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ABSTRACT This article presents a proactive approach to resolving the conflict between safety and op-
timality for continuous-time (CT) safety-critical systems with unknown dynamics. The presented method
guarantees safety and performance specifications by combining two controllers: a safe controller and
an optimal controller. On the one hand, the safe controller is designed using only input and state data
measurements and without requiring the state derivative data, which are typically required in data-driven
control of CT systems. State derivative measurement is costly, and its approximation introduces noise to the
system. On the other hand, the optimal controller is learned using a low-complexity one-shot optimization
problem, which again does not rely on prior knowledge of the system dynamics and state derivative data.
Compared to existing optimal control learning methods for CT systems, which are typically iterative, a
one-shot optimization is considerably more sample-efficient and computationally efficient. The share of
optimal and safe controllers in the overall control policy is obtained by solving a computationally efficient
optimization problem involving a scalar variable in a data-driven manner. It is shown that the contribution
of the safe controller dominates that of the optimal controller when the system’s state is close to the safety
boundaries, and this domination drops as the system trajectories move away from the safety boundaries. In
this case, the optimal controller contributes more to the overall controller. The feasibility and stability of the
proposed controller are shown. Finally, the simulation results show the efficacy of the proposed approach.

INDEX TERMS Control barrier functions (CBFs), data-driven initiative controller, optimality, safe control,
unknown systems.

I. INTRODUCTION
Designing data-based or learning-enabled controllers that
satisfy system specifications (e.g., safety, stability, and per-
formance) has emerged as a critical concern recently in
control engineering [1]. More specifically, as a prominent
control design approach, data-driven control design involves
learning controllers for an unknown system based solely on
measurements obtained from the system and some prior in-
formation about its characteristics [2]. A common approach
is to first identify a system model through input-output mea-
surements of the system and then use the identified model
to design a model-based controller [3]. This is also called
indirect data-driven control. As an alternative, there has been a
surge of interest recently in designing control systems directly
from process data while bypassing an intermediary system

identification stage [1], [2], [3], [4]. This is called direct
data-driven control. In many situations, direct data-driven
approaches can be advantageous to indirect data-driven ap-
proaches for many reasons, some of which are listed in [5].

In many control systems, safety is a critical concern, and it
is of vital importance to design control systems that respect
safety concerns. Safety concerns are typically imposed on
the system as constraints that must be satisfied all the time.
Safety, however, is the bare minimum requirement of safety-
critical systems, and it is desired to design safe controllers
with some performance guarantees. To provide performance
guarantees, optimal control design aims at finding the best
controller from a set of admissible controllers based on certain
performance criteria, such as maximizing profits, minimizing
costs, or maximizing efficiency. Both safety and optimality
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are important concepts in the control of autonomous systems,
and finding the balance between them is essential to achieving
acceptable outcomes.

To ensure safety, the concept of set forward invariance has
been widely utilized, which requires the system’s state to
remain within a safe set once it starts from that set [6]. In
most existing approaches, control barrier functions (CBFs) are
employed to guarantee the forward invariance of the safe set.
CBFs are based on the notion of defining a continuously dif-
ferentiable function, known as a barrier function, which maps
the system’s state to a scalar value. These CBFs establish a
linear inequality condition for the system’s input to ensure
the forward invariance of the safety set. In many CBF-based
methods, safety and performance requirements are combined
through a quadratic programming (QP) formulation. This is
realized through minimizing the intervention with a nominal
or optimal controller while imposing point-wise control Lya-
punov functions (CLFs) and CBFs as soft and hard inequality
constraints, respectively [7]. This approach is reactive in the
sense that the safety of the system is certified myopically at
every time instance. Other reactive safety certificates are also
presented in [8], [9]. This myopic intervention can also lead
to convergence to undesired stable equilibrium points on the
boundary of the safe set, as shown in [10]. Besides being my-
opic, another challenge with these existing safety certificates
is that they require a complete and accurate knowledge of the
system model. Moreover, the nominal or optimal controller is
also assumed to be given a priori. A fundamental challenge is
to learn optimal controllers and safe controllers using only a
single trajectory of input-state data and then combining them
to manage conflicts proactively.

To diminish the complete reliance on the model, a data-
driven approach to safe control design is presented in [11]
using the concept of contraction sets [12]. Besides, a data-
driven safe controller is designed in [4] by utilizing the control
barrier certificate notions. However, one drawback of these
approaches is that they require the state derivatives to be
measured or approximated. This can be costly or introduce
noise to the measurements, which can significantly deteriorate
the performance and can also jeopardize the system’s safety.

Besides efficient data-driven safe control design without
the state derivative requirements, which is lacking, sample-
efficient learning algorithms for learning optimal controllers
for CT systems are also surprisingly lacking. Reinforcement
learning (RL) algorithms such as policy iteration [13] and
policy gradients [13] have been widely utilized to learn op-
timal control policies. However, the iterative nature of these
algorithms makes them data-hungry. The need for online data
to evaluate control policies or the cost gradients can also
be costly and risky. It is highly desired to develop one-shot
learning algorithms that can learn an optimal control policy
using only a single data trajectory. Finally, it is highly desired
to combine two control policies (i.e., safe control and optimal
control) to avoid convergence to an undesired equilibrium.
This will be in sharp contrast to existing myopic approaches

that assume an optimal controller is given and certify the
safety of its actions using CBFs.

This paper presents a sample-efficient data-based safe, and
optimal controller for CT linear quadratic regulator (LQR)
problems with safety constraints. The presented approach
1) learns both safe and optimal control policies using convex
optimization formulations and using only input-state data in
one shot; 2) combines the two policies using a computation-
ally efficient interpolation technique. A convex optimization
formulation of the LQR presented in [14] is leveraged to
develop the one-shot optimization for optimality. Then, to
design both safe and optimal controllers, the closed-loop
system is represented based on data and is used in the op-
timization frameworks to turn them into data-based convex
optimization frameworks. The safety of the resulting con-
troller is guaranteed. Besides, convergence to the equilibrium
is also guaranteed. Importantly, our approach neither relies on
knowledge of the system dynamics nor requires measuring or
approximating the derivative of the state as sampled data. It is
also shown that the safe controller predominantly contributes
to the overall controller near safety boundaries, ensuring
safety takes precedence. However, as the system trajectories
move away from the safety boundaries, the optimal controller
takes over the contribution. The feasibility and stability of the
controller are demonstrated, and simulation results illustrate
the effectiveness of our method.

A. NOTATIONS
In this paper, N > 0 (N+) shows the set of positive natural
numbers, excluding zero. Also, R > 0 (R+) demonstrates the
positive real numbers, excluding zero. Xu represents the un-
safe set. U shows the set of all admissible control inputs.
The safe control input is shown by us, and uL presents the
learning-based optimal control input. In is represented as an
identity matrix in Rn×n. A prime symbol has been used to
show the transpose of the matrix. Therefore, the transpose
of matrix A has been represented as A′. A symmetric matrix
P ∈ Rn×n is said to be positive definite, denoted by P ≻ 0, if
all of its eigenvalues are positive. Note that (X0,T )† represents
the Pseudo inverse of X0,T .

II. PROBLEM FORMULATION AND PRELIMINARIES
A. PROBLEM FORMULATION: SAFE OPTIMAL CONTROL
This subsection formalizes the safe optimal control problem
and provides a background on its challenges.

Consider a continuous-time linear system described by

ẋ(t ) = Ax(t ) + Bu(t ), (1)

where x(t ) ∈ Rn denotes the state of the system, and u(t ) ∈ U
indicates the control input. For the notation simplicity, x(t )
and u(t ) are replaced by x and u, respectively, in the rest of
the paper.

Our main objective is to design a control input u for (1),
certifying safety and optimality while no prior knowledge of
the system dynamics is required.
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To take into account optimality, the objective function for
system (1) is considered as

J (x(t ), u(t )) =
∫ +∞

t
(x′(τ )Qx(τ ) + u′(τ )Ru(τ ))dτ, (2)

in which R and Q are positive-definite symmetric matrices
(i.e., R = R′ > 0, Q = Q′ > 0).

Definition 1 (Control Barrier Functions): Suppose C ⊂
D ⊂ Rn represents the super level set of a continuously differ-
entiable function h(x) : D → R. Then, h(x) is called a Control
Barrier Function (CBF) for the control system (1) if there
exists an extended class K function γ such that [7]:

sup
u∈U

[ḣ(x) + γ (h(x))] ≥ 0.

Based on Definition 1, upon existence of a CBF h(x), the
set of all control inputs that render C safe is [7]:

Kcb f (x) = {u ∈ U| ḣ(x) + γ (h(x)) ≥ 0}. (3)

We now formalize the safe optimal control problem based
on the performance (2) and the safety requirement (3) by the
following optimization problem.

Problem 1 (Safe Optimal Control): Find a control policy u
that solves

min
u∈U

J (x, u) (4a)

s.t. ḣ(x) + γ (h(x)) ≥ 0, (4b)

ẋ = Ax + Bu, (4c)

In this optimization, the cost J (x, u) defined in (2) is op-
timized while ensuring that the safety constraint is certified
(i.e., the control input belongs to the set Kcb f defined in (3))
in the presence of uncertainty in the system dynamics. Solving
the constrained optimal control problem (4) is very difficult in
general, even if the system dynamic is known. This is because
it is computationally intractable to find a feedback controller
u that minimizes the objective function and satisfies the safety
constraint simultaneously. Due to the difficulty of directly
solving the optimization (4), we separate safety concern and
optimality concern by designing a safe controller and an opti-
mal controller separately and combining them with each other
while optimizing the contribution of the optimal controller.

While reinforcement learning (RL) algorithms have been
developed to solve the optimal LQR problem without requir-
ing the knowledge of the system dynamics, the following
challenges remain: 1) RL algorithms such as policy itera-
tion [13] iteratively solve the LQR problem and they might
need to perform many iterations to learn an optimal control
policy. Besides, they can be data-intensive, especially if they
need to generate new data at every iteration to evaluate a
new policy. 2) Safe control design approaches are typically
model-based methods, which can ruin the model-free nature
of the RL algorithms, as the whole safe optimal control de-
sign still requires the system model. To observe the model
dependence of the CBF-based safe control design, since the

safety constraints depend on a general class K function, in
the following, we assume that γ (h(x)) = γ h(x), for which the
safety constraint in the optimization (4) turns into

∂h(x)
∂x

(Ax + Bu) + γ h(x) ≥ 0 (5)

As can be seen, the system dynamic shows up in safety
constraint (5). Even though data-based safe control design is
considered in [4], state derivative measurements are required,
and no performance requirements are considered. To resolve
these disadvantages of safe optimal control learning methods,
this paper aims to learn safe and optimal controllers using
a single trajectory of state-input data and in a one-shot or
non-iterative fashion.

B. BACKGROUND ON STATE-INPUT REPRESENTATION OF
THE CLOSED-LOOP SYSTEM
The input and state measurements collected from the system
are organized as follows

U0,T = [u(t0) u(t0 + τ ) · · · u(t0 + (T − 1)τ )], (6a)

X0,T = [x(t0) x(t0 + τ ) · · · x(t0 + (T − 1)τ )], (6b)

where T ∈ N+ shows the number of collected samples and
τ ∈ R+ demonstrates the sampling time. To compare with the
existing results, we also introduce the collected state deriva-
tive data as follows, even though our learning approach will
not need it.

X1,T = [ẋ(t0) ẋ(t0 + τ ) · · · ẋ(t0 + (T − 1)τ )].

Assumption 1: The matrix X0,T ∈ Rn×T in (6) is full row
rank.

For Assumption 1 to be held, T ≥ n must be satisfied,
where n ∈ N shows the dimension of x. This condition can
be verified since the matrix X0,T is constructed based on the
sampled data.

The following results from the literature provide a data-
based representation of the closed-loop system while lever-
aging the state-input-state derivative data.

Lemma 1 ([4]): Consider the system (1) under the nonlin-
ear control input u(x) = F (x)x where F (x) is a polynomial
function. Let Assumption 1 hold and W (x) is defined as a
T × n matrix such that

In = X0,T W (x).

If u = F (x)x = U0,T W (x)x, then the closed-loop dynamics
(1) is represented as

ẋ = X1,T W (x)x, (7)

or equivalently, the closed-loop system can be written as

A + BF (x) = X1,T W (x), (8)

in which (7) and (8) are data-based representation of the
closed-loop system.

Remark 1: (8) provides a data-based representation of the
closed-loop system dynamics and can replace the constraint
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(5) to find the safe controller in a data-driven manner. How-
ever, the drawback of data-driven approaches presented in [3],
[4] is that the derivatives of the state of the system are needed,
which are typically unavailable as direct measurements and
have the following representation [1]

X1,T = AX0,T + BU0,T = [B A]
[
U0,T
X0,T

]
. (9)

Moreover, the performance is not considered in the safe con-
trol design approaches presented in [4].

To address the challenges outlined above in existing ap-
proaches, this paper presents a new learning-enabled safe
optimal control design approach to solve the optimization
problem (4) in a data-driven manner. Addressing both safety
and optimality simultaneously presents its own set of chal-
lenges, particularly when formulating the problem solely
based on data, which adds further complexity. However, the
proposed approach in this paper is able to tackle these issues
and can entail the construction of data-driven safe control
input, as well as the development of a one-shot optimization
to find optimal control input. This methodology is achieved
by bypassing the necessity for explicit knowledge of system
dynamics and eliminating the requirement for knowledge of
state derivatives from sampled data. Instead, our method relies
solely on measured input/state data to trade-off between safety
and optimality.

III. DATA-DRIVEN SYSTEM REPRESENTATION
To design a safe controller while the system dynamic is un-
known and the derivative of the state of the system is not
available, it is desired to write constraint (5) in terms of only
input and state measurements. Besides, to design an optimal
controller in a one-shot and data-efficient manner, a data-
based representation of the closed-loop system is required.
This section provides a data-based representation of open-
loop systems for polynomial controllers and a data-based
closed-loop representation for linear controllers.

To ensure that the safe control input covers the entire safe
region, the following general format is considered for the safe
controller:

us = F (x)x. (10)

By applying (10) in (1) instead of u, the closed-loop system is
described as

ẋ = (A + BF (x)) x. (11)

To obviate the requirement of the derivative of the state of
the system in the proposed approach, the following theorem is
presented.

Theorem 1: Consider the system (1). Let x be a continuous-
time signal (x[0,nT ] ⊆ R) for some n ∈ N+ and T ∈ R+. Then,
the input-state representation of A and B is

[B A] = (HT (x(T )) − HT (x(0)))D′(DD′)−1, (12)

in which

HT (x(t )) =
[
x(t ) x (t + T ) · · · x (t + (n − 1)T )

]
,

(13)

and

D =
[
U0,T
X0,T

]
(X ′

0,T (X0,T .X ′
0,T )−1)(∫T

0 HT (x)dτ ). (14)

Proof: (13) represents a time-varying matrix defined on
the interval t ∈ [0, T ]. The proof relies on the expression of
HT (ẋ(t )) using data first and then removing its dependence
on the state derivative in two steps. To this end, using (11) one
has

HT (ẋ(t )) = HT ((A + BF (x))x(t )). (15)

Based on Lemma 1, in A + BF (x) = X1,T W (x), the state
derivative measurements X1,T are required, which is not de-
sired. However, X1,T can be expressed in terms of state and
input data as (9). Therefore, using (9) while substituting (8) in
(15) and taking the integral of (15) on the interval [0, T ] result
in

HT (x(T )) − HT (x(0)) = [B A]
[
U0,T
X0,T

]

×(X ′
0,T (X0,T .X ′

0,T )−1)(∫T
0 HT (x)dτ ). (16)

where X ′
0,T (X0,T .X ′

0,T )−1 is the pseudo-inverse of X0,T repre-
sented as (X0,T )†. As can be seen, the derivative of the state
of the system does not show up in (16), which makes the
presented formulation more practical. By considering D from
(14) in (16), we get (12) and this completes the proof. !

By considering (12) in constraint (5), we can find the
safe control policy using only input and state measurements.
Optimal LQR control, however, requires a linear controller,
which can further reduce the data requirements. The following
corollary shows that for linear controllers, as a special case of
polynomial controllers, the entire closed-loop system can be
represented by data. Learning the closed-loop system directly
to satisfy safety or optimality requires less amount of data than
learning the open-loop dynamics first and then designing a
safe controller.

Corollary 1: Consider the system (1) under the linear
controller u = K x. Let the assumptions and conditions of
Theorem 1 be satisfied. Then, the state-input data-based rep-
resentation of the closed-loop system is

HT (ẋ) = (A + BK )HT (x), (17)

where

(A + BK ) = (HT (x(T )) − HT (x(0)))(∫T
0 HT (x)dτ )−1.

(18)
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Moreover, this closed-loop representation can be leveraged
to design safe or optimal controllers if the rank of X0,T is n
and at least n + 1 data samples are collected.

Proof: Using u = K x in (1), the closed-loop system be-
comes

ẋ = (A + BK )x. (19)

Applying (13) in (19) results in (17). Taking the integral
from this equation yields

HT (x (T )) − HT (x (0)) = (A + BK ) ∫T
0 HT (x)dτ.

As a result, (A + BK ) can be written as in (18). Besides, when
the rank of X0,T is n, a solution to (18) exists. Moreover,
when at least n + 1 data samples are collected, the inverse
is not unique, and thus (HT (x)dτ )−1 can be considered as
a decision variable to directly learn a closed-loop system with
safety satisfaction properties. !

Since only the closed-loop system with the size n × n must
be learned, rank(X0,T ) = n needs to be satisfied. However,
learning open-loop dynamics requires a state-input data ma-
trix of rank n + m. This advantage will also be leveraged in
the design of an optimal controller in the subsequent sec-
tions. When it comes to safety, however, even though a linear
controller us = Ksx makes the design simpler and more data-
efficient, this safe control input might not cover the entire safe
region for some systems and some safe sets.

IV. DATA-DRIVEN OPTIMAL CONTROL DESIGN
Finding the optimal control input that minimizes (2) for
the linear system (1) leads to solving the algebraic Riccati
equation [15], which requires complete knowledge of the
system dynamics. To obviate this requirement, iterative RL-
based approaches [13], [16], [17] have been presented to
learn the optimal control policy. Despite their advantages,
iterative RL algorithms have disadvantages compared to the
one-shot optimization methods. A significant drawback of
iterative RL approaches pertains to their demanding compu-
tational requirements. In contrast, the one-shot optimization
strategies center around directly solving optimization prob-
lems to discover the best solution at once, displaying the
potential for greater efficiency in computational processing
and data utilization. Even though one-shot learning of LQR
for discrete-time systems is considered [1], it is lacking for
continuous-time systems.

To this end, in this paper, we present a one-shot learning
approach for solving the LQR problem for continuous-time
systems (i.e., learning the optimal controller uL that minimizes
(2)) using only state-input measured data. To this end, we
leverage the following semi-definite program (SDP) repre-
sentation of the LQR problem and turn it into a data-based
optimization.

Lemma 2 ([14]): Consider the linear system (1) with the
quadratic cost function (2). Then, the control gain that opti-
mizes the cost is obtained by K = Y P−1 where P and Y are

the solutions to

min
P,Y

(Trace(QP) + Trace(R
1
2 Y P−1Y ′R

1
2 )) (20a)

s.t. AP + PA′ − BY − Y ′B′ + I ≺ 0, (20b)

P = P′ ≻ 0, (20c)

According to [14], [18], the objective function in (20)
comprises the sum of two components, and the second term
φ(P,Y ) = Trace(R

1
2 Y P−1Y ′R

1
2 ) can be represented as:

φ(P,Y ) = min(Trace(X ))

s.t.

[
X R

1
2 Y

Y ′R
1
2 P

]

≻ 0.

Therefore, (20) can be written as [14]:

min β (21a)

s.t. C(β, P,Y, X ) ≻ 0, (21b)

where C(β, P,Y, X ) is given by [14]:

C(β, P,Y, X ) = diag(C1,C2,C3), (22a)

C1(β, P,Y, X ) = −Trace(QP) − Trace(X ) + β, (22b)

C2(β, P,Y, X ) = −AP − PA′ + BY + Y ′B′ − I, (22c)

C3(β, P,Y, X ) =
[

X R
1
2 Y

Y ′R
1
2 P

]

. (22d)

As discussed in [14], several issues related to optimal control
problems can be expressed as convex programs containing
a finite set of variables. The conditions (21) and (22) corre-
sponding to the LQR problem are well-posed if R is positive
definite (R > 0), (A, B) is controllable, and (A, Q) is observ-
able. The following theorem presents a data-based version of
the SDP optimization (21).

Theorem 2: Consider the system (1) and the optimization
problem in (21). Let uL = Kx and consider the collected data
in (6). The one-shot data-based representation of the SDP op-
timization problem in (21) with the constraints (22) becomes

min β (23a)

s.t. C(β, P,Y, X ) = diag(C1,C2,C3) ≻ 0, (23b)

where

C1 = −Trace(QP) − Trace(X ) + β, (24a)

C2 =
(

(HT (x(T )) − HT (x(0)))D′(DD′)−1
) [

Y
−P

]

+
[

Y
−P

]′(
(HT (x(T )) − HT (x(0)))D′(DD′)−1

)′
− I,

(24b)

C3 =
[

X R
1
2 Y

Y ′R
1
2 P

]

. (24c)
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Proof: For system (1), if u = Kx, then, the closed-loop
system is

ẋ = (A + BK )x.

According to [19] and (13), HT has the capability to gather
the past data. Therefore,

HT (ẋ) = (A + BK )HT (x). (25)

Since directly measuring the state derivative ẋ is not a typical
scenario, as previously stated, (25) can be integrated to derive
the following:

HT (x (T )) − HT (x (0)) = (A + BK ) ∫T
0 HT (x)dτ.

An aspect that worth taking into consideration is that C2 in
(22) could be written as

[
B A

] [
Y
−P

]
+

[
Y
−P

]′[
B A

]′ − I ≻ 0. (26)

Note that the system dynamic shows up in the constraint (26).
Based on (12), (14), and (16), the optimization problem in (21)
with the mentioned constraints in (22) are turned into (23) and
the constraints in (24), which completes the proof. !

In (24), C2 is replaced with data while the system dynamics
is not required. Equation (23) with the mentioned constraints
in (24) presents the data-driven optimization problem of (21)
while the state derivative measurements are not required. In-
spired by the proposed method in the previous section, this
part proposes a data-driven version of (21).

Remark 2: Using approaches presented in Sections III and
IV, the data-driven safe control design approach and data-
driven one-shot approach to find optimal control input can be
obtained. However, it is desired to consider both safety and
optimality simultaneously in the design of control inputs for
systems. To do this, in the next section, a new approach is pre-
sented to combine safe and optimal control inputs proactively.

V. DATA-DRIVEN INITIATIVE CONTROLLER
To consider both safety and optimality in the control design,
an initiative control input u is considered as

u = α(t )uL + (1 − α(t ))us, (27)

where α(t ) ∈ [0, 1] determines the share of safe and optimal
controllers in overall control input u.

In control policy (27), two special scenarios could happen:
1) the system trajectories are far from the safety boundary.
Therefore, α(t ) = 1. In this case, u = uL and the performance
specifications of the system are fully certified. 2) the system
trajectories are very close to the safety boundary. So, the
safe controller must dominate the optimal controller. Then,
α(t ) = 0 and consequently, u = us. In this case, the system
should only care about safety as it is a hard constraint all the
time and should not be violated. In other situations, the goal
is to find the largest value of α(t ) so that the safety constraints
are always satisfied while we can get as much performance as
possible.

The goal is formulated as the following maximization prob-
lem

max α(t ) (28a)

s.t.
∂h
∂x

(Ax + Bu) + γ h ≥ 0. (28b)

Solving the above optimization problem provides a proactive
control approach that takes into account both safety and op-
timality aspects for systems described in (1). This approach
differs significantly from existing reactive approaches [8],
[9], where the system reacts with sharp control actions when
safety constraints are about to be violated. Such reactive
actions can be disruptive and potentially detrimental to the
system.

Theorem 3: Consider the system (1) and the maximization
problem in (28). Consider the collected data in (6). The data-
based representation of the maximization problem in (28) with
its constraint could be written as

max α(t ) (29a)

∂h
∂x

((HT (x(T )) − HT (x(0)))D′(DD′)−1

×
[
U0,T
X0,T

]
(X0,T )†x

−α(t )(RKLP−1)′(uL − U0,T (X0,T )†x)) + γ h ≥ 0. (29b)

Proof: For system (1), by substituting the proposed initia-
tive control input (27) in the constraint of (28), one has

∂h
∂x

(Ax + B(α(t )uL + (1 − α(t ))us)) + γ h ≥ 0. (30)

(30) can be simplified as

∂h
∂x

((Ax + Bus) + Bα(t )(uL − us)) + γ h ≥ 0. (31)

Substituting us = F (x)x into (31) yields

∂h
∂x

((Ax + BF (x)x) + Bα(t )(uL − F (x)x)) + γ h ≥ 0. (32)

By using (8) and (9) in (32), one has

∂h
∂x

([B A]
[
U0,T
X0,T

]
(X0,T )†x + Bα(t )(uL − F (x)x))

+ γ h ≥ 0. (33)

Substituting (12) into (33) yields

∂h
∂x

((HT (x(T )) − HT (x(0)))D′(DD′)−1

×
[
U0,T
X0,T

]
(X0,T )†x + Bα(t )(uL − F (x)x)) + γ h ≥ 0.

Since F (x) = U0,T W (x), the maximization problem in (28)
will be changed into:

max α(t ) (34a)

∂h
∂x

((HT (x(T )) − HT (x(0)))D′(DD′)−1
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×
[
U0,T
X0,T

]
(X0,T )†x

+Bα(t )(uL − U0,T (X0,T )†x)) + γ h ≥ 0. (34b)

As can be seen, only the B matrix shows up in (34). To
obviate the requirement of B matrix, inspired by the fact that
B can be computed by using predetermined uL as

uL = −R−1B′Px,

here uL, R and P are all known. Since uL = KLx, this compu-
tation can be expressed as follows:

KL = −R−1B′P ⇒ RKL = −B′P, (35a)

RKLP−1 = −B′ ⇒ B = −(RKLP−1)′. (35b)

In this part, the Lyapunov function candidate V has the fol-
lowing format:

V = x′Px,

where as mentioned earlier P ≻ 0.
Substituting matrix B from (35) in (34) leads to (29) and

this completes the proof. !
Corollary 2: Consider the system (1). Assume the linear

controller us = Ks x. The maximization problem in (28) can
be presented in a data-driven manner as follows.

max α(t ) (36a)

∂h
∂x

(HT (x(T )) − HT (x(0)))
(
∫T

0 HT (x)dτ
)′

(
(∫T

0 HT (x)dτ )(∫T
0 HT (x)dτ )

′)−1
x

−α(RKLP−1)′(uL − U0,T (X0,T )†x)) + γ h ≥ 0. (36b)

Proof: If we consider us = Ksx in (28), for this special case
the constraint (31) will be turned into:

∂h
∂x

(((A + Bk)x) + Bα(t )(uL − Ksx)) + γ h ≥ 0. (37)

After substituting (18) in (37)

∂h
∂x

((HT (x(T )) − HT (x(0)))
(
∫T

0 HT (x)dτ
)′

×
(

(∫T
0 HT (x)dτ )(∫T

0 HT (x)dτ )
′)−1

x

+ Bα(uL − Ksx)) + γ h ≥ 0. (38)

Substituting Ks = U0,T (X0,T )† in (38) results in

∂h
∂x

((HT (x(T )) − HT (x(0)))
(
∫T

0 HT (x)dτ
)′

×
(

(∫T
0 HT (x)dτ )(∫T

0 HT (x)dτ )
′)−1

x

+ Bα(uL − U0,T (X0,T )†x)) + γ h ≥ 0. (39)

By considering (39) and (35) instead of the constraint in
(28), we get (36), and this completes the proof. !

Note that by considering a linear safe control structure us =
Ksx, the solution of the maximization problem in (36) is more
conservative than the one in (34).

VI. STABILITY AND FEASIBILITY ANALYSIS
In this part, the proofs of recursive feasibility and asymp-
totic stability of the system, which play a prominent role, are
provided. Since these proofs are inspired by the interpolating
control method, first, the interpolating control is reviewed.

Interpolating control relies on a vertex representation ap-
proach, which involves smoothly interpolating between a
controller located at the vertex of a feasible set and a high-gain
feedback controller that prioritizes safety and robustness. The
interpolation process is designed to ensure that the resulting
control input stays within the feasible set while still achieving
the desired performance. Here, based on the interpolating con-
trol theory, an interpolation coefficient is presented, which is
α(t ). Based on interpolating theory, x(t ) can be decomposed
as follows [20]:

x(t ) = α(t )xL(t ) + (1 − α(t )) xs(t ), (40)

where α(t ) ∈ [0, 1]. Given the interpolation coefficient α(t ),
one can obtain the control law (27). The proposed control law
in (27) provides a smooth transition between two controllers.
The primary benefit of using the vertex control scheme is that
it provides a large domain of attraction for the system.

In the concept of interpolating control, the following con-
straint should be satisfied for the controlled invariant set Ct̄ :

Ct̄ =
{
x ∈ Rn : Ft̄ x ≤ gt̄

}

where Ft̄ is a constant matrix, and gt̄ is a constant vector. The
possible values for the feasible domain of vertex control, de-
noted as Ct̄ , can be as extensive as those for any other limited
control method. One approach to address this limitation is
to switch to a different, more aggressive, nearby controller,
such as uL, once the state reaches 'max, where 'max =
{x ∈ Rn : F0x ≤ g0} is the maximal invariant set. Interpolating
control greatly decreases the amount of computational work
needed [21].

Theorem 4: Recursive feasibility: The control method de-
scribed by (27) and (40), which involves interpolating at
regular intervals, is capable of achieving a feasible solution
for system (1), for all initial states x0 ∈ Ct̄ .

Proof: In terms of recursive feasibility, it has to be proven
that u(t ) ∈ U, which means Fuu(t ) ≤ gu and ẋ(t ) ∈ Ct̄ . To
show u(t ) ∈ U, by using (27) one has

Fuu(t ) = Fu(α(t )uL (t ) + (1 − α(t ))us(t ))

= α(t )FuuL(t ) + (1 − α(t ))Fuus(t )

≤ (α(t )gu + (1 − α(t ))gu) = gu,

and also by the use of (40) beside (27), one has

ẋ(t ) = Ax(t ) + Bu(t )

= A(α(t )xL (t ) + (1 − α(t ))xs(t ) ) + B(α(t )uL(t )
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+ (1 − α(t ))us(t ) )

=α(t )(AxL (t )+ BuL(t ))+ (1 − α(t ))(Axs(t )+ Bus(t )).

Since (AxL (t ) + BuL(t )) ∈ 'max ⊆ Ct̄ and Axs(t ) +
Bus(t ) ∈ Ct̄ , it follows that ẋ(t ) ∈ Ct̄ . !

Theorem 5: Asymptotic stability: Considering system (1),
the control law (27) guarantees asymptotic stability for all
initial states x0. That is, the system will eventually reach a
stable state, regardless of the initial starting point x0.

Proof: It has to be proven that all solutions starting in
Ct̄\'max will reach 'max in finite time. One obtains

x(t ) = α∗(t )x∗L(t ) +
(
1 − α∗(t )

)
x∗s(t ),

u(t ) = α∗(t )uL(t ) +
(
1 − α∗(t )

)
us(t ).

Also, the following is valid:

ẋ(t ) = Ax(t ) + Bu(t )

= α∗(t )ẋL (t ) +
(
1 − α∗(t )

)
ẋs(t ),

where

ẋL (t ) = Ax∗L (t ) + BuL(t ) ∈ 'max,

ẋs(t ) = Ax∗s(t ) + Bus(t ) ∈ Ct̄ .

We have considered V = 1 − α∗(t ) as a Lyapunov candidate,
which is a non-negative function. Consider the following lin-
ear programming problem:

α∗(t ) = α∗(x(t )) = max
α,rL

α (41a)

s.t. F0rL ≤ αg0, (41b)

FN (x(t ) − rL ) ≤ (1 − α)gN , (41c)

0 ≤ α ≤ 1, (41d)

where rL = αxL. The optimal solution of (41) is α∗(t ).
max(α) = α∗ byfinding the best x∗s and x∗L. Also, we have:

α̇∗(t ) = α∗(ẋ(t )) = max
α,rL

α (42a)

s.t. F0rL ≤ αg0, (42b)

FN (ẋ(t ) − rL ) ≤ (1 − α)gN , (42c)

0 ≤ α ≤ 1. (42d)

It should be noted that α∗(t ) is a feasible solution of (42)
while α̇∗(t ) is the optimal solution of (42). Therefore, α̇∗(t ) ≥
α∗(t ) > 0. To guarantee asymptotic stability, we need to show
that V̇ = −α̇∗ < 0. Since α̇∗(t ) ≥ α∗(t ) > 0, the proof is
completed. !

The vertex control law ensures that the system is capable of
achieving feasible solutions in a recursive manner, meaning
that feasible solutions can be found repeatedly over time.
Furthermore, it ensures that the system will be asymptotically

FIGURE 1. The trajectory of the system in the presence of the unsafe set.

stable. This means that the system will eventually converge to
a stable state, and this stability will persist even if there are
minor variations in the initial conditions of the system.

VII. SIMULATION RESULTS
In this section, two numerical examples have been brought to
verify the effectiveness of the proposed approach.

A. EXAMPLE 1:
Consider the double integrator system, which is a canonical
example of a second-order control system, the state space
model has the following format:

ẋ1 = x2,

ẋ2 = u.

The matrices regarding the cost function in (2) are being
considered as follows:

Q =
[

1 0
0 1

]
,

R = 1.

The initial condition has been set as x0 = [4, −3.5]′, and
γ = 10. The unsafe set Xu is defined as Xu = {(x1, x2) : (x1 −
1)2 + (x2 + 1)2 − (1/4)2 < 0}.

As can be seen in Fig. 1, the unsafe set is shown as a red
ellipse and the system trajectory has been shown by the blue
line. This figure shows the system trajectory converges to the
equilibrium point. Fig. 2 demonstrates the control input of
a data-driven initiative controller, which indicates both safe
control and optimal control input. In Fig. 3, the trajectory of
α(t ) has been brought, which is, as mentioned earlier always
between zero and one.

B. EXAMPLE 2:
In order to demonstrate our approach better and consider a
realistic example, the lane-keeping problem has been consid-
ered for an autonomous vehicle as another numerical example.
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FIGURE 2. Initiative controller input.

FIGURE 3. Evolution of α(t ) VS time.

The state space model of the lane-keeping problem is given as:
⎡

⎢⎢⎢⎣

ẏ
v̇

φ̇

ψ̇

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

0 1 V0 0

0 −Cf +Cr
MV0

0 − bCr−aCf
MV0

− V0

0 0 0 1

0 − bCr−aCf
IzV0

0 0

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

y
v

φ

ψ

⎤

⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎣

0
Cf
M
0

aCf
Iz

⎤

⎥⎥⎥⎥⎦
u,

(43)

where V0 = 27.7 (m/s), Cf = 133000 (N/rad), Cr =
98800 (N/rad), M = 1650 (kg), Iz = 2315.3 (m2.kg),
a = 1.11 (m), and b = 1.59 (m).

The problem aims to seek to maintain the vehicle’s position
in the center of the driving lane. The details of this system
model can be found in [22]. The states of the system could be
denoted as:

x =

⎡

⎢⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

y
v

φ

ψ

⎤

⎥⎥⎥⎦

T

The values of the parameters in (43) are brought from [23].
The initial condition has been set as x0 = [0.1,−0.1, 0.2, 0]′,
and γ = 10. The unsafe set Xu here is defined as Xu = {y =
x1 : y = x1 > 1}. The R and Q matrices regarding the cost

FIGURE 4. The trajectory of the lane-keeping system in the presence of
the unsafe set.

FIGURE 5. Evolution of α(t ) VS time in the lane-keeping system.

function in (2) has been considered as:

Q = 10 × I4×4,

R = 1.

As can be seen in Fig. 4, the unsafe set is shown as a black
dashed line (ymax) and the system trajectory with our proposed
method has been shown by the blue line. In Fig. 5, the path of
α(t ) is presented, which ranges from zero to one.

VIII. CONCLUSION
This article has developed a novel control law that merges
safety and optimality at the same time. The key advantage
of our proactive approach is its independence from knowl-
edge of the system dynamics. In our proposed method, a
data-driven safe controller is formulated, and optimal control
input is computed based on data using a one-shot optimiza-
tion problem. The initiative maximization problem has been
formulated based on input/state data, eliminating the need for
state derivatives in the formulation. The recursive feasibil-
ity and asymptotic stability of the control input have been
proven. It is shown that the coefficient allocated to safety
and optimal control input is proportional to its distance from
the safety boundary, indicating a trade-off between safety and
optimality. Simulation results have been presented to demon-
strate the effectiveness of the proposed method.
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