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Abstract—Equipping real-time systems with soft error re-
silience can be challenging due to the tradeoff of the timing
and failure requirements for mixed-criticality tasks. Violation of
these requirements yields failed task scheduling in one way or
another. However, not every task requires the same degree of
soft error resilience. For example, low-criticality tasks can run
with low or even no soft error resilience, whereas mid- or high-
criticality tasks may require relatively high resilience depending
on their inherent failure requirement. Unfortunately, existing soft
error resilience schemes do not have the ability to control the
degree of their resilience in a fine-grained way, i.e., they can
only be turned on or off as a whole during task execution.
To this end, this paper presents RTailor (Resilience Tailor), a
compiler-directed parameterized soft error resilience scheme that
achieves the desired level of soft error protection according to the
demand of each task. The key idea is that for a given protection
ratio, compilers can transform a hot loop such that the number
of its iterations protected over the total iterations matches the
ratio. Compared to full resilience protecting every iteration,
RTailor’s parameterized soft error resilience significantly reduces
the performance overhead of tasks, thereby improving their
real-time schedulability. The experimental results highlight that
for four representative fault rates, RTailor achieves 15%→21%
average schedulability improvements over the state-of-the-art
work that lacks parameterized soft error resilience.

I. INTRODUCTION

Soft errors have been a major cause of failures in mission-
critical embedded systems. Taking an unmanned aerial vehicle
(UAV) as an example, an undetected soft error in the flight
control kernel may result in sending erroneous signals to
actuators, which can crash the vehicle. One typical source
of soft errors is an energetic particle strike, e.g., cosmic
rays, that can change the data held in registers and memory
cells without causing physical hardware damage [1]–[4]. Such
unexpected changes can lead to failures such as crashes,
hangs, and silent data corruption (SDC). Even worse, transistor
size shrinking and aggressive voltage scaling make electronic
circuits more vulnerable to soft errors [5]. Thus, providing soft
error resilience is a must in mission-critical systems.

Further complications arise when mission-critical systems
run real-time tasks with a timing requirement for meeting
deadlines [6]. In particular, equipping such a real-time system
with soft error resilience can be challenging as the perfor-
mance overhead—paid for satisfying failure rate requirements
of the tasks—inevitably increases their execution time. Such a
phenomenon then places significant pressure on task schedu-
lability in that violation of either the failure rate or the timing
requirements for a real-time system leads to failed scheduling.

Nevertheless, not every task requires the same reliability
in a mixed-criticality real-time system that runs both critical
and non-critical tasks. The actual failure requirement depends
on the criticality of each task, e.g., the aviation domain uses
DO-178C [7] as a standard for defining failure requirements
of software components. Specifically, it assigns the compo-
nents different levels based on the failure effect: DAL A
(Catastrophic), DAL B (Hazardous), DAL C (Major), DAL D
(Minor), and DAL E (No Safety Effect). Each level specifies
the corresponding allowable failure rate, taking into account
the severity of the failure impact. For example, DAL A has the
smallest allowable failure rate 10→9

/hr while the other four
requirements have higher allowable failure rates.

Likewise, in a mixed-criticality system, low-criticality tasks
can run with low or even no soft error resilience, whereas mid-
or high-criticality tasks may demand relatively high resilience
depending on their inherent failure rate requirement. Thus, it is
desirable to have the ability to configure the reliability accord-
ing to the task’s demand, reducing the performance overhead
while maintaining the failure rate requirement. Unfortunately,
existing resilience schemes do not have such an ability to
control the degree of resilience in a fine-grained way, i.e., they
can only be turned on or off as a whole during task execution.

To this end, this paper presents RTailor (Resilience Tailor),
the first of its kind that achieves the desired level of soft
error protection according to the resilience demand of mixed-
criticality tasks. The protection leverages (1) instruction dupli-
cation [8], [9]—comparing the outputs of the original and the
replica—and (2) idempotent processing [10], [11]—dividing
the program into side-effect-free regions, each of which can
be re-executed to correct any error detected therein—for error
detection and recovery, respectively. Unlike prior instruction
duplication work that blindly replicates all instructions thus
being called full soft error resilience, RTailor replicates only
a portion of instructions with a given target protection ratio1

in mind, thereby achieving parameterized soft error resilience.
In other words, RTailor’s compiler transforms each hot loop
such that the number of its iterations protected over the total
iterations matches the ratio.

Compared to the full resilience protecting every iteration,
RTailor’s parameterized soft error resilience significantly re-

1It is defined for a given hot loop as the number of protected iterations
divided by the total iteration count. To protect the rest of the instructions
residing outside of such a loop, RTailor can fall back to the full resilience,
i.e., duplicating all instructions in each idempotent region.
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duces the performance overhead of mixed-criticality tasks,
which in turn improves their real-time schedulability. The
experimental results highlight that across four representative
fault rates, RTailor achieves 15%→21% and 17%→20% av-
erage schedulability improvements for NPB (NASA Parallel
Benchmarks) [12] and MiBench [13] applications, respec-
tively, over the state-of-the-art tree-based scheduler [14] that
lacks parameterized soft error resilience. RTailor’s principal
contributions can be summarized as follows:

• RTailor, for the first time, parameterizes soft error re-
silience in an application-tailored way. It can offer mixed-
criticality real-time tasks the right level of resilience
without overprotecting them against soft errors.

• Due to the lack of the overprotection, RTailor reduces
the execution time of tasks without compromising their
failure rate requirement. It turns out that the saved time
helps a real-time system to schedule more tasks.

• RTailor’s parameterized soft error resilience is effective.
It allows fine-grained control over the resilience neces-
sary for a given task, and the performance overhead is
proportional to the target protection ratio in general.

II. BACKGROUND AND MOTIVATION

A. Soft Error Resilience: Detection and Recovery

Soft error resilience has been an active research area due
to the correctness/safety demand of mission-critical embedded
systems. Among prior resilience schemes, one popular way to
detect soft errors is conducting instruction-level dual modular
redundancy (DMR) in a software manner [8], [15]–[20]. At
compile time, it duplicates instructions of program and injects
checking code at synchronization points, e.g., store instruc-
tions, so that the outputs of the original and the replica are
compared at run time. This is so-called instruction duplication
based error detection in which any mismatch between the
outputs is treated as a soft error.

To lower the run-time overhead of the software-based DMR,
researchers have proposed hardware-based soft error resilience
approaches, e.g., core-level DMR [21], [22], triple modular
redundancy (TMR) [23]–[25], and acoustic-sensor-based re-
silience schemes [26]–[32]. However, hardware-based schemes
come with the costs of high power consumption and complex
hardware logic; they also lack the ability to adapt the level
of soft error resilience to the varying demand of each task.
Meanwhile, software-based schemes are attractive since they
are affordable and flexible for RTailor to achieve parameterized
soft error resilience. Thus, this section focuses on them leaving
the hardware-based schemes out of scope.

As always, the detection alone cannot offer soft error re-
silience, i.e., instruction duplication needs to be accompanied
by either backward or forward recovery to correct detected
errors. Idempotent processing is one of the most popular back-
ward recovery schemes [10], [33]–[39]. It partitions program
into a series of idempotent regions—each of which does not
have any Write-After-Read (WAR) dependence—so that they
can be re-executed yet still generate the same output; such

side-effect-free re-execution of idempotent regions is the basis
for them to recover from any soft error detected therein. On the
other hand, forward recovery schemes such as SWIFT-R [40]
and InCheck [41] rely on TMR without retreating the faulty
execution when a soft error is detected. Swift-R runs three
copies of program and adds recovery code—that can correct
an error by majority voting—at synchronization points. To
mitigate the silent data corruption (SDC) problem of SWIFT-
R, InCheck utilizes additional register/memory checkpointing.
It leverages a special recovery procedure that consults the
checkpointed values to determine if a detected soft error is
recoverable. Otherwise, InCheck informs the program of the
irrecoverability, which forces it to restart, rather than blindly
trying the recovery procedure which leads to SDC.

In addition to the above fine-grained instruction-level soft
error resilience schemes, there are coarse-grained schemes, the
recovery procedure of which is realized in the process level
[42]. They run multiple replica processes of the same program
and perform the majority voting among all the processes for
error detection and correction purposes. To the best of our
knowledge, no prior work is capable of adjusting soft error
resilience in a fine-grained and application-tailored way. In
contrast, RTailor can offer real-time tasks the necessary level
of soft error resilience according to the failure rate require-
ment, which reduces their over-protection and the resulting
run-time overhead thereby providing better schedulability.

B. Re-execution of Tasks to Meet Failure Rate Requirements
Mission-critical embedded systems should be equipped with

soft error resilience which may otherwise lead to catastrophic
failure. Among them, it is a particular interest to protect a
mixed-criticality real-time system against soft errors due to
the importance and popularity. In the mixed-criticality system,
each task features both an actual failure rate and a required
failure rate; the actual failure rate represents how likely a
task can fail during the execution, which is affected by multi-
ple factors including program characteristics, the underlying
hardware, and the surrounding environment. One common
way to estimate the actual failure rate is conducting fault
injection campaigns. On the other hand, the required failure
rate determines the maximum allowable failures within a given
time period, e.g., a regulation like DO-178C specifies the
required failure rate of each task. Indeed, it is critical to ensure
the actual failure rate of each task is lower than its required
failure rate, which we call a failure rate constraint. In general,
the scheduler leverages both actual and required failure rates
of all tasks—along with their period and worst-case execution
time—to figure out if the tasks are schedulable.

Especially for those tasks that do not satisfy the constraint,
i.e., the actual failure rate is over the required rate, the task
scheduler can leverage a re-execution mechanism to lower
the actual failure rate. The rationale is that if any task is
executed multiple times, then its actual failure rate becomes
smaller across re-executions. That is because the original rate
is defined for a time period of a single task run, and thus the
task’s rate over multiple N runs is obtained by multiplying the
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original rate (< 1) by itself N times; additional details of the
rate over re-executions are deferred to §III-B. The following
equation from Reghenzani et al.’s work [14] shows how to
find the minimum value of N that satisfies the failure rate
constraint. In other words, for a given task, we compute such
a minimum required number of re-executions (Nre-exec

A ) with
the actual and required failure rates in mind like below:

N
re-exec
i = max(0, ↑logpF

i
p
req
i ↓ ↔ 1) (1)

where p
F
i is the actual failure rate of Task i while p

req
i stands

for the required failure rate.

Fig. 1: Example of task re-executions to satisfy the failure
rate constraint of Task A, which requires executing the task at
least 3 times; the failure rates are transformed with a negated
logarithm function so that the failure rate after re-execution
can be visually represented as a summation; the relationship
between the bars is equivalent to p

req
A ↗ p

F
A
3.

Figure 1 depicts an example where Task A in a mixed-
criticality system has an original failure rate of 10→3

/hr and
a required failure rate of 10→7

/hr. Thus, Task A should be
executed at least 3 times (i.e., N

re-exec
A is 2) to satisfy the

failure rate constraint—according to Equation (1). As such,
this leads to the 3x higher occupation of processor resources.

Note that as shown in Figure 1, Task A is overprotected; the
actual failure rate is excessively lower than the required failure
rate, i.e., the concatenated yellow bar is too much longer than
the red bar in the figure. Here, Task A does not have to be run
3 times with full resilience. It is rather possible to relax the
soft error resilience of the task with the goal of minimizing
overprotection. For example, we can protect only a portion of
task instructions, while satisfying the failure rate constraint.

C. Our Solution: Parameterized Resilience

With the above insight in mind, this paper proposes RTailor,
a compiler-directed flexible yet efficient approach to param-
eterizing soft error resilience for mixed-criticality real-time
systems. By providing each task with its own custom soft
error resilience, RTailor can prevent the task from being over-
protected unnecessarily, thereby achieving significant schedu-
lability improvement.

Figure 2 shows a mixed-criticality system with parameter-
ized soft error resilience; it provides 3 versions of the execu-
tion of Task A with different levels of soft error resilience:
40% protection, 80% protection, and full (100%) protection
used as a standard non-parameterized resilience scheme. The
execution version sequence of the task with parameterized soft
error resilience (“full”, “80%”, “40%”) has a higher actual
failure rate than that of the non-parameterized execution se-
quence (“full”, “full”, “full”), i.e., preqA ↗ p

F
Afull

p
F
A80%

p
F
A40%

↗

Full 
Protection

40% 
Protection

Executions with Parameterized Soft Error Resilience of Task A

80% 
Protection

Transformed actual failure rate w/ parameterization: − log 𝑝A𝑓𝑢𝑙𝑙
𝐹 − log 𝑝A80%

𝐹 − log(𝑝A40%
𝐹 )

40%Full 80%

Transformed required failure rate of Task i:  −log(𝑝A
𝑟𝑒𝑞)

Transformed actual failure rate w/o parameterization:−3log(𝑝A𝑓𝑢𝑙𝑙𝐹 )

Full Full Full

Transformed actual 
failure rate: 
− log(𝑝A80%

𝐹 ) 

Fig. 2: The impact of parameterized soft error resilience on
lowering overprotection and processor utilization; less reliabil-
ity indicates less execution time (more idle processor time).

(pFAfull
)3, yet still complies with the failure rate constraint2.

The upshot is that by minimizing the overprotection of a task,
its execution time is significantly reduced, which gives the
scheduler more room to accommodate other tasks.

III. TASK MODEL AND FAULT MODEL

A. Task Model
RTailor’s task model is built upon prior work [14]. The task

set is defined with ! = {ω1, ω2, . . . , ωn}. Each task is modeled
with ωi = (Ci, Di, Ti, p

req
i ); Ci is a vector for representing the

worst-case execution times (WCETs) of ωi’s different versions
ωij , i.e., Ci = {cij |j ↘ V } where V is a set of the task
versions, and cij is the WCET of task ωij . Here, Di, Ti, and
p
req
i are the deadline, period, and required failure rate of ωi,

respectively. Unlike the prior work, RTailor compiles a given
task ωi to multiple versions with different protection ratios,
i.e., ωij , whose actual failure rate is p

F
ij .

Also, the fault tolerance mechanism of RTailor is derived
from the same prior work [14]. In essence, if a task ωi has a
failure during the execution, the task scheduler spawns a new
job containing the same computation, which is repeated unless
it succeeds. The spawned jobs of task ωi are defined as the
sequence: ωi(0), ωi(1), . . . , ωi(Nre→exec

i ) where ωi(k) is the kth re-
execution of ωi (ωi(0) is the original execution), and N

re→exec
i

is the total number of re-executions of ωi. Considering ωi(k)’s
WCET civk

where vk is the task version found in the re-
execution version sequence V SEQi = (v0, . . . , vNre→exec

i
),

RTailor generates the optimal sequence that satisfies the task
ωi’s failure rate constraint while keeping the execution time
(
∑Nre→exec

i
k=0 civk

) minimal as will be shown in §VI.

B. Fault model
RTailor only considers transient faults, also known as soft

errors, in the processor. As in prior resilience work [31],
[40], control flow and address generation units, caches, and
main memory are supposed to be hardened against soft errors.
RTailor assumes that the task scheduler in the mixed-criticality
system is also hardened with some form of hardware resilience
support. Therefore, a failure happening in the task scheduler
is beyond the scope of this paper.

2§VI details how RTailor obtains an optimal re-execution version sequence
with the failure rate constraint satisfied.
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It is important to note that the failure rate of a task remains
independent over its re-executions. That is because RTailer
only considers transient faults, not permanent ones. Due to the
transient nature, the fault rate of the following re-execution is
independent of faults that have happened in prior execution(s).

Even if transient faults somehow affect task outputs, RTailor
guarantees the integrity of the task inputs, i.e., a task always
reads correct inputs during its execution(s). The reason is
two-fold: (1) The inputs of each task are stored in the main
memory backed with error correction code (ECC); (2) The
input memory locations are disjoint with the output memory
locations, which is the case for all modern operating systems
that start program with clean memory status. This technically
prevents any incorrect output of prior task execution(s) from
being propagated to inputs to the current execution. As a result,
the re-execution of each task always reads its correct inputs
from the ECC memory.

IV. RTAILOR OVERVIEW

The goal of RTailor is to achieve a fine-grained and flexible
soft error resilience scheme for mixed-criticality real-time
systems. With RTailor’s parameterized soft error resilience,
they can not only improve the task schedulability but also meet
the failure rate constraint of all tasks. Overall, RTailor consists
of four major functionality blocks to accomplish the goal:
(1) loop selection to find those loops suited for the resilience
parameterization, (2) loop restructuring to transform them into
the form for which the resilience can be easily parameterized,
(3) soft error protection code generation to augment the loop
body with instructions that detect and recover from soft errors,
and (4) optimal re-execution version sequence searching to
figure out V SEQi (§III-A) of a given task ωi so that its
actual failure rate through re-executions can satisfy the failure
rate constraint with the total execution time minimized. Note
that the first three functionality blocks are implemented as
RTailor’s compiler passes, while the fourth is done as a
standalone algorithm.

LLVM IR
Loop 

Transformation
Decision Block 

Approach
$V-B1

Loop Unrolling 
Approach

$V-B2

Chose 
Either 

Approach Instruction 
Duplication 

for Detection and 
Idempotence for 

Recovery
$V-D and $V-E

Executables 
with 

Parameterized 
Resilience

LLVM MIR
Function 

Transformation
$V-C

Loop 
Selection 
for Soft 

Error 
Protection

$V-A
…

#2
#1

Protected  
Iteration Ratio #1

Protected  
Iteration Ratio #2

Protected  
Iteration Ratio #n

…

#n

Fig. 3: The workflow of RTailor’s compiler passes
Figure 3 shows RTailor’s compilation workflow. It begins

with taking input program in the form of LLVM inter-
mediate representation (IR) [43] produced by the language
frontend such as Clang [44] for C/C++. RTailor’s compiler
then selects the candidate loops for parameterized soft error
resilience3(§V-A) and transforms their control flow so that the
protected iteration ratio—input atop of the figure—matches
the ratio of the number of iterations being protected in each
loop to its total iteration count (§V-B). Then, the compiler
also transforms those functions called inside the parameterized

3It is interchangeably referred to as parameterized soft error protection.

loop for their protection to be parameterized as well (§V-C).
Finally, the compiler performs code generation for instruction
duplication [8] and idempotent processing [33]—over the
transformed loops and functions—to detect (§V-D) and correct
(§V-E) soft errors, respectively. Note that RTailor compiles a
task ωi into multiple versions ωij with each different protected
iteration ratio. They are fed into the optimal re-execution
version sequence searching (§VI) along with the WCET cij ,
actual failure rate p

F
ij of each version ωij , and the required

failure rate p
req
i to find V SEQi, i.e., the optimal sequence of

re-executing ωi’s versions.

V. RTAILOR COMPILER IMPLEMENTATION

A. Loop Selection for Parameterized Soft Error Protection

To parameterize soft error resilience, RTailor only enables
soft error protection during a part of program (task) execution.
That is, RTailor selects some parts of code in input program
and decides if they should be protected or not; it determines the
right level of the resilience for them according to how much
protection is enough to achieve the failure rate requirement
without overprotection. When selecting the candidate code
to which the resilience parameterization is applied, RTailor
seeks two important properties of their execution. First, the
program must spend most of its execution time in the code
(execution time dominance), which would otherwise make the
impact of the parameterization on the overall resilience and
performance negligible. Second, the code must be executed a
sufficient number of times (high execution count) during pro-
gram execution so that RTailor achieves the parameterization
in a fine-grained manner. The execution count translates to the
opportunities that RTailor can make a decision to switch on/off
the soft error protection of the code.

TABLE I: The ratio of loop execution time to the total
execution time of program in the NPB benchmark suite

BT CG EP FT IS LU MG SP
Ratio 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98

Taking into account the two properties of candidate code,
we believe that loops are the right one to be protected with
parameterized soft error resilience. It is well known that lots of
applications in real-time systems are loop-intensive [45], and
our experimental results also justify the decision of selecting
loop candidates to be protected. As shown in Table I, for all
NPB benchmark applications, 99% of the total execution time
is spent on their loops. Note that for some program that is
not loop-intensive, RTailor can still protect the code outside
of the loop candidates with conventional non-parameterized
soft error resilience.

In particular, care must be taken for nested loops. Although
they are common in program, not all levels of loops in the
nested structure have the same degree of the two execution
properties mentioned above. That is, parameterized soft error
resilience performs better on some level of the loop than other
levels. With that in mind, RTailor proposes three strategies to
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Loop 1:
Loop 1.1:

Loop 1.2:
Loop 1.2.1:

Loop 1.2.2:

(a) Nested loops

Loop 1.2.2 Loop 1.2.1 

Loop 1.2  Loop 1.1  

Loop 1 

Traversal Direction
Back Edge Count
Selected Loops
Skipped Loops

25

101 112

89 125

Back Edge Cnt. Thres.: 100

(b) Loop structure tree

Fig. 4: Examples of nested loops and their loop structure tree

find the ideal loop level in nested loops as the target of pa-
rameterized soft error protection: (1) outermost, (2) innermost,
and (3) profiling-based selection strategies. First, the outermost
strategy prioritizes those with execution time dominance, so it
selects the outermost loop for the parameterized protection.
Second, the innermost strategy prioritizes those with high
execution count, i.e., many loop iterations, and therefore it
selects the innermost loops as the target.

Finally, the profile-based strategy tries to strike a balance
between the goals of the innermost and outermost strategies.
To illustrate, for each loop shown in Figure 4a, the profiler
records the loop back edge count, i.e., how many times the
back edge—from a loop latch block [46] to the loop header—is
taken. Using the profile results, RTailor builds a loop structure
tree [47] and annotates each node with its loop back edge
count. For example, Figure 4b shows such a tree corresponding
to the nested loops in Figure 4a. RTailor then traverses the
tree starting from the root node (i.e., outermost loop) to find
the loops whose back edge count is greater than a threshold,
in which case those nodes underneath are skipped as shown
in Figure 4b; if there is no such loop found at the end of
the traversal, RTailor falls back to the innermost strategy.
According to empirical results, a back edge count threshold
of 100 strikes a good balance between the execution time
dominance and the protection granularity.

B. Preparing the Loops for Parameterized Protection

This section discusses two loop transformation approaches
to varying the frequency of protecting loop iterations: (1) de-
cision block formation and (2) speculative loop unrolling [37].
For the loops selected for parameterized soft error protection,
RTailor first prepares two types of loop bodies, i.e., unpro-
tected (the original in Figure 5a) and protected (the replica
for accommodating protection code later). Then, using one of
the two approaches, RTailor transforms the control flow of the
loop so that the protected loop iteration will be executed at
the frequency of the protected iteration ratio.

1) Naive Approach - Decision Block Formation: To execute
either the protected or the unprotected code of a loop according
to a user-defined protected iteration ratio, RTailor’s compiler
inserts the decision logic block after the header of each se-
lected loop. As shown in Figure 5b, the block decides whether
the upcoming loop iteration should be protected or not. Algo-
rithm 1 describes how the decision logic enables switching
between protected and unprotected code in a controlled way;

Loop Header

Loop Body

Loop Exit Block

(a) Original loop

Loop Header

Loop Body 
(Unprotected)

Loop Exit Block

Decision Block

Protected 
Loop Body

(b) Decision block
formation

Loop Body (Unprotected)

Loop Header

Protected Loop Body

Loop Header

Protected Loop Body

Loop Header

Loop Exit Block

(c) Speculative loop
unrolling [37]

Fig. 5: Loop structure transformation

RTailor sets Threshold of the algorithm correspondingly in
order to reflect the protected iteration ratio. By the law of large
numbers [48], as the decision block is executed a huge number
of times in a frequently executed loop, the ratio of protected
iterations to the total number of iterations becomes close to
the user-defined protected iteration ratio.

Algorithm 1: Decision Logic
1 Sample uniform random number R ↑ [0 : 100) ↓ N;
2 Protected Iteration Ratio N ↑ [0 : 1] ↓ R ;
3 Initialize Threshold ↔ N ↗ 100;
4 if R < Threshold then
5 branch to protected code;
6 else
7 branch to unprotected code;

Note that the protected iteration ratio is not necessarily
equivalent to the program’s actual failure rate. Although there
is a positive correlation between these two variables, the
actual failure rate depends on multiple factors such as program
characteristics, the implementation of soft error resilience, the
underlying hardware, and so on. This implies that a fault
injection campaign is essential to measure the program’s actual
failure rate. §VII-B describes RTailor’s methodology for the
fault injection campaign while §VII-G shows the resulting
actual failure rates of the benchmarks tested.

2) RTailor’s Approach - Speculative Loop Unrolling [37]:
Although the decision block approach is simple, it incurs
a high run-time overhead for a couple of reasons: (1) the
random number generator (line 1 in Algorithm 1) used by the
block significantly degrades the effectiveness of the branch
predictor [49] in the processor core—due to the randomness
hindering the prediction—and thus results in frequent mispre-
dictions leading to expensive pipeline flushing [49]; (2) the
random number generation itself takes a while, making the
decision block dominate the execution time of a small loop.

To address the above two issues of the decision block
approach, RTailor leverages loop unrolling [46] which essen-
tially eliminates the need for decision logic. To be specific,
RTailor unrolls each selected loop and protects a portion of the
unrolled loop bodies according to the protected iteration ratio.
For example, as shown in Figure 5c, suppose an unrolling
factor4 is two (three loop bodies in total after unrolling), and
the user-defined protected iteration ratio is 2

3 ; to match the

4The unrolling factor is the number of times the loop body is copied.
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ratio, the first two loop bodies are protected while the last
one is not. In general, for the unrolling factor of X and the
protected iteration ratio of R, RTailor protects ↑R≃ (X +1)↓
copies of the unrolled loop bodies. In particular, RTailor can
unroll even the loops whose iteration count is unknown at
compile time by explicitly checking the exit condition before
each unrolled loop body as shown in Figure 5c. This is so-
called speculative loop unrolling [37]; the rest of paper refers
to it simply by loop unrolling.

TABLE II: Average slowdown of the decision block approach
compared to the loop unrolling approach for NPB bechmarks

Protected Iteration Ratio 20% 40% 60% 80%
Slowdown of the

decision block formation approach 1.35x 1.08x 1.05x 1.01x

Unlike the decision block approach, the loop unrolling does
not introduce additional dynamic instructions during program
execution—though it slightly increases the code size. As a
result, the loop unrolling approach incurs a much less per-
formance overhead than the decision block approach. Table II
highlights that for NPB benchmarks protected with parameter-
ized soft error resilience, the decision block approach5 incurs
significant slowdowns compared to RTailor’s loop unrolling
approach across different protected iteration ratios.

C. Preparing Functions for Parameterized Protection
To achieve parameterized soft error resilience correctly,

RTailor must be careful with the function whose callsites are
not always protected. The crux of the problem is that the
(un)protection of the function is subject to whether or not its
callsites are protected, which leads to a conflicting situation
as it can be called by both unprotected and protected callsites.
To address this problem, RTailor should be able to protect the
function if and only if it is called from protected code—leaving
it unprotected otherwise.

Protected Code:
  …
  Call Func1
  …
Unproteced Code:
  …
  Call Func1
  …

Func1:
  Instructions 1a
  Call Func2
  Instructions 1b
  return

Func2:
  Instructions 2
  return

(a) Original code

Protected Code:
  …

  …
Unproteced Code:
  …
  Call Func1
  …

Instruction 1a’ 

Instruction 1b’

Instructions 2’ 

Func1:
  Instructions 1a
  Call Func2
  Instructions 1b
  return

Func2:
  Instructions 2
  return

Compiler

Inline and Protect

(b) Nested function inlining

Compiler

Protected Code:
  …
  Call Func1.P
  …
Unproteced Code:
  …
  Call Func1
  …

Func1:
  Instructions 1a
  Call Func2
  Instructions 1b
  return

Func2:
  Instructions 2
  return

Func1.P:
  Instructions 1a’
  Call Func2.P
  Instructions 1b’
  return

Func2.P:
  Instructions 2’
  return

Clone and Protect

Clone and Protect

(c) Function cloning and name mangling

Fig. 6: Function protection transformation
Instruction X → is the protected equivalence of instruction X

5In the decision block approach, the decision logic utilizes a 32-bit LFSR
(linear-feedback shift register) based pseudorandom number generator.

To this end, RTailor compiler generates both protected and
unprotected versions of such a function and picks which
version should be called depending on the location of the
callsite (i.e., whether it is protected or not). For this purpose,
RTailor proposes two techniques: (1) nested function inlining
and (2) function cloning and name mangling. The former
technique recursively inlines all functions in the call chain
rooted at the protected callsite. For example, Figure 6b shows
that RTailor replaces the protected callsite, i.e., Call Fun1,
with the body of Func1 which in turn does the same for Call
Func2 by inlining its body.

When the recursive function inlining is not feasible, e.g.,
the resulting code size increase is prohibitively large due to a
long call chain, RTailor takes advantage of the function cloning
and name mangling instead. As shown in Figure 6c, RTailor’s
compiler first finds and copies those functions called in the
protected callsites. It then renames the replica functions so
that they can only be called by protected callsites with different
names (Func1.P and Func2.P). Finally, the compiler changes
the target of each call instruction in the protected code to the
corresponding renamed replica function, e.g., resulting in Call
Fun1.P and Call Fun2.P as shown in the figure.

1.  
C1.
1*.
C2.
2.  
C3.
2*.
D1.
D2.

3.  
4.  
4*.
D3.
D4.
D5. 

5.
…

ld r0, [r4]
ckpt r0
ld r0’, [r4]
ckpt r0’
r2 = r0 + 1
ckpt r2
r2’ = r0’ + 1
cmp r2, r2’
bne  ErrorRecv1

str r2, [r4]
r2 = 1 – r0
r2’ = 1 – r0’
cmp r2, r2’
cmpne r0, r0’
bne  ErrorRecv2

str r0, [r2]

1. ld r0, [r4]

2. r2 = r0 + 1

3. str r2, [r4]
4. r2 = 1 – r0 

5. str r0, [r2]
…

1.  

1*.

2.  

2*.
D1.
D2.

3.  
4.  
4*.
D3.
D4.
D5.

5.
…

ld r0, [r4]

ld r0’, [r4]

r2 = r0 + 1

r2’ = r0’ + 1
cmp r2, r2’
bne  ErrorRecv1

str r2, [r4]
r2 = 1 – r0 
r2’ = 1 – r0’
cmp r2, r2’
cmpne r0, r0’
bne  ErrorRecv2

str r0, [r2]

(a) (b) (c) 

ErrorRecv2:
ld r2, …
ld r0, …
ld r0’, …
br R2

Recovery Block

Dx: Error Detection Inst. from DMR
Mem. WAR-Dependency Error Recovery Control Flow
x*: Duplication of x Region Boundary

R1

R2

Fig. 7: Instruction duplication and idempotent region forma-
tion; (a) original assembly code; (b) code after DMR ; (c) code
after idempotent processing with a per-region recovery block

D. Instruction Duplication for Error Detection
Once the seleted code candidates are prepared for soft

error resilience parameterization using the code restructur-
ing techniques (§V-B and §V-C), RTailor should enable the
resulting code to detect and correct errors. This and next
sections describe RTailor’s DMR-based soft error detection
and idempotence-based error recovery, respectively.

RTailor leverages instruction duplication [8] to detect the
occurrence of soft errors in the protected code. Specifically,
RTailor’s compiler replicates each instruction and inserts error
checking instructions at each synchronization point [8]6. They

6Synchronization points are instructions that may affect the output of the
program, e.g., store instruction, and they are not replicated.
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detect a soft error by comparing the output values of the orig-
inal and the replica instructions, i.e., any mismatch between
the values indicates the occurrence of a soft error. Figure 7(b)
shows how the original code in Figure 7(a) changes with the
instruction duplication, e.g., load ld r0’,[r4] is followed
by the replica ld r0,[r4] numbered with ⇐ in Figure 7(b).

In particular, it uses a different target register (r0’), as with
other replica instructions of the figure, in case the register
(r0) of the original instruction can be corrupted by a soft
error. Before a synchronization point, which is instruction 3
(store) in Figure 7(b), RTailor’s compiler inserts a compar-
ison instruction D1 to check the occurrence of a potential
soft error on r2; although every value read by instruction
3 is supposed to be compared against the original register,
our example here omits the error checking code for the other
store operand r4. Finally, a conditional branch (instruction
D2) follows the error checking code to direct program control
to the recovery code in case of an error detected, i.e., provided
the comparison results in mismatch.

E. Idempotence-Based Recovery for Error Correction

For the recovery of program interrupted by the detection
of a soft error, RTailor exploits idempotent processing [50]
that can correct errors by its side-effect-free re-execution. To
achieve this, RTailor’s compiler partitions program to a series
of idempotent regions so that each region lacks memory write-
after-read (WAR) dependence [33]; the compiler places a re-
gion boundary to break every memory WAR dependence, e.g.,
the first region boundary in Figure 7(c) cuts the dependence
between instruction 1 (ld) and instruction 3 (str).

Note that the above region partitioning only takes care of
memory WAR dependences with register WAR dependences
unaddressed, and thus the re-execution of such a region in its
current form leads to incorrect error recovery—because the
values of input registers of the region get changed upon re-
execution. To resolve this issue, RTailor leverages the live-out
register checkpointing [50]. That is, for each region, RTailor’s
compiler inserts a checkpoint store after the last updating
point of a register that is used by some following regions.
The implication is two-fold: (1) RTailor only checkpoints the
live-out register once even if it is defined multiple times in
a region, saving checkpointing stores; (2) all input registers
of each region is already sure to have been checkpointed to
memory (i.e., checkpoint storage) before starting the region7.
Thus, upon an error detected in a region, RTailor can use
the checkpointed values to restore (WAR dependent) the input
registers of the region before re-executing it for recovery.

Figure 7 (c) shows an example where three live-out registers
r0, r0↘, r2 of region R2 have been checkpointed (instruction
C1-3) before; though they are all checkpointed in region R1
in the figure, they could be done in other prior regions. To
illustrate the recovery protocol, when a soft error is detected in
R2, the program is first interrupted. Then, RTailor’s recovery
runtime redirects the program control to the beginning of a

7We assume that the entire memory is protected with ECC

compiler-generated per-region recovery block shown in the
rightmost box of Figure 7(c). Finally, the recovery block
reloads the checkpointed values to the input registers of R2
from memory and then jumps back to the beginning of the
interrupted region R2 to re-execute it for error recovery.

VI. SEARCHING FOR OPTIMAL RE-EXECUTION VERSION
SEQUENCE

This section presents how RTailor finds the optimal se-
quence of re-executing task versions which minimizes the
total execution time—including the original task’s—with the
failure rate constraint satisfied. Compared to the prior work
[14] that only determines how many times the fully protected
(non-parameterized) task should be re-executed, RTailor’s pa-
rameterized soft error protection significantly reduces the total
execution time and improves the overall task schedulability—
without violating any failure rate constraint. RTailor builds
the optimal re-execution version sequence for a given task ωi

with taking into account the actual failure rates p
F
ij , required

failure rate p
req
i , and WCET cij of each task version ωij .

In practice, the actual failure rate p
F
ij is obtained from fault

injection campaigns (§VII-B), and the WCET cij is estimated
by using static analysis or measuring task execution times on
a real machine [51]–[54]. The following defines the problem
of computing a task’s optimal re-execution version sequence:

Problem 1: Given a task ωi and the set of its task versions V ,
RTailor should find the optimal re-execution version sequence
including the original task execution ωi(0), i.e., V SEQi =

(v0, . . . , vNre→exec
i

), vi ↘ V such that
∏Nre→exec

i
k=0 p

F
ivk

⇒ p
req
i

and
∑Nre→exec

i
k=0 civk

is the minimum.

In particular, RTailor reduces the problem of finding the
optimal version sequence to an unbounded 0-1 knapsack prob-
lem as follows: First, the WCET of every single task version
(⇑j↑V cij ) is quantized by rounding to two decimal places;
according to our empirical result, they strike a balance between
the resolution and the speed of running the knapsack algo-
rithm. Second, the required failure rate of a given task ωi and
the actual failure rates of the task versions ωij are all negated-
log-transformed to turn the product of the actual failure rates
into the sum of the negated-log-transformed actual failure
rates; this allows RTailor to fit Problem 1 into the knapsack
problem. With this transformation,

∏Nre→exec
i

k=0 p
F
ivk

⇒ p
req
i in

Problem 1 can be rewritten like below:

↔ log10 p
req
i ⇒ ↔ log10

Nre→exec
i∏

k=0

p
F
ivk

= ↔
Nre→exec

i∑

k=0

log10 p
F
ivk

(2)

Table III shows the mapping of the variables between
Problem 1 and the unbounded 0-1 knapsack problem. Once the
log-transformed actual failure rate is negated, a high total value
(the last entry of the table) in the unbounded 0-1 knapsack
problem implies a low actual failure rate of the corresponding
task, which facilitates the knapsack formulation of Problem 1.
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TABLE III: Variable mapping between RTailor’s optimal re-
execution version sequence problem and the knapsack problem

0-1 Knapsack Problem Optimal Re-execution Version Sequence Problem
Collection of items V SEQi Re-execution version sequence of ωi

Item j ωij (The version j of a given task i)
Weight of item j cij (The WCET of ωij )

Total weight
∑Nre→exec

i
k=0 civk

where vk is from V SEQi = (v0, . . . , vNre→exec
i

)

Value of item j
-log10 pF

ij
(The negated-log-transformed actual failure rate of ωij )

Total value →
∑Nre→exec

i
k=0 log10 pF

ivk

For a given task ωi, Algorithm 2 shows how RTailor finds
the optimal re-execution version sequence V SEQi using
dynamic programming [55] for solving the knapsack problem.
Algorithm 2 initializes the knapsack’s maximum weight (W)—
which is the total WCET of the V SEQi—to 0 (line 1).

Note that the termination condition of Algorithm 2 (line 6)
is different from that of the original unbounded 0-1 knapsack
problem. That is, Algorithm 2 terminates when the collection’s
total value (Table III’s last entry) is not less than ωi’s negated-
log-transformed required failure rate (input M = ↔ log10 p

req
i )

while keeping the total weight (Table III’s fourth entry) under
the knapsack’s maximum weight (W ). In other words, the
algorithm found a V SEQi which satisfies the failure rate
constraint of ωi with the least total WCET.

If the termination condition is not satisfied, each iteration
begins with increasing the knapsack’s maximum weight W

(line 7); to ensure that the final V SEQi solution has the
minimal total WCET, the increasing step (Ws at line 7) must
be set to a value equal to the quantization step size of WCET,
which is 0.01 in this work. Then, it forms a collection of items,
i.e., V SEQi, such that their total weight is not greater than
W and they have the highest total value (lines 6-17).

Overall, the complexity of Algorithm 2 is like below:

O(|V |↑maxj↑V (M(weight of item j)/(value of item j))
Ws

↓)
(3)

which is technically the number of task versions that need to be
searched in the loop (line 10) times the while loop’s maximum
number of iterations (line 6). Although the complexity is
pseudo-polynomial, the algorithm takes only a few seconds to
compute the optimal re-execution version sequence for each
task in our schedulability simulations (§VII-H). In particular,
RTailor can pre-compute the sequence of each task using
Algorithm 2 so that at run time, the task scheduler spawns the
next re-execution of the task by consulting the pre-computed
sequence rather than executing the algorithm each time.

VII. EVALUATION

A. RTailor Compiler Implementation

We implemented RTailor atop Clang/LLVM 13 [43] for
ARMv7-a ISA with NEON and VFPv3. The compiler passes
for soft error detection and protection deal with both NEON
registers including floating point registers in ARMv7 and
general purpose registers excluding the stack pointer (SP) and

Algorithm 2: Optimal re-execution sequence finding
with the unbounded 0-1 knapsack problem

Input : Set of task versions V
Input : Item weights wj for all j in V
Input : Item values uj for all j in V
Input : Required minimum value of the item collection M = → log10 preq

i
Input : Increasing step of knapsack’s maximum weight Ws

Output: Optimal re-execution version sequence V SEQi
1 Initialize knapsack’s maximum weight: W ↔ 0;
2 Initialize 0-1 knapsack value array: Av ;
3 Initialize 0-1 knapsack traceback array: Ah;
/* In the implementation of this algorithm, weights

are scaled to integers, e.g., W, Ws, and wj are
multiplied by 100, so that Av and Ah can be
accessed with the conventional integer indices. */

4 Av [0] ↔ 0 ;
5 Ah[0] ↔ (Null,Null) ;
6 while Av [W ] < M do
7 W ↔ W + Ws;
8 Av [W ] ↔ Av [W → Ws] ;
9 Ah[W ] ↔ (Null,W → Ws);

10 foreach j ↑ V do
11 x ↔ W → wj ;
12 if x < 0 then
13 continue;

14 y ↔ Av [x] + uj ;
15 if y > Av [W ] then
16 Av [W ] ↔ y;
17 Ah[W ] ↔ (j, x);

/* Now trace back Ah to find the optimal re-execution
version sequence V SEQi */

18 Intialize V SEQi to empty sequence;
19 (J,W ) ↔ Ah[W ];
20 while W ≃= Null do
21 V SEQi.append(J);
22 (J,W ) ↔ Ah[W ];

23 Return V SEQi;

the program counter (PC). Although RTailor does not cover
SP and PC, there are existing soft error resilience schemes that
can be combined with RTailor to protect those registers [18].

B. Fault Injection Campaign Design
RTailor’s ability to parameterize soft error resilience is

evaluated with statistical fault injection campaigns [56]. They
run program a number of times, each of which flips a random
bit position of an arbitrary register selected from the register
file covering both general purpose registers (except for SP and
PC) and NEON registers. We implemented our fault injector
as a DynamoRIO client [57]. Basically, it pauses program at a
randomly selected dynamic instruction, then flips the selected
bit in the chosen registers, and finally resumes the program.
Note that the instruction at which the fault injector pauses
the program can belong to either the protected or unprotected
code. Depending on the termination status of the program and
its output, there are 5 kinds of results: Masked, Corrected,
Crash, Hang, and SDC. Masked means the output is correct
while Corrected shows the fault is captured and corrected.

C. Benchmark Setup
To evaluate RTailor’s parameterized soft error resilience,

we utilized two benchmark suites, i.e., MiBench8 and NPB
(serial version) [12]. For run-time overhead evaluation of NPB

8Some benchmarks are omitted because of redundancy issues [58].
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Fig. 8: Slowdown of RTailor for MiBench applications compared to the unprotected version; lower is better

Fig. 9: Slowdown of RTailor for NPB applications compared
to the unprotected version; lower is better
applications (bt, cg, ep, ft, is, lu, mg, and sp), we ran
them with Class A inputs [12] (§VII-E), though Class W inputs
[12] were used for their statistical fault injection campaigns;
this is rather essential to finish the fault injection campaigns
in a reasonable amount of time because we have to run each
benchmark and its multiple versions a huge number of times
to get statistically meaningful results. On the other hand,
Mibench applications use the default inputs for both run-time
overhead evaluation and fault injection campaigns. To enable
the parameterized soft error resilience, all applications from
both benchmark suites were compiled with RTailor’s compiler
passes (§V) using the profile-based strategy with the loop
selection threshold set to 100 (§V-A). For better performance,
RTailor leveraged the loop unrolling approach (§V-B2) that
prepares the selected loops for parameterized protection.

We compiled NPB applications with four different protected
iteration ratios: 20%, 40%, 60%, and 80% with the unrolling
factor of 4 (5 loop bodies in total) (§V-B2). Since NPB
applications spend the majority of the execution time in the
loops (Table I), we left the instructions outside the loops
unprotected, which has only zero or minimal effect on the
overall soft error resilience and the execution time.

In the meantime, MiBench applications were compiled with
3 different protected iteration ratios: 25%, 50%, and 75%,
with the unrolling factor of 3. The fewer versions than those
used in compiling NPB applications result from the resilience
characteristics of MiBench applications; it turns out that com-
piling them into a larger number of resilient versions, i.e., more
protected iteration ratios, does not provide more fine-grained
soft error resilience parameterization. For example, multiple
MiBench applications show nearly identical fault injection
results at 60% and 80% protected iteration ratios. Moreover,
while having more resilient versions requires RTailor to use a
higher unrolling factor (§V-B2), i.e., loop bodies are copied
more times, this increases the code size and thus can cause
performance degradation due to more cache misses. Therefore,
we decided to use a smaller number of resilient versions when

compiling MiBench applications. Instead, we protected the
instructions outside the selected loops with the conventional
non-parameterized soft error resilience scheme [8], [33].

Finally, all benchmarks were compiled with non-
parameterized soft error resilience (shown as “full” in
following figures and called fully protected version [8], [33])
and also without any soft error protection to serve as the
baseline (called unprotected version) for comparison.

D. Evaluation Enviroment
TABLE IV: Experimental Board Configuration

Board Raspberry Pi 4B
CPU Broadcom BCM2711, Quad core Cortex-A72 @ 1.5GHz

Memory 8GB LPDDR4-3200 SDRAM
OS Ubuntu 22.04 LTS (64-bit ARM)

Target ISA ARMv7-a with NEON and VFPv3

We measured the execution times of NPB applications on
a Raspberry Pi 4B board whose configuration details are
shown in Table IV. For MiBench applications, we measured
their execution time using Gem5 simulator with SE mode
[59] since most of them have very short execution times on
real hardware. For example, MiBench applications’ execution
times measured atop Raspberry Pi 4B board are dominated
by factors that are not related to RTailor’s parameterized soft
error resilience, e.g., OS’s system calls and IO operations.
In contrast, the Gem5 simulator can measure applications’
execution times precisely. To model ARM’s typical embedded
core, we configured the Gem5 simulator [59] using single
core 8-issue out-of-order pipeline with 32KB/32KB 4-way set-
associate L1 instruction/data caches (2 cycles hit) and a 1MB
16-way set-associative L2 cache (20 cycles hit).

E. Run-time Overhead with Varying Protection Ratios
Figure 8 and Figure 9 show the slowdown of RTailor for

MiBench and NPB applications, respectively, compared to the
unprotected version, when the protected iteration ratio varies
from 20% to 100% (Full)9. On average, the geometric mean of
RTailor’s overhead is 27%→80% across the protected iteration
ratios. Except for Patricia from MiBench, the execution
time of each application is proportional to the protected itera-
tion ratio used. That is because as the protected iteration ratio
increases, the program executes more protected iterations—
each of which is of course slower than the unprotected
iteration. Regarding Patricia, its performance anomaly
results from the pointer-chasing loop where the majority of

9Prior work [8] has shown that the overhead from soft error detect scheme
(DMR) can exceed 100%, let alone the overhead from idempotent recovery
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Fig. 10: Mibench application code size increase in percentage; baseline is the fully protected binary; lower is better
the execution time is spent waiting for load cache misses to be
resolved. It turns out that the underlying out-of-order processor
is able to schedule and execute those instructions inserted for
soft error detection and correction while waiting for the load
instructions to retire. This can effectively hide the execution
time overhead of the protection code in Patricia regardless
of the protected iteration ratio.

F. Code Size Increase

Fig. 11: NPB application code size increase in percentage;
baseline is the fully protected binary; lower is better

Figure 10 and Figure 11 show the code size increase
of RTailor for MiBench and NPB applications, respectively,
across varying protected iteration ratios. In both figures, the
code size of the fully protected (non-parameterized protected)
version is set as the baseline and normalized to 1. The main
difference between the baseline and RTailor’s executables is
that they conduct loop unrolling (§V-B2) and function inlin-
ing/cloning (§V-C) to parameterize soft error resilience. While
these compiler transformations generally increase the code
size and thus can lead to performance degradation in case of
more instructions cache misses, it turns out that the maximum
resulting code size increase is only 14%. Consequently, this
rarely affects the performance due to the negligible instruction
cache miss behavior in our experiments.

G. Statistical Fault Injection Campaign

Fig. 12: Fault injection results of NPB applications
To evaluate RTailor’s ability to parameterize soft error

resilience, we leveraged statistical fault injection campaigns
(§VII-B). For this purpose, we ran each benchmark application
and its resilient versions, i.e., including full and parameterized

protection binaries varying the protected iteration ratio, 1200
times per each to reach 95% confidence level [56]. Figure 12
and Figure 13 show the fault injection results of NPB and
MiBench applications, respectively. The ratio of each fault
injection outcome (masked, corrected, crash, hand, or SDC)
in the figures is the number of the runs that correspond to the
outcome divided by 1200. As shown in the two figures, the
ratios of correct runs (masked/corrected) increase in propor-
tion to the protected iteration ratio used. Thus, these results
highlight RTailor’s ability to parameterize soft error resilience.

H. Schedulability Simulation of Real-Time Systems

To evaluate the schedulability improvement of RTailor’s
parameterized soft error protection over the fully protected
scheme, we performed mixed-criticality system simulations
with the testing framework of prior work [14].

1) Setup: The mixed-criticality system is based on a single-
core processor. Each simulation scenario is defined by a tuple
(n,ε,NU ), where n ↘ {5, 10, 25, 50} is the number of tasks,
i.e., the cardinality of the task set in the system, NU ↘ [0 : 1] is
the total processor utilization of tasks excluding re-executions,
and ε ↘ {10→2

, 10→3
, 10→4

, 10→5}/hr is the system’s fault
rate per hour, picked from other prior works [60]–[62].

For a given (n,ε,NU ) tuple, i.e., simulation scenario,
we randomly generate a number of mixed-criticality systems
(MCS). To illustrate, under the same system fault rate (ε),
MCS1 and MCS2 both have 5 (n) tasks but differ in terms of
their utilization assignment to each task with the NU satisfied.
For the task set of each MCS, a simulation run determines
whether it is schedulable or not; MCS and its task set are
interchangeably used because of their 1-1 correspondence.

We evaluated RTailor’s schedulability improvements for the
aforementioned mixed-critical system using both the EDF
scheduler and the state-of-the-art scheduler proposed by the
prior work [14]. Unlike the EDF scheduler, the novel scheduler
of the prior work [14] has an ability to drop tasks if necessary.
When it is impossible to schedule all tasks in the task set,
the scheduler tries to drop some (re-)executions of the low-
criticality tasks to reduce processor utilization with the failure
rate constraints of all tasks still satisfied, which gives high-
criticality tasks more time for execution. Since the prior work
uses a tree-based algorithm [14] to find appropriate tasks (or
their re-executions) to drop, we called it the tree scheduler
hereafter for the sake of simplicity.

On the other hand, for the EDF scheduler, all tasks and
their re-executions are admitted, i.e., no task is dropped though
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Fig. 13: Fault injection results of MiBench applications

they are unschedulable. This implies that if the task set is
schedulable, then all tasks satisfy their failure rates.

TABLE V: Variables used in the schedulability simulation
Variable Definition

n Number of tasks in the task set

εi

The benchmark application; it serves as an index to some
factors for generating cij and pF

ij
of ωij

cij WCET of ωij
Ti Period of ωi
Di Deadline of ωi
NU i Processor utilization of ωi without re-execution
NU Total processor utilization of the task set without re-execution
Ui Processor utilization of ωi with re-executions
U Total processor utilization of the task set with re-executions
pF
ij

Actual failure rate of ωij
preq
i Required failure rate of ωi
ϑ System’s fault rate per hour

2) Task Set Generation: Again, each (n,ε,NU ) tuple
yields many randomly generated task sets. For each tuple,
RTailor’s parameterized soft error resilience and the con-
ventional non-parameterized resilience schemes both have
1000 and 100 task sets for the EDF scheduler and the tree
scheduler10, respectively. For each task set generation, we
take a two-step approach: (step-1) generating a task set with
random tasks that are fully protected and (step-2) extending
it with their re-execution versions in two different ways; the
resulting two task sets share the same random tasks but differ
in how to construct the re-execution version sequences, i.e.,
one (RTailor’s) consists of task versions created by RTailor’s
resilience parameterization—including full protection—while
the other (the prior work’s) of the replicas of the same fully
protected tasks. To satisfy the failure rate constraint (§III-A),
RTailor’s task set with parameterized protection utilizes Al-
gorithm 2 to construct the re-execution version sequence of
each task11, while the task set of the prior work [14] uses
Equation (1) to determine how many times its task (fully
protected) should be re-executed.

Table V shows the definitions of the variables used in the
above task set generation, and they are detailed below:

• ϑi is a variable that we added to derive the WCET and
actual failure rate of each task version complied with
RTailor’s resilience parameterization.

10The purpose is to get the simulation runs down to a reasonable amount of
time in that the tree scheduler algorithm [14] takes a while to find appropriate
task re-executions to drop. Note that the prior work [14] generated the same
number of task sets for the simulation of the tree scheduler.

11The original execution ωi(0) of a given task ωi can be a task version other
than the fully protected version as long as the re-execution version sequence
(including the original execution) satisfies ωi’s failure rate constraint.

• Each task is assigned a random benchmark ϑi that serves
as an index to the factors for generating cij and p

F
ij below.

• The utilization NUi of each task ωi is determined using
the UUnifast algorithm [63] such that NU =

∑n
i=1 NUi.

• The period Ti of each task ωi is uniformly sampled from
[50 : 1000] ⇓ N, and ωi’s deadline Di is set to Ti.

• The WCET cij of ωij is defined as cij = Ti ≃ NU i ≃
Eωij

Eωifull
, where Eεij

is the measured execution time of the
benchmark application ϑi’s version j from §VII-E.

• The actual failure rate p
F
ij of ωij is defined as p

F
ij =

ε≃ϖεij

12, where ϖεij
is the failure ratio of the benchmark

application ϑi’s version j; the failure means crash, hang,
or SDC in the fault injection campaigns (§VII-G).

• The required failure rate p
req
i of ωi is uniformly sampled

from four values: {10→3
, 10→5

, 10→7
, 10→9}/hr that are

obtrained from DO-178C standard [7].
• The processor utilization with re-executions Ui of ωi is

defined as Ui =
∑Nre→exec

i
k=0 civk

/Ti, where V SEQi =
(v0, . . . , vNre→exec

i
) is the re-execution version sequence

satisfying the failure rate constraint.
• The total processor utilization U of the task set with re-

executions is defined as U =
∑n

i=1 Ui.
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Fig. 14: Schedulability simulation of the EDF scheduler with ωi
from NPB. n : number of tasks in a task set, ε : fault rate/hour.

3) Scheduability Simulation Results: Figure 14 and Fig-
ure 16 show the schedulability results of the EDF scheduler
and the tree scheduler, respectively, when ϑi is selected from
NPB benchmark suite. Similarly, Figure 15 and Figure 17 pro-
vide the schedulability results from the EDF scheduler and the

12When computing pFij , ε are first scaled to same time period of cij for
correct actual failure rate calculation. We omit this for the sake of simplicity.
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Fig. 15: Schedulability simulation of the EDF scheduler with ωi
from MiBench. n : number of tasks in a task set, ε : fault rate/hour.
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Fig. 16: Schedulability simulation of the tree scheduler with ωi
from NPB. n : number of tasks in a task set, ε : fault rate/hour.
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Fig. 17: Schedulability simulation of the tree scheduler with ωi
from MiBench. n : number of tasks in a task set, ε : fault rate/hour.

tree scheduler, respectively, when ϑi is selected from MiBench
benchmark suite. In the figures, the x-axis corresponds to NU
the total utilization of the task set without re-execution, i.e.,
the one generated in the step one (§VII-H2), while the y-axis
to the ratio of schedulable task sets to the total number of
task sets. Since RTailor can minimize over-protection, which in
turn reduces the processor utilization of each task, the resulting
schedulability of the mixed-criticality system gets significantly

improved as shown in the figures. Table VI summarizes the
schedulability improvement of RTailor over the conventional
non-parameterized resilience for both the EDF and the tree
schedulers across different fault rates. Overall, with the help
of RTailor’s soft error resilience parameterization, the schedu-
lability of the EDF scheduler improves up to 24%, while that
of the tree scheduler improves up to 21%.

TABLE VI: The summary of the schedulability improvements

ϑ 10→2 10→3 10→4 10→5

EDF, εi ↑ NPB 19% 23% 24% 20%
Tree, εi ↑ NPB 21% 20% 18% 15%
EDF, εi ↑ MiBench 12% 15% 16% 18%
Tree, εi ↑ MiBench 17% 18% 20% 19%

VIII. OTHER RELATED WORK

Prior schemes have studied energy-aware reliability man-
agement for real-time systems [64], [65]. As with RTailor, they
provide real-time tasks with application-tailored reliability. To
achieve this, the schemes leverage task replication, i.e.,, for
a task violating the failure rate constraint (§II-B), they keep
spawning the replica of the task until the probability of failing
all task executions becomes lower than the required failure
rate. However, the prior schemes often end up overprotecting
tasks due to the lack of parameterized soft error resilience
(Figure 1). In particular, the schemes take advantage of the
overprotection as a safety net to enable aggressive dynamic
voltage and frequency scaling (DVFS) that trades offs the
reliability for energy efficiency [66], [67].

In contrast to the prior schemes that inherently cause task
overprotection and mitigate it with the DVFS, RTailor can
address the overprotection in the first place using soft error
resilience parameterization. For a given task that requires re-
execution(s) to bring its failure rate down to the required rate,
RTailor composes the optimal sequence of the task versions
whose resilience is parameterized in a fine-grained manner
with a different protection ratio. Consequently, the resulting
overprotection of RTailor is much smaller than that of the
prior schemes. On the other hand, RTailor can work with their
DVFS technique in synergy to further reduce overprotection
and improve energy efficiency without violating the failure rate
constraint of real-time tasks. This would be helpful especially
when RTailor is extended for energy-harvesting systems [68]–
[75], which we leave as future work.

IX. CONCLUSION

This paper presents RTailor that can parameterize soft
error resilience for mixed-criticality real-time systems in a
flexible and fine-grained manner. To offer custom soft error
resilience for a given reliability demand, RTailor’s compiler
transforms the loops of each task so that their iterations are
protected as frequent as the demand. The simulation results
demonstrate that RTailor’s parameterized soft error resilience
can significantly improve the schedulability of the real-time
tasks up to 21% compared to the state-of-the-art work.
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