temporal fusion model is visually indistinguishable from the
ground truth.

Furthermore, we present the two video clips with the low-
est and highest PSNR results in the GOPRO dataset in Fig. 9.
On the one hand (spatially), video A contains a lot of high-
frequency information, such as leaves and branches. And
video B mostly contains low-frequency information, such
as walls and windows. It is difficult for any video deblur-

Table 5 Ablation study of the
proposed reconstruction
memory network on the GOPRO

Fusion model None Conv&Add RMN (1 hop) RMN (2 hops) RMN (3 hops)

PSNR 31.83 31.91 31.92 32.01 32.17

SSIM 0.952 0.952 0.952 0.953 0.953
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Fig. 8 Visualizations of attention maps. a The input blurred frames. b Deblurred frames by the proposed method. c The ground truth frames. d
Attention maps of the middle frame in adjacent frames using the visualization method (Dosovitskiy et al., 2021)

ring model, including ours, to recover the high-frequency
details of the image, so the PSNR performance of our model
for video A is lower than that for video B. On the other
hand (temporally), in video A, only the camera moves and
the object remains stationary (i.e., global blur), whereas, in
videoB, the object and the cameramove simultaneously (i.e.,
local blur). Since our model focuses on local deblurring in
the spatial domain and restoring all frames, it is difficult to
distinguish global blur from local blur (e.g., in video A),
which explains the relatively lower PSNR performance of
our model for video A. By contrast, our model is more effi-
cient for video B containing complex local blur because

spatial-temporal memory plays the role of implicit motion
estimation. In other words, when compared with other video
deblurring models, our model can capture and utilize local
spatial-temporal information more accurately by combining
a temporally bidirectional with a spatially local attention
mechanism.

5 Conclusion

In this paper, we have developed a local spatial-temporal
memory-based temporal fusion model, which focuses on the
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Fig. 9 The figure shows the two video clips A and B with the lowest and highest PSNR scores in the GOPRO dataset

local features of the input blurry frames in the time domain.
The method can collect local features of each position from
the input video frames to build the local feature group. The
temporal fusion mechanism is used to calculate the correla-
tion in these local feature groups, which represents the local
spatial-temporal relationship of the video. Based on the local
correlation captured by the model, the reconstructed local
features of the video frames will contain useful informa-
tion from adjacent frames. Additionally, we store the motion
information learned by the temporal fusion model in the
memory cell, which is helpful in extracting relevant informa-
tion from historical motion information for video recovery.
Finally, the decoder will restore these reconstructed features
to sharp frames. To enhance the spatial expression of each
video frame, we build an encoder that integrates residual
dense blocks with three down-sample layers to extract hier-
archical features at multiple scales. To make full use of the
multiscale features, we have built a decoder that is symmetric
to the encoder and used residual networks to connect the fea-
tures at each scale. Extensive experimental results on public
datasets are reported to justify the superiority of the proposed
network over current state-of-the-art video deblurring tech-
niques.
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