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Data-Driven Safety-Certified Predictive
Control for Linear Systems

Marjan Khaledi

Abstract—A fully data-driven safe predictive control
framework is presented for linear time-invariant (LTI) con-
trol systems. While model predictive control (MPC) is
widely recognized for its ability to handle operational con-
straints, ensuring safety through maintaining the system
within an invariant set is still an open challenge. In this let-
ter, safety assurance is achieved through the integration of
control barrier certificates (CBCs) in MPC. The behavioral
systems theory is applied to obviate the system dynamics
and consequently represent the MPC-CBC optimization
using only input-state measurements. Furthermore, a data-
driven maximal safe terminal set is constructed using
the sum of squares (SOS) programming, surpassing the
conventional sublevel sets of Lyapunov functions. This
expansion of the terminal set leads to a significantly
enlarged domain of attraction (DoA) for the MPC. The expo-
nential stability and recursive feasibility of the proposed
approach are rigorously proved by properly designing the
terminal cost and the terminal set constraint. Finally, a
numerical example is provided to illustrate the efficacy of
the proposed MPC approach.

Index Terms—Safety, MPC, data-driven control, control
barrier certificates.

[. INTRODUCTION

NSURING the safety and performance of autonomous

systems is key to their successful deployment. Model
predictive control (MPC), as an optimal control technique,
excels in performance and constraint handling [1] but faces
two main limitations: ensuring safety within an invariant
set [2] and reliance on precise system modeling [3]. This letter
focuses on addressing these limitations.

To verify the safety of control systems, control barrier
certificates (CBCs) have been widely developed as promising
and effective tools [4]. CBCs certify safety by imposing set-
invariant conditions under which the system’s states remain in
the safe set forever [5]. To simultaneously address safety and
performance concerns, CBCs have been efficiently integrated
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into MPC [2], [6]. Notably, it has been demonstrated that
the utilization of CBCs can reduce the prediction horizon in
obstacle avoidance scenarios, leading to improvements in com-
putational efficiency [2], albeit with a potential compromise on
recursive feasibility. Although some efforts have been made to
tackle this issue [6], they have primarily focused on achieving
point-wise feasibility.

The feasible set of MPC is defined as the largest subset of
state space for which there exists a control input satisfying
all constraints. The invariance of this set is achieved by
imposing an invariant terminal set. The size of the MPC
feasible set is primarily influenced by two factors [7]: the
size of the terminal region and the length of the prediction
horizon. While increasing the prediction horizon enlarges the
feasible set, it results in increased computational complexity,
whereas obtaining a larger terminal set enlarges the feasible set
without incurring an extra online cost. As a result, this letter
proposes to enlarge the terminal set by utilizing the concept
of CBCs [8]. This approach constructs a data-driven maximal
safety-certified invariant set using offline data set through a
sum-of-squares (SOS) program.

Statement of Contributions: The main contributions of this
letter are threefold. First, by integrating the behavioral system
theory [9] with the CBCs [4] within the MPC framework
for the linear time-invariant (LTI) systems, we achieve two
significant advancements: 1) relaxation of requiring the exact
knowledge of the system dynamics compared to [2]. 2) a
shortened prediction horizon, leading to enhanced computa-
tional efficiency. Second, through the application of CBCs,
we construct a data-driven maximal safe terminal invariant set
using SOS programming. According to [10], the CBC-based
invariant set surpasses the size of conventional Lyapunov sub-
level sets typically employed in standard MPC. Consequently,
a more expansive terminal set corresponds to a broader DoA
in the proposed MPC, leading to an extended feasible set and
decreased online computational costs. Third, unlike [2], the
terminal ingredients, i.e., the terminal cost and terminal set, are
designed properly to ensure exponential stability and recursive
feasibility, both of which are rigorously proven within this
letter.

A. Notations

I1q,p) is the set of integers in the interval [a, b]. x{o,n] denotes
the stacked vector xjony = [x0, ..., x%] . R; denotes set of
positive real numbers. P is a set of polynomials for x € R", and
PSS is a set of SOS polynomials [11]. p(x) € PS% if p(x) can
be rewritten as p(x) = Y .} p?(x), where p;(x) € P. WI(C) is
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the volume of C. Ny denotes the set of whole numbers. The
Kronecker product is denoted by ®, and vec(A) refers to the
operation of stacking the columns of the matrix A € R™*" on
top of one another. A,;;,(A) denotes the minimum eigenvalue
of A, and trace(A) represents the trace of matrix A. S’} denotes
the set of positive semi-definite matrices of order n.

Il. PRELIMINARIES

In this section, some background and preliminaries on
behavioral systems theory [3] and safety in the context of
CBCs [10] are provided. This sets the stage for the develop-
ment of the proposed safety-certified data-driven MPC.

A. Behavioral Systems Theory

The following definition characterizes the minimal repre-
sentation of LTI systems based on a sequence of input-state
measurements.

Definition 1 [3]: Consider an LTI system G with a minimal
realization represented by matnces (A,B,C = 1,D = 0).
An input-state sequence {uy, X } I 01 defines a trajectory of the
system if there exists an initial state X € R” satisfying the
following conditions:
= Axy + Buy,

Xy X=X, kelpon_1] (1)

Here, x; € X € R” denotes the state of the system, and uy
U < R™ is the control input.

Given a sequence xjo n—1], the associated Hankel matrix
Hp (xjo,n—17) with the length of L is defined as [12]

X0 X1 AN—-L
X1 X2 - AN—L+1
Hi(xpon—1) = : : . . )]
X[ 1 XL XN_1

Definition 2 [Persistence of Excitation (PE) Condition]:
The sequence upon—1] € R™<N s called as PE of order L if
rank(Hp (ujo,n—17)) = mL.

In this letter, we extensively apply the results of the follow-
ing theorem derived from behavioral system theory [3], [9].

Theorem 1 [3]: Consider an LTI system G, for which a
trajectory {uk,xd}k_o is given. Let Ujo. N_1] be PE of order

L +n. Under these conditions, a trajectory {i, xk}k —0 will be

a valid trajectory of G if and only if there exists & € RN-L+1
such that
HL(“% N-1 ) 7
[0.N-1] o= I:I_i[O,L—I]:I' 3)
X[0,L—1]

HL(Xfo,N—ll)

B. Safety and Control Barrier Certificates

Define the initial set Xg C X and the unsafe set X, C X,
where all are assumed to be bounded, and XoNX, = @. Also,
it is assumed that 0 € X \ X,.

Definition 3 (Safety [4]): Given the system (1), for all
initial states xg € Xp, the system (1) is called safe if there is
no time horizon T' € Ny in which the trajectories starting from
Xp reach the unsafe region X,,.

To guarantee safety in autonomous systems, the notion of
CBC:s is given [5] as follows.

Definition 4 [2], [4]: The function i : R” — R is called a
CBC if the following properties hold:

h(x) =0, VxecX,, (4a)
h(x) <0, VxeX,, (4b)
inf{h(Ax + Bu)} = (1 — y)h(x), VxeX, (4c)

where 0 <y < 1.

Lemma 1 [4]: If h(x) is a CBC, then the system (1) is safe
in the sense of Definition 3.

Define the safe set Oy = {x € X|h(x) > 0} as the zero
super-level set of h(x). According to Lemma 1 and [2], if 2(x)
is a CBC, one can easily conclude that the safe set Oy is a
positively invariant set for the control system (1), i.e., xo €
O = x1 € O, Yk € Np.

[1l. PROBLEM STATEMENT
A. Data-Driven MPC With CBCs

MPC, commonly used for obstacle avoidance, faces chal-
lenges in selecting the optimal prediction horizon. A short
horizon may bring the system dangerously close to unsafe
boundaries, denoted by X, while a longer horizon increases
computational complexity. Integrating MPC with CBCs can
shorten the horizon [2], but requires precise knowledge of the
system dynamics, often impractical in real settings. Moreover,
this integration might lead to infeasibility [6]. This letter intro-
duces a data-driven, safety-certified MPC using Theorem 1,
replacing system dynamics with a data-driven constraint,
ensuring both feasibility and stability, as follows

L-1
ey = {’i‘mma Z £(tg, %) + ¥ (x (D) + X PiL,
u(t), x(t)
(5a)
_ d
s [ n0] = | 2B o,
’ Hy, xfﬂ,N—ll
(5b)
o) =x, X(H) € X, u() €U, (5¢)
X1 € O, (5d)
hGip1(1) = ok ()(1 — y)h((D),
ke To,—13, (5e)

where £(u,x) = ||ft||12? + ||5c||2Q with O, R > 0, and ¥ (ey)
is defined as ¥ (wr) = Po(1 — w)? with P, > 0. XI Px; is
defined as the optimal unconstrained cost-to-go function and
Oy denotes the safe terminal invariant set, which will be
designed in Sections III-B and III-C, respectively. Compared
to [3], it is assumed that the system’s internal state is directly
measurable. Even though disturbances and noises are not
considered in (1), the presented method can be extended to
consider measurement noise in the collected data samples u?
and x¢ by following [3].

The inclusion of the CBC constraint (5e) without the
adaptive parameter wy(f) has the potential to render the MPC
problem (5) infeasible, as discussed in [2]. The inclusion
of Y¥(wi(f)) in the cost function stems from a preference
to maintain ey (f) at 1, thereby preserving the unchanged
effect of the safety parameter y. Nonetheless, in order to
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guarantee recursive feasibility—a point that will be proved in
Section IV—it is imperative to appropriately adapt wi(f).

Assumption 1: The input u‘[i{,, n—17 i PE with an order of
L + n (See Definition 2).

Remark 1: The proposed safety-certified data-driven MPC
incorporates three key techniques: the utilization of CBCs,
the application of the behavioral system theorem, and the
construction of a maximal safety-certified invariant set Q.
CBCs effectively reduce computational complexity by short-
ening prediction horizons, particularly in obstacle avoidance
scenarios [2]. Unlike the methods presented in [2], [6], our
approach ensures recursive feasibility and exponential stability
through the addition of specific terms wi(f), ¥ (wi(f)), and
XEPXL, the proof of which will be provided in Section IV.
Notably, the proposed method offers a fully data-driven
approach for constructing @y and obtaining the CBC h(x),
thereby making the proposed controller entirely data-driven.

B. Model-Free Optimal Control Problem Using
Off-Policy RL

This subsection summarizes the key findings from [13],
focusing on determining the optimal cost-to-go function
V(x) = x"Px and the corresponding optimal control input
u*(x) = —K*x, using off-policy RL for system (1).

The infinite-horizon performance function for system (1) is
defined as J(xz, ur) = Y ooy xF Ox; + u! Ru;.

Assumption 2: The pair (A, B) is stabilizable, and the pair
(A, /O is detectable.

Under Assumption 2, a unique state-feedback optimal
control Pollcy u*(x) = —K*x exists, where K* = (R +
B"PB)~'BTPA. This policy minimizes the cost function J.
P > 0 is the unique solution to the discrete algebraic Riccati
equation [14]. By employing the optimal controller u*(x), the
optimal performance becomes V(xp) = foxL.

Since the system’s dynamic is unknown, the following
procedures are given using off-policy RL method [13] to find
P and K*, which is summarized in Algorithm 1.

First, s > n? + m? + 2m + nm input-state data samples
{uf, )i} are collected offline by applying a stabilizing
behavior policy #? = —K%x”. At each iteration j, the least
squares (LS) method is employed to solve the following
equation for P+, 2! and I4'.

. T T 1,
[vec(P”') vec(L"zH) vec(L‘gH) ] = ((W)TW) I(WJ)Tﬁb]
©)
where ¢/ and v/ are defined as follows
xFOoxo + xg(K-’: ) ]TFRKJ:xo
e x] Oxi + xI (K)" RKIx;
y - T .
651 Qxs1 +xy (K7) RKx,
Egl Eguyt Egut
. Ewy2  Ewpz  Euu2
=1 : ol Y]
E{xx)s

with E(H), =x_ @x , —xl ®xI, E{xu)r =2(x , ® (ui-1 +
Kjxl—l) ) E{uu)x = (“r—] _Kjxx—l) ® (“r—] —K‘F)C,_l) where
i=1,...,8

E (xu)s E, (uu)s

Algorithm 1 Optimal Controller Design Using Off-Policy RL

1: Set the iteration number j = 0, and start with a stabilizing
behavior policy #? = —K%x + e, where e is a probing
noise. Collect s > n? + m? + 2m + nm samples (x;, u;),
i=1,.

2: Solve (6) by applying LS method for L2 and L‘;H.

3: Update the control policy K1 as (8).

4: Stop if ||Kf+ — K| < €, where € > 0. Otherwise, set
j=j+ 1, and go back to step 2.

Assumption 3: The matrix 1,b=’ in (7) must have full column
rank. . o
By finding 25" and I}"', one has:

K= (Rer) ®

By iterating the above procedure, under Assumption 2, one
has K* = K/ and P = P/, as j — oo [13].

Remark 2: The behavior policy #” must satisfy three essen-
tial conditions. First, it should be stabilizable. To achieve
this for unknown linear systems, a comprehensive method is
outlined in [15]. Second, the policy should be rich enough to
meet the requirements of Assumption 3. This can be accom-
plished by adding probing noise e to the behavior policy. Third,
safety must be ensured during the data collection phase. To
guarantee safety while collecting data samples, one can obtain
the most permissive sub-level set of the Lyapunov function
associated with the stabilizing policy [15] such that there is no
intersection with unsafe sets. This set, being invariant, allows
safe data collection when applying u}, k € No.

C. Find Q4 Using Control Barrier Certificates (CBCs)

In this subsection, the goal is to find a safety-certified
maximal invariant set O = {x € X| h(x) > 0} given the data-
driven unconstrained optimal control policy u*(x) = —K*x
obtained from Section III-B using CBCs. As a result, the
following problem is given:

Problem 1: Given the closed-loop system (1) comprised
of the unconstrained optimal control policy u*(x) = —K*x,
find the most permissive CBC h*(x) satisfying (4), and as
a result constructing the maximal invariant set Q% = {x ¢
X| i*(x) = 0}.

To solve Problem 1, we assume that z(x) is a polynomial.
Therefore, according to [11], h(x) can be represented as a
square matrix h(x) = Z(x)TQ;,Z(x), where Z(x) is a vector of
monomials, and @y € R*™*" is a symmetric matrix. Also, the
unsafe region X, is described with multiple polynomials as

Xy={xeX|gix) <0,VieM}, M={1,...,M}, (9

where M is the number of unsafe sets.

By using Definition 4, and considering the fact that
Wl(Ox) = trace(Qp) [11, Sec. 4.4.1], the following
optimization problem is developed to solve Problem 1

h*(x) = argmax trace(Qp), (10a)
0=0f
s.t. (4a) — (4b), (10b)
C(x) = h(Agx) + (¥ — Dh(x) > 0,Vx € X,
(10¢)
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where Ay = A — BK*. The maximal safe invariant set 0%,
obtained through (10), offers three advantages:

1) System Safety: The system remains safe within the
confines of Q%,, as defined by Definition 3.

2) Optimal Performance: The system operates at an optimal
level of performance due to applying optimal control
input #*(x) = —K*x in (10c).

3) Larger Invariant Set Size: As shown in [10], an invariant
set derived through CBCs is at least as large as the
sublevel set of V(x).

However, there are two challenges in solving (10). First,
solving the optimization problem (10) in general is difficult
since checking non-negativity is often considered as a non-
trivial problem [16]. Second, the system’s dynamic is required
in (10c), which is not available in this letter. The initial
identification of system dynamics A and B for evaluating (10c)
has two limitations: (1) Errors in identification impact the
calculation of the invariant set O, requiring robustness
analysis. (2) Identifying the A and B, which contain n> 4 nm
unknowns, demands more data than the scalar C(x).

To solve the first challenge, by applying P-Satz
Lemma [10, Lemma 3.3], (10) can be solved by the following
optimization problem

min — trace(Qy),
04=0], L(x)eP**

Ji(0)ePS0S, vjieM
s.t. h(Arx) + (¥ — Dh(x) — Lh(x) € PSP, (11a)
— h(x) + J;(x)g;j(x) € P5%. (11b)

In (11), we assume that X = R" and Xy = O, given that
Xo € 0. To guarantee that the condition in (10c) is satisfied
over a bounded set, Oy is considered as that bounded set.

To address the second challenge associated with solv-
ing (10)—that of requiring the system dynamics—one can
reformulate (10c) as follows:

Cx) = h(q1) + (¥ — Dh(x) =0, keNg (12)
where xp11 = (A — BK*)xg. Since C(.) is dependent on the
system dynamics, and that is unknown, C(.) is approximated as
C(x) = Icrﬁzg,d(x), where Ic € R™ is an unknown vector and
. 4(x), where x € R", represents a vector of all distinct monic
polynomials, arranged in lexicographic order, with degrees
ranging from O to d. As a result, one has

(Z@)” ® Zay)T
+( — DZ@)" ® Z(w) " vec(Qn) = o4 Ic. (13)

In (13), there are n; unknown parameters. As a result, a
minimum of n; data samples is needed to determine Ic. By
collecting Ny > n; data samples through applying the control
policy u*(x), (13) can be rewritten as:

Qslc = Ys(On), (14)

where Y5 = T&‘Izzvec(Q;,). 8l7z is defined as é&lzz
[Vo...¥n1] with ¢ = (Z(ip1) ® Z(xiy1))
(v — DZ(x;) ® Z(x;), and Qg is defined as Qg
[Mo.a)”, ... ig.a(x)] ,i=0,...,N;—1.

Assumption 4: The data samples are collected such that Qg
has full column ranks.

=+

Algorithm 2 Solving the Bilinear SOS Program (15)

1: Input: Unsafe region X, Z(x) as a vector of monomials,
0<y<1,P, and u*(x) = —K*x.

2: Output: The most permissive safety barrier certificate
h*(x) = Z(x)" @} Z(x) and O,

3: Collect offline data samples: Apply u*(x) = —K*x
to system (1) and collect N; data samples satisfying
Assumption 4. Then, find Qg and 81zz.

4 Initialization: Initialize h(x), which could be A°(x) =

¢ —xTPx = Z(x)TQ)Z(x), where ¢ > 0 can be obtained

as [10].

while frace(Q},) is increasing do

6:  Fix h(x) and search for L(x) by expanding the feasible

space using the variable £ > 0 and solving the following
SOS programming

A

p (16a)

min
eeR*t, L(x)eP05
s.t. Qslc = Ys(Op), (16b)

IcT /g, a(x) — Lh(x) — e € P59, (16¢)
7. Fix L(x) and search for h(x) by solving (15).
end while

o0

As a result, by substituting (11a) with (14), one can
rewrite (11) with the following data-driven optimization
problem

max
Ow=0} IceR™
L(x), Ji(x)eBS95, vieM

trace(Qy),

s.t. Qslc = Ys(On), (15a)
IcT g a(x) — L()h(x) € P59, (15b)
— h(x) +Jj(x)gj(x) € P, (15¢)

The optimization problem (15) contains bilinear decision
variables. Hence, Algorithm 2 is given to solve (15) efficiently
using iterative search algorithm [10].

D. Design Procedure and Computational Complexity

The following offline procedure is taken to obtain P and
Qoc, which will be used in the online implementation of (5).

Offline Procedure: In this letter, first, s > n? +m*+2m+nm
data samples are collected satisfying Assumption 3 to find
the unconstrained optimal cost-to-go function V*(x) = x Px
and control policy u*(x) (See Section III-B for more details).
Subsequently, the obtained u*(x) is applied to the unknown
system described by (1). This results in the collection of Ny >
ny data samples, which satisfy Assumption 4. From these
data samples, we construct the data-driven safety-certified
maximal invariant set O, (See Algorithm 2). For improved
data efficiency, one can select N input-state data samples from
the collected data sets, provided Assumption 1 is met.

Computational Complexity: This letter contains two offline
Algorithms 1-2 to determine P and O, and one online MPC
implementation (5).

The online data-driven MPC (5) consists of Nypc = (m +
n)L + (n + N) + 1 decision variables. The computational
complexity of solving this generic nonlinear programming (5)
by using sequential quadratic programming (SQP) [17] can be
approximated by expected floating point operations per second
(flops). In the worst case, the number of flops required to
solve each QP subproblem of (5) is approximated by flopop =
iip x (%mec + ZNﬁPC), where ijp is the number of interior
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point iterations and is expected to be O(/Nupc log(%)) for
the e-accurate solution [18].

The computational cost of off-policy RL given in
Algorithm 1, which is mainly dependent on performing the
LS method on (6), is obtained as O(({Emiimtl)y2g) 19,
Algorithm 2 c0n51sts of solving a bilinear SOS program (15)
which has X +m + "L("H']) + MO+ decision vari-
ables, where we assume L(x) = Lg,(x)TL Lp(x) and J(x) =
T (x), with L¢ e SV and J¢ e SY. While
SOS programming faces scalability issues, the diagonally
dominant-sum-of-squares technique proposed by [20] converts
the optimization problem into linear programming, enhancing
efficiency for high-dimensional systems. According to [7],
reducing online computational cost is achieved by expanding
the terminal set, which shortens the time for the system to
reach it. In this letter, we achieve the expansion of the terminal
invariant set through the concept of CBCs, thus reducing the
online computational burden.

IV. CLOSED-LOOP THEORETICAL PROPERTIES

In this section, we investigate the recursive feasibility and
exponential stability of the closed-loop system (1).

Theorem 2 (Recursive Feasibility): Under Assumptions 1-4,
and assuming that u*(x) € U, Vx € O, if the proposed
safety-certified data-driven MPC (5) is feasible at initial time
t = 0, then it is feasible at any ¢ € Np.

Proof: Consider the sequence of feasible states and inputs
at time instant f = O defined as

x =[x %) uwl=[ug up_,

By appending X} | and & (x) = —K*x into x? and u?, the
shifted sequence of states and inputs are defined as

=® B . Rl W= B ]

We need to show that x?+ and u2+ are feasible solutions
of the proposed MPC (5) at time step t = 1. Given that O
is an invariant set under the definition of CBC (Definition 4)
for the closed-loop optimal control system G, it follows that
Xg 11 € 0o, which satisfies (5d). Additionally, under the
theorem assumptions, ﬂg(ig) = —K*.fg € U, satisfying (5c).
For (5b), Theorem 1 and Assumption 1 ensure the existence of
a(1) that satisfies equality (5b). Regarding (5e), the condition
k(xD) > 0 follows from Definition 4, and together with the
term wz_1(1)(1 — y) = 0, implies h(xL+ ) = 0. This can be
achieved by setting wy_1(1) = 0, which justifies the adaptive
change of this parameter to ensure recursive feasibility when
no other solutions are available. Therefore, we have shown
that if the proposed MPC (5) is feasible at f = 0, it remains
feasible at t = 1. By following the same procedures, one can
easily show that the proposed MPC (5) is recursively feasible,
i.e., feasibility at time step £ = O results in feasibility at any
time instant t € N. Assumptions 1-4 are necessary for the
existence of K*, Uy, and a(?). [ |

Assumption 5: There exists some constant I' > 0 such that
Ji(x) <T, Vx € X, where X; = {x € X]| J}(x) < o0}

Remark 3: Compared to [3], where there must exist ¢, > 0
such that J7(x) < cu||x||2, Assumption 5 is less restrictive.

Theorem 3 (Exponential Stability): Under Assumptions 1-5,
the closed-loop system G under the proposed MPC (5) is
locally exponentially stable.

0 =0 ]

Proof: Consider the Lyapunov function candidate V*(x) =
Jj (x). By using (5a), one has
L-1

0(uf ) + v (0p0) + Y (@ %) + v 0k 0) + ()P

k=1

Vi) =

| \,.f

e(uf,x +E i, %) + ¥ (0f ) + (51) " 0%f
(K*TRK*)x_,*_ — 7, + (&)" (A — BK*)" P(A — BK*)x}

where Z, = (r*)T(Q P+ FTRF)x}. Since Z, + (x)T(A —
BKYTP(A—BK *)r* < 0 according to [13], the above equation
can be rewritten as

V() = £(uf, %) + V¥ (Xp1) — ¥ (0] (). (17)

Since X] € Oy, one has wj = 1. As a result, ¥ (o} (1)) = 0.
Thus, (17) can be simplified as

V¥(Xer1) — V¥ < —Amin(Q)X) x;. (18)

V*(x) is lower bounded by Amin(OxTx, ie., V¥(x) >
Jxm,-,;(Q)xTx. The following procedures are given to find
the upper bound of V*(x). By applying the results from
Theorem 2, u;(x) = —K™x; is a feasible control policy for the
data-driven MPC (5). As a result, one has

L—-1
V*(x) < Z £(—K*Xy, X) + X PX;.
k=0

(19)

By assuming x € O, one has ¥(.) = 0 in the above
inequality. Also, with a slight abuse of notation, in (19), we
denote X; as the closed-loop state of the system resulting from
applying the unconstrained optimal control policy —K*Xj.
By using the property of the invariant set O, (19) can be
rewritten as

V@) < (@O + |P]l2)Ix0l13. (20)

where 6 = [|Q + (K*)TRK*||. To derive an upper bound for
V*(x) for all xp € Xz, we recall the results given in the proof
of [21, Th. 7.4] along with applying Assumption 5. Hence,
one has

Vxg € On,

r
V¥(x) < (?‘8) Ixoll3, Vxo € Xz, (1)

where ﬁ = max{,ﬁ||x||%| [x|l2 < d}, and d > 0O is defined as
d e {d1 = 0|{||x]l2 = d1} € Ox, x € R™}. By combining the
results given in (18), (21), and the obtained lower-bound for
V*(x), i.e., V*(x) > Amin(Q)xTx, one can conclude from the
standard Lyapunov arguments that the closed-loop system G
under the proposed MPC controller (5) is locally exponentially
stable. |

V. SIMULATION RESULTS

Consider a two-dimensional single integrator with a sam-
pling time AT = 0.2. The unsafe set X, is defined as X, =
{(x1,x2) : (x1 — 0.25)% + (x2 — 0.45)2 — 0.12 < 0}. The
performance parameters are Q = 2, R = 10[1y», and P, =
100. The safe set kernel is Z(x1, x2) = [1 x; x2]7. The initial
condition is xg = [0.8, 1.2]7, and L = 6.

Offline Data Collection: We conducted data collection in
two stages. Initially, we gathered s = 20 data samples,

Authonzed licensed use limited to: Michigan State University. Downloaded on May 02,2024 at 11:46:02 UTC from IEEE Xplore. Restrictions apply.



3692

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

Unsafe set
Optimal Lyapunov level set
| safe invariant set

-0.5

-1.5
-2
-2.5

-3 -2 -1 0 1 2 3

Fig. 1. Comparing the size of maximal safe invariant set 0% with the
Lyapunov sublevel set Q¢.

1.2

0.8

.—.'r'“-‘ )

Unsafe set

-
0.4

g1
----- Maximal invariant set

0.2

.,_“.
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

1

Fig. 2. Comparison of the frajectories by changing y .

ensuring s > n? + m? + 2m + nm from the given system
using the stabilizing behavior policy uf = —K°X{ + ¢, with
K% = 0.2I%2. The probing noise, e, meets Assumption 3.
Using Algorithm 1, we determined K* = 0.31/2x2 and P =
16.32Ir>. Once the optimal control policy was derived, we
identified the maximal safe invariant set O} (x), given by
h*(x). Algorithm 2 was applied to collect Ny = 20 data sam-
ples using the optimal control input satisfying Assumption 4.
Then, N = 25 input-state measurements are collected from the
offline data sets satisfying Assumption 1.

In Fig. 1, the maximal safe invariant set O, is depicted as
a grey-filled dashed black curve, while the Lyapunov sublevel
set Q. = {x € R2|xTPx < ¢} with ¢ = 2.5 is shown as a blue
ellipse. The unsafe set is represented by a red ellipse. The
figure illustrates that the volume of @}, is considerably larger
than the Lyapunov sublevel set, leading to a larger feasible
set in the proposed MPC controller (5). Fig. 2 shows how the
trajectories deviate from the unsafe set by changing y. Fig. 2
clearly shows that by increasing y, the trajectory is getting
close to the unsafe set, which results in a potentially unsafe
action. Reducing y enhances safety by keeping trajectories
away from unsafe sets, though it may compromise optimal
performance.

V1. CONCLUSION

This letter presents a safety-certified data-driven MPC
for LTI systems. A safe maximal terminal invariant set is

constructed by using CBCs, resulting in decreasing the online
computational cost. Thanks to applying behavioral system
theory, the requirement of knowing the exact system dynamics
is relaxed. Proofs concerning the stability and feasibility are
proposed, and the effectiveness of the proposed method is
demonstrated through a simulation. Future work may include
enhancing robustness against measurement noise and adapting
the method to linear time-varying systems.
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